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R-matrix analysis of interference effects in 12C„a,a…

12C and 12C„a,g…

16O
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Physique Nucle´aire Théorique et Physique Mathe´matique, Universite´ Libre de Bruxelles, CP229, B-1050 Brussels, Belgium

~Received 8 September 1999; published 18 May 2000!

The a112C d phase shift and the12C(a,g)16O E2 S factor are analyzed in theR-matrix theory. A new
method is proposed to link experimental and calculated parameters within theR-matrix formalism. We show
that interference patterns in the phase shift near 3 MeV are very helpful to constrain the parameter set. Starting
from this analysis, we fit the12C(a,g)16O E2 S factor, and find low-energy values larger than currently
accepted. Different interference patterns are found, but do not appear to affect the astrophysical energies.
Consequently, direct measurements at low energies are necessary for astrophysical applications.

PACS number~s!: 25.40.Lw, 24.50.1g, 25.60.Bx
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I. INTRODUCTION

The 12C(a,g)16O reaction rate is the most important in
put in many stellar models@1#. It determines the12C/16O
ratio after helium burning, and hence the evolution of m
sive stars. Typically this reaction rate should be known w
an uncertainty of no more than 20% to derive reliable c
clusions in stellar models.

A general problem in nuclear astrophysics is the sm
ness of the cross sections at relevant energies. Because
Coulomb barrier, the repulsion between charged partic
makes the cross section usually too low to be measure
laboratories. However, in many cases, especially in prot
induced reactions, the measured cross sections can be
trapolated down to the stellar regime with a sufficient ac
racy @2#. Quite recently, measurements within the Gam
energy region have been performed on the3He(3He,2p)4He
reaction using underground facilities@3#.

The situation is very different in the12C(a,g)16O reac-
tion. It has been known for a long time that the low-ener
cross section is determined by the contribution of t
weakly bound states (21

1 at 6.92 MeV and 11
2 at 7.12 MeV!

located just below thea112C threshold in16O. These states
are responsible for an enhancement of theS factor at low
energies and make the extrapolation of the data rather c
plicated. The situation is even more tedious since both
E1 and E2 multipolarities are expected to contribute. T
cross section at stellar energies~typically 300 keV! being
definitely too small to be measured in laboratories~of the
order of 10217 b!, the challenge is to find indirect methods
access this stellar regime with a reasonable confidence@4#. It
has been argued in the past@5–7# that theE1 contribution of
the 12C(a,g)16O cross section could be fairly well con
strained by the16N b-delayeda spectrum. Measurement
have been performed@8,9#, and turned out to reduce unce
tainties in theE1 S factor @9#. Although some ambiguities
still exist @10#, the E1 component is now believed to b
determined within 30%.

The current understanding of theE2 contribution is, how-
ever, poorly known. In spite of the numerous investigatio
0556-2813/2000/61~6!/064611~7!/$15.00 61 0646
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performed so far~see references in Ref.@11#!, theE2 term is
expected to be the main uncertainty in the12C(a,g)16O S
factor @12#. A new indirect method has been recently su
gested by Chowet al. @13# from a measurement of theb
delayed proton spectrum of17Ne. Observations of the sub
sequent breakup of16O into a and 12C particles might pro-
vide in a near future some useful information on theE2
component.

Our aim in the present work is to investigate some qu
tative aspects of thea112C phase shifts and of the
12C(a,g)16O E2 S factor. The elastic phase shifts are e
perimentally known in a fairly wide energy range@14,15#.
Although these data have already been used by severa
thors @5,6,16,12# to determine some parameters involved
the capture cross section, we want here to go into more
tails, and to pay attention to an energy region which could
more useful for the parameter determination. In the sec
part of the paper, we focus on the12C(a,g)16O E2 S factor
and especially on interference effects which could affect
high-energy region (E>2.5 MeV).

The method used here is theR-matrix theory@17# which
has been widely adopted by many authors for
12C(a,g)16O reaction as well as for several other reactio
~see references in Ref.@12#!. In this method, the physics o
the problem is determined by the properties~energy,a andg
widths! of some poles. The drawback is that, although
poles are related to physical resonances or bound states,
properties are not directly linked to experimental data. T
problem is responsible for the difference between ‘‘forma
or ‘‘calculated’’ properties, which enter theR-matrix analy-
sis, and the ‘‘observed’’ properties, which correspond to
experimental data@5#. When a single pole is included in th
model, the link between ‘‘calculated’’ and ‘‘observed’’ va
ues is rather straightforward. However, the problem becom
much more difficult when one has to deal with several po
@5,18#, as in the12C(a,g)16O reaction. The difficulty is to
constrain the parameter set of ‘‘calculated’’ inputs with ‘‘o
served’’ experimental data. In this paper, we present a n
method allowing to derive ‘‘calculated’’ parameters fro
‘‘observed’’ parameters in a simple way. This technique w
©2000 The American Physical Society11-1
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C. ANGULO AND P. DESCOUVEMONT PHYSICAL REVIEW C61 064611
be used for the analysis of thea112C phase shift and of the
12C(a,g)16O cross section.

II. R-MATRIX FORMALISM

A. Elastic scattering

In the R-matrix approach@17,19#, the configuration space
is assumed to be divided into two regions. In the inter
region~of radiusa), the physics of the problem is describe
by a set of orthogonal wave functionsxl

JMp , yielding for the
radial part

c int
JMp~E,r !5(

l
f l

Jp~E!xl
JMp~r ! for r<a, ~1!

wherer is the relative coordinate between the colliding n
clei, and thef l

Jp(E) coefficients are to be determined fro
the Schro¨dinger equation. Here, we restrict ourselves to
actions involving zero-spin nuclei, and to single-channel s
tems. In the external region, the nuclear part of the inter
tion is, by definition, negligible and the wave functio
normalized to the unit flux condition reads

cext
JMp~E,r !5@ I J~kr !2UJp~E!OJ~kr !#/krv1/2 for r>a,

~2!

whereUJp is the collision matrix,I J and OJ the Coulomb
ingoing and outgoing functions, respectively, defined fro
the Coulomb regular and irregular functionsFJ andGJ , k is
the wave number, andv the relative velocity.

Since the kinetic energy is not hermitian over a finite p
of the configuration space, the Bloch operatorL(L) is intro-
duced in the Schro¨dinger equation, yielding

@H2E1L~L !#c int
JMp~E,r !5L~L !cext

JMp~E,r !, ~3!

where

L~L !5
\2

2ma
d~r 2a!S d

dr
2

L

r D r ~4!

is a surface operator,m being the reduced mass. The Bloc
operator ensures the hermiticity ofH1L(L) over the inter-
nal region. ConstantL does not depend onr. It can be taken
as ~see, for example, Ref.@20#!

L5ka
OJ8~ka!

OJ~ka!
5SJ~ka!1 iPJ~ka! for E>0

52ka
W2h,J11/28 ~2ka!

W2h,J11/2~2ka!
5SJ~ka! for E<0, ~5!

whereh is the Sommerfeld parameter andW the Whittaker
function.

Solving Eq.~3! with Eqs. ~1! and ~2! provides the colli-
sion matrix

UJp5
I J~ka!

OJ~ka!

12L!RJp

12LRJp
5exp~2idJp!, ~6!
06461
l

-

-
-

c-

t

where we have introduced the phase shiftdJp and theR
matrix defined as

RJp~E!5(
l

g̃l
2

El2E
. ~7!

Here and in the following, the boundary constant parame
@21# is chosen equal to zero. This parameter is usually in
duced to simplify the determination of the observed valu
but is not necessary here.

In the definition of theR matrix, El is the eigenvalue
associated to the basis functionxl , and the formal reduced
width g̃l

2 is defined from

g̃l5S \2a

2m D 1/2

xl~a!. ~8!

Throughout this paper, indicesJp are not written forg̃l
2 and

El ; in addition, the formal quantities are denoted by a til
~e.g., g̃l

2), whereas observed values are denoted without
tilde ~e.g., gl

2). The phase shiftdJp defined by Eq.~6! in-
volves a Coulomb termdC

Jp , a hard-sphere phase shiftdHS
Jp ,

and a nuclear phase shiftdN
Jp :

dJp5dC
Jp1dHS

Jp1dN
Jp ,

dC
Jp5argG~J111 ih!,

dHS
Jp52arctanFJ~ka!/GJ~ka!,

dN
Jp5arctan

PJ~ka!RJp~E!

12SJ~ka!RJp~E!
. ~9!

In the literature, theR-matrix theory is used in two ways
In general, the pole parametersg̃l

2 and El are fitted to ex-
perimental data, such as resonance energy or width, or el
phase shifts. In that case, the wave functionsxl are com-
pletely hidden. On the other hand, theR-matrix theory can
also be employed in variational calculations, to correct a p
sibly inappropriate asymptotic behavior of the basis wa
functions@22#. In that way, energiesEl and reduced widths
g̃l are calculated from the basis functions, and used to
termine the collision matrix.

B. Capture cross section

The capture cross section of orderL from an initial state
with spin Jip i to a final state with spinJfp f reads, in the
R-matrix formalism@19#

sL~E,Jip i→Jfp f !5
8p~L11!

\L~2L11!!! 2

2Jf11

2Ji11
kg

2L11

3u^cJfp fiM L
Eic int

Jip i~E!& int

1^cJfp fiM L
Eicext

Jip i~E!&extu2, ~10!
1-2
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wherecJfp f (cJip i) is the final~initial! wave function,kg is
the photon wave number, andM L

E is the electric multipole
operator of orderL. In definition ~10!, the first term of the
right-hand side represents the internal contribution, while
second term represents the external part@subscript int~ext!
refers to integration performed over the internal~external!
region only#. Notice that this latter contribution indirectl
depends on the nuclear interaction through the collision
trix which appears incext

Jip i . The relative importance of both
components depends on the reaction and on the energy
weakly bound systems, such as7Be1p, the external contri-
bution is strongly dominant, and Eq.~10! reduces to the
extranuclear-capture approximation@23#. In the present case
the binding energy of16O with respect to thea112C thresh-
old in fairly large ~7.16 MeV! and, up to a very good ap
proximation, the external part can be neglected. In this
proximation, the cross section reads@5#

sL~E,Jip i→Jfp f !

5
p

k2
~2Ji11!

3

U(
l

«l@G̃l
a~E!G̃l

g~E!#1/2/~El2E!U2

u12LRJip i~E!u2
,

~11!

where the formala andg widths are defined by

G̃l
a~E!52g̃l

2PJ~E!,

G̃l
g~E!5

8p~L11!

\L~2L11!!! 2

2Jf11

2Ji11
kg

2L11

3u^cJfp fiM L
Eixl

Jip i& intu2 ~12!

and«l is a phase coefficient, equal to11 or 21. The phase
coefficients are written explicitly to account for the sign
the electromagnetic matrix elements. With this definition,
square root in Eq.~11! is always positive. The energy depe
dence ofG̃l

g(E) reads

G̃l
g~E!5G̃l

g~Er !S E2Ef

Er2Ef
D 2L11

, ~13!

whereEf is the energy of the final state andEr the resonance
energy~see below!. In the following G̃l

g(Er) will be denoted

asG̃l
g . Again G̃l

g must be considered either as a parameter
as the result of a variational calculation involving basis sta
xl

Jip i .

C. Link between ‘‘formal’’ and ‘‘observed’’ values

One of the main drawbacks of theR-matrix method is that
the pole parametersEl , g̃l

2 , and G̃l
g are related, but no

equal, to resonance or bound state physical properties.
problem has been addressed by several authors@18,12#. The
resonance energyEl

r is defined as the solution of
06461
e
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S~El
r !R~El

r !51. ~14!

Simultaneously, the observeda width Gl
a is deduced from

a Breit-Wigner parametrization of the phase shift near
resonance energy

dN
Jp~E!'arctan

Gl
a

2~El
r 2E!

. ~15!

From Eq.~9!, we have, for unbound states,

gl
25

Rr

~SR!r8
,

Gl
a5

2PrRr

~SR!r8
52Prgl

2 , ~16!

where subscriptr refers to the function calculated atE
5El

r , and the derivative is performed with respect to ener
For bound states, we define the reduced width in the sa
way; the total width vanishes. Equation~16! defines the ob-
served reduced widthgl

2 , which not only depends on th

formal reduced widthg̃l
2 of polel, but also on the propertie

of the other poles.
An interesting situation is the single pole approximatio

where

R~E!5
g̃0

2

E02E
. ~17!

In this case, Eqs.~14! and ~16! reduce to the well-known
expressions

E0
r 1g̃0

2S~E0
r !2E050 ~18!

and

g0
25g̃0

2/~11g̃0
2Sr8!. ~19!

The problem for 12C(a,g)16O is more complicated. We
have, in the 21 partial wave, several states which must
included. For these states, some properties are experim
tally known and should be used to limit the parameter spa
It is therefore desirable to have an efficient technique to p
from observed quantities to calculated values.

Let us start with the pole energies anda widths. At a
resonance energyEl

r , we have

R~El
r !5

g̃l
2

El2El
r

1Rl
0 , ~20!

where Rl
0 represents the contribution of the other pole

From Eqs.~14! and ~16!, we deduce

El5El
r 1Sr g̃l

2/~12SrRl
0!,
1-3
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g̃l
25gl

23
~12SrRl

0!2

12Sr8gl
2

. ~21!

This system is solved iteratively, starting withRl
050. Then

the calculated valuesEl and g̃l
2 are determined in the firs

iteration. CoefficientsRl
0 are recalculated, and the process

repeated until convergence. In practice, a few iterations o
are needed. This method is well adapted to numerical ca
lations and turns out to be very efficient. Notice, howev
that derivation of Eq.~21! requires the assumption that th
contribution of other poles thanl is independent of energ
nearEl

r . In the 12C(a,g)16O reaction, theE2 S factor in-
volves narrow ~or bound! well separated states, and th
method is applicable. It has been tested by using the for
parameters~21! in Eq. ~14!. Solutions of this equation an
the a widths obtained with Eq.~16! are equal to the starting
values.

Using the capture cross section~11!, we find a similar
expression to derive theg width:

AGl
g5Srgl(

l8

«l8g̃l8AG̃l8
g

El82El
r

. ~22!

The calculatedg widths G̃l
g are therefore obtained from th

resolution of a linear system. If we consider the single-p
approximation~17!, Eqs.~18! and~19! are directly recovered
by using Eq.~21! with Rl

050. For theg width we find the
usual relationship

G0
g5G̃0

g/~11g̃0
2Sr8!. ~23!

With the help of Eqs.~21! and~22!, we can easily obtain
the R-matrix parameters from experimental~‘‘observed’’!
data. Notice that the present development is limited
single-channel systems or, in other words, to o
dimensionalR andU matrices. These formulas are more e
ficient than the methods used so far@16,12#. They will be
extensively used in the following.

III. FITS OF THE lÄ2 PHASE SHIFT

In order to limit the number of parameters, we start w
the study of thea112C phase shift. We use the experimen
data of D’Agostino Brunoet al. @14# and of Plagaet al. @15#
at energiesE<4.5 MeV. Data at higher energies are al
available@14#, but are not used in the fits. In the overlappi
region, a good agreement between both data sets is obta
Since our aim here is a qualitative investigation of the ph
shifts, we neglect target thickness effects, included in
analysis of Ref.@12#. Throughout the paper the channel r
dius is a56.5 fm, as recommended by Barker and Kaji
@16#.

The R-matrix fits are performed with four poles: the 21
1

subthreshold state (l51), the 22
1 (l52) and 23

1 (l53)
resonances atEc.m.52.68 and 4.36 MeV, respectively, and
background term (l54) at 10 MeV. In practice, the 2.68
MeV resonance is very narrow and does not affect the ph
06461
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shift, but will be important in theS factor. We have checked
the sensitivity of the results with different values of the bac
ground energy, and the conclusions remain unchanged. T
I lists the parameter set.

For poles 2 and 3, theg2 values correspond to the exper
mental widths~0.625 keV and 73 keV, respectively!. In Fig.
1, we present thex2 values as a function ofg1

2 (g4
2 is opti-

mized!. Let us remind the reader that for each parameter
the experimental requirements of Table I are satisfied. T
fitting procedure has been performed in two conditions. I
first step, we have limited the energy range to 3.4 MeV. T
corresponds to the range adopted by Barker and Kajino@16#,
and does not include the 4.36 MeV resonance. Buchm
et al. @12# also exclude some data points but do not g
further precisions. In these conditions, thex2 curve is rather
flat, and the minimum is obtained nearg1

250, which would
exclude any contribution from the 21

1 subthreshold state
This conclusion has been drawn by Buchmannet al. On the
contrary, extension of the energy range to 4.2 MeV provid
a more interesting structure of thex2 curve. A fairly deep
minimum is obtained nearg1

250.20 MeV ~and g4
2

53.5 MeV). Thisg1
2 value is very similar to the result of a

microscopic multicluster calculation of thea112C system
@25#. Further extension of the energy range would be me
ingless since it would cover a sharp resonance region
any small uncertainty on its properties would affect the fit
an inappropriate way.

To illustrate the low sensitivity of the fit with respect t
the total width of the 4.36 MeV level, we have repeated
procedure with thea width measured by Bilaniuket al. @26#
in a 14N(3He,p)16O experiment (6465 keV). The corre-
sponding fit is presented in Fig. 1 as a dotted line forEmax
54.2 MeV ~the curves for 3.4 MeV are indistinguishable!.

TABLE I. Energies and observed reduced widths@24# for poles
l51 to 4.g1

2 andg4
2 are fitted.

l El
r (MeV) gl

2 (MeV)

1 20.24 g1
2

2 2.68 3.6831024

3 4.36 1.3931022

4 10 g4
2

FIG. 1. x2 fits of the d phase shifts for different maximum
energies. The dotted line shows the sensitivity with respect to tha
width of pole 3~see text!.
1-4
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To go further in the understanding of the fit, we give
Fig. 2 an analysis of the phase shift, and of the correspon
R matrix. From the experimental data of Plagaet al. @15#, we
have extracted ‘‘experimental’’R matrices at 6.5 fm by in-
verting Eq.~6!. We also show the individual contribution o
the poles included in the present fit~pole 2 is not shown!.
Different interesting conclusions can be drawn from the fi
ure.~i! Below 2 MeV, the error bars on the phase shift~typi-
cally 1°) are converted as infinite error bars on theR matrix.
In other words, for these very small phase shifts, anyR ma-
trix gives a phase shift within the experimental error b
This means that these energies cannot be considered as
able constraints on the fit.~ii ! Except around the 4.36 MeV
resonance, theR matrix is always positive. However, th
R-matrix expansion~7! limited to the first pole gives a nega
tive contribution sinceg̃0

2 is positive andE0 is negative. This
is illustrated in Fig. 2, where we show this contribution o
tained in our best fit. In other words, a simple analysis of
experimentalR matrix suggests that the background con
bution must be important to compensate the effect of
subthreshold state.~iii ! Near the 4.36 MeV resonance, w
find a singularity of theR matrix which is expected to appea
at the poles. The parameters of this resonance are
known experimentally and yield a contribution almost neg

FIG. 2. Upper panel:R matrix derived from the experimenta
data of Ref.@15# ~circles!, with the present fit~full line!, and indi-
vidual contributions of poles 1, 3, and 4~dashed lines!. Lower
panel: experimental phase shifts@15# ~without the Coulomb term!
with the R-matrix fit; the hard-sphere phase shift is denoted as
calculations limited to some poles are also shown.
06461
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gible except near 4.36 MeV~see curve labeled ‘‘pole 3’’ in
Fig. 2!. Hence, the shape of theR matrix near the resonanc
is strongly affected by the pole 1 and background contri
tions, and this energy region turns out to be very sensitive
the conditions of the calculation.

In the lower panel of Fig. 2, we present the phase s
expanded in its different terms@see Eq.~9!#. The hard-sphere
phase shifts are much lower than experiment. Furtherm
the inclusion of the subthreshold state alone still lowers
theoretical phase shift. This feature led Buchmannet al. @12#
to the conclusion thatg1

2 should be very close to zero, an
that a better agreement needs a smaller channel radius~4.5
fm!. The present analysis shows that a non-negligibleg1

2, as
well as a large channel radius necessary to account for
observed cascade transitions@16#, are still compatible with
the experimental phase shifts, provided that an import
background contribution is taken into account.

From this analysis, it turns out that the interference p
tern in thed phase shift between 3 and 4.2 MeV provides
rather strong constraint on the parameter set. Since reson
energies are known as well as thea width of the 4.36 MeV
resonance, we are left with only two parameters:g1

2 andg4
2,

and the12C(a,g)16O analysis is greatly simplified.
For the sake of completeness, we present in Fig. 3

phase shifts calculated up to 7.5 MeV, and compare th
with the high-energy data of D’Agostino Brunoet al. @14#.
The parameters are those of Table I with our best values
g1

2 andg4
2 ~0.20 and 3.5 MeV, respectively!. To account for

the 5.86 MeV resonance, we have added a fifth poleE5
r

55.86 MeV, G5
a50.52 MeV taken from Ref.@14#! to the

R-matrix expansion. The agreement with the data is qu
acceptable if one keeps in mind that no fitting procedure
been used beyond 4.2 MeV.

IV. ANALYSIS OF THE E2 S FACTOR

In this section, we use the parameters fitted on the ela
phase shifts to investigate the12C(a,g)16O E2 S factor. In
this way, the number of free parameters is strongly reduc
In fact, since theg widths of poles 1, 2, and 3 are exper
mentally known, we have one free parameter only~the g

;

FIG. 3. Fit of the experimental phase shifts of Ref.@14# ~filled
circles! and of Ref.@15# ~open circles!. The Coulomb phase shif
has been subtracted.
1-5
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width of pole 4, corresponding to the background! and dif-
ferent combinations of three phase coefficients@«2 , «3, and
«4 in Eq. ~11!, assuming«1511]. We use the data of Refs
@27–29,11#, and the parameters are summarized in Table

First we consider thex2 values as a function ofG4
g , and

for different («2 ,«3) choices. For«4521, all x2 values are
unphysically large, and accordingly, this phase is fixed
«4511 in the following. The results are presented in Fig.
where we find out that the minima are obtained at differ
G4

l values when the interference signs«2 and «3 are
changed. Thex2 values at the minima are rather similar~be-
tween 3.6 and 5.4!, and significantly larger than unity.

The best fits are illustrated in Fig. 5, and compared to
experimental data. Contrary to the phase shifts, the h
energy region (E'324 MeV) does not give strong con
straint on theS factor at low energies. Important difference
are observed beyond 3 MeV whereas the 300 keVS factors
are nearly identical for each set of interference signs~from
190 to 220 keV b!. From the current experimental situatio
it is not possible to draw definite conclusions about th
signs.

The presentSE2~300 keV! value is larger than in recen
works @16,12,29# which provide SE2(300)550
2180 keV b, SE2(300)<140 keV b, and SE2(300)57
295 keV b, respectively. With respect to theR-matrix stud-
ies of Refs.@16# and@12#, we include the 2.68 and 4.36 MeV
states which were neglected in those references~the potential
model used in Ref.@29# does not describe these states!. On
the other hand, instead of fitting simultaneously the ph
shift and theS factor, we try to reduce the number of fre
parameters as much as possible. To this end, we first
sider the phase shift, and then analyze theS factor. Using
experimentally known properties of the 21 states, we have

TABLE II. R-matrix parameters for capture data@24#. G4
g is

fitted.

l El
r (MeV) gl

2 (MeV) Gl
g (eV) «l

1 20.24 0.20a 9.731022 11
2 2.68 3.6831024 5.731023 «2

3 4.36 1.3931022 0.61 «3

4 10 3.5a G4
g «4

aFrom the phase-shift fit.

FIG. 4. x2 values of theE2 S factor for different«2 /«3 sets~see
text!.
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one free parameter only (G4
g) for the S factor. The energy

dependence of the fit below 2 MeV is more consistent w
experiment than the fits of Refs.@16,12,29#, and yields a
higher SE2(300) value. Using the empirical criteria of Re
@12# for the error determination, we find for each fit abo
15% error.

In Fig. 6, we analyze the contribution of the differe
poles for «2521, «3511. With the subthreshold stat
alone, theS factor decreases smoothly and is larger th
experiments. Introducing the background~pole 4! provides a
fairly good description of the data below 2 MeV. Cons
quently, the role of the background contribution exten
even to very low energies.

V. CONCLUSION

The goal of this paper is to provide some qualitative pro
erties of thea112C l 52 phase shifts and the12C(a,g)16O

FIG. 5. E2 S factors for the bestx2 values of Fig. 4~see caption
to Fig. 4!. Experimental data are taken from Refs.@27# ~open
squares!, @28# ~filled squares!, @29# ~triangles!, and @11# ~open
circles!. For thesE2 /sE1 data of Redderet al., the E1 fit of Ref.
@9# has been used.

FIG. 6. R-matrix results with four poles~full line! and selected
poles~indicated as labels: dashed lines!. See caption to Fig. 5.
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E2 S factor in theR-matrix formalism. We do not aim a
providing a ‘‘new’’ S factor but we want to point out som
interesting features which could greatly help in reducing
uncertainties.

First, we have developed a new method to link obser
and calculated values in theR-matrix theory. This method
based on an iterative procedure, is quite simple and effic
for the 12C(a,g)16O reaction. It allows us to solve one of th
main drawbacks of theR-matrix theory. We can easily con
strain the parameter set with experimentally known da
This starting point is crucial for12C(a,g)16O where many
parameters are involved.

From the analysis of thed phase shift, we find that the
interference pattern between the different contributions n
4 MeV provides a fairly strong constraint on the parame
set. This energy region is easily covered by modern exp
ments and the counting rate is high enough to provide ac
rate phase shifts. On the contrary, we have shown that, be
2 MeV, the errors on the current data are too large to be u
in a fit. The experimentald phase shifts strongly deviat
from the hard-sphere phase shift. Since the 21

1 contribution
enlarges the deviation, and since the role of the 2.68 and
-

.
.
.
fs
ra

lo

.

M
g,
T.

-

P

K

N.
-

06461
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36

MeV resonances is limited to a very narrow energy regi
the difference must arise from the background contributi
This contribution turns out to be of the same amplitude as
21

1 subthreshold state. New data on elastic scattering wo
be welcome to improve the accuracy of the parameters.

The situation is different for the12C(a,g)16O E2 S fac-
tor. Above 3 MeV, where the cross sections are reasona
large and therefore easily accessible to experiments, sev
interference patterns can be obtained with similarx2 values.
The structure of theS factor beyond 3 MeV does not have
direct implication on the 300 keV value and, therefore, dir
measurements at energies as low as possible are necess
derive a reliableS factor for astrophysical applications.
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