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R-matrix analysis of interference effects in*C(a, a)'*C and *C(a, y)°0
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The a+C d phase shift and thé’C(«,y)'%0 E2 S factor are analyzed in thB-matrix theory. A new
method is proposed to link experimental and calculated parameters withR rtegrix formalism. We show
that interference patterns in the phase shift near 3 MeV are very helpful to constrain the parameter set. Starting
from this analysis, we fit thé?’C(a,v)*®0 E2 S factor, and find low-energy values larger than currently
accepted. Different interference patterns are found, but do not appear to affect the astrophysical energies.
Consequently, direct measurements at low energies are necessary for astrophysical applications.

PACS numbegps): 25.40.Lw, 24.50+g, 25.60.Bx

I. INTRODUCTION performed so fatsee references in Rdfl1]), theE2 term is
expected to be the main uncertainty in thH€(a,y)%0 S

The 2C(a, y)%0 reaction rate is the most important in- factor [12]. A new indirect method has been recently sug-
put in many stellar modelgl]. It determines the*?C/*%0  gested by Chowet al. [13] from a measurement of thg
ratio after helium burning, and hence the evolution of masdelayed proton spectrum dfNe. Observations of the sub-
sive stars. Typically this reaction rate should be known withsequent breakup of®O into « and *2C particles might pro-
an uncertainty of no more than 20% to derive reliable convide in a near future some useful information on tE2
clusions in stellar models. component.

A general problem in nuclear astrophysics is the small- Our aim in the present work is to investigate some quali-
ness of the cross sections at relevant energies. Because of agive aspects of thex+?C phase shifts and of the
Coulomb barrier, the repulsion between charged particle$?C(a,y)'%0 E2 S factor. The elastic phase shifts are ex-
makes the cross section usually too low to be measured iperimentally known in a fairly wide energy rand@4,15.
laboratories. However, in many cases, especially in protonAlthough these data have already been used by several au-
induced reactions, the measured cross sections can be akors[5,6,16,12 to determine some parameters involved in
trapolated down to the stellar regime with a sufficient accuthe capture cross section, we want here to go into more de-
racy [2]. Quite recently, measurements within the Gamowtails, and to pay attention to an energy region which could be
energy region have been performed on the(®He,20)*He  more useful for the parameter determination. In the second
reaction using underground faciliti¢3]. part of the paper, we focus on tHéC(a,v)®0 E2 Sfactor

The situation is very different in thé*C(a,y)®0 reac- and especially on interference effects which could affect the
tion. It has been known for a long time that the low-energyhigh-energy regionkE=2.5 MeV).
cross section is determined by the contribution of two The method used here is tiematrix theory[17] which
weakly bound states ¢2at 6.92 MeV and I at 7.12 MeV} has been widely adopted by many authors for the
located just below ther+*°C threshold in*°0. These states 12C(«,y)1%0 reaction as well as for several other reactions
are responsible for an enhancement of Séactor at low  (see references in Rdf12)). In this method, the physics of
energies and make the extrapolation of the data rather conthe problem is determined by the propertiesergy,« andy
plicated. The situation is even more tedious since both thevidths) of some poles. The drawback is that, although the
E1l andE2 multipolarities are expected to contribute. The poles are related to physical resonances or bound states, their
cross section at stellar energiggpically 300 keVj being  properties are not directly linked to experimental data. This
definitely too small to be measured in laboratorie the  problem is responsible for the difference between “formal”
order of 10 17 b), the challenge is to find indirect methods to or “calculated” properties, which enter thie-matrix analy-
access this stellar regime with a reasonable confidpticét  sis, and the “observed” properties, which correspond to the
has been argued in the p§5t-7] that theE1 contribution of  experimental dat85]. When a single pole is included in the
the 2C(a,y)®0 cross section could be fairly well con- model, the link between “calculated” and “observed” val-
strained by thel®N g-delayeda spectrum. Measurements ues is rather straightforward. However, the problem becomes
have been performel,9], and turned out to reduce uncer- much more difficult when one has to deal with several poles
tainties in theE1 S factor [9]. Although some ambiguities [5,18], as in the'?C(a,v)®0 reaction. The difficulty is to
still exist [10], the E1 component is now believed to be constrain the parameter set of “calculated” inputs with “ob-
determined within 30%. served” experimental data. In this paper, we present a new

The current understanding of tE contribution is, how- method allowing to derive “calculated” parameters from
ever, poorly known. In spite of the numerous investigations‘observed” parameters in a simple way. This technique will
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be used for the analysis of the+ 12C phase shift and of the Where we have introduced the phase siiff and theR
2C(a, y)*®0 cross section. matrix defined as

"
=

Il. R-MATRIX FORMALISM
ORMALIS RI(E) =3 =
X N

)

A. Elastic scattering

In the R-matrix approactj17,19, the configuration space Here and in the following, the boundary constant parameter
is assumed to be divided into two regions. In the internal21] is chosen equal to zero. This parameter is usually intro-
region (of radiusa), the physics of the problem is described duced to simplify the determination of the observed values,
by a set of orthogonal wave functiop@’\"”, yielding for the  put is not necessary here.
radial part In the definition of theR matrix, E, is the eigenvalue

associated to the basis functign , and the formal reduced

lpfn’}””(E,r):; 7(E)xM7(r) for r<a, (1)  width % is defined from

112
x\(a). 8

fila

2u

wherer is the relative coordinate between the colliding nu- Y=
clei, and thef{”(E) coefficients are to be determined from

the Schrdinger equation. Here, we restrict ourselves to re- ) o i ~5
actions involving zero-spin nuclei, and to single-channel sysJ hroughout this paper, indicesr are not written foryy and

tems. In the external region, the nuclear part of the interacEx ; in addition, the formal quantities are denoted by a tilde
tion is, by definition, negligible and the wave function (e.g.,}k), whereas observed values are denoted without the
normalized to the unit flux condition reads tilde (e.g., y2). The phase shif6’™ defined by Eq.(6) in-
volves a Coulomb tern#l”, a hard-sphere phase shif{%,

and a nuclear phase shiff":

=0+ O+ o\

Y2MTE 1) =[1,(kr)—U™(E)O,(kr)]/krvY2 for r=a,
(2

where U’™ is the collision matrix,l ; and O, the Coulomb
ingoing and outgoing functions, respectively, defined from

the Coulomb regular and irregular functiofs andG;, k is s&=argl(J+1+in),
the wave number, and the relative velocity.
Since the kinetic energy is not hermitian over a finite part a\,‘;g: —arctanF j(ka)/G;(ka),
of the configuration space, the Bloch operafgt.) is intro-
duced in the Schidinger equation, yielding P,(ka)R*"(E)
Sy = arctan g . 9)
[H—E+L(L) N (E,r)=L(L)yM™(E,r), (3 1-S,(ka)R’™(E)
where In the literature, thdR-matrix theory is used in two ways.
) In general, the pole paramete}:ﬁ andE, are fitted to ex-
£(L)= h 5t —a)(i _ E) r 4) perimental data, such as resonance energy or width, or elastic
2ua dr r phase shifts. In that case, the wave functignsare com-

. _ pletely hidden. On the other hand, tRematrix theory can
is a surface operatoy being the reduced mass. The Bloch ajso be employed in variational calculations, to correct a pos-
operator ensures the hermiticity bf+ £(L) over the inter-  sjbly inappropriate asymptotic behavior of the basis wave
nal region. Constarit does not depend on It can be taken  fynctions[22]. In that way, energieg, and reduced widths
as(see, for example, Ref20]) 7\ are calculated from the basis functions, and used to de-
O'(k termine the collision matrix.
L=kaLa):S(ka)+iP (ka) for E=0
Oy(ka) ™ J B

W i+ 2ka)
W_, 511A2ka)

B. Capture cross section

The capture cross section of orderfrom an initial state
with spin J;m; to a final state with spild;m reads, in the
R-matrix formalism[19]

=2ka =S,(ka) for E<O, (5)

where 7 is the Sommerfeld parameter adthe Whittaker

function. (E.J Jom) 8m(L+1) 2%+1 , .,
: . . o (B dear) =
. Solvmg Eq.(3) with Egs. (1) and (2) provides the colli L imi—JfTe AL2LIDn2 2341
sion matrix
X Jgm ME j]i”i(E) )
I 5(ka) 1-L*R™ ) (i Ml int Dint
ulm= =exp(2i 8°™), (6)

~0y(ka) 1— LR HPTIMEYITE)ed? (10
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where (™t (717 is the final(initial) wave functionk,, is
the photon wave number, an’bHE is the electric multipole
operator of ordeL. In definition (10), the first term of the Simu]taneousw, the observedwidth I‘)‘\l is deduced from

right-hand side represents the internal contribution, while thgy Breit-Wigner parametrization of the phase shift near the
second term represents the external psubscript int(ext)  regonance energy

refers to integration performed over the interii@kternal
region only. Notice that this latter contribution indirectly a

r
87 (E)~arctar————.

S(EMR(E)) =1. (14)

depends on the nuclear interaction through the collision ma- (15)
trix which appears inj2'™ . The relative importance of both 2(E\—E)
components depends on the reaction and on the energy. For
weakly bound systems, such &Be+ p, the external contri- From Eq.(9), we have, for unbound states,
bution is strongly dominant, and Eq@10) reduces to the
extranuclear-capture approximatif#8]. In the present case, , R
the binding energy of®0 with respect to thex+ *°C thresh- W x
o (SR,
old in fairly large (7.16 MeV) and, up to a very good ap-
proximation, the external part can be neglected. In this ap-
proximation, the cross section redds « 2PR 2
F)\_(SR), _ZPT’Y}\i (16)
r

o (B, Jymi— J¢mmy)

o
= (231

2
; e\[TH(E)TYE) VY (E,—E)

|1—LRY7i(E)[2
(13)
where the formakr and y widths are defined by
T(E)=2%{P,(E),
8m(L+1) 2)+1 , .,
AL2L+1)N225+17
X MER ™ Vi

ande, is a phase coefficient, equal #o1 or —1. The phase

TY(E)=

12

where subscriptr refers to the function calculated &
=E; , and the derivative is performed with respect to energy.
For bound states, we define the reduced width in the same
way; the total width vanishes. Equatigh6) defines the ob-
served reduced width?, which not only depends on the
formal reduced withyf of pole\, but also on the properties
of the other poles.

An interesting situation is the single pole approximation,
where

~2
Yo

R(E)= E,—E

. (17)

In this case, Eqs(14) and (16) reduce to the well-known
expressions

Eo+ 76S(Ep) —Eo=0 (18)

coefficients are written explicitly to account for the sign of and
the electromagnetic matrix elements. With this definition, the

square root in Eq(11) is always positive. The energy depen-

dence ofl'}(E) reads

2L+1

BT (13

Er_Ef

TZ<E>=T2<E»(

whereE; is the energy of the final state aigl the resonance
energy(see below. In the foIIowingT“{(E,) will be denoted

asI'}. AgainT'} must be considered either as a parameter, or

Vo= 7ol (1+75S)). (19

The problem for *?C(«, )0 is more complicated. We
have, in the 2 partial wave, several states which must be
included. For these states, some properties are experimen-
tally known and should be used to limit the parameter space.
It is therefore desirable to have an efficient technique to pass
from observed quantities to calculated values.

Let us start with the pole energies andwidths. At a

. . . . . . r
as the result of a variational calculation involving basis state§€Sonance enerdy, , we have

Jim
X\

C. Link between “formal” and “observed” values

One of the main drawbacks of tliematrix method is that
the pole parameterg, , y?, andT'} are related, but not

-2
R(ED)=—2 +R?,
E\—E}

(20)

where Rg represents the contribution of the other poles.

equal, to resonance or bound state physical properties. Thfgom Eags.(14) and(16), we deduce

problem has been addressed by several aufd®42. The
resonance enerdy, is defined as the solution of

Ex=E;+S7%/(1-SRY),
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~ (1— Sng)2 TABLE |. Energies and observed reduced widf2g] for poles
Y= %Z‘xl—S’ZI (21)  A=1 to 4. % andy3 are fitted.
AN
A E! (MeV) y2 (MeV)
This system is solved iteratively, starting WiIszO. Then 5
the calculated valueg, and?? are determined in the first 1 ~0.24 no,
. . _ ) . 2 2.68 3.6& 10
iteration. Coefficient®, are recalculated, and the process is 3 436 13%10-2
repeated until convergence. In practice, a few iterations only ) '
4 10 va

are needed. This method is well adapted to numerical calcu-
lations and turns out to be very efficient. Notice, however,
that derivation of Eq(21) requires the assumption that the gpigy byt will be important in thés factor. We have checked

contribution of other poles than is independent of energy ¢ sensitivity of the results with different values of the back-

r 1 16 : H . .
nearE; . In the *C(a,7)'°0 reaction, theE2 Sfactor in-  ground energy, and the conclusions remain unchanged. Table
volves narrow (or bound well separated states, and the | jists the parameter set.

method is applicable. It has been tested by using the formal gq, poles 2 and 3, the? values correspond to the experi-
parameterg21) in Eq. (14). Solutions of this equation and mental widths(0.625 keV and 73 keV, respectivélyin Fig.
the a widths obtained with Eq(16) are equal to the starting 1, we present the? values as a function of? (2 is opti-
values. . . o mized. Let us remind the reader that for each parameter set,
Using the capture cross sectiohl), we find a similar  he experimental requirements of Table | are satisfied. The
expression to derive the width: fitting procedure has been performed in two conditions. In a

- = first step, we have limited the energy range to 3.4 MeV. This
\F_ E ex v VI corresponds to the range adopted by Barker and K@ji6h
I{=Sn < E,.-El (22 and does not include the 4.36 MeV resonance. Buchmann
! A

et al. [12] also exclude some data points but do not give

. ~ . further precisions. In these conditions, th® curve is rather
y ,
The calculatedy widthsI') are therefore obtained from the flat, and the minimum is obtained negf=0, which would

resolution of a linear system. If we consider the single-pole

N ; lude any contribution from the;?2 subthreshold state.
approximation17), Egs.(18) and(19) are directly recovered exc . 1
by using Eq.(21) with RO=0. For they width we find the This conclusion has been drawn by Buchmatrl. On the

usual relationship contraryz extens'ion of the energy range to 4.2 Mev provides
a more interesting structure of thg curve. A fairly deep

minimum is obtained neary;=0.20 MeV (and 73

=3.5 MeV). Thisﬁ value is very similar to the result of a

With the help of Eqs(21) and(22), we can easily obtain microscopic muItichster calculation of the+'°C system
the R-matrix parameters from experimentélobserved”)  [25]- Further extension of the energy range would be mean-
data. Notice that the present development is limited td"gl€ss since it would cover a sharp resonance region and
single-channel systems or, in other words, to one@ny small uncertainty on its properties would affect the fit in
dimensionalR and U matrices. These formulas are more ef- 8N Inappropriate way.

ficient than the methods used so f46,17. They will be To illustrate the low sensitivity of the fit with respect to
extensively used in the following. the total width of the 4.36 MeV level, we have repeated the

procedure with ther width measured by Bilaniukt al.[26]
in a ¥N(®He,p)!%0 experiment (645 keV). The corre-
sponding fit is presented in Fig. 1 as a dotted line Eqy,,

In order to limit the number of parameters, we start with=4.2 MeV (the curves for 3.4 MeV are indistinguishable
the study of thex+1%C phase shift. We use the experimental
data of D’Agostino Bruncet al.[14] and of Plagaet al.[15] 5
at energiesE<4.5 MeV. Data at higher energies are also 4 k.
available[14], but are not used in the fits. In the overlapping N\
region, a good agreement between both data sets is obtained.
Since our aim here is a qualitative investigation of the phase = 5|
shifts, we neglect target thickness effects, included in the
analysis of Ref[12]. Throughout the paper the channel ra-
dius isa=6.5 fm, as recommended by Barker and Kajino
[16]. 0.0 0.1 0.2 0.3 0.4 0.5 0.6

The R-matrix fits are performed with four poles: thg 2

7; (MeV)

subthreshold staten&1), the 2 (A\=2) and Z (A=3)
resonances &, =2.68 and 4.36 MeV, respectively, and a  FIG. 1. 2 fits of the d phase shifts for different maximum
background termX=4) at 10 MeV. In practice, the 2.68 energies. The dotted line shows the sensitivity with respect terthe
MeV resonance is very narrow and does not affect the phaseidth of pole 3(see text

Ty=T3(1+%S). (23

Ill. FITS OF THE |=2 PHASE SHIFT

Sy Emaced.2 MeV

Ena=3.4 MeV

o
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270 |
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90 |

R matrix
- o
8|
f | ]
| <}
| D
' IS
X %\l
phase shift (deg)

Ecm. (MeV)

10 FIG. 3. Fit of the experimental phase shifts of Ref4] (filled
circles and of Ref.[15] (open circles The Coulomb phase shift

|
tota has been subtracted.

000 . .
4 5 gible except near 4.36 Me\ee curve labeled “pole 3” in

Fig. 2. Hence, the shape of tie@matrix near the resonance
is strongly affected by the pole 1 and background contribu-
HS . ) - "
HS +1 tions, and this energy region turns out to be very sensitive to
the conditions of the calculation.

In the lower panel of Fig. 2, we present the phase shift
expanded in its different ternjsee Eq(9)]. The hard-sphere
phase shifts are much lower than experiment. Furthermore,

N the inclusion of the subthreshold state alone still lowers the
Ecm. (MeV) theoretical phase shift. This feature led Buchmanhal.[12]

FIG. 2. Upper panelR matrix derived from the experimental {0 the conclusion thays should be very close to zero, and
data of Ref[15] (circles, with the present fitfull line), and indi-  that a better agreement needs a smaller channel radiisis
vidual contributions of poles 1, 3, and @ashed lines Lower  fm). The present analysis shows that a non-negligigleas
panel: experimental phase shiftk5] (without the Coulomb tersn  well as a large channel radius necessary to account for the
with the R-matrix fit; the hard-sphere phase shift is denoted as HSpbserved cascade transitiofik6], are still compatible with
calculations limited to some poles are also shown. the experimental phase shifts, provided that an important

background contribution is taken into account.

To go further in the understanding of the fit, we give in  From this analysis, it turns out that the interference pat-
Fig. 2 an analysis of the phase shift, and of the correspondintgrn in thed phase shift between 3 and 4.2 MeV provides a
R matrix. From the experimental data of Plagfaal.[15], we  rather strong constraint on the parameter set. Since resonance
have extracted “experimentalR matrices at 6.5 fm by in- energies are known as well as thewidth of the 4.36 MeV
verting Eq.(6). We also show the individual contribution of resonance, we are left with only two parametar%and yﬁ,
the poles included in the present (fiole 2 is not shown  and the?C(«, )0 analysis is greatly simplified.

Different interesting conclusions can be drawn from the fig- For the sake of completeness, we present in Fig. 3 the
ure.(i) Below 2 MeV, the error bars on the phase sliifpi- phase shifts calculated up to 7.5 MeV, and compare them
cally 1°) are converted as infinite error bars on Bmatrix. ~ with the high-energy data of D’Agostino Bruret al. [14].

In other words, for these very small phase shifts, Bima-  The parameters are those of Table | with our best values for
trix gives a phase shift within the experimental error bar.y5 andy3 (0.20 and 3.5 MeV, respectivelyTo account for
This means that these energies cannot be considered as vajhe 5.86 MeV resonance, we have added a fifth p&g (
able constraints on the f_i(ii) Except arqgnd the 4.36 MeV  —586 MeV, I'¢=0.52 MeV taken from Ref[14]) to the
resonance, th&k matrix is always positive. However, the R.matrix expansion. The agreement with the data is quite
R-matrix expansion7) limited to the first pole gives a nega- acceptable if one keeps in mind that no fitting procedure has
tive contribution sincey3 is positive ancE is negative. This  been used beyond 4.2 MeV.

is illustrated in Fig. 2, where we show this contribution ob-

taineq in our best fit.. In other words, a simple analysis of the IV. ANALYSIS OF THE E2 S FACTOR

experimentalR matrix suggests that the background contri-

bution must be important to compensate the effect of the In this section, we use the parameters fitted on the elastic
subthreshold stateiii) Near the 4.36 MeV resonance, we phase shifts to investigate tHéC(«,)%0 E2 Sfactor. In

find a singularity of theR matrix which is expected to appear this way, the number of free parameters is strongly reduced.
at the poles. The parameters of this resonance are wdlh fact, since they widths of poles 1, 2, and 3 are experi-
known experimentally and yield a contribution almost negli-mentally known, we have one free parameter ofihe y

10 }

phase shift (deg)

20

HS +1+3

-30
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TABLE Il. R-matrix parameters for capture ddta4]. I'] is 1000
fitted.
A E! (MeV) ¥ (MeV) I} (ev) EN 100 |
1 ~0.24 0.20% 9.7x10%  +1 >
2 2.68 3.6810°* 5.7x10°3 &2 =
3 4.36 1.3% 102 0.61 £3 g 10
©
4 10 3.5% r; e p
[a\)
8 rom the phase-shift fit. w 1|
width of pole 4, corresponding to the backgroumahd dif-
ferent combinations of three phase coefficidnts, ¢35, and

g4 1n Eq. (11), assuming:;= + 1]. We use the data of Refs.
[27-29,1], and the parameters are summarized in Table .
First we consider thg? values as a function df}, and

for different (e,,£3) choices. Foe,=—1, all y* values are FIG. 5. E2 Sfactors for the best? values of Fig. 4see caption

unphysically large, and accordingly, this phase is fixed aso Fig. 4. Experimental data are taken from Ref&7] (open

g4=+1 in the following. The results are presented in Fig. 4,squarey [28] (filled squares [29] (triangles, and [11] (open

where we find out that the minima are obtained at differentircles. For theog,/og; data of Reddeet al., the E1 fit of Ref.

I'} values when the interference signs and e; are  [9] has been used.

changed. The? values at the minima are rather similée-

tween 3.6 and 5)4 and significantly larger than unity. one free parameter onlyi'g) for the S factor. The energy
The best fits are illustrated in Fig. 5, and compared to thelependence of the fit below 2 MeV is more consistent with

experimental data. Contrary to the phase shifts, the highexperiment than the fits of Ref$§16,12,29, and yields a

energy region E~3—4 MeV) does not give strong con- higher Sg,(300) value. Using the empirical criteria of Ref.

straint on theS factor at low energies. Important differences [12] for the error determination, we find for each fit about

are observed beyond 3 MeV whereas the 300 Efdctors  15% error.

are nearly identical for each set of interference si¢frem In Fig. 6, we analyze the contribution of the different

190 to 220 keV b From the current experimental situation, poles for e,=—1, e3=+1. With the subthreshold state

it is not possible to draw definite conclusions about theselone, theS factor decreases smoothly and is larger than

signs. experiments. Introducing the backgroufible 4 provides a
The presentSg,(300 ke\) value is larger than in recent fairly good description of the data below 2 MeV. Conse-

works [16,12,29 which  provide Sg,(300)=50 quently, the role of the background contribution extends

—180 keVb, Sg,(300)<140 keVb, and Sg,(300)=7  even to very low energies.

—95 keV b, respectively. With respect to tRematrix stud-

ies of Refs[16] and[12], we include the 2.68 and 4.36 MeV V. CONCLUSION

states which were neglected in those referefitespotential . : . -
model used in Ref[29] does not describe these statedn The goal of this paper is to provide some qualitative prop-

H 1 — H 16
the other hand, instead of fitting simultaneously the phas&'®S of thea +*%C | =2 phase shifts and th&C(a, 7)'°0
shift and theS factor, we try to reduce the number of free 1000

o
-
n
w r
N
[8,]

parameters as much as possible. To this end, we first con
sider the phase shift, and then analyze $actor. Using
experimentally known properties of the” Xtates, we have 100 |
)
50 2
=4
40 | s 10}
Q
g
o O »
= ol
20 | 1t
10 |
0 - - : ‘ 0.1 : R — ‘
0 10 20 30 40 50 0 1 > 3 4 5
I7(eV) Ecm. (MeV)
FIG. 4. x? values of theE2 Sfactor for differents, /&5 sets(see FIG. 6. R-matrix results with four polegfull line) and selected
text). poles(indicated as labels: dashed lineSee caption to Fig. 5.
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E2 Sfactor in theR-matrix formalism. We do not aim at MeV resonances is limited to a very narrow energy region,

interesting features which could greatly help in reducing thel Nis contribution turns out to be of the same amplitude as the

uncertainties. 2, subthreshold state. New data on elastic scattering would
First, we have developed a new method to link observede Welcome to improve the accuracy of the parameters.

and calculated values in tHematrix theory. This method,  The situation is different for thé’C(a,y)*®0 E2 Sfac-

based on an iterative procedure, is quite simple and efficierier- Above 3 MeV, where the cross sections are reasonably

for the 12C(«, y) %0 reaction. It allows us to solve one of the large and therefore easily accessible to experiments, several

main drawbacks of th&matrix theory. We can easily con- interference patterns can be obtained with sinp'(lén/alues.

strain the parameter set with experimentally known datalhe structure of thé& factor beyond 3 MeV does not have a
This starting point is crucial for?C(a,y)*%0 where many direct implication on the 300 keV value and, therefore, direct

parameters are involved. measurements at energies as low as possible are necessary to
From the ana|ysis of thd phase shift, we find that the derive a reliables factor for astrophysical applications.
interference pattern between the different contributions near
4 MeV provides a fairly strong constraint on the parameter
set. This energy region is easily covered by modern experi-
ments and the counting rate is high enough to provide accu- We are grateful to H.-P. Trautvetter for interesting discus-
rate phase shifts. On the contrary, we have shown that, belogions. This text presents research results of the Belgian pro-
2 MeV, the errors on the current data are too large to be usegram P4/18 on interuniversity attraction poles initiated by
in a fit. The experimentatl phase shifts strongly deviate the Belgian-state Federal Services for Scientific, Technical
from the hard-sphere phase shift. Since tje@®ntribution  and Cultural Affairs. P.D. acknowledges the support of the
enlarges the deviation, and since the role of the 2.68 and 4.38ational Fund for Scientific Resear¢RNRS), Belgium.
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