
PHYSICAL REVIEW C, VOLUME 61, 064605
Solution of the inverse scattering problem at fixed energy with nonphysicalS matrix elements

M. Eberspa¨cher,1 K. Amos,1 and B. Apagyi2
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2Institute of Physics, Technical University, Budapest, Hungary
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The quantum mechanical inverse elastic scattering problem is solved with the modified Newton-Sabatier
method. A set ofS matrix elements calculated from a realistic analytic optical model potential serves as input
data. It is demonstrated that the quality of the inversion potential can be improved by including nonphysicalS
matrix elements to half, quarter, and eighth valued partial waves if the original set does not contain enough
information to determine the interaction potential. We demonstrate that results can be very sensitive to the
choice of those nonphysicalSmatrix values both with the analytic potential model and in a real application in
which the experimental cross section for the symmetrical scattering system of12C112C at E57.998 MeV is
analyzed.

PACS number~s!: 13.75.Cs, 21.30.Fe, 24.10.Ht, 25.70.Bc
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I. INTRODUCTION

Solutions of quantum inverse scattering problems~ISP’s!
involve two step processes. In the first step, a set ofSmatrix
elements, scattering phase shifts, and/or deflection funct
are calculated from a given set of data, such as a differen
cross section@1#. This process involves uncertainties as t
measured data usually are incomplete@2,3# and, in any event,
there exist natural ambiguities with any~even complete!
fixed energy data@4#. We are not concerned with these ma
ters in this paper and suppose that aphysical Smatrix can be
defined. The adjectivephysical designates that the angula
momentum quantum numbers identifying each and ev
number of the set are observable and/or contributing
ments in summations leading to observables. The sec
step in solution of ISP’s is the actual inversion process w
which the underlying interaction is calculated from thoseS
matrix elements. The result usually takes the form of a lo
potential matrix@5,6# which depends on the angular mome
tum or on the scattering energy according as one is solv
the ISP at fixed angular momentum or at fixed energy. In
first case one needs as input data theSmatrix as a continuous
function of energy at a fixed angular momentum and
energy values of any bound states. In the fixed energy
case theS matrix as a discrete function of the angular m
mentum variable is required.

Our interest is with the fixed energy ISP for which the
are many quantal methods of solution, some of which are
Lipperheide and Fiedeldey~LF! methods@7#, the finite dif-
ference method of Hooshyar and Razavy@8#, and the gener-
alized Darboux transformations of Schnizer and Leeb@9#.
More recently, methods have been developed to incorpo
the spin-orbit field cases, and examples are those of Hu
and Leeb@10# who deal also with the Dirac equation as t
equation of motion, and of Lunet al. @11# who found a lin-
earization scheme. In this case, two sets of phase shiftsS
matrices must be specified and for nucleon scattering f
nuclei the physical values coincide with half-integer angu
momentum numbers. As noted above, in the fixed ene
ISP case theSmatrix as a function of the angular momentu
variable is needed if one is to define uniquely the scatte
0556-2813/2000/61~6!/064605~13!/$15.00 61 0646
ns
ial

ry
e-
nd
h

l

g
e

e
P

e

te
er

r
m
r
y

g

potential@12#. This equates to knowing theS matrix exactly
at all of the infinite set of physicall values as then the uni
step in the quantum number is infinitesimal against
range. Most studies of the fixed energy ISP and notably
Newton-Sabatier~NS! method @5,6# and its variant, the
modified NS method@13#, have been applied using only th
values of theS matrix specified at a finite set of physica
angular momentum values. In real cases, sensible va
make that set finite and often quite small in number. So
methods however invoke a functional form for theS func-
tion. Specifically the LF methods use one that is identifi
with Bargmann potentials. In those methods one specifie
set of simple poles and zeros in the complex angular mom
tum plane so that theS matrix at the physical~real! angular
momenta map to the ‘‘data.’’ Thus use of a prescripti
~interpolation/extrapolation! for the S matrix at nonphysical
values of the angular momentum is not new. However,
LF methods are very prescriptive of the forms ofS and are
also not without ambiguity in the specification of the fun
tion parameters@14#. It suffices that in treating actual sca
tering problems as fixed energy ISP’s, attention must be p
to whatS is invoked for nonphysical angular momenta.

With the NS and modified NS schemes, such consid
ation of theSmatrix for non-physicall has been done in the
past. May and Scheid@15# studied the identical boson sca
tering problem (12C2 12C) for which only the evenl-partial
waves contribute to scattering cross sections. They fo
some sensitivity in their inversion results according to
choice of the interpolation for odd integer values; most n
tably of the l 511 value for their energy cases. In a rece
study of 12C2 12C scattering however, it was proposed
only use the experimentally availableSmatrix elements, i.e.,
at evenl values@16#. Interesting structures were found in th
inversion potentials for which physical interpretations we
given. In another work, Leeb, Huber, and Apagyi@17# stud-
ied the sensitivity of the NS potentials forn2a scattering to
selection of theS matrix at nonphysical~integer! values of
angular momentum interpolated on a physical half-inte
value set. They also revisited the12C212C scattering prob-
lem by adopting a specific Woods-Saxon potential to g
the S matrix for all integer l values. Their limited study
©2000 The American Physical Society05-1
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showed a sensitivity to the choices ofSmatrix values and in
this paper we expand upon their results, using the modi
NS method as an example for the solution of the ISP at fi
energy.

We note a recent analytic study in which a proof w
given that an interaction potential can be uniquely de
mined in principle by an infinite subset of the infinite set o
physical phase shifts@18#. That result is impracticable as
assumes calculations can be made with infinite sets of in
data and with infinite accuracy of this data.

The NS method is one of the most successful of the fi
energy inversion methods. First numerical tests were car
out by Quyen Van Phu and Coudray@19,20#. Very recently,
it has been applied to electron-helium atom scattering@21#
using experimental phase shifts of Nesbet@22# at low l val-
ues and dipole polarization phase shifts at higherl values.
For nuclear scattering application Mu¨nchow and Scheid@13#
modified that approach under the assumption that the po
tial is known in the region outside the nuclear interactio
i.e., in the infinite interval (Rint ,`). That modified NS
method was developed and tested for neutral particle sca
ing. Later it was extended by Mayet al. @23# to consider
charged particles so that the approach became applicabl
analysis of experimental data from heavy ion scattering@24–
26#. Recently, the method has been extended to facili
inversion for inelastic scattering@27,28#.

In Secs. II and III the NS and the modified NS metho
for the solution of the ISP at fixed energy and elastic sc
tering will be reviewed in brief. In Sec. IV the optima
choice of the technical inversion parametersl max and the
Newton radiir i are specified, the required accuracy of theS
matrix elements are studied, and the construction of the
tential is investigated in detail. Thus, an optimum soluti
for the integer-only ISP is found, which is used as a ref
ence in the following sections. In Sec. V the effect of inc
sion of nonphysicalS matrix elements in the inversion pro
cedure is discussed, and we consider how the values of tS
matrix at nonphysical angular momenta might be obtain
In Sec. VI the results are applied to the experimental diff
ential cross section of the12C112C scattering system a
Ec.m.57.998 MeV. Finally, in Sec. VII a summary is mad
and conclusions are given.

II. THE NS INVERSION METHOD

We consider the elastic scattering of a projectile w
mass numberAp and charge numberZp off a target with
mass numberAt and charge numberZt . The radial Schro¨-
dinger equation for this system can be written in the form

DV~r !Rl~r !5 l ~ l 11!Rl~r !, ~1!

with the differential operator

DV~r !5r 2
2m

\2 F \2

2m

d2

dr2
1E2V~r !G , ~2!

whereE is the energy in the center-of-mass system,m is the
reduced mass, and the interaction potentialV(r ) is the quan-
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tity sought. It is presumed that the asymptotic behavior of
radial wave functionsRl(r ) is known and has the form:

Rl~r→`!5Al~e2 iq l (kr)2Sleiq l (kr)!, ~3!

where the phase function is given by

q l~kr !5kr2h ln~2kr !2 l
p

2
1s l , ~4!

involving

s l5argG~ l 111 ih!, k5A2m

\2
E, h5

ZpZte
2m

\2k
.

~5!

s l are the Coulomb phases,k is the wave number, andh is
the Sommerfeld parameter. TheS matrix elementsSl in Eq.
~3! are connected with the phase shifts bySl5h le

2id l with
values obtained by phase shift analysis of experimental
gular differential cross sections or by numerical evaluat
of Eq. ~1!. Such serve as input data for the inversion pro
dure. The physicalS matrix elements are identified bySl .
Later we shall useS matrix elements at nonphysical value
of the angular momentum and those we shall define bySl.

To solve the ISP, one chooses an arbitrary reference
tential V0(r ) from which the wave functionsR0l(r ) are
known at all radiir and satisfy

DV0
~r !R0l~r !5 l ~ l 11!R0l~r !. ~6!

Therein the reference differential operator is

DV0
~r !5r 2

2m

\2 F \2

2m

d2

dr2
1E2V0~r !G . ~7!

With these known reference wave functions, the Povzn
Levitan representation for the solutions of Eq.~1! can be
written as@6#

Rl~r !5R0l~r !2E
0

r

KVV0
~r ,r 8!R0l~r 8!

dr8

r 82
. ~8!

It can be shown@5,6# that Eq. ~8! solves the Schro¨dinger
equation, Eq.~1!, if the integral kernelKVV0

(r ,r 8) fulfills the
partial differential equation

DV~r !KVV0
~r ,r 8!5DV0

~r 8!KVV0
~r ,r 8!, ~9!

with the boundary conditions

KVV0
~r ,r 850!5KVV0

~r 50,r 8!50. ~10!

The inversion potential then is connected with the kernel

V~r !5V0~r !2
2

r

\2

2m

d

dr
FKVV0

~r ,r !

r
G . ~11!
5-2
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SOLUTION OF THE INVERSE SCATTERING PROBLEM . . . PHYSICAL REVIEW C61 064605
In the NS method, the integral kernelKVV0
(r ,r 8) is ex-

panded in terms of the wave functions of Eqs.~1! and ~6!
with some yet unknown spectral coefficientscl :

KVV0
~r ,r 8!5(

l 50

`

clRl~r !R0l~r 8!, ~12!

where the sum runs over all integer values of the total an
lar momentum quantum numberl 502`. With this kernel,
Eq. ~8! can be rewritten:

Rl~r !5R0l~r !2 (
l 850

`

Rl 8~r !cl 8Ll 8 l~r !, ~13!

where the matrixLl 8 l(r ) is solely determined by the refer
ence wave functions:

Ll 8 l~r !5E
0

r

R0l 8~r 8!R0l~r 8!
dr8

r 82
. ~14!

Equation~13! is then used in two ways. In a first step th
known asymptotic values of the wave functions are used
calculate the spectral coefficientscl and the normalization
coefficientsAl of Eq. ~3!. In a second step, Eq.~13! is then
solved to get numerical wave functionsRl(r ) at discrete radii
r i throughout the interaction volume. With these the pot
tial may then be calculated from Eq.~11! by using Eq.~12!.

Newton @29# showed that the set of linear equations E
~13! does not have a unique solution. To every energy th
exists at least one nonzero transparent potential that may
to any solution potential leavingSmatrix elements unaltered
However, Sabatier@30# was the first to solve Eq.~13! and
give explicit solution vectors. Each of these vectors giv
one phase equivalent potential. Under the assumption
the phase shifts tend to zero faster thanl 231«8, Sabatier
demonstrated that only one of these potentials decrease
ymptotically faster thanr 221« ~for arbitrary«,«8). All other
equivalent potentials show an oscillating tail damped
r 23/2 and may be considered as unphysical.

To use the method in numerical calculations, Eq.~13!
must be converted into a finite set of equations. This
achieved by truncating the sum at some angular momen
value l max. Thus, the potential in the infinite interval (0,`)
needs to be determined from the finite~and often small!
number of phase shifts at angular momentum valuesl
50, . . . ,l max. Test calculations using analytic input pote
tials showed big deviations in results for such inversion
tentials@19#. These results were improved by Coudray@20#,
but only the modification of the method by Mu¨nchow and
Scheid @13# made feasible application with experiment
scattering data as input.

III. THE MODIFIED NS METHOD FOR NEUTRAL
PARTICLES

When considering quantum particle scattering,
asymptotic behavior of the potential is usually known. F
the scattering of neutral particles, and within a prescrib
06460
u-

to

-

.
re
dd

s
at

as-

y

s
m

-

e
r
d

accuracy, the potential will be zero outside the nuclear in
action regionr .Rint . Thus the wave functionsRl(r ) are
known in this outer region and are uniquely determined
the S matrix elements as

Rl~r .Rint!5AlkrTl~r !5Alkr@hl
2~kr !2Slhl

1~kr !#.
~15!

Here, hl
65 inl6 j l(r ) are the incoming (2) and outgoing

(1) spherical Hankel functions, which are formed by irreg
lar and regular spherical Bessel functions. These Be
functions are solutions of Eq.~1! with V(r )50; i.e., of the
free Schro¨dinger equation. Asr→` Eq. ~15! converges to
Eq. ~3! with h50.

For neutral particles, the convenient reference potentia
zero@13#, and the reference solutions are the regular sph
cal Ricatti-Bessel functions:

V0~r !50, R0l~r !5kr j l~kr !. ~16!

With Eqs.~15! and~16!, the Povzner-Levitan representatio
Eq. ~13!, can be reformulated as

AlTl~r !1 (
l 850

`

bl 8Tl 8~r !Ll 8 l~r !5 j l~kr !, ~17!

where

bl5Alcl , Ll 8 l~r !5E
0

r

j l 8~kr8! j l~kr8!
dr8

r 82
. ~18!

By using the assumptionV(r .Rint)50, the potential now
only needs to be determined in the finite region 0,r
,Rint . Equation~17! is again solved in two steps. It is with
this step that the technical parameters,l max and the Newton
radii, are required. In the first step, two radii~Newton radii!
are chosen outside the nuclear interaction region,r 1 ,r 2
>Rint , to determine the unknown coefficientsAl andbl . One
might consider a choice of more than two Newton radii, th
obtaining an overdetermined set of equations which may
solved by a least squares method. Possible numerical or
perimental errors in the input data could be averaged
thereby@24–26#.

Once the spectral coefficients are known, Eq.~17! is
solved at equidistant radiir i in the interaction region 0,r i
,Rint to give the functionTl(r i). The potential is then ob-
tained from

V~r !52(
l

V l~r !52(
l

2

r
Ebl

d

dr
@rTl~r ! j l~kr !#.

~19!

Note also that the case of charged particles can be reduc
the case of neutral particle scattering described in this sec
by a transformation of theS matrix in the manner discusse
in Ref. @23#.
5-3
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TABLE I. Real and imaginary parts of theSl matrix elements found from the optical potential calculation of 50 MeVa112C scattering.

l Re(Sl) Im(Sl) l Re(Sl) Im(Sl)

0 20.28659 38716 99 20.59145 23953 06 20 0.99999 99677 52 0.00017 03125 80
1 20.60638 12597 30 20.14367 49326 00 21 0.99999 99911 73 0.00008 38484 96
2 20.61077 40878 71 0.17635 93766 74 22 0.99999 99975 74 0.00004 09312 9
3 20.44421 91441 45 0.31336 06161 58 23 0.99999 99993 37 0.00001 94599 1
4 20.26111 02822 98 0.39612 04474 75 24 0.99999 99998 21 0.00000 88093 2
5 20.08957 83725 33 0.54065 22005 73 25 0.99999 99999 52 0.00000 37226 8
6 0.15132 90308 47 0.69323 36192 57 26 0.99999 99999 87 0.00000 14490 8
7 0.49340 49404 93 0.70839 26237 75 27 0.99999 99999 97 0.00000 05159 6
8 0.78666 53275 80 0.53680 03734 86 28 0.99999 99999 99 0.00000 01676 4
9 0.93085 99057 32 0.32564 98005 30 29 1.00000 00000 00 0.00000 00497 3

10 0.98038 98487 49 0.17685 47697 85 30 1.00000 00000 00 0.00000 00134 9
11 0.99474 69566 53 0.09161 11634 92 31 1.00000 00000 00 0.00000 00033 6
12 0.99862 47954 05 0.04647 05553 76 32 1.00000 00000 00 0.00000 00007 7
13 0.99964 28002 13 0.02332 77788 96 33 1.00000 00000 00 0.00000 00001 6
14 0.99990 72769 54 0.01164 11736 56 34 1.00000 00000 00 0.00000 00000 3
15 0.99997 58519 87 0.00578 73076 63 35 1.00000 00000 00 0.00000 00000 0
16 0.99999 36747 27 0.00286 97762 30 36 1.00000 00000 00 0.00000 00000 0
17 0.99999 83310 75 0.00142 02792 28 37 1.00000 00000 00 0.00000 00000 0
18 0.99999 95562 25 0.00070 14315 82 38 1.00000 00000 00 0.00000 00000 0
19 0.99999 98809 89 0.00034 57260 07 39 1.00000 00000 00 0.00000 00000 0
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For numerical calculations again the partial wave sum
Eq. ~17! needs to be limited to some finite valuel max. To
date, there is only one superficial numerical study on
effect of this truncation known to the authors, see Ref.@28#,
and no analytic investigation has been made. It is clear h
ever, that the truncation leaves an incomplete set of funct
in which the potential is expanded. This leads to anr depen-
dency of the spectral coefficientscl . Then the choice of the
Newton radii is crucial to the quality of the inversion. I
earlier applications of the modified NS method@24–26#, l max
was determined by the number of available experime
data points Nexp in the phase shift analysis (4l max13
<Nexp; see Ref.@3#!, or by the semiclassical estimatel max
'kRint . For l *kRint the centrifugal barrier (2m/\2)@ l ( l
11)/Rint

2# is larger than the energyE.
To include nonphysical values of theS matrix in the

method, the angular momentum quantum numberl is re-
placed by a rational variablel. For each value ofl there
exists one Schro¨dinger, Eq. ~1!, and one linear Povzner
Levitan, Eq.~17!. The NS method is then solved in the sam
manner described above.

IV. OPTIMAL CHOICE OF THE TECHNICAL
PARAMETERS

In this section an optimum solution for the ISP is soug
by using S matrix elements specified only at the standa
angular momentum quantum numbersl 50,1, . . .l max. This
optimum solution will then be used as a reference for
calculations made including nonphysical values. To ge
realistic potential, and an exactSmatrix to test the inversion
method numerically, the hypothetical scattering systema
112C at the center-of-mass energies ofEc.m.54 and 50 MeV
06460
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is considered. This corresponds to wave numbers ofk4
50.75 fm21 and k5052.63 fm21, respectively. The analytic
optical model potential was chosen to be

V~r !5
V

e(r 2RV)aV11
2 i

4WDe(r 2RD)aD

~e(r 2RD)aD11!2
1VCoul.,

~20!

VCoul.~r !55
ZpZte

2

r
: for r>RCh,

ZpZte
2

2RCh
S 32

r 2

RCh
2 D : for r<RCh,

~21!

with the parameter values:V5215 MeV, RV53 fm, aV
52 fm21, WD57.5 MeV, RD52 fm, aD53.5 fm21, and
RCh53.3 fm. Although the parameters of this potential ha
not been determined by fits to experimental cross sectio
we note that the chosen values are typical for the scatte
system investigated.

The S matrix elements are listed in Table I forEc.m.
550 MeV and in Table II forEc.m.54 MeV. They were ob-
tained by numerical integration of Eq.~1! with a stepwidth
Dr 50.01 fm. The results are specified to 12 decimal plac
Such accuracy is taken here to facilitate our investigation
the choice ofl max and of the accuracy of input data upon th
solution of the ISP, as well as to provide an accurate data
upon which to interpolate. The radius of nuclear interacti
at which theS matrix elements are calculated by matchi
logarithmic derivatives, was chosen asRint510.0 fm. At this
distance the real and imaginary parts of the nuclear par
5-4
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SOLUTION OF THE INVERSE SCATTERING PROBLEM . . . PHYSICAL REVIEW C61 064605
the potential have decreased to be less than 1024 MeV. TheS
matrix elements are transformed to those of an asympt
constant potential~as described in Ref.@23#! at r 510.0 fm.
The S matrix elements converge towardsSl→`51.01 i0.0
and as usual, the higher the energy the more partial wa
contribute significantly to the scattering. For the discuss
of the optimal choice of the technical parameters we cons
only the S matrix elements atEc.m.550 MeV. Qualitatively
the results are independent of the scattering energy.

A. The choice of l max

The cutoff angular momentuml max must be chosen so tha
Sl . l max51.01 i0.0 within selected numerical accuracy. Co
sidering that experimental accuracy might be typica
(5 –10) %,l max should be at least 10 in the example stud
here. Hence we solved the ISP forl max510,11,12, . . . ,39.
For those calculations of the unknown coefficientsAl andcl

the two Newton radiir 1510.0 fm andr 2510.01 fm were
chosen. The wave function and the potential were then
culated in the interval~0 fm, 10 fm! with a step width of
Dr 50.01 fm. As an example for these calculations, the
version potentials~thick lines! are displayed in Fig. 1 in

TABLE II. Real and imaginary parts of theSl matrix elements
found from the optical potential calculation of 4 MeVa112C scat-
tering.

l Re(Sl) Im(Sl)

0 0.62542 13542 72 0.22774 90013 38
1 0.66111 42953 85 20.04146 21246 65
2 0.92176 03347 71 0.13966 78075 26
3 0.99823 03127 70 0.01953 70795 29
4 0.99994 35492 53 0.00254 32356 11
5 0.99999 78851 26 0.00032 66906 88
6 0.99999 99138 31 0.00004 04275 74

FIG. 1. Inversion potentials~real part: thick solid curve; imagi-
nary part: thick dashed curve! in comparison with analytic inpu
potential ~real part: thin solid curve; imaginary part: thin dash
curve! for l max515,16, . . . ,22, presented row-wise from top left t
bottom right.
06460
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comparison with the analytic input potentials~thin lines! for
cases where the cut off angular momenta arel max
515,16, . . . ,22, starting from top left and progressing
bottom right. Thus, in the left column all potentials foun
with odd l max values of 15 to 21 are shown. In the righ
column the results from using evenl max from 16 to 22 are
given. From top to bottom the quality of the reproductio
generally increases as more and more partial waves are t
into account. However, with these cases the quality of
reproduction depends strongly on whether an even or an
l max is used. Although three more partial waves were tak
into account for the inversion potential shown in the seco
row in the right column compared to the first one shown
the top left diagram, the quality of inversion is poorer. F
l max511 and 13 the inversion potentials~not shown! are
roughly the same as the ones shown in Fig. 1 forl max515
and 17, while the inversion potentials forl max510, 12, and
14 are distinctly worse than the two potentials displayed
l max516 and 18. For higher values ofl max the inversion po-
tentials remained of the same quality as the one shown
l max522. The semiclassical estimate would yieldl max'26.
Calculations were carried out up tol max539. No further im-
provement of the results could be observed. Indeed the
tentials did not change at all. WithSl51.01 i0.0, the wave
functions in the outer region given by Eq.~15! are propor-
tional to the regular spherical Ricatti-Bessel functions, a
the V l(r ) vanish.

There are numerical problems with standard methods
solution above and beyond those problems associated
sum truncations, input data accuracy, and choice of New
radii. Such appear from time to time in the form of ‘‘gli
ches’’ in potential values. An example is seen in Fig.
~right-hand panel, second from top!. In the 8 to 10 fm range
little spike effects are evident. The origin and reason
these effects have not been resolved. In all cases though
do not appear in the stabilized, converged results.

To rate the quality of the inversion quantitatively, twox2

tests have been performed. The first,xV
2 , gives the average

absolute deviation of the inversion potential from the an
lytic input one:

xV
25

1

N (
i 51

N UVinv~r i !2Vinp~r i !

1 MeV U2

, 0.5 fm<r i<Rint ,

~22!

whereVinv(r i) denotes the inversion potential andVinp(r i) is
the analytic input potential. The summation starts atr
50.5 fm thus excluding the pole atr 50 fm; the origins of
which will be discussed later. The total number of points w
N5950. The second,xS

2 , involves theS matrix elements:

xS
25

1

l max
(
l 50

l max

uSinv
l 2Sinp

l u2. ~23!

This gives the average absolute deviation of the inversioS
matrix elementsSinv

l ~as calculated from the inversion pote
tial by integration of the Schro¨dinger equation! from the in-
put S matrix. While thexS

2 test can always be performed fo
5-5
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the inversionS matrix, xV
2 is only available for analytic ex-

amples where the input potential is known.
In Fig. 2 xV

2 and xS
2 are shown semilogarithmically a

functions of l max for l max510230. The lines are added t
guide the eye. For even higherl max ~up to 39) thex2 values
remained stable. Forl max,15 the even-odd dependency
the inversion potentials can be seen clearly, with the ef
remaining visible tol max520. For l max.22 the x2 values
have reached their minimum and remain stable. The prog
sion of xS

2 reflects the quality of the inversion potential
rated byxV

2 . However, even the comparatively bad inversi
potentials from use ofl max515, 16, 17, and 18~shown in the
upper half of Fig. 1! which have axV

2 of about 100, the
reproduction of theS matrix is fairly good (xS

2'1025).
For l max522 the values are xV

250.02 and xS
2

52.5810210. The differences between the real and imagin
parts of theS matrix elements are shown in Table III. O
average this difference is significantly smaller than 0.01
The rise of the difference for the imaginary part at larg
values ofl is due to the fact that the absolute values appro

FIG. 2. xV
2 ~upper figure! andxS

2 ~lower figure! as functions of
l max.
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the numerical zero~see Table I!. The slightly larger deviation
of the s-waveS matrix element is an effect of the pole atr
50.

Clearly it is possible to determine an optimum value f
l max, which in the example discussed here isl max522. This
means also that the numerical accuracy required by the
version procedure of the inputSmatrix ~seeSl 522 in Table I!
is at least five digits.

B. The required accuracy of theS matrix elements

To study this aspect further, we simulate an experimen
error by simply cutting off decimal digits of the givenS
matrix elements. In Fig. 3 the result of these calculations

FIG. 3. Inversion potentials obtained by using increasingly
curate input data~real part: thick solid curve; imaginary part: thic
dashed curve! compared to the optimum result~real part: thin solid
curve; imaginary part: thin dashed curve!.
ion
TABLE III. Percentage variance between the inputSl elements and those extracted by using the invers
potential.

l
Re~Sinv

l 2Sinp
l !

Re~Sinp
l !

@%#
Im~Sinv

l 2Sinp
l !

Im~Sinp
l !

@%# l
Re~Sinv

l 2Sinp
l !

Re~Sinp
l !

@%#
Im~Sinv

l 2Sinp
l !

Im~Sinp
l !

@%#

0 0.004860 0.011270 12 20.000023 20.007113
1 20.000086 20.004292 13 0.000006 20.005682
2 0.003384 0.005530 14 20.000184 20.015499
3 0.001831 20.001019 15 20.000177 20.027412
4 20.001398 20.004180 16 0.000001 20.014780
5 0.000872 20.001977 17 0.000018 20.075586
6 20.003830 0.000218 18 20.000059 20.340952
7 0.000115 0.000853 19 20.000053 20.526721
8 0.000702 20.000220 20 0.000004 20.204275
9 0.000462 20.002056 21 0.000013 20.238560
10 0.000151 20.002976 22 20.000029 23.314516
11 0.000073 20.005600
5-6
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presented. The thin curves correspond to the optimum in
sion potential forl max522 using the set ofSmatrix elements
as given in Table I. The results displayed by the thick cur
were obtained by limiting the number of decimal digits
the S matrix used in the inversion to 2, 3, 4, and 5. The
results are given in this figure reading from top to botto
For six digits the quality of the optimum potential
achieved. The value forl max in these calculations was ad
justed to the values for which theS matrix is 1.01 i0.0
within the accuracy. The corresponding values arel max515,
18, 20, and 22~see Table I!. We have also calculated thex2

values and for the 2, 3, 4, and 5 digit accuracy cases t
are xV

2575.34, 184.16, 1.53, and 0.02;xS
251.071023,

1.031022, 3.131023, and 3.711027. Even though the inver-
sion potential for which five digits of theSmatrix have been
used already has the same quality as the optimum resulxV

2

50.02, the reproduction of theS matrix is still 3 orders of
magnitude worse. This shows that theS matrix elements
need to be known with very high precision in order to g
reliable results. A minimum of five digits should be use
This is also reflected by the value ofxS

2}10210 for the opti-
mum result. On average, the inputS matrix is reproduced
exactly up to five digits.

C. The choice of the Newton radii

In this subsection we consider the effect of the relat
distance, the absolute distance from the radius of nuc
interactionRint , and the number of Newton radii on the qua
ity of inversion. For these studies the value of the cut
angular momentum was fixed atl max522. Results are com
pared to the optimum inversion potential found in Sec. IV
for l max522, r 1510 fm, andr 2510.01 fm~thin lines in the
figures!.

The left panel of Fig. 4 shows the inversion potentials

FIG. 4. Inversion potentials obtained for different sets of Ne
ton radii ~real part: thick solid curve; imaginary part: thick dash
curve! as compared to the optimum result~real part: thin solid
curve; imaginary part: thin dashed curve!. In the left panel the effect
of varying relative distance between two Newton radii is shown
the center panel, the results of varying absolute distance from
nuclear interaction region are presented. The effects of varying
number of Newton radii used are displayed in the right panel.
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different relative distances of two Newton radii, the first
which is fixed at r 1510.0 fm. The results shown in tha
panel from top to bottom were found when the second rad
r 2 was taken to be 11.0 fm, 12.0 fm, and 13.0 fm. Wh
the result in the top diagram has approximately the qua
of the optimum solution (xV

250.06,xS
252.391026), the

other two with Dr 52.0 fm (xV
250.33,xS

256.31023) and
Dr 53.0 fm (xV

2519.01,xS
251.18) do not.

The center panel in Fig. 4 shows the inversion potent
for different absolute distances from the radius of nucl
interactionRint , while keeping the relative distance consta
at Dr 50.01 fm. The results shown from top to bottom coi
cide with the first Newton radiusr 1 being 11.0 fm (xV

2

50.33,xS
255.181025), 12.0 fm (xV

252.26,xS
253.761023),

and 13.0 fm (xV
2550.33,xS

252.731023). Again, only the
first example compares adequately with the optimum so
tion.

The right panel of Fig. 4 contains the inversion potenti
found on using different numbers of Newton radii. For mo
than two Newton radii Eq.~17! becomes an overdetermine
set of equations. That has been solved by a least squ
method to specify the optimum solution. The relati
distance between the radii was fixed atDr 50.01 fm.
The number of Newton radii are: 3 (xV

250.05,
xS

251.171027), 4 (xV
250.05,xS

257.6610210), and 5 (xV
2

50.05,xS
257.3610210), with r 1510.0 fm, respectively, for

the figures shown in the top, middle, and bottom fram
None of these is an improvement on the original result wh
used just two Newton radii.

It can be concluded that the Newton radii need to be c
sen close to the radius of nuclear interaction~commensurate
with the matching radius for specification of theS matrix
elements in this test case!, and that the relative distance be
tween them should be small. For the highly accurate in
data used in these calculations, while the number of New
radii chosen does not improve the results, the results dep
strongly on the choice ofl max. Similar calculations with
l max521 ~not presented here! showed a much stronger de
pendency of the inversion potentials on the choice of
Newton radii. Ther dependency of the spectral coefficien
cl can be minimized only if a large enough number ofS
matrix elements are used in the inversion procedure.

D. The construction of the potential from the kernel

With numerical requirements of the inversion method
tablished, we now examine how the potential is composed
a study of the contributions of the differentV l(r ) in the sum
in Eq. ~19!. In Fig. 5 the first 10 individual termsV l(r ) of
the optimum solution found in Sec. IV A~for l 50,1 . . . 9)
are displayed. The partial wave value of each increase
one proceeds downwards from top left to bottom right. T
real and imaginary parts are displayed by the continuous
dashed curves respectively. Save for thel 50 contribution,
all terms are regular at the origin. The pole inV(r ) at r 50 is
caused exclusively by the termV l 50(r ). We also note that
the pole atr 50 is inherent to the NS method. It is no
caused by the truncation of the partial waves and so it can
be removed by taking additionalS matrix elements into ac-
count.

-

he
he
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For small values ofl and large radii,V l(r ) is very small.
When l approachesl max, the contribution ofV l(r ) at small
radii is negligible. Thus for a given interval@r 1 ,r 2# the po-
tential is almost completely determined by the contributio
from a limited number ofl values (l 1 ,l 2)P(0,l max). To dem-
onstrate this, we show in Fig. 6 how the potential is built
from the inside out by addingV l(r ) for increasing cutoff
limits in the sum. From top left to bottom right the firs
2,3, . . . ,10terms of the sum in Eq.~19! are taken into ac-
count. In the last diagram~with 11 terms summed!, the po-
tential is already fully determined for the region~0 fm, 2.5
fm!. It can be concluded then, that the total number of ter
one need take in the summation of the kernel needs to
large enough to allow a reasonable coverage of the wh
radial interval for which the potential is sought.

However, there is another condition that indicates p
sible problems for low energy~few partial wave sensitive!

FIG. 5. Individual contributions of the termsV l(r ) of the kernel
to the potential forl 50 – 4 ~from top to bottom, left column! and
l 55 – 9 ~top to bottom, right column!. The real and imaginary part
are displayed by the continuous and dashed lines, respectively

FIG. 6. Partial summation over the termsV l(r ) from l 50 to l
51 – 5 ~from top to bottom; left column! and from l 50 to l
56 – 10 ~from top to bottom; right column!. The real and imaginary
parts are given by the solid and dashed curves, respectively.
06460
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results. For a small region around any chosen pointr, only a
few partial wave termsV l(r ) seriously contribute in the sum
Eq. ~19!. How many depends on the relative wave numb
~energy!. This ~limited! sum of oscillating functions may no
have converged sufficiently if only a few entries are involv
and one can expect an oscillatory result forV(r ) and possi-
bly strongly so. Essentially this indicates that the chosen s
size (Dl51) in the tabulation, physical values though th
be, is too large in comparision to the defined range ofSl

elements. The infinite sum forl max2` of numerically very
small terms restricted to just physicall values may need to be
included to offset such spurious effects in principle. Th
leads us to consider use of inversion withSl sets wherel
includes noninteger values of angular momentum, thus p
viding additional functional space in the expansion of t
integral kernel.

V. INCLUSION OF NONINTEGER VALUED
PARTIAL WAVES

Seeking increase in the quality of reproduction of the
put potential, we now consider the inclusion of noninteg
valued partial waves in the expansion of the integral ker
Eq. ~12! as was proposed in Ref.@17#. In a first application,
the half, quarter, and eighth integer values of theSl matrix
elements atEc.m.550 MeV were calculated by solving th
relevant Schro¨dinger equation Eq.~1! with the Woods-Saxon
potential. The enlarged sets ofS matrix elements were then
used in the inversion procedure. The technical parame
chosen in those calculations were the optimum values fo
previously. The resulting potentials are shown in the l
panel of Fig. 7 by thick solid and dashed curves for the r
and imaginary parts, respectively. They are compared w
the optimum result~with Dl51) found previously. From
top to bottom the number ofSmatrix elements taken as inpu
were doubled in each calculation as half, quarter, and fin

FIG. 7. Inversion potentials obtained by inclusion of noninteg
valued partial waves~real part: thick solid curve; imaginary par
thick dashed curve! as compared to the optimum result~real part:
thin solid curve; imaginary part: thin dashed curve! at Ec.m.

550 MeV ~left column! and Ec.m.54 MeV ~right column!. From
top to bottom, left column:Dl5

1
2 , Dl5

1
4 , andDl5

1
8 . From top

to bottom, right column:Dl51, Dl5
1
2 , andDl5

1
4 .
5-8
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eighth partial waves enter the sum in Eq.~12!. In this case
the inversion potentials all have approximately the sa
quality as the optimum result we obtained from inversi
specified bySl for integer values ofl. The x2 values are
~from top to bottom!: xV

250.03, 0.04, and 0.14. For theDl
50.5 calculationxS

256.8010210. To facilitate study of the
Dl50.25 and 0.125 cases and to avoid numerical proble
arising from the calculation of the Coulomb functions
small stepsizes both in radii and angular momentum,
stepsize of the inversion potentials was increased toDr
50.1 fm. As the accuracy of theS matrix elements depend
on that step width in integration of the ensuing Schro¨dinger
equations, thexS

2 values should not be compared to the e
lier results. For theDl50.25 and 0.125 calculations how
everxS

2 is still about 1027.
For even smaller step size of the angular momentum,

results should become stable in principle, but numerical
accuracies in the calculation of the wave functions at
rational angular momenta values in some cases gave ris
numerical noise. Nevertheless, the important feature in
case is that the information available from the integer-onlS
matrix elements is already sufficient to determine the pot
tial.

However, when a lesser number of partial waves cont
ute sensibly to the scattering, inclusion of nonphysical val
in the S matrix in the inversion theorem might reveal add
tional information on the underlying interaction. As an e
ample, we consider the given scattering system at the en
of Ec.m.54 MeV. This energy is about 1 MeV above th
Coulomb barrier. Only six partial waves are not 11 i0 within
the required precision~see Table II!. The inversion potentia
for this Smatrix ~with Dl51) is displayed by the thick solid
~real! and dashed~imaginary! curves in the top diagram o
the right hand panel of Fig. 7. In comparision with the an
lytic input potential, the reproduction is very poor (xV

2

511.8,xS
250.141024). The diagram in the center of th

right-hand panel of Fig. 7 shows the inversion poten
found when half integer values of theS matrix were in-
cluded. In this casexV

250.28 andxS
250.331025. The bottom

segment displays the results of inversion on using qua
integer values (xV

250.23,xS
250.491025). The basic result in

the top diagram is significantly changed and for the better
the inclusion of the nonphysicalSl values in the inversion
process. Smaller stepsizes ofDl only marginally improved
the quality of result we have here.

In the examples discussed, the inputS matrix for all val-
ues of angular momentum~including rational ones! was
found by numerical evaluation of the Schro¨dinger equation,
Eq. ~1!. Thereby the input data for these inversion stud
could be calculated with high precision. When applying t
inversion method to experimental scattering data howe
only theS matrix values for physical~integer valued! partial
waves can be derived. Only the evenl values can be in the
case of identical boson scattering. Thus to improve the
version by inclusion of half integer values in the set,
interpolation of the knownS matrix elements needs to b
made. As a test, we consider theS matrix elements as given
in Tables I and II for integer valuesl5 l , and try to deduce
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the values of half integerl without solving the Schro¨dinger
equation.

To do so the integer values forl 50,1,2, . . . ,22 of theS
matrix elements atEc.m.550 MeV ~Table I! were fit using a
rational form for theSmatrix ~Bargmann scheme@7#! as has
been proposed in Ref.@17#. This rational form was then use
to specify theS matrix elements at half integerl. Thus, a
physically motivated interpolation for theS matrix has been
used. The tabled integerl S matrix elements were fit with a
precision of 1026 per datapoint, thereby achieving the acc
racy of input as deemed necessary from the studies repo
in Sec. IV B. In Fig. 8, the interpolatedSmatrix elements are
compared to the exact ones in the Argand diagram. The e
~integerl) values are shown as stars and the exact value
half integerl are given by the crosses. They are connec
by dashed lines solely to guide the eye. The interpola
values are represented by circles and again to guide the
are connected by full lines. TheS matrix element withl 50
is that at the lower left end of the curve formed by the s
We stress that the lines are neither interpolations nor do t
give the exact devolution of theS matrix elements to othe
rational values of angular momentum. Asl approachesl max,
the elements move closer to the point 1.01 i0.0. All but the
first two S matrix elements of half integerl are reproduced
very well by the interpolation, although the rational form
the S matrix has only been fit to the values at integerl.
These interpolated values together with the exact integer
ues then serve as input to the inversion procedure. The
sulting inversion potential~using two Newton radii r 1
510.0 fm andr 2510.01 fm) is shown in the top diagram o
Fig. 9. The relatively small deviations of the interpolat
values from the exact values give rise to huge oscillatio
and severe numerical problems at larger radii. The input
tential is not reproduced; an effect reflected in thex2 values
xV

2562.06 andxS
258.11023. To try to average out the nu

merical errors of the interpolated set ofS matrix elements,

FIG. 8. Exact and interpolatedS matrix elements in the Argand
diagram for E550 MeV. ExactS matrix values coinciding with
integer values of the angular momentum variable (l) are shown as
stars, exact values calculated at half integer values are show
‘‘ 1’’ and to guide the eye are connected by the dashed line.
interpolated values at half-integerl are shown by circles and ar
connected with the full line.
5-9
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the least-squares method as described in Sec. IV C was u
The best result was obtained for three equidistant New
radii with r 1510.0 fm andDr 50.01 fm, and that is shown in
the bottom diagram of Fig. 9. For this resultxV

2526.64,xS
2

57.61026. While the inversion potential so found now o
cillates around the input one there has been no improvem
over the integer-only-values optimum result discussed
Sec. IV A.

We now consider the lower energy case atEc.m.
54 MeV for which the inversion potential was actually im
proved by the inclusion of analyticSl of half integerl. In
Fig. 10 the interpolated values of theS matrix are compared
to the exact ones in the Argand diagram. In the top a
middle segments the sevenSmatrix elements given in Table
II are shown as stars. This would be the input data for
ISP under the choice that such are taken solely from
experiment. One is now faced with the problem of finding
reasonable and proper interpolation for this set. Again
used a fit with a rational form of theS matrix with a preci-

FIG. 9. Inversion potentials obtained using the interpolated
of S matrix elements~real part: thick solid curve; imaginary par
thick dashed curve! compared with the analytic input potential~real
part: thin solid curve; imaginary part: thin dashed curve!.

FIG. 10. Exact and interpolatedSmatrix elements in the Argand
diagram forE550 MeV. ExactS matrix values defined at intege
values of the angular momentuml are shown as stars, exact valu
calculated at half integer values ofl are shown by the ‘‘1’’ and are
connected by the dashed line. The interpolated values are show
circles and are connected with the full line.
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sion of 1026 per baseS matrix element. The interpolation
~full curve! together with the values at half integerl ~circles!
is shown in the center diagram of Fig. 10. Although t
rational form again fits with high accuracy, the interpolat
values at half integerl do not coincide with the exact one
we obtained from the solution of the Schro¨dinger equation.
This is evident in the diagram at the bottom of the figu
where the exact~calculated! Smatrix values are shown by1
signs, and the exact~calculated! progression is shown by th
dashed line. To find these exact values by an interpolation
the limited set ofS matrix elements one can extract fro
‘‘data,’’ i.e., the physical set at integer values ofl ~as shown
in the top diagram! one must have more information abo
the interaction. Without this additional information, a su
cessful interpolation of the set of integerS matrix elements
seems impossible. In Fig. 11 we show the inversion pot
tials calculated with the interpolated set ofSmatrix elements
and calculated with two different sets of Newton radii. Ne
ther of the two results reproduces the input potential a
neither improves upon the integer-only inversion potent
Given that the analytic potential gave such a different cal
lated S function that result is not surprising. Only th
asymptotic properties of the potential are reproduced c
rectly as these are mainly determined by the large ang
momenta, which are interpolated reasonably well by this p
scription.

VI. SCATTERING OF IDENTICAL PARTICLES

As an application in a physical case, i.e., using act
data, we consider the scattering of two12C nuclei at an en-
ergy of Ec.m.57.998 MeV. Due to the indistinguishability o
projectile and target, the differential cross section is symm
ric about 90° in the center of mass as only theS matrix
elements for even partial waves contribute to the cross
tion. S matrix elements of odd partial waves can only
obtained by an interpolation of those physical even-l S ma-
trix values.

Much 12C112C scattering data has been obtained by V
and co-workers@24# and many analyses of that data ha
been made during the last ten years@16,24,25#. Recently, a

et

by

FIG. 11. Inversion potentials obtained from the interpolated
of S matrix elements~real part: thick solid curve; imaginary par
thick dashed curve! compared with the analytic input potential~real
part: thin solid curve; imaginary part: thin dashed curve!.
5-10
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SOLUTION OF THE INVERSE SCATTERING PROBLEM . . . PHYSICAL REVIEW C61 064605
new ansatz within the modified NS formalism was propos
using only the physicalSmatrix elements~of the even partial
waves! to invert this data@16#. As this ansatz is closely re
lated to the matters we have discussed in this paper,
assess this interesting proposal by using properties of a fi
analytic potential, as again such provides us with the ‘‘c
rect’’ Sl for all l.

The cross section data for12C112C scattering atEc.m.
57.998 MeV is shown as the ratio to Rutherford in Fig.
and therein it is compared with a fit~solid curve! obtained
with a Woods-Saxon optical model potential whose poten
parameters are

V5216.3 MeV, RV55.51 fm, aV50.98 fm21,

WD512.55 MeV, RD53.27 fm, aD57.54 fm21,
~24!

RCh55.69 fm.

The fit found using this potential gives ax2537.6 per data
point. Better fits might be obtainable, but we are only int
ested in having a defined realistic potential for our discuss
and not in an optimal explanation of the scattering data.
the scattering energy is just 2.5 MeV above the Coulo
barrier this system is comparable to the low energy anal
example we investigated previously.

From experimental data only theS matrix elements for
even partial waves can be extracted. But from the given fi
potential we can specify the values ofS matrix elements at
all partial waves by numerical evaluation of the Schro¨dinger
equation. In a first inversion calculation we used only theS
matrix elements at even partial waves (D l 52) as was pro-
posed in Ref.@16#, in a second we used the more comple
set which hasD l 51. The two results of those inversions a
compared in the top and bottom segments of Fig. 13, res
tively to the fitted analytic input potential. Neither reprodu
the Woods-Saxon potential from which theS matrix ele-
ments were defined. The inversion potential for which o
the physical values have been used~theD l 52 case! does not

FIG. 12. The ratio to Rutherford cross section for12C112C
scattering atEc.m.57.998 MeV. The solid curve shows the fit foun
with the model potential.
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reproduce even the basic features of the input potential. N
that this D l 52 potential shows the same behavior as
potential shown in Ref.@16#. The inversion potential found
using the more complete set ofS matrix elements~the D l
51 case! also is a poor reproduction. However, it oscillat
around the original potential.

The inversionS matrix elements are compared to the i
put ones for the two potentials in the Argand diagram giv
in Fig. 14. The exact values are shown by the crosses,
inversion S matrix elements are displayed by the circle
Both potentials reproduce the inputSmatrix elements within
the accuracy of experimental input data~roughly 5%). As
two times more information is used to construct theD l 51
potential, it is clear that the reproduction~shown in the bot-
tom segment of Fig. 14! is significantly better. We also not
that, as in the low energy example discussed in Sec. V,
values of theS matrix elements at noninteger angular m
mentum can not be calculated by a simple mathematica
terpolation. The full line gives the calculated~Woods-Saxon
potential! progression of theS matrix elements. The imagi

FIG. 13. Inversion potentials fromS matrix elements for12C
112C at Ec.m.57.998 MeV. The results found using only physic
phase shifts (D l 52 top panel! and using a complete set (D l 51
bottom panel! are compared to the fitted input potential~from which
the Sl were defined!.

FIG. 14. S matrix elements to the inversion potential~circles
connected by dashed lines! compared to the inputSmatrix elements
~crosses connected by full lines! in the Argand diagram. The result
were found using the potentials shown in Fig. 13.
5-11
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nary part of thatS matrix changes sign four times; a featu
that to us seems impossible to find by interpolation on
seven values (3) shown in the top diagram.

Clearly here is a physically motivated case that can
solved only by having far more information about the fun
tional dependence of theS matrix than can be deduced from
the fixed energy scattering data alone.

VII. SUMMARY AND CONCLUSIONS

In this paper the question of whether the process of inv
sion of fixed energy data can be improved by including n
physicalS matrix elements has been discussed.

First, we found an optimum solution for a given optic
model potential based upon the modified NS invers
method. The utilized inversion method inherently has a p
at the origin which cannot be removed by increasing
technical parameterl max or a good choice of the Newto
radii. Nonetheless a stable result can be derived that re
duces the input data with high accuracy. We have found
the Newton radii need to be chosen very close to each ot
and as close to the radius of nuclear interaction as poss
Solving an overdetermined set of equations by means
least squares method improved the results but only if
input data was inexact. However, the required accuracy
the S matrix elements has been shown to be five decim
digits—a precision unlikely to be achieved even in princip
from experimental data.

The inclusion of nonphysicalS matrix elements~for non-
integerl) does improve the inversion in cases where v
few partial waves contribute to the scattering. We conclu
thatDl should be small compared tolmax to guarantee a fair
reproduction of the interaction potential.

The results have been applied to the well studied symm
ric scattering system of12C112C at a low energy. It was
found that to determine the interaction potential nonphys
S matrix elements must be used in the inversion proce
Restricting inversion to be based upon physical values o
we find potentials very similar to those published@16# but,
given our controlled study, clearly the process lacks in
s
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information. The results are not reliable as a physical p
scription.

Leeb et al. @17# proposed the inclusion of interpolate
noninteger partial waves in the inversion of low energy12C
112C scattering. As we have shown in this paper, it may
impossible to find a physically motivated interpolation
determine those nonphysicalSmatrix elements and certainl
so within the required accuracy. In Ref.@17#, it was noted
that small changes in the nonphysicalSmatrix elements have
a major effect on the inversion potentials. We also find t
to be so. Therefore we conclude that the inclusion of n
physical partial waves in the inversion procedure can o
improve the inversion potential if the additionalS matrix
elements can be obtained with high accuracy~five decimal
digits!, such as from the direct solution of the Schro¨dinger
equation. For low energy scattering there seems to be in
ficient information to date to consider the resultant invers
potentials as reliable physical ones and for higher ene
scattering one needs to consider the vagaries that can
due to the limitations of the accuracy that existing data c
specify for theSl matrix elements.

Our results, though found using the modified NS sche
apply to other inversion methods since the shortcomings
the inversion process discussed in this paper lie with
given set of the inputS matrix elements and not with th
particular method applied for the solution of the ISP at fix
energy.

We believe thata priori information about the interaction
systems need be used in conjunction with the conventio
global inverse scattering theory studies if the results are to
a proper representation of the interaction potentials. T
question remains, where thisa priori information can come
from and how it should be implemented in the inversi
procedure. Further studies in this direction are needed.
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