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Solution of the inverse scattering problem at fixed energy with nonphysicab matrix elements
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The quantum mechanical inverse elastic scattering problem is solved with the modified Newton-Sabatier
method. A set ofS matrix elements calculated from a realistic analytic optical model potential serves as input
data. It is demonstrated that the quality of the inversion potential can be improved by including nongBysical
matrix elements to half, quarter, and eighth valued partial waves if the original set does not contain enough
information to determine the interaction potential. We demonstrate that results can be very sensitive to the
choice of those nonphysic&matrix values both with the analytic potential model and in a real application in
which the experimental cross section for the symmetrical scattering systéfS6f-’C at E=7.998 MeV is
analyzed.

PACS numbegps): 13.75.Cs, 21.30.Fe, 24.10.Ht, 25.70.Bc

[. INTRODUCTION potential[12]. This equates to knowing th@matrix exactly
at all of the infinite set of physicdlvalues as then the unit
Solutions of quantum inverse scattering probldi&P’s) step in the quantum number is infinitesimal against the
involve two step processes. In the first step, a s@mifatrix  range. Most studies of the fixed energy ISP and notably the
elements, scattering phase shifts, and/or deflection functiodsewton-Sabatier(NS) method [5,6] and its variant, the
are calculated from a given set of data, such as a differentianodified NS method13], have been applied using only the
cross sectioi1]. This process involves uncertainties as thevalues of theS matrix specified at a finite set of physical
measured data usually are incomplgtes] and, in any event, angular momentum values. In real cases, sensible values
there exist natural ambiguities with arfgven complete make that set finite and often quite small in number. Some
fixed energy dat@4]. We are not concerned with these mat- methods however invoke a functional form for tBefunc-
ters in this paper and suppose thathysical Smatrix can be  tion. Specifically the LF methods use one that is identified
defined. The adjectiv@hysical designates that the angular with Bargmann potentials. In those methods one specifies a
momentum quantum numbers identifying each and everget of simple poles and zeros in the complex angular momen-
number of the set are observable and/or contributing eletum plane so that th& matrix at the physicalrea) angular
ments in summations leading to observables. The secongomenta map to the “data.” Thus use of a prescription
step in solution of ISP’s is the actual inversion process with(interpolation/extrapolationfor the S matrix at nonphysical
which the underlying interaction is calculated from th&e Values of the angular momentum is not new. However, the
matrix elements. The result usually takes the form of a local.F methods are very prescriptive of the forms®#and are
potential matrix5,6] which depends on the angular momen- also not without ambiguity in the specification of the func-
tum or on the scattering energy according as one is solvingon parameter$l4]. It suffices that in treating actual scat-
the ISP at fixed angular momentum or at fixed energy. In théering problems as fixed energy ISP’s, attention must be paid
first case one needs as input data$imeatrix as a continuous to whatSis invoked for nonphysical angular momenta.
function of energy at a fixed angular momentum and the With the NS and modified NS schemes, such consider-
energy values of any bound states. In the fixed energy ISRtion of theS matrix for non-physical has been done in the
case theS matrix as a discrete function of the angular mo- past. May and Scheifll5] studied the identical boson scat-
mentum variable is required. tering problem ¢2C— *2C) for which only the evef-partial
Our interest is with the fixed energy ISP for which therewaves contribute to scattering cross sections. They found
are many guantal methods of solution, some of which are theome sensitivity in their inversion results according to a
Lipperheide and Fiedelde§t.F) methods[7], the finite dif-  choice of the interpolation for odd integer values; most no-
ference method of Hooshyar and Raz48y, and the gener- tably of thel =11 value for their energy cases. In a recent
alized Darboux transformations of Schnizer and L§8b  study of 12C— 12C scattering however, it was proposed to
More recently, methods have been developed to incorporatenly use the experimentally availatfiamatrix elements, i.e.,
the spin-orbit field cases, and examples are those of Hubeat evenl values[16]. Interesting structures were found in the
and Leeb[10] who deal also with the Dirac equation as the inversion potentials for which physical interpretations were
equation of motion, and of Luet al.[11] who found a lin-  given. In another work, Leeb, Huber, and Apa§¥¥] stud-
earization scheme. In this case, two sets of phase shiffs oried the sensitivity of the NS potentials for- « scattering to
matrices must be specified and for nucleon scattering fronselection of theS matrix at nonphysicalintege) values of
nuclei the physical values coincide with half-integer angularangular momentum interpolated on a physical half-integer
momentum numbers. As noted above, in the fixed energyalue set. They also revisited tHéC— 12C scattering prob-
ISP case th&matrix as a function of the angular momentum lem by adopting a specific Woods-Saxon potential to give
variable is needed if one is to define uniquely the scatteringhe S matrix for all integer| values. Their limited study
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showed a sensitivity to the choices ®fmatrix values and in tity sought. It is presumed that the asymptotic behavior of the
this paper we expand upon their results, using the modifiedadial wave function®'(r) is known and has the form:
NS method as an example for the solution of the ISP at fixed ) )
energy. RI(r_>w):Al(efll‘ﬁ(kr)_S|e|19|(kr)), (3)
We note a recent analytic study in which a proof was
given that an interaction potential can be uniquely deterWhere the phase function is given by
minedin principle by an infinite subset of the infinite set of
physical phase shiftE.’LB]. That result i§ impr_apticable as it 9,(kr)=kr— 7 In(2kr)—| ZJFU“ )
assumes calculations can be made with infinite sets of input 2
data and with infinite accuracy of this data.
The NS method is one of the most successful of the fixednvolving
energy inversion methods. First numerical tests were carried

out by Quyen Van Phu and Coudrfd9,20. Very recently, ) 2u ZpZteZ,u
it has been applied to electron-helium atom scattefRi o=argl'(I+1+iy), k= ?E, =

using experimental phase shifts of Nesf22] at low | val-
ues and dipole polarization phase shifts at highgalues.

For f.“.JC'eaf scattering application chow a_nd ScheiflL3] o, are the Coulomb phasds,s the wave number, ang is
modified that approach under the assumption that the potelk o Sommerfeld parameter. THematrix elementsS in Eq
tial is known in the region outside the nuclear interaction,(3) are connected with the.phase shifts By= 7,e?' with.

I.e.’hmd the |(;1f|n|t|e m(tjervz(ijl Rim’;oz; That n|10d|f|_e(i| NS values obtained by phase shift analysis of experimental an-
method was developed and tested for neutral particle scattefy - gitferential cross sections or by numerical evaluation

ing. Later it was extended by Magt al. [23] to consjder of Eqg. (1). Such serve as input data for the inversion proce-
charged particles so that the approach became applicable fq[, .. " 11 physicaB matrix elements are identified k.

analysis of experimental data from heavy ion Sca“em_ Later we shall us& matrix elements at nonphysical values

f the angular momentum and those we shall defin&hy

inversion for inelastic scatterin@7,28|. .
' - To solve the ISP, one chooses an arbitrary reference po-
In Secs. Il and Ill the NS and the modified NS methodstential VO(r) from which the wave function®?(r) are

for the solution of the ISP at fixed energy and elastic scat - ;
tering will be reviewed in brief. In Secg:].y IV the optimal known at all radiir and safisfy
choice of the technical inversion parametés, and the
Newton radiir; are specified, the required accuracy of She
matrix _ele_ments_ are St”d'ed’ f"md the construction of the_ POt herein the reference differential operator is
tential is investigated in detail. Thus, an optimum solution

for the integer-only ISP is found, which is used as a refer-

ence in the following sections. In Sec. V the effect of inclu- DVO( ):rzz_'“
sion of nonphysicals matrix elements in the inversion pro- h?
cedure is discussed, and we consider how the values & the

matrix at nonphysical angular momenta might be obtainedWith these known reference wave functions, the Povzner-
In Sec. VI the results are applied to the experimental differLevitan representation for the solutions of Hd) can be
ential cross section of thé’C+12C scattering system at written as[6]

E.m=7.998 MeV. Finally, in Sec. VIl a summary is made

and conclusions are given. WO dr’
R'(r)=R°'(r)—j KWArrRA(r) —. (8
0 r'

®

DV°(r)RY(r)=1(1+1)R%(r). (6)

+E—-VO(r)|. 7

II. THE NS INVERSION METHOD

We consider the elastic scattering of a projectile with!t @ be showr(5,6] that Eq.(8) solves the Schitinger

mass numbeA, and charge numbeZ, off a target with ~ equation, Eq(l), if the integral kerneK\"’(r,r") fulfills the
mass numbeA, and charge numbeZ,. The radial Schro  Ppartial differential equation
dinger equation for this system can be written in the form 0
DY(KYY(r,r) =D’ (r ) KYW(r.r"), 9)
DY(r)R(r)=1(1+1)R\(r), (1)
with the boundary conditions
with the differential operator

KYY(r,r'=0)=K"¥’(r=0s")=0. (10)
v L2 h? d?
DY(r)=r ﬁ ﬂ d_+ E=V(r)|, (2} The inversion potential then is connected with the kernel by
0
whereE is the energy in the center-of-mass systenis the V(r)=VO(r) - E ﬁ_2 i KVV (r,r)} 11)
reduced mass, and the interaction potenfi@l) is the quan- r2u dr r '
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In the NS method, the integral kernKIVVO(r,r’) is ex- accuracy, the potential will be zero outside the nuclear inter-

panded in terms of the wave functions of E¢¥) and (6)  action regionr>R;,.. Thus the wave function®'(r) are

with some yet unknown Spectra' Coefﬁciemis known in this outer I’egion and are Uniquely determined by
the S matrix elements as

KWD(f'f'):,;O c'RI(NRY(r"), (12 RI(r>Ry) =AkrT(r)=Akr[h (kr)— Sh* (kn)].
(15
where the sum runs over all integer values of the total angu-
lar momentum quantum numbke 0—oc. With this kernel,  Here,h;”=in,=j,(r) are the incoming ) and outgoing
Eq. (8) can be rewritten: (+) spherical Hankel functions, which are formed by irregu-
. lar and regular spherical Bessel functions. These Bessel
s o0l I o functions are solutions of Eq1) with V(r)=0; i.e., of the
R(r)=R%(r)— 2 R(r)e LT(r), (13 free Schrdinger equation. As = Eq. (15) converges to
=0 Eq. (3) with 7=0.
For neutral particles, the convenient reference potential is
zero[13], and the reference solutions are the regular spheri-
cal Ricatti-Bessel functions:

where the matrix.'"'(r) is solely determined by the refer-
ence wave functions:

!

L"'(r)=f;RO"(r')RO'(r')d%. (14) VO(r)=0, RO(r)=krj,(kr). (16)
r

With Egs.(15) and(16), the Povzner-Levitan representation,

Equation(13) is then used in two ways. In a first step thegq. (13), can be reformulated as

known asymptotic values of the wave functions are used t

calculate the spectral coefficient$ and the normalization

coefficientsA' of Eq. (3). In a second step, E13) is then

solved to get numerical wave functioR§r) at discrete radii

r; throughout the interaction volume. With these the poten-

tial may then be calculated from E(L1) by using Eq.(12).
Newton[29] showed that the set of linear equations Eq.

(13) does not have a unique solution. To every energy there r dr

exists at least one nonzero transparent potential that may add [ Al P N N

to any solution potential leavin§ matrix elements unaltered. b=Ac, L= foj"(kr Mhkr’) r'2’ (18

However, Sabatief30] was the first to solve Eq.13) and

give explicit solution vectors. Each of these vectors givesBy using the assumptiol(r>R,)=0, the potential now
one phase equivalent potential. Under the a,ssumption th%lmy needs to be determinedl in the finite regior<10
the phase shifts tend to zero faster thari”*, Sabatier <R .. Equation(17) is again solved in two steps. It is with
demonstrated that only one of these potentials decreases afys step that the technical parametérs,, and the Newton
ymptotically faster tham~%** (for arbitrarys,s"). All other  radii, are required. In the first step, two raéMewton radi)
equivalent potentials show an oscillating tail damped byare chosen outside the nuclear interaction regions,
r~32and may be considered as unphysical. =R, to determine the unknown coefficieftsandb'. One

To use the method in numerical calculations, Ef8)  might consider a choice of more than two Newton radii, thus
must be converted into a finite set of equations. This isbtaining an overdetermined set of equations which may be
achieved by truncating the sum at some angular momenturfplved by a least squares method. Possible numerical or ex-
valuel,q. Thus, the potential in the infinite interval ¢,  perimental errors in the input data could be averaged out
needs to be determined from the finitand often small thereby[24—26.
number of phase shifts at angular momentum values of  Once the spectral coefficients are known, Efj7) is
=0, ... Imax- Test calculations using analytic input poten- solved at equidistant radii, in the interaction region €r;

tials showed big deviations in results for such inversion po-<R,, to give the functionT'(r;). The potential is then ob-
tentials[19]. These results were improved by Coudf&9],  tained from

but only the modification of the method by Mchow and

Scheid [13] made feasible application with experimental 2 d

scattering data as input. V(in=-2 V(r)=->, FEb'a[rT'(r)j,(kr)].
| |

AT(n+ 2 BT (L (r)=j,(k), (17)
I’'=0

where

Ill. THE MODIFIED NS METHOD FOR NEUTRAL (19)

PARTICLES .
Note also that the case of charged particles can be reduced to

When considering quantum particle scattering, thethe case of neutral particle scattering described in this section
asymptotic behavior of the potential is usually known. Forby a transformation of th& matrix in the manner discussed
the scattering of neutral particles, and within a prescribedn Ref.[23].
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TABLE I. Real and imaginary parts of tH8 matrix elements found from the optical potential calculation of 50 MeY%C scattering.

| Re(S) Im(S) | Re(S) Im(S)
0 —0.28659 38716 99 —0.59145 23953 06 20 0.99999 99677 52 0.00017 03125 80
1 —0.60638 12597 30 —0.14367 49326 00 21 0.99999 99911 73 0.00008 38484 96
2 —0.61077 40878 71 0.17635 93766 74 22 0.99999 99975 74 0.00004 09312 91
3 —0.44421 91441 45 0.31336 06161 58 23 0.99999 99993 37 0.00001 94599 18
4 —0.26111 02822 98 0.39612 04474 75 24 0.99999 99998 21 0.00000 88093 28
5 —0.08957 83725 33 0.54065 22005 73 25 0.99999 99999 52 0.00000 37226 80
6 0.15132 90308 47 0.69323 36192 57 26 0.99999 99999 87 0.00000 14490 82
7 0.49340 49404 93 0.70839 26237 75 27 0.99999 99999 97 0.00000 05159 64
8 0.78666 53275 80 0.53680 03734 86 28 0.99999 99999 99 0.00000 01676 49
9 0.93085 99057 32 0.32564 98005 30 29 1.00000 00000 00 0.00000 00497 33
10 0.98038 98487 49 0.17685 47697 85 30 1.00000 00000 00 0.00000 00134 98
11 0.99474 69566 53 0.09161 11634 92 31 1.00000 00000 00 0.00000 00033 61
12 0.99862 47954 05 0.04647 05553 76 32 1.00000 00000 00 0.00000 00007 70
13 0.99964 28002 13 0.02332 77788 96 33 1.00000 00000 00 0.00000 00001 63
14 0.99990 72769 54 0.01164 11736 56 34 1.00000 00000 00 0.00000 00000 32
15 0.99997 58519 87 0.00578 73076 63 35 1.00000 00000 00 0.00000 00000 06
16 0.99999 36747 27 0.00286 97762 30 36 1.00000 00000 00 0.00000 00000 01
17 0.99999 83310 75 0.00142 02792 28 37 1.00000 00000 00 0.00000 00000 00
18 0.99999 95562 25 0.00070 14315 82 38 1.00000 00000 00 0.00000 00000 00
19 0.99999 98809 89 0.00034 57260 07 39 1.00000 00000 00 0.00000 00000 00

For numerical calculations again the partial wave sum ins considered. This corresponds to wave numberskof
Eq. (17) needs to be limited to some finite vallig.. To  =0.75fm ! andkso=2.63fm *, respectively. The analytic
date, there is only one superficial numerical study on theyptical model potential was chosen to be
effect of this truncation known to the authors, see R28],
and no analytic investigation has been made. It is clear how- vV
ever, that the truncation leaves an incomplete set of functions ~ V(I)=
in which the potential is expanded. This leads ta atepen-
dency of the spectral coefficients. Then the choice of the
Newton radii is crucial to the quality of the inversion. In 77
earlier applications of the modified NS meth@#—286, | .« P
was determined by the number of available experimental
data points Ney, in the phase shift analysis .t 3 Veoulr)= ) )
<Ngyp; see Ref[3]), or by the semiclassical estimaltg,y VAVAL 3| . for r=R
~kRy. For I=kR, the centrifugal barrier (2/22)[1(I 2Rch RZ, e
+1)/R;,2] is larger than the energy. (21)

To include nonphysical values of th® matrix in the
method, the angular momentum quantum numbés re-  with the parameter valuesV=—15MeV, Ry=3fm, ay
placed by a rational variable. For each value ok there =2fm™ !, Wp=7.5MeV, Rp=2fm, ap=3.5fm !, and
exists one Schuinger, Eg.(1), and one linear Povzner- Rg,=3.3fm. Although the parameters of this potential have
Levitan, Eq.(17). The NS method is then solved in the samenot been determined by fits to experimental cross sections,
manner described above. we note that the chosen values are typical for the scattering
system investigated.

The S matrix elements are listed in Table | fdE.
=50MeV and in Table Il folE; ,,=4 MeV. They were ob-
tained by numerical integration of E@l) with a stepwidth

In this section an optimum solution for the ISP is soughtAr=0.01fm. The results are specified to 12 decimal places.
by using S matrix elements specified only at the standardSuch accuracy is taken here to facilitate our investigation of
angular momentum quantum numbérs0,1, . . .1, This  the choice of 5 and of the accuracy of input data upon the
optimum solution will then be used as a reference for thesolution of the ISP, as well as to provide an accurate data set
calculations made including nonphysical values. To get aipon which to interpolate. The radius of nuclear interaction,
realistic potential, and an exa8tmatrix to test the inversion at which theS matrix elements are calculated by matching
method numerically, the hypothetical scattering system logarithmic derivatives, was chosen Rg;= 10.0 fm. At this
+12C at the center-of-mass energies®f,, =4 and 50 MeV  distance the real and imaginary parts of the nuclear part of

4Wpel~Ro)ap
—i +
ell~Rvavp 1 (elr~Rplap 4 1)2

VCouI.i
(20

&°

; for r=R¢p,

IV. OPTIMAL CHOICE OF THE TECHNICAL
PARAMETERS
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TABLE Il. Real and imaginary parts of th8 matrix elements

comparison with the analytic input potentidtkin lineg for
found from the optical potential calculation of 4 Me¥+'%C scat-

cases where the cut off angular momenta dfg,

tering. =15,16...,22, starting from top left and progressing to

| ) bottom right. Thus, in the left column all potentials found
' Re(S) Im(S) with odd | ., values of 15 to 21 are shown. In the right
0 0.62542 13542 72 0.22774 90013 38 column the results from using evép,, from 16 to 22 are
1 0.66111 42953 85 0.04146 21246 65 given. From top to bottom the quality of the reproduction
5 092176 03347 71 0.13966 78075 26 generally increases as more and more partial waves are taken
3 0.99823 03127 70 0.01953 70795 29 into accognt. However, with these cases the quality of the
4 0.99994 35492 53 0.00254 32356 11 reprqductlon depends strongly on Whet.her an even or an odd
c 0.99999 78851 26 0.00032 66906 88 Imax is used. Although three more partial waves were taken
5 0.99999 99138 31 0.00004 04275 74 into account for the inversion potential shown in the second

row in the right column compared to the first one shown in
the top left diagram, the quality of inversion is poorer. For

) _ Imax=11 and 13 the inversion potentialgot shown are
the potential have decreased to be less tharf MeV. TheS roughly the same as the ones shown in Fig. 1lfor=15

matrix elements are transformed to those of an asymptotig, " 17 \while the inversion potentials for.,= 10, 12, and
il ax il il

constant potentialas described in Ref23£gir_= 10.0fm. 14 are distinctly worse than the two potentials displayed for
The S matrix elements converge towar =1.0+i0.0 =16 and 18. For higher values bf.,, the inversion po-

. . ax

and as usugl, Fhe higher the energy the more par.t|al We.lvqgntials remained of the same quality as the one shown for
contribute significantly to the scattering. For the d|scu55|or| —22. The semiclassical estimate would yielg,~26

of the optimal choice of the technical parameters we considef |, ati X L

. o alculations were carried out up kg,,= 39. No further im-
only the S matrix elements aEq =50 MeV. Qualitatively provement of the results could be observed. Indeed the po-
the results are independent of the scattering energy.

tentials did not change at all. Wit =1.0+i0.0, the wave
functions in the outer region given by E(L5) are propor-
tional to the regular spherical Ricatti-Bessel functions, and
the V'(r) vanish.

There are numerical problems with standard methods of
solution above and beyond those problems associated with
sum truncations, input data accuracy, and choice of Newton
radii. Such appear from time to time in the form of “gli-

A. The choice ofl

The cutoff angular momentuiy,,, must be chosen so that
§/7!max=1.0+i0.0 within selected numerical accuracy. Con-
sidering that experimental accuracy might be typically
(5-10) %l 1,ax should be at least 10 in the example studied

here. Hence we solved the ISP figf,,=10,11,12.....,39. ches” in potential values. An example is seen in Fig. 1

For those calculations of the unknown coefficieAtsandc' .
ht-h | f h 10 f
the two Newton radiir;=10.0fm andr,=10.01fm were E”g t-hand panel, second from todn the 8 to 10 fm range

h Th funci d th tential h ittle spike effects are evident. The origin and reason for
chosen. The wave function and the potential were then Cag,oqe effects have not been resolved. In all cases though such

culated in the interval0 fm, 10 fm) with a step width of do not appear in the stabilized, converged results.

Ar=_0.01 fT' /?slaPh_eialmple for ”;fsel calgul_atiltzns, t1h¢ in- To rate the quality of the inversion quantitatively, tw®
version potentialsthick lineg are displayed in Fig. 1 in tests have been performed. The fins@,, gives the average

absolute deviation of the inversion potential from the ana-

. i];\a e ~ i \,n‘ !“WW lytic input one:
N hd A\ v d
oI\ HITAN /i ] =V ()2
0 I”:.\]I“ : : %“q:‘ ’ | : : X\Z/IEE V|nv(r|) Vmp(ﬁ)‘ , 0.5 frT]SrISRmt’
0 H: PN Ir‘u“‘ll /i AR N= 1 Mev
Y 7 N4 — ] \ ATV XY
e AR @
= HibA . . 1 . . . . . . .
S v ' - i ' /\ whereV;,(r;) denotes the inversion potential a¥g(r;) is
=0 |~7'\ LAY the analytic input potential. The summation starts rat
S T ] =0.5fm thus excluding the pole at=0 fm; the origins of
-10 ' * = i i = /\ which will be discussed later. The total number of points was
0 P, N=950. The secondy3, involves theS matrix elements:
-5 1
B S L T T S S S S B , 1 lmx o
Radius [fm] XS_EXZB |Siny = Sinpl *- (23

FIG. 1. Inversion potential§eal part: thick solid curve; imagi- . . . }
nary part: thick dashed curyén comparison with analytic input This gives the average absolute deviation of the inverSion

potential (real part: thin solid curve; imaginary part: thin dashed mat”X _elemem_:§|nv (as Ca|C‘-_'_|a_ted from th(_? Inversion ppten-
curve for |,,,=15,16 . . .,22, presented row-wise from top left to tial by integration of the Schobnger equatiopfrom the in-
bottom right. put S matrix. While thexé test can always be performed for
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V(r)[MeV]

) )
10 15 20 25 30
l

max

FIG. 2. x4 (upper figurg and 2 (lower figure as functions of

Imax-

the inversionS matrix, 3 is only available for analytic ex- Radius(fm]
amples where the input potential is known.

In Fig. 2 x2 and x4 are shown semilogarithmically as
functions ofl 5 for I ha=10—30. The lines are added to
guide the eye. For even highkf,, (up to 39) they? values
remained stable. Fdr,,,<15 the even-odd dependency of

the inversion potentials can be seen clearly, with the effec{he numerical zerésee Table)l The slightly larger deviation

. o - 2
remaining V'S'ble.tOI max™— 20. ForlmaX}ZZ the x values of the swave S matrix element is an effect of the pole at
have reached their minimum and remain stable. The progres-

sion of Xé reflects the quality of the inversion potential as
rated byyy, . However, even the comparatively bad mversmnlmaX, which in the example discussed herd js,=22. This

potentials from use dfya= 15, 16, 17,2and 1&hown inthe  means also that the numerical accuracy required by the in-
upper half of Fig. 1 which have ayy of about 100, the ygrsion procedure of the inpG&matrix (seeS' =2 in Table |)
reproduction of thes matrix is fairly good (@% 107°). is at least five digits.

For ly,—=22 the values arex2=0.02 and x3
=2.5810 %0 The differences between the real and imaginary
parts of theS matrix elements are shown in Table Ill. On
average this difference is significantly smaller than 0.01%. To study this aspect further, we simulate an experimental
The rise of the difference for the imaginary part at largererror by simply cutting off decimal digits of the give®
values ofl is due to the fact that the absolute values approacimatrix elements. In Fig. 3 the result of these calculations are

FIG. 3. Inversion potentials obtained by using increasingly ac-
curate input datdreal part: thick solid curve; imaginary part: thick
dashed curvecompared to the optimum resuyteal part: thin solid
curve; imaginary part: thin dashed cuyve

Clearly it is possible to determine an optimum value for

B. The required accuracy of theS matrix elements

TABLE lIl. Percentage variance between the inglielements and those extracted by using the inversion
potential.

Rds’:nv_sgnp) % Im(s:nv_S:np) Rqs:nv_slnp) % Im(Slnv_ gnp)

, , [%] | | [%]

RE(Siyp) IM(Sipp) RE&(Siyp) IM(Sip)
0 0.004860 0.011270 12 —0.000023 —0.007113
1 —0.000086 —0.004292 13 0.000006 —0.005682
2 0.003384 0.005530 14 —0.000184 —0.015499
3 0.001831 —0.001019 15 —0.000177 —0.027412
4 —0.001398 —0.004180 16 0.000001 —0.014780
5 0.000872 —0.001977 17 0.000018 —0.075586
6 —0.003830 0.000218 18 —0.000059 —0.340952
7 0.000115 0.000853 19 —0.000053 —0.526721
8 0.000702 —0.000220 20 0.000004 —0.204275
9 0.000462 —0.002056 21 0.000013 —0.238560
10 0.000151 —0.002976 22 —0.000029 —3.314516
11 0.000073 —0.005600
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different relative distances of two Newton radii, the first of
which is fixed atr,;=10.0fm. The results shown in that
panel from top to bottom were found when the second radius
r, was taken to be 11.0 fm, 12.0 fm, and 13.0 fm. While
the result in the top diagram has approximately the quality
of the optimum solution ¥&=0.06,x5=2.3910°), the
other two with Ar=2.0fm (x3=0.33,x3=6.310°) and
Ar=3.0fm (x3=19.01,x2=1.18) do not.

The center panel in Fig. 4 shows the inversion potentials
for different absolute distances from the radius of nuclear
interactionR;,;, while keeping the relative distance constant
at Ar=0.01fm. The results shown from top to bottom coin-

‘ cide with the first Newton radius, being 11.0 fm Q\Z,
8 0o 2 4 6 8 10  =0.33y3=5.1810"°), 12.0 fm (x4=2.26,x3=3.7610%),
and 13.0 fm §2=50.33,x3=2.73102%). Again, only the

FIG. 4. Inversion potentials obtained for different sets of New-first example compares adequately with the optimum solu-
ton radii (real part: thick solid curve; imaginary part: thick dashed tlon. ) ) ) ) _
curve as compared to the optimum resteal part: thin solid The right panel of Fig. 4 contains the inversion potentials
curve; imaginary part: thin dashed cujvin the left panel the effect  found on using different numbers of Newton radii. For more
of varying relative distance between two Newton radii is shown. Inthan two Newton radii Eq(17) becomes an overdetermined
the center panel, the results of varying absolute distance from thget of equations. That has been solved by a least squares
nuclear interaction region are presented. The effects of varying thE'ethod to specify the optimum solution. The relative
number of Newton radii used are displayed in the right panel.  distance between the radii was fixed atr=0.01fm.
The number of Newton radii are: 3 x{=0.05,

. . . 2=1.17107), 4 (x4=0.05x3=7.66101%, and 5 (2

S \% S \%
p_resented. _The thin Eurves _correspond to the _optlmum mver’i 0.05,y%=7.3610"19), with r,=10.0fm, respectively, for
S|on.pote_nt|a| foll ma= 22 using th_e set o matrix ele_ments the figures shown in the top, middle, and bottom frame.
as given in Table I. The results displayed by the thick curvegyone of these is an improvement on the original result which
were obtained by limiting the number of decimal digits of |,gaq just two Newton radii.
the S matrix used in the inversion to 2, 3, 4, and 5. These |t can be concluded that the Newton radii need to be cho-
results are given in this figure reading from top to bottom.gen, ¢lose to the radius of nuclear interactioammensurate
For six digits the quality of the optimum potential is wth the matching radius for specification of tBematrix
achieved. The value foky,, in these calculations was ad- glements in this test casend that the relative distance be-
justed to the values for which th& matrix is 1.0+i0.0  tyeen them should be small. For the highly accurate input
within the accuracy. The corresponding valueslagg=15,  gata used in these calculations, while the number of Newton
18, 20, and 22see Table). We have also calculated thé  radii chosen does not improve the resuilts, the results depend
valueszand for the 2, 3, 4, and 5 digit accuracy cases theytrongly on the choice of,.,. Similar calculations with
are xy=75.34,184.16,1.53, and 0.02y5=1.0710°% | _—21 (not presented hereshowed a much stronger de-
1.0310°%, 3.1310°%, and 3.7110". Even though the inver- pendency of the inversion potentials on the choice of the
sion potential for which five digits of th8 matrix have been  Newton radii. Ther dependency of the spectral coefficients
used already has the same quality as the optimum rg§ult ¢' can be minimized only if a large enough number $f

=0.02, the reproduction of th8 matrix is still 3 orders of matrix elements are used in the inversion procedure.
magnitude worse. This shows that tlgematrix elements
need to be known with very high precision in order to get
reliable results. A minimum of five digits should be used. ) ) ) . .
This is also reflected by the value g<10~° for the opti- With numerical requirements of the inversion method es-
mum result. On average, the inp8tmatrix is reproduced tablished, we now examine how the.potentlal IS composed by
exactly up to five digits. a study of the cc_>ntr|but|on_s of thg dn_‘fereﬁf(r) in trlle sum
in Eqg. (19. In Fig. 5 the first 10 individual term¥'(r) of
the optimum solution found in Sec. IV ffor [=0,1...9)
are displayed. The partial wave value of each increases as
In this subsection we consider the effect of the relativeone proceeds downwards from top left to bottom right. The
distance, the absolute distance from the radius of nucleaeal and imaginary parts are displayed by the continuous and
interactionR;,,;, and the number of Newton radii on the qual- dashed curves respectively. Save for the0 contribution,
ity of inversion. For these studies the value of the cutoffall terms are regular at the origin. The polev(r) atr=0 is
angular momentum was fixed Bt,=22. Results are com- caused exclusively by the terin' =°(r). We also note that
pared to the optimum inversion potential found in Sec. IV Athe pole atr=0 is inherent to the NS method. It is not
for | max=22, ry=10fm, andr,=10.01fm(thin lines in the  caused by the truncation of the partial waves and so it cannot
figures. be removed by taking addition& matrix elements into ac-
The left panel of Fig. 4 shows the inversion potentials forcount.

V(r){MeV]

4 6
Radius{fm]

D. The construction of the potential from the kernel

C. The choice of the Newton radii
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FIG. 7. Inversion potentials obtained by inclusion of noninteger
FIG. 5. Individual contributions of the term&'(r) of the kernel  valued partial wavesreal part: thick solid curve; imaginary part:
to the potential fod =0-4 (from top to bottom, left columnand  thick dashed curyeas compared to the optimum res(ieal part:
| =5-9 (top to bottom, right column The real and imaginary parts thin solid curve; imaginary part: thin dashed curvat E.,
are displayed by the continuous and dashed lines, respectively. =50MeV (left column and E.,=4 MeV (right column. From
top to bottom, left columnAx =3, AN=%, andA\= 3. From top
For small values of and large radii)'(r) is very small. 1o bottom, right columnAN=1, A\=3, andA\=3.
When| approaches, ., the contribution ofy!(r) at small

radii is negligible. Thus for a given intervat,,r,] the po-  results. For a small region around any chosen poionly a
tential is almost completely determined by the contributionssg,y partial wave termd'(r) seriously contribute in the sum
from a limited number of values (y,15) € (Ol na). Todem-  Eq (19). How many depends on the relative wave number
onstrate this, we show in Fig. 6 how the potential is built up(energy. This (limited) sum of oscillating functions may not
from the inside out by adding'(r) for increasing cutoff have converged sufficiently if only a few entries are involved
limits in the sum. From top .Ieft to bottom rlght-the first and one can expect an oscillatory result ¥{r) and possi-
2,3,...,10terms of the sum in Eq19) are taken into ac- pjy strongly so. Essentially this indicates that the chosen step

count. In the last diagrarfwith 11 terms summedthe po-  gjze (AN =1) in the tabulation, physical values though they
tential is already fully determined for the regiéd fm, 2.5  pe s too large in comparision to the defined rangeSof
fm). It can be concluded then, that the total number of termg,ements. The infinite sum fdg,.,— of numerically very

one need take in the summation of the kernel needs t0 bgmg)| terms restricted to just physidalalues may need to be
large enough to allow a reasonable coverage of the wholgcjyded to offset such spurious effects in principle. This

radial interval for which the potential is sought. leads us to consider use of inversion wih sets wherex

_ However, there is another condition that indicates posinciydes noninteger values of angular momentum, thus pro-
sible problems for low energfew partial wave sensitive \jging additional functional space in the expansion of the

integral kernel.

V. INCLUSION OF NONINTEGER VALUED
PARTIAL WAVES

Seeking increase in the quality of reproduction of the in-
put potential, we now consider the inclusion of noninteger
valued partial waves in the expansion of the integral kernel
Eq. (12) as was proposed in RdfL7]. In a first application,
the half, quarter, and eighth integer values of 8fematrix
elements at, ,,=50MeV were calculated by solving the
relevant Schrdinger equation Eql) with the Woods-Saxon
potential. The enlarged sets 8fmatrix elements were then
used in the inversion procedure. The technical parameters
chosen in those calculations were the optimum values found
previously. The resulting potentials are shown in the left

V(r)iMeV]

Radius [jm] panel of Fig. 7 by thick solid and dashed curves for the real
FIG. 6. Partial summation over the terfi(r) from 1=0 to| and imgginary parts, 'respectively. They are compared with
=1-5 (from top to bottom; left columnand from =0 to | the optimum resulfwith AN=1) found previously. From

=6—10(from top to bottom; right column The real and imaginary  top to bottom the number & matrix elements taken as input
parts are given by the solid and dashed curves, respectively. were doubled in each calculation as half, quarter, and finally
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eighth partial waves enter the sum in Eg2). In this case 1 . .
the inversion potentials all have approximately the same
quality as the optimum result we obtained from inversion
specified byS* for integer values oh. The x? values are 0.5
(from top to bottonx x2=0.03,0.04, and 0.14. For thiex
=0.5 calculationy3=6.8010°. To facilitate study of the
AN=0.25 and 0.125 cases and to avoid numerical problemEN§
arising from the calculation of the Coulomb functions at
small stepsizes both in radii and angular momentum, the 55|
stepsize of the inversion potentials was increasedAto
=0.1fm. As the accuracy of th® matrix elements depends
on that step width in integration of the ensuing Sclinger -1 ' :
equations, the2 values should not be compared to the ear- !
lier results. For theAN=0.25 and 0.125 calculations how-
ever)(é is still about 107, FIG. 8. Exact and interpolateé8 matrix elements in the Argand

For even smaller step size of the angular momentum, thdiagram forE=50 MeV. ExactS matrix values coinciding with
results should become stable in principle, but numerical ininteger values of the angular momentum variablg gre shown as
accuracies in the calculation of the wave functions at thestars, exact values calculated at half integer values are shown as
rational angular momenta values in some cases gave rise tof " and to guide the eye are connected by the dashed line. The
numerical noise. Nevertheless, the important feature in thigtérpolated values at half-integar are shown by circles and are
case is that the information available from the integer-cly connected with the full line.
matrix elements is already sufficient to determine the poten-
tial. the values of half integex without solving the Schinger

However, when a lesser number of partial waves contribequation.
ute sensibly to the scattering, inclusion of nonphysical values To do so the integer values fbr=0,1,2 . .. ,22 of theS
in the S matrix in the inversion theorem might reveal addi- matrix elements aE, ,,=50 MeV (Table ) were fit using a
tional information on the underlying interaction. As an ex- rational form for theS matrix (Bargmann schemg]) as has
ample, we consider the given scattering system at the energeen proposed in RdfL7]. This rational form was then used
of Ecm=4 MeV. This energy is about 1 MeV above the to specify theS matrix elements at half integer. Thus, a
Coulomb barrier. Only six partial waves are net 10 within  physically motivated interpolation for th® matrix has been
the required precisiofsee Table . The inversion potential ysed. The tabled integarS matrix elements were fit with a
for this Smatrix (with AN = 1) is displayed by the thick solid precision of 10° per datapoint, thereby achieving the accu-
(rea) and dashedimaginary curves in the top diagram of racy of input as deemed necessary from the studies reported
the right hand panel of Fig. 7. In comparision with the ana-in Sec. IV B. In Fig. 8, the interpolate8matrix elements are
lytic input potential, the reproduction is very pooxd  compared to the exact ones in the Argand diagram. The exact
=11.8,¥3=0.1410%). The diagram in the center of the (integer\) values are shown as stars and the exact values at
right-hand panel of Fig. 7 shows the inversion potentialhalf integer\ are given by the crosses. They are connected
found when half integer values of th® matrix were in- by dashed lines solely to guide the eye. The interpolated
cluded. In this casg\z,:O.ZB andxéz 0.3310°°. The bottom  values are represented by circles and again to guide the eye
segment displays the results of inversion on using quarteare connected by full lines. THematrix element with =0
integer values ¥2=0.23,y2=0.4910 °). The basic resultin is that at the lower left end of the curve formed by the set.
the top diagram is significantly changed and for the better by/Ve stress that the lines are neither interpolations nor do they
the inclusion of the nonphysic&" values in the inversion 9ive the exact devolution of th& matrix elements to other
process. Smaller stepsizes &k only marginally improved rational values of angular momentum. Aapproaches;y,
the quality of result we have here. the elements move closer to the point+i®.0. All but the

In the examples discussed, the ingumnatrix for all val-  first two S matrix elements of half integer are reproduced
ues of angular momenturincluding rational oneswas very well by the interpolation, although the rational form of
found by numerical evaluation of the Sctinger equation, the S matrix has only been fit to the values at integer
Eq. (1). Thereby the input data for these inversion studiesThese interpolated values together with the exact integer val-
could be calculated with high precision. When applying theues then serve as input to the inversion procedure. The re-
inversion method to experimental scattering data howevesulting inversion potential(using two Newton radiir,
only the S matrix values for physicalinteger valueglpartial = 10.0 fm andr,=10.01 fm) is shown in the top diagram of
waves can be derived. Only the evewualues can be in the Fig. 9. The relatively small deviations of the interpolated
case of identical boson scattering. Thus to improve the invalues from the exact values give rise to huge oscillations
version by inclusion of half integer values in the set, anand severe numerical problems at larger radii. The input po-
interpolation of the knowrs matrix elements needs to be tential is not reproduced; an effect reflected in fffevalues
made. As a test, we consider tBematrix elements as given xZ=62.06 andy3=8.110"2. To try to average out the nu-
in Tables | and Il for integer values=1, and try to deduce merical errors of the interpolated set 8fmatrix elements,

Re(S)
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V(r)[MeV]
V(r)[MeV]

4 6
Radius [fm] Radius [fm]

FIG. 9. Inversion potentials obtained using the interpolated set FIG. 1_1' Inversion potentials (_)btaine_d from th_e intgrpolated set
of S matrix elementgreal part: thick solid curve; imaginary part: Of, S matrix elementgreal part: ,th'Ck solid curve, imaginary part:
thick dashed curyecompared with the analytic input potentiatal th'le de_lshed_ cur\becompare_d with the an_alytlc input potentlaéal
part: thin solid curve; imaginary part: thin dashed cyrve part: thin solid curve; imaginary part: thin dashed cirve

) ) sion of 10°® per baseS matrix element. The interpolation
the least-squares method as described in Sec. IV C was Usgly|| curve) together with the values at half integer(circles
The best result was obtained for three equidistant Newtogs shown in the center diagram of Fig. 10. Although the
radii withr;=10.0 fm andAr =0.01 fm, and that is shown in  rational form again fits with high accuracy, the interpolated
the bottom diagram of Fig. 9. For this reswif=26.64,x3  values at half integex do not coincide with the exact ones
=7.610 °. While the inversion potential so found now os- we obtained from the solution of the ScHioger equation.
cillates around the input one there has been no improvemertis is evident in the diagram at the bottom of the figure
over the integer-only-values optimum result discussed irwhere the exadfcalculatedl Smatrix values are shown by
Sec. IVA. signs, and the exactalculated progression is shown by the

We now consider the lower energy case Bt,  dashed line. To find these exact values by an interpolation on
=4 MeV for which the inversion potential was actually im- the limited set ofS matrix elements one can extract from
proved by the inclusion of analyti8" of half integer\. In  “data,” i.e., the physical set at integer values)fas shown
Fig. 10 the interpolated values of tlsamatrix are compared in the top diagrammone must have more information about
to the exact ones in the Argand diagram. In the top andhe interaction. Without this additional information, a suc-
middle segments the sev&matrix elements given in Table cessful interpolation of the set of integ8matrix elements
Il are shown as stars. This would be the input data for theseems impossible. In Fig. 11 we show the inversion poten-
ISP under the choice that such are taken solely from théals calculated with the interpolated set®matrix elements
experiment. One is now faced with the problem of finding aand calculated with two different sets of Newton radii. Nei-
reasonable and proper interpolation for this set. Again weher of the two results reproduces the input potential and
used a fit with a rational form of th& matrix with a preci- neither improves upon the integer-only inversion potential.

Given that the analytic potential gave such a different calcu-
oal Fa . . - ] lated S function that result is not surprising. Only the
' % asymptotic properties of the potential are reproduced cor-
orr 1 rectly as these are mainly determined by the large angular
or % momenta, which are interpolated reasonably well by this pre-
oa b i scription.

VI. SCATTERING OF IDENTICAL PARTICLES

As an application in a physical case, i.e., using actual
data, we consider the scattering of tW&C nuclei at an en-
ergy ofE. ,,=7.998 MeV. Due to the indistinguishability of
- projectile and target, the differential cross section is symmet-
055 065 015 035 095 ric about 90° in the center of mass as only tBenatrix

RelS) elements for even partial waves contribute to the cross sec-

FIG. 10. Exact and interpolateimatrix elements in the Argand  tion. S matrix elements of odd partial waves can only be
diagram forE=50 MeV. ExactS matrix values defined at integer Obtained by an interpolation of those physical evehima-
values of the angular momentummare shown as stars, exact values trix values.

calculated at half integer values ofare shown by the %+ and are Much 12C+ '2C scattering data has been obtained by Voit
connected by the dashed line. The interpolated values are shown @and co-workerd24] and many analyses of that data have
circles and are connected with the full line. been made during the last ten yeft$,24,23. Recently, a
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FIG. 13. Inversion potentials fror matrix elements for’C

FIG. 12. The ratio to Rutherford cross section ffC+12C  +°C atE.,,=7.998 MeV. The results found using only physical
scattering aE. ,=7.998 MeV. The solid curve shows the fit found phase shifts £1=2 top panel and using a complete sep(=1
with the model potential. bottom panelare compared to the fitted input potentiisbm which

the S were definell
new ansatz within the modified NS formalism was proposed

using only the physiceb matrix elementsof the even partial  reproduce even the basic features of the input potential. Note
waves to invert this datd16]. As this ansatz is closely re- that this Al=2 potential shows the same behavior as the
lated to the matters we have discussed in this paper, Wgotential shown in Ref{16]. The inversion potential found
assess this interesting proposal by using properties of a fittegsing the more complete set 8fmatrix elementgthe Al
analytic potential, as again such provides us with the “cor-=1 casg also is a poor reproduction. However, it oscillates
rect” S* for all \. around the original potential.

The cross section data foFC+'%C scattering atE The inversionS matrix elements are compared to the in-
=7.998 MeV is shown as the ratio to Rutherford in Fig. 12put ones for the two potentials in the Argand diagram given
and therein it is compared with a fisolid curve obtained in Fig. 14. The exact values are shown by the crosses, the
with a Woods-Saxon optical model potential whose potentialnversion S matrix elements are displayed by the circles.

parameters are Both potentials reproduce the inpBimatrix elements within
the accuracy of experimental input dat@ughly 5%). As
V=-16.3 MeV, Ry=551 fm, a,=0.98 fm*, two times more information is used to construct thie=1
potential, it is clear that the reproducti¢gshown in the bot-
Wp=12.55 MeV, Rp=3.27 fm, ap=7.54 fm ', tom segment of Fig. 14s significantly better. We also note

(24 that, as in the low energy example discussed in Sec. V, the
values of theS matrix elements at noninteger angular mo-
Rcp=5.69 fm. mentum can not be calculated by a simple mathematical in-
terpolation. The full line gives the calculatéd/oods-Saxon

The fit found using this potential gives&=37.6 per data potentia) progression of theS matrix elements. The imagi-
point. Better fits might be obtainable, but we are only inter-

ested in having a defined realistic potential for our discussion
and not in an optimal explanation of the scattering data. As o7
the scattering energy is just 2.5 MeV above the Coulomb
barrier this system is comparable to the low energy analytic
example we investigated previously. ons L
From experimental data only th® matrix elements for

even partial waves can be extracted. But from the given fittecy -0
potential we can specify the values ®fmatrix elements at £ °%
all partial waves by numerical evaluation of the Schinger

equation. In a first inversion calculation we used only &he

025

matrix elements at even partial waveslE&2) as was pro- -02s |
posed in Ref[16], in a second we used the more complete
set which has\| =1. The two results of those inversions are oz 0% 05 075

compared in the top and bottom segments of Fig. 13, respec- RetS)

tively to the fitted analytic input potential. Neither reproduce  F|G. 14. S matrix elements to the inversion potentiaircles
the Woods-Saxon potential from which tif&®matrix ele-  connected by dashed linesompared to the inpu matrix elements
ments were defined. The inversion potential for which only(crosses connected by full lineis the Argand diagram. The results
the physical values have been ugttt Al =2 cas¢ does not  were found using the potentials shown in Fig. 13.
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nary part of thatS matrix changes sign four times; a feature information. The results are not reliable as a physical pre-

that to us seems impossible to find by interpolation on thescription.

seven valuesX) shown in the top diagram. Leeb et al. [17] proposed the inclusion of interpolated
Clearly here is a physically motivated case that can béoninteger partial waves in the inversion of low energg

solved only by having far more information about the func- +°C scattering. As we have shown in this paper, it may be

tional dependence of tf®@matrix than can be deduced from impossible to find a physically motivated interpolation to
the fixed energy scattering data alone. determine those nonphysic@imatrix elements and certainly

so within the required accuracy. In R¢lL7], it was noted

that small changes in the nonphysi&hatrix elements have

a major effect on the inversion potentials. We also find that
In this paper the question of whether the process of inverto be so. Therefore we conclude that the inclusion of non-

sion of fixed energy data can be improved by including nonPhysical partial waves in the inversion procedure can only

physicalS matrix elements has been discussed. improve the inversion potenyal |f the addltl_onSI matrix
First, we found an optimum solution for a given optical €/€ments can be obtained with high accuréitye decimal

model potential based upon the modified NS inversiorfiditS), such as from the direct solution of the Satiirger

method. The utilized inversion method inherently has a pol _q_uatic_)n. For l_OW energy scattering there seems to be in_suf-
at the origin which cannot be removed by increasing th icient information to date to consider the resultant inversion

technical parametef., or a good choice of the Newton potentials as reliable physical ones and for higher energy

radii. Nonetheless a stable result can be derived that reprg_cattering one needs to consider the vagaries that can arise

duces the input data with high accuracy. We have found thﬁue to the limitations of the accuracy that existing data can

the Newton radii need to be chosen very close to each otheipeCIfy for theS' matrix element_s. .
Our results, though found using the modified NS scheme

and as close to the radius of nuclear interaction as possible. . . h .
Solving an overdetermined set of equations by means of ppI_y to ther Inversion methods since the shortf:om[ngs of
least squares method improved the results but only if thé"€ inversion process discussed in this paper lie with the

input data was inexact. However, the required accuracy o9iven Set of the inpu matrix elements and not with the
the S matrix elements has been shown to be five decimaparticular method applied for the solution of the ISP at fixed

digits—a precision unlikely to be achieved even in principleenergy' . L . . .
from experimental data. We believe that priori information about the interaction

The inclusion of nonphysices matrix elementsfor non- systems need be used in conjunction with the conventional
integer\) does improve the inversion in cases where Veryglobal inverse scattering theory studies if the results are to be

few partial waves contribute to the scattering. We concludé Proper reprr_asentatlon Of_ th(_a |_n'Feract|0n_ potentials. The

thatA\ should be small compared Xg,,, to guarantee a fair question remains, where thaspnon mformat_lon can come

reproduction of the interaction potential. from and how it ShOUIq be_ 'mP'e’T‘e”t?d Ll
The results have been applied to the well studied Symmeprocedure. Further studies in this direction are needed.
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