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Density dependent hadron field theory for hypernuclei

C. M. Keil, F. Hofmann, and H. Lenske
Institut fir Theoretische Physik, Universtt&ieRen, Heinrich-Buff-Ring 16, 35392 GieRen, Germany
(Received 4 November 1999; published 12 May 2000

The density dependent relativistic hadron filDRH) theory, previously introduced and applied to isospin
nuclei, is extended to hypernuclei by including the octet hyperons. Infinite matter Dirac-Brueckner theory for
octet baryons and the derivation of in-medium DDRH baryon-meson vertices is discussed. From the properties
of Dirac-Brueckner interactions it is found that hyperon and nucleon self-energies and vertices are related by
the ratios of free space coupling constants. This leads to simple scaling laws for the in-medium hyperon and
nucleon vertices. The model is applied in relativistic DDRH mean-field calculations to singleclei. Free
spaceNA T-matrix results are used for the scalar vertex. As the only free parameter the hyperon vector vertex
scaling factor is adjusted to a selected set of hypernuclear data. Spectroscopic data of biqgenuclei over
the full mass range are well described. A reduction of Ahgpin-orbit splitting is found to be related closely
to the medium dependence of scalar and vector interactions.

PACS numbd(s): 21.80+a

I. INTRODUCTION corporating chirality[11,12 or accounting for the quark
structure of hadron,13] have been formulated and applied
Hypernuclei are unique in providing access to the dynamto hypernuclei. Extensions to still unobserved multistrange-
ics of the full meson and baryoBU3) flavor octets. Their ness systemg$|>2) have been explored and predict a gain
study is the natural extension of the isospin dynamics irof binding energy when adding a few units of strangeness to
nonstrange nuclei towards a more general theory of flavoan isospin nucleuf8,14—-14. The production of strangelets
dynamics in a baryonic environment. Obviously, from ain ultrarelativistic heavy ion collisions as a new form of had-
QCD point of view hypernuclei are deep in the nonperturba+onic matter has been postulatgly]. Using SU(3); argu-
tive low energy-momentum regime, as are isospin nucleiments nucleon-hyperon and hyperon-hyperon interactions in
Hence, a description in terms of mesons and baryons shoufee spacd18-20 and in a nuclear environmef21-23
be adequate. Singl& hypernuclei, produced i~ ,7~) or  were calculated.
(7" ,K™) reactions on a nuclear neutron are the best-studied In this paper, hypernuclei are described in the density
examples. Their properties confirm that adding a unit ofdependent relativistic hadrdDRH) theory, which was in-
strangeness to an isospin nucleus indeed produces a systémduced previously as an effective field theory for isospin
which, to a large extent, follows similar rules as isospin nu-nuclei[24,25. In DDRH theory the medium dependence of
clei [1,2]. Such observations give strong evidence that thenuclear interactions is described by meson-nucleon vertices
strangeness content of a hypernucleus is in fact stored inw&hich are functionals of the fermion field operators. Lorentz
hyperon. Moreover, hypernuclear spectroscopy indicates thiavariance, thermodynamical consistency, and covariance of
existence of shell structures compatible with independenthe field equations are retained. Taking the functional depen-
(quasiyparticle motion in a static mean field. The effective dence of the vertices on density from infinite matter Dirac-
potential, however, is found to be considerably more shallowBrueckner Hartree-FockDBHF) calculations a practically
than for nucleons. A natural explanation for the reduction inparameter free model Lagrangian is obtained once a free
depth to about 50% of the nucleon value is provided byspace nucleon-nucleoN{) interaction is chosen.
assuming that the mean-field producieg and @ meson A particular conceptual difference to other approaches is
fields are not coupled to strangeness. Under these “ideahe DDRH treatment of nonlinearities in terms of invariants
mixing” conditions the meson-hyperon coupling should of fermion field operators. Since the baryon fields are treated
evolve according to the ratio of strange to nonstrange quarkas quantum fields even in the mean-field limit a well-defined
in a baryon, i.e., a reduction of vertices by at least a factor otlass of quantum fluctuations with nonvanishing ground state
R,.,~2/3 is expected for\ and X hyperons. However, to expectation value is taken into accoy®5,2§. Dynami-
account for the experimentally observed decrease of the spirally, they contribute to the Dirac equations as rearrange-
orbit splitting in A nuclei in such a quark counting model, it ment self-energies describing the static polarization of the
iS necessary to introduce an additional quenching factomedium. In standard relativistic mean-fiel®@MF) theory
Within a valence quark model, for example, the-w spin-  nonlinearities are attributed to higher order self-interactions
orbit contribution is strongly reduced by introducing\ea-  of meson field§27]. In a mean-field approximation, mesons
tensor interaction3—6]. are treated as classical fields and fluctuations around the clas-
Modern approaches to hypernuclear structure use nonresical field configurations are neglected by definition. In bulk
ativistic and relativistic microscopic descriptions. Relativis- quantities, as for example total binding energies, the differ-
tic mean-field RMF) theories of Walecka-typle’] have been  ences of the DDRH and the RMF approach are hardly de-
applied successfully[8—10] with empirically adjusted tectable because the DDRH rearrangement self-energies are
meson-hyperon verticeS.U(3);-symmetric field theories in- cancelled exactly in extensive thermodynamical quantities
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[25]. But in single particle quantities like separation ener-are relevant for the nuclear structure problem. In practice, we
gies, wave functions, and density matrices the differencesse the DDRH Lagrangiaf25] which is extended in the
become visibld25]. DDRH coupling constants in asymmet- baryon sector by including the loweSt=—1 (A,2) and S

ric matter[28] and modifications from vacuum polarization =—2 (E) baryons. We introduce the flavor spirdr
[29] have been investigated. T
The extension of DDRH theory to strange baryons is dis- Ve=(Vy, ¥y, ¥y, ¥z)', @

cussed in Sec. Il. The theoretical formulation is kept general ) ) ]
allowing us to include the lowest $8) baryon and meson C¢omposed of the isospin multiplets
octets. For practical reasons, however, only strangeness-

neutral meson fields are taken into account at present. As the W= o
central theoretical result we derive in Sec. Il B scaling laws Ny,
for in-medium hyperon vertices given by an almost density

)1 \I,A:lr//Ay

independent renormalization of the nucleon vertices through s+

the ratios of free space coupling constants. In phenomeno- =l

logical RMF approachée$,9,30, a similar scalingansatzfor Wy=| o, Wz= ( ¢:) ' 2
the mesonA vertices is used but here it is obtained theoreti- s - -

cally. Equations of motion and the Hartree mean-field limit

are derived. In Sec. lll a reduced model appropriate fowherey; are Dirac spinors. The full Lagrangian is structured
single A nuclei is introduced. Since strangeness carryingh an isospin symmetric way. In the exchange particle sector
mean fields can be neglected for singleruclei[they are of  the isoscalar, o (=scalarss condensate w and ¢ meson,

the orderO(1/A), A being the mass numblthe mean-field the isovectorp meson, and the photop are included. This
equations are considerably simplified. In the applications théeads to the Lagrangian

o coupling is taken from a theoretichlA T matrix [18,31]

while the » coupling is determined empirically. DDRH L=Lg+ L+ Lint
mean-field results for hypernuclei are presented in Sec. IV .
and compared to data and conventional RMF calculations. CB:\IIF[iV”&M_M]\IIF

Spectroscopic data are well described, showing also a re-

duced spin-orbit splitting in\ nuclei. The paper closes with 1
a summary and conclusions in Sec. V. Lu=3 > (9,04 —midd)
i=0,04
Il. DENSITY DEPENDENT HADRON FIELD THEORY 1 1 ()2 2 7 ()2
WITH HYPERONS 3 % S P —m A 3
K=w,),p,y

A. The model Lagrangian

The derivation of a symmetry-broken physical model Liy=Vel (Ve , V) Veo— Vel (Ve , Vi)Y, Veo®
from aSU(3); Lagrangian has been exercised in the litera- 1—
ture, e.g., in Ref[32]. However, in order to describe nuclear — WL (P, We)y, Veph+ Vel , (Ve , Vp) Vo
structure phenomena for spin saturated and rotationally sym- 2 s
metric systems one finds that most of tB&J(3); structures — A — —
are actually not contributing in RMF prescription. The rea- Vel y(Ve , We)y, Vg —eVeQy, VEA¥,
son is obvious because parity conservation inhibits the ap- . )
pearance of condensed pseudoscalar fields in this caséhere Lg and Ly are the free baryonic and mesonic
Hence, neither of the 0 meson fields contributes directly to L@grangians, respectively, and the meson-baryon interactions
a hypernuclear calculation for the case of a single hyperoge contained inCiy. The diagonal matriM contains the
moving in the field of a O-core nucleus. Those contribu- free-space baryon masses, and
tions of pseudoscalar mesons am simply neglected in the () (o) (o)
calculationg(since they are fairly importanbut rather taken Fuv=0,A = A, 4
into account effectively via the modified in-medium cou- ] )
plings (see Sec. Il B From the T vector meson octet con- 1S the field strength tensor of either the vectpr mesons
densed isoscalas and isovectop meson fields will evolve. =@ #:p) or the photon(x=7). In Eg. (3) contractions of the
In a system with a large fraction of hyperons condensed octdield strength tensors are abbreviated3s- F wF*Y ete.Q
K* fields can also appear. However, an apparent shortconis the electric charge operatar, and ® meson fields are
ing of a pureSU(3); approach is the missing scalar mesonsincluded mainly for reasons of completeness. The corre-
and, hence, absence of a binding mean field. A satisfactorgponding classical, condensed fields will be important only
description of the O meson channels, e.g., in terms of dy- when treating systems with more than one unit of strange-
namical two-meson correlationgl8,31, is an unsolved ness. Already inPA—A-nuclei strange mesons should be in-
guestion. cluded to reproduce the empirical strongly attractive pairing-

Here we follow the line of relativistic mean-field theory force betweem\’s [33]. For singleA nuclei, however, they
[7] and restrict the model to the degrees of freedom whictshould be negligibld O(1/A)]. Lagrangians of a similar
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structure, but with constant meson-baryon vertices, are usefomenta k2,kE'). Dependencies on th@onserve total
successfully in relativistic mean-field calculations of hyper- B, B \2 L
center-of-mass energy=(k;+k, )= are implicit. Evaluat-

nuclei, see, e.g[8,9]. ) . . . . ) ) .
Ani in symmetric interaction i ined with verticesN9 Eq.(7) W|th_ self-cons_|stent |n-med|um_ spinors, |_nclud|ng
sospin symmetric interaction is obtained with ve tcesthe self-energie€ 8(k), introduces additional medium de-

chosen as )
pendencies.
(T)pe =T 4pdsp, @=0,0¢,0,d ~ Instructure calculations th® matricesR B’ are required
in the nuclear matter rest frame rather than in the two-body
S > - - c.m. system. In practice, the transformation is achieved by
(I'peer=Lpsdeer, I'pp=I'878 projection on the standard set of scal&),(vector (), ten-

sor (T), axial vector @), and pseudoscaldP) Lorentz in-

variants[34—-36. For our purpose, however, a more conve-
5 i , i i nient representation is obtained by forming appropriate linear

where7” are the isospin Pauli matrices. In DDRH theory the oo mpinations of the so obtained coefficients and to map the

verticesI' ,g=1",g(¥,V¥) are taken as functionals of the set (S,V,T,A,P) onto the vertices of OBE interactions, Eq.

baryon field operatorg24,25. (6). This allows us to express th8B’) G matrices, Eq(7),

in terms of renormalized OBE interactions,

for B,B'=N,A,Y .5, 5)

B. Baryon-baryon vertices from Dirac-Brueckner theory

In order to understand the subtleties of including baryon- Ra%(a',0)=2," (s.t,ulkeki )9apGas Dalt)
baryon BB) correlations in a field theory of a higher flavor . 5
content we briefly sketch the derivation of the vertides X(UP(q") kUu™3(Q))
from Dirac-Brueckner theory. The main outcome of the dis- —5 R
cussions is that nucleon and hyperon dynamics should be (uP2(= ") kU (—q)). 8

related to a good approximation by simple scaling laws. . . .
A Lagrangian of the type defined above leads to a Iadde]‘he vertex invariants have been de_corpposed f_ur_ther |nlto bo-
son propagatorB ,(t) and renormalization coefficienzS®

kernel \BB'(q’, iven in momentum representation by the > . . . L
(9".0) g b y which both are Lorentz invariants. From this representation it

superposition of one boson exchang®B otentials . : ) .
perp 9eBE) p is apparent that correlations are shifted into the vertex factors

BB/ s ; ;
Vo (4,0). The latter are Lorentz invariants, z®%' . In principle, they may depend on the full set of Man-
' - delstam variables, t, andu and the Fermi momenta of bary-
BB ’ _ B ’ B b
Voo (0'.0)= 008008 Do(D(U"HA") kU™(a)) onsB andB’. However, most of thé dependence is already
TBL oy g Bl accounted for by the meson propagaioy(t) and consider-
(uP2(=q")ku™( =), ©) ing the mild variation of DBG matrices on the center-of-
wheret=(q’—q)? is the four-momentum transfer, and, mass energy the coefficients can be expected to depend
denotes the Dirac and flavor structure of the vertex with bar&&inly on the Fermi momenta. If necessary, thelepen-
coupling constants,z andg,g for baryonsB andB’ be- dence can be remove_d to_a Iarge_ extent_ by addlr_\g a term
longing to different isospin multiplets. The Dirac spinors areProportional toD,(u), i.e., introducing antisymmetrization
indicated byu®(q). Contractions over Dirac and flavor indi- explicitly. Note _thgt antisymmetrization effects_ contrlbute
ces are indicated by the notatian- «. At this point the full 2Nl 10 states within the same isospin multiplet, i B".
spectrum of octet-mesons should be taken into account—L"€ Self-energy of baryoB, however, includes contributions
irrespective of whether they lead to condensed classicd[OM all multiplets:
fields or not—because we are dealing with the in-medium

BB’-scattering amplitudes. Working in tH8B’ center-of- (UB(K) k“uB(K)) = 5(Klke)

momentum frame andqg’ denote the relative four-momenta

in the in- and outgoing channel84{, B;) and B,, Bj), => f B,d4q[Tr((kBqB'|RBB'|kBqB/)SE'(q))
respectively, where-q=(qq,—0). B’ JKg

Solving the Bethe-Salpeter equation with the kernel Y
VBB =3 /BB +3ge(K°0° [R°% 07k ) SE (a)], 9

. . . . where the spacelike integration extends over the Fermi
R="(q,q)=V (Q',Q)Jrf dk VP2 (g, k)Qe® (k,q) spherek ' of baryonsB’ with in-medium(positive energy
- propagatorsSE () and ke= (kN kY) denotes the set of
XR="(k,q) () nucleon and hyperon Fermi momenta.

) ) _ ) BE/ A particularly appealing aspect of E(B) is that thez
leads to the in-medium interactions R coefficients can be considered as medium-dependent renor-
=(kB(q")k5 (—q")|R(KE kE)|KS(q)K§ (—q)). The Pauli- malization factors of the OBE vertices. Exploiting the fact
projected intermediate two-particle propagation, denoted byhat theSU(3); isospin multiplets are not mixed by strong
GQg(BB'), introduces an intrinsic dependence on the Ferminteractions we are allowed to assume separability
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BB’ B 1B’ _ <B/B\cB (B structure of the DB self-energi¢84,35. The leading order

z.” (k,qlkg kg )=s_(kg)s, (kg ), 10 .

o (Kalke ke )=sq(kg)s, (ke ) (10 (Hartree contribution is given by tadpole diagrams and from
and to neglect théweak residual momentum dependence. & perturbation series expansion in the bare coupling con-

As a consequence, stantsg g
9usZe® (K Gup =T oa(kDTopr (k) (1D L ST gay My
a:_Nz_ 1+0 1—M— +~'-, (16)
where 3., Yan Y
I 5(kP)=0,eS5(kP) (120 where the realistic casg,y<g,y is considered. Hence, the

RZ are expected to be state-independent, universal constants

defines the renormalized in-medium vertices in the Iadde(Nhose values are close to the ratios of the bare couplin
approximation. We introduce the antisymmetrized con- bling

! ' constants. For asymmetric matter with a hyperon fraction
densed Dirac Hartree-FoaloHF) meson fields Ly=p"IpN<1 a corresponding diagrammatic analysis shows
that asymmetry terms are in fact suppressed because the

o (K|ke ,F)=Z I',g'D,(0) asymmetry correction is of leading second order
B’ O[((gy/gn)Ly)?). Thus, even in a finite nucleus whefe
—, ) may vary over the nuclear volume, we expB§t= const to a
XJ 5 dqTr(u® (q)x,uP (q))) very good approximation.
Ke In fact, these results agree with the conclusions drawn
from the analysis of single hypernuclei in the past. In the
+2 f cdafe, gD u(k—0q) present context, Eq$15) and (16) are of particular interest
woJKe because they allow us to extend the DDRH approach in a
— theoretically meaningful way to hypernuclei using the results
SURCIZATICNE (13 available already from the previous investigations of systems
where f,, denotes the Fierz matri{35,37 and T withlout str:;'mgeness. Ir; the apdplications discusse:l bel_ow the
=(T'N,TY). With our choice of momentum independent, glo- MU¢/€ON (Hartreg scalar and vector vertex functions
bal vertices, Eq(9) takes then the approximate form FW’N(kF) of [25] will be used. The_ hyperon scaling factors
R, are treated as phenomenological constants to be deter-
SO(KIKY kP =T ,a(kP) da(KIKE kE,T). (14)  mined empirically. In the scalar channel information R
available from recent calculations of théidh group for the
This equation establishes the link to the DDRH Lagrangianfree NA T matrix [18,3]] is taken into account leaving es-
In the DHF approximation self-energies of the same structurgentially the ratioR)/RY for Y=A as the only free param-
are obtained from Eq.3). Comparing Eq(13) and Eq.(14) eter.
it is also seen that strange and pseudoscalar mesons contrib-We close this section by remarking that Ef4) actually
ute only via theu-channel exchange diagrams to the self-defines a set of quadratic equations for the verticgs, as
energies in a parity conserving and time-reversal invarianseen immediately when inserting Hd.3) into Eq.(14). Ver-
system. A distinct role, however, is played by the mean-fieldices derived in this way would be appropriate for DDRH
producing 0" and 1" mesons because they give rise to con-calculations in Dirac-Hartree Fock approximation. From the
densed classical fields in the ground state. Hence, at this—» model it is known that DHF and relativistic Hartree
stage we reduce the meson spectrum to thead 1~ sub-  calculations give almost indistinguishable results for prop-
set. This implies a redefinition of the=o,w,p,d vertex func-  erly adjusted parametefg]. In the following we take advan-
tions as indicated by Ed14). tage of that observation and, as[®5], restrict the calcula-

In order to derive a self-contained model we apparentlytions to the Hartree case only. This corresponds to
have to introduce a “renormalization” scheme. This is determining the DDRH vertices by expressing the fields
achieved by choosing symmetric hypermatter, ik®=kf  on the right-hand side of E414) in Hartree approximation.
=K. Writing down for that case Ed14) for nucleons and

hyperons explicitly one finds C. The equations of motion

S Y (K| ke) In DDRH theory the above results are embedded into a

Y Y\ “a F L . - .

Fov(ke) =T an(ke) o , (15 relativistically covariant and thermodynamically consistent
2 o (K[ke) k=kg kN=KY field theory from which the vertices are retrieved when

evaluated in mean-field approximation. As discussel®H)
which is exact in Hartree approximation. The above relatiorthe kr dependence of the DB vertices is expressed in terms
is the central result of this section. The obvious mediumof Lorentz-scalafproducts of bilinear formsp of the bary-
dependencies introduced in E¢8) and(14) by the external  onic field operatoral . This provides a unique mapping of
baryon lines are eliminated such that the intrinsic mediunthe medium dependence onto frame-independent Lorentz
properties of the underlying interactions are projected outscalar quantities. The external Dirac structure of the vertices
This is seen more clearly by considering the diagrammatiés fully determined by the Lorentz character of the meson

064309-4



DENSITY DEPENDENT HADRON FIELD THEORY F®&. .. PHYSICAL REVIEW C 61 064309

field. The intrinsic density dependence must be deduced o

. . : : ; . — I (Ve , Wp)
from microscopic calculations as discussed in the previous SNeB=gy " " P
section. As an obvious generalization of tesatzused in P ap

[25] the DDRH vertices are expressed here as .
_Mae(Par) 4 0o

M=Tue(poa( Ve, V), S, a=gos, (2D
(?paB
= H ]l H il il B:N;A,E,E, 1 ~ —_—
a=0,05,0,0,p (17 I of (Ve W) i
R SVE=Ve————— VP
where p,g denotes a Lorentz-scalar combination of the IpaB
baryon field operators. -
By definition the DB verticed' °E(kg) arec-number val- _dUuB(paB) _ 42 3
. aB . = Jg, a—w,p,¢, (22)
ued functions of the Hartree or Hartree-Fock expectation 9P uB w

value of;BBB. From a general theoretical point of view the

DDRH verticesI" 5(p,g) are not necessarily restricted to Where j% and pg are the vector current operator and the
this particular subclass of diagrams. Formally, a projectiorscalar density operator of baryon tyfe respectively. The
onto DB correlations is defined by the mappiia}] rearrangement self-energy thus is given by

- w - R - S (N =3 (), n
Coopo)= | TORAO0E—poedplE. (19 > 29
S(r)_ (r)aBp aB
In the following a straightforward extension of the vector 2 ;B S Bl (24)

density dependend@/DD) prescription of Ref[25] will be

used. This corresponds to thesatz where the sums in Eq24) are those appearing in ER0).

The usual self-energidg] are given through

pasl Ve Wel=WeBPy Ve, (19 .
2§°’=F,,o+ FO.S(TS, (25)
and ChOSIng BzB)BrBu=Ui55N53rN5BuN W|th U;BL a fOLIr-
velocity (see[25]). We thus findp,s = /j5} 5 and by means SOr=T 0t +T 4" +T p+eQAH, (26)

of Eq. (18) a Taylor series expansion of the DDRH vertex in
terms (of the modulus of only the respective baryon four- | .o thebe are those defined in Ed5). Thus, the total

vector current is obtained. Exactly that choiceBﬁ,IB is a baryon self-energies are finally obtained as
practical implementation of the results obtained in Sec. Il B.
This shows that the DDRH approach in fact corresponds to iszi(o), SH=3OuySOu, 27)
expressing many-body correlations by an expansion of ver- s
tices into baryonn-point functions chosen such that in A . _ .
ground state expectation values correlation diagrams of thE€re, thel’, are diagonal matrices containing the flavor de-
fully interacting theory are cancelled by compensating term®€ndent vertices. However, in structure the baryon field
in the DDRH expansion. equations remain unchanged

As pointed out already in Ref25] the most important
difference between DDRH and RMF theory is contributions
from rearrangement self-energies to the DDRH baryon field
equations. Rearrangement self-energies account physically
for static polarization effects in the nuclear medium, cancel-
||ng certain classes of partic|e_h0|e d|agra[[ﬁ§] Due to the A solvable model is obtained in the Hartree mean-field
additional strangeness degree of freedom the structure @PProximation which amounts to assuming that products of
these rearrangement self-energies is much more compld®rmion operators are normal ordered with respect to the

than in the purely nucleonic DDRH theory. The variational Hartree ground stat@), given by a single Slater determinant
derivative of £;,, now leads to of occupied fermion states. Expectation values with respect

to the Hartree ground state will be abbreviated <és>
=(0|0]0). In the Hartree approach the vertex functionals

[7,(i#=3#) = (M=3]We=0. (28)

D. Mean-field theory

8L L, 9Ly Op
_|nt= |nt+ E int P_aB. (20)

SWe JWp a=oig.0bp dpg SW
F F B:N,Z,E,E PaB F

With SOB=4,/4p_g one finds

I' .e(p.e) Can be treated in a particularly simple way. Ap-
plying Wick’s theorem one gef{5]

<FaB(;)aB)>:FaB(paB)i paBE</;aB>1 (29)
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which brings the originally highly nonlinear field equations quark(due to OZI suppressignthey will have no significant
into a tractable form. Correspondingly the rearrangemeneéffect in singleA hypernuclei and can thus be safely ne-

contributions are obtained as glected.
According to Sec. Il B the density dependent vertices for
< <9FaB(PaB)> T up(pap) 0 the A—N model are given by
0paB ‘9PaB FO’A: Ro" FUN(;)A)Y

In the approximation as static classical fields the meson field

equations reduce to Fua=Ry Ton(pa),

PA=PoA=Pur= \/J',/}J'A”' (35

whereR,; , from now on denoteRﬁyw. The values foR,, ,,
will be determined in Sec. Il C. The parametrizations of the

nucleon-meson verticeEiN(;)N) are taken from[38]. Nu-
(—V2+m2)dr= Fag(pq,aB)jB“, a=w,q, merically a fit with a second order polynomial ki to the

(=VHmM)O,= > Toslpeplps, a=0.0s,
(31

B=N,A3,E vertices derived in[39] from nuclear matter DBHF seli-
32 energies is used.
(—V2+ mi)/‘;#: pr(ppB)j_)BM' (33) B. A rearrangement dynamics
B=N,A 3B

The considerations of Sec. Il A define the dynamics of

the A-nucleon system, i.e., the usual and the rearrangement

'I_'he Dirac equation for the bary(_)ns remains the _only _equaéelf-energies can now be specified. Going to the nuclear rest
tion of motion for an operator field, with dynamics given

now by static but density-dependent self-energies frame, the arguments of the vertex functionalg; , are now
defined as in Eq(19) with

[y (id“=3H(p)—(M-39¥MF=0. (39

In finite nuclei, wherep=p(r), 2(p)=2(r) depends on the

e uNsNE 0
Bo=B°=Bu"=| " (36)
spatial coordinates.

0 uls'®

and GM=(1,0,O,O). This leads to the rearrangement self-

Ill. THE A—N MODEL energy
In order to test the scaling relation derived in Sec. Il on R _[ar or .
existing hypernuclear data a model with hyperons and Eg): > V=T 2y, wFsﬁ, (37)
nucleons interacting only by nonstrange mesons will be dis- B=N.A IpsB IpuB

cussed. Naive quark counting suggests that evemfer\ . o
interactions the strange mesons only contribute about 10% dfhere the nucleon and parts are given explicitly by
the interaction strength. Since empirical results strongly con-
tradict this estimat¢33] and experimental data are deficient
for determining, e.g.l’ 4,5 andl"l,SB in a satisfactory way we
will restrict ourselves to singlé- nuclei. Keeping in mind
the large uncertainties in the hyperon-nucleon and hyperorandB=N, A vertices depend intrinsically only on their own
hyperon interactions the exchange of strange mesons can Bensities, as derived in Sec. Il B.

safely absorbed in thd —o and theA—w vertices in this
case. We will use the extended VDD prescription introduced
in Sec. IIC with a density-independeM—p coupling,

which leads to rather satisfactory results for isospin nuclei A consistent extension of the DDRH theory to strangeness
[25]. requires using vertex functionals from DB self-energies cal-

culated in the complete octet sector. However, since such a

full scale calculation is neither available nor feasible under

the present conditions, we choose a semiempirical approach
Due to the simple interaction structure &fhyperons— combining existing theoretical information on the-o ver-

the A’s are isoscalar and electrically neutral and thus coupléex with a phenomenological description of the vertex

neither to thep meson nor to the Coulomb field—the inves- scaling factor.

tigation of theA—nucleon interaction becomes rather trans- Actually, an extension of the Bonn potential to the free

parent in this model. Assuming that the and the¢ meson  N— A system already exis{48,31], but DB calculations are

are puress-states and therefore mainly couple to the stranggending. We use the extended BoArpotential as a guide-

aToa(pg) ~5 T u(pf)
~ Ops— ~“B v

(NB_
30P= S
Ipg Ipo

o

wva]uB (38)

C. The vertex scaling factors

A. A-meson interaction
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0.78 y T y y v T v | ments at Brookhaven in 19845] from which AE=(0.36
2107 4 +0.3) MeV was deduced. In the? procedure this constraint
K—\ only excludes extreme values Bf, andR,, that are already

ruled out by the systematics of hyperon binding ener(ges

; also Sec. IV ¢ anyway. Despite the large uncertainties the
o data seem to favor a small spin-orbit splitting. Very recent
L 045 | i measurements at AGS/E9496]| apparently confirm this
> conclusion.
1.5x10° . . . .
- In order to remain as close as possible to the microscopic
z 150107 DDRH picture we use
0.30 |- lj& / density .
2x10% 50 dependent R :0490, 39
-ém:\\\\\ ///’ RMF o (39
»” 1x10°
onfm§> L — — L . s which was extracted by Haidenbauetral.[31] for a sharpo
) ’ ‘ ’ ’ meson of massn,=550 MeV. Because ih18,31] the sca-
R )
@ lar meson channels were described by the correlated ex-

FIG. 1. x2 distribution for the deviation of DDRHA single ~ change of pion and kaon pairs the scalar coupling also in-

particle energies and hypernuclear débtained in ¢r,K) reac- ~ cludes admixtures of @s~ss field as relevant for the\
tions [40—44). In the calculations, the scalar and vector vertex Couplings. Since theoretical values for thevertex are not

factors R, ,R,) were varied freely. availableR, is treated as a phenomenological parameter.
From Fig. 1 and the above value Bf, one finds immedi-

line to determine the relative couplings, andR,,. Thisis  ately
consistent with the approach used in the isospin sector be-
cause the nucleonic DDRH parameters also were derived R,=0.553. (40)
from the BonnA potential[25]. Because the DB interactions
include highly nonlinear and nonperturbative correlation ef-|n 3 constant coupling RMF model by M al.[30] for the
fects the quark model reduction fact®;=2/3 is not ex-  same value oR, a relativew couplingR,=0.512 was ob-
pected to be adequate for hypernuclear structure studies. tained. Considering the quite different DDRH interaction

Clearly, the final decision on the permissiblR,(R,)  structure the deviation is only apparent and, in fact, a sur-
pairs is obtained from a comparison to data. In Fig. 1he prisingly good agreement can be stated. Moreover, our rela-
deviations of calculated and measuredingle particle spec-  tive couplings are also consistent with bounds on hyperon-
tra are shown. Varying freely thie, andR,, scaling factors, nucleon couplings extracted from neutron star mof&7].
DDRH single particle energies fof’®Pb, 8, 3, 1°Ca, Very likely, most of the deviations oR, andR,, to the
28sj, 1°0, 12C, and 3Be were compared to data deduced quark model value of 2/3 are caused by the highly nonlinear
from (m,K) [40-44 experiments. With precise measure- contributions from the dynamically generatedand o5 ex-
ments resolving spin-orbit doublets to high accuracy such ahange channel ifiL8,31]. These genuine many-body effects
procedure would, in fact, allow us to fix both the scalar andsuperimpose additional contributions from the explicit
vector scaling factors unambiguously because the centroi8U(3); symmetry breaking and—¢ octet-singlet mixing
and splitting energies are determined by the difference andn the fundamental strong interaction level. Obviously, all
sum of the scalar and vector mean-field components, respethiese effects cooperate in the same direction, namely to pro-
tively. duce deviations from the limiting values predicted by exact

Unfortunately, under the present experimental condition$SU(3) symmetry. Apparently, the attempt to represent the
doublets are not resolved energetically. Typically, spin-orbitrather involved dynamics of the scalar channel by a single
splittings are deduced rather indirectly, e.g., by a line shapeneson of sharp mass implies an effective vector field of
analysis[45] which only allows us to set constraints on the compensating repulsive strength. As a consequence, neither
energy splitting of spin-orbit partners. The consequences aff them can be expected to resemble the properties of the
these experimental uncertainties for a theoretical analysis arespective bare physical meson.
clearly seen in Fig. 1: Thg? distribution is characterized by In SU(3)-symmetric models explicit symmetry breaking
a sharp deep valley, which is already known from Refs.must be introduced in order to reproduce hypernuclear spec-
[8,16]. The valley extends betweeR{,R,)=(0.1,0.1) and tra, e.g., by a symmetry breaking term in the Lagrangian of
(R,,R,)=(0.8,0.9) and anyR,,R,) pair in this region inthe generalized chir®U(3) o-model[12] or by means of
would describe the data almost equally well. The quarkvertex scaling factors as in the quark-meson-coupling
model value paiR,=R,=R, (Rq=§) is seen to be located (QMC) model [6]. Because of the close similarity of the
at the ridge of the valley. These results clearly illustrate th€QMC and our approach it is instructive to compare to the
necessity of high resolution measurements which may beresults of Ref[6]: ForR,=R,, R, has to be rescaled by a
come possible in the near future with a new generation ofactor of 0.93, whileR, =R, requires us to multiphR,, by
detection systems. 1.10. As can be extracted easily from Fig. 1, Ry=R, we

The best known case is probably thepgh 1py) split-  would getR,=R,*0.97, and,vice versafor R,=R, we
ting in °C. A single data point is available from measure-find R,=R,x1.15. A specialty of the QMC is a tensor-
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TABLE I. Model parameters of the density dependent 15.0
A—nucleon model.
i=N i=A 14.5 .
%i(p=0)
my 939.0 MeV SatP”T 26.027 6.249 140
41 N, :
2i(p=po) =
my,  1115.0 MeV Yo (P=Po) 6.781 1.628
417 13.5 -
2 —
m,  550.0 MeV %iP=0 40240 12287
4 13.0 -
2 —
m, 782.6 MeV %ir(P=P0) 9.899 3.022 0.025
4ar
2 p—
m,  770.0 MeV i 1208 0000 < 0020 T
417 é
0.015 -
coupling term arising from the quark-structure of the baryons &
which keeps theA spin-orbit splitting extremely small al- & 0.010 =
though theSU(3) couplings are rather large. é
S 0.005 -
IV. RELATIVISTIC HARTREE DESCRIPTION >
OF SINGLE A HYPERNUCLEI < 0.000
Relativistic DDRH Hartree theory and applications to 0 2 4 6 8

isospin nuclei were discussed in great detail in [R2%] and radius [fm]

the references therein. Here, we present DDRH results only 5 1he radial variation of the DDRH-meson vertices
for single A hypernuclei. The numeric_;al realization fpllows T, . (upper graphand of the vector densitieower graph for
closely Ref.[25], namely th,e meson fleld§ are descr'be_d bylsi,2 A states in light and heavy nuclei. Results for the single
Egs. (31)—(33) and baryonic wave functions are obtained hypernuclei 2%%Pb (solid line), 10 (short-dashed ling and Be
from Eqg. (34). The nucleon-meson coupling functionals are (jong-dashed lingare displayed.

those of[39]. The model parameters are compiled in Table I.

number. Under such conditions the LDA is likely to be a
rather reliable approach. For light nuclei or, as in single
Numerically, DDRH calculations rely on baryon-meson nuclei, small fractions of a specific baryon species with re-
vertices taken from infinite matter DB interactions which arespect to the bulk components effects from the finite size and
applied to finite nuclei in local density approximation finite particle number could limit the applicability.
(LDA). The success of DDRH theory in describing isospin  The variation in the effective coupling strengths over the
nuclei is closely related to the saturation properties ofmass table is illustrated in the upper graph of Fig. 2 for the
nuclear densities from which it is clear that infinite mattersingle A hypernuclei$Be, 1°0, and {°®Pb. The lower graph
conditions are approached gradually with increasing massf Fig. 2 displays the vector densities fas,LA states. In the

A. Density dependentA vertices in finite nuclei

TABLE Il. Comparison of the\ and neutron central and central rearrangement potential depths for single
A hypernuclei.

2% oy
A N A N
Central —31.7 MeV —81.5 MeV —31.8 MeV —85.3 MeV
Central rearrangement 1.4 MeV 9.3 MeV 2.0 MeV 8.6 MeV
3 —30.3 MeV —72.2 MeV —29.8 MeV —76.7 MeV
1ca Yo
A N A N
Central —31.6 MeV —90.6 MeV —28.9 MeV —86.5 MeV
Central rearrangement 2.3 MeV 10.1 MeV 2.5 MeV 8.6 MeV
2 —29.3 MeV —80.5 MeV —26.4 MeV —77.9 MeV
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10 — — TABLE Ill. The rms radii of the first orbital momentum states
0 - — - neutron central potential for A’s, neutrons, and protons iffCa and3*%Pb.
-10 - A central potential 1 XOCa f\OSPb
5 20r ] A n p A n p
§ -30 / -
= w0 [ / h 1sy, 28fm 23fm 24fm 41fm 38fm 3.9fm
@ - F 208 / 4 1pz, 35fm 3.0fm 3.0fm 48fm 45fm 4.6fm
s APb / ; 1p,, 36fm 30fm 30fm 47fm 44fm 45fm
© -60 - . / 7 1dg, 47fm 35fm 3.6fm 53fm 50fm 5.1fm
M e e — = - - - 1dy, 6.3fm 3.6fm 3.7fm 52fm 49fm 5.0fm
-80 [ 1 1 1 1 1 ]
0 2 4 6 8 10 12
radius [fm] the difference andthe gradient ofthe sum of the relativistic
scalar and vector mean fields for the central and the spin-
10 T I . : :
5 orbit potentials, respectivelj25].
or ] It is obvious that the scalar and vector fields scale accord-
-10 |- § ing to the A-meson coupling. Similar to other approaches
= 20 g and in agreement with empirical analyses the Sdimger-
2 30F 2 type DDRH A-nucleus potential is reduced by a factor of
E - 1 0.35 to 0.4 compared to the nucleon potential. Results are
B 0= ] displayed in Table Il and Fig. 3. Since binding energies are
E S0 ] reduced accordingly already the wave functions of the deep-
S 60 y; — — —neutron central potential est boundA states are spre_a_ld_ over a large part of the nuc_lear
0F 7 A cenfralpotential 4 volume resulting in a sensitivity to the complete surrounding
30 E= I ] 1 A density structure. Table 1ll, showing the rms radii/of neu-
0 2 4 6 8 tron, and proton states in the hypernucféCa and 3°%Pb,

illustrates this effect. In Fig. 4 the conventional central and
_ the rearrangement central potentials for light to heavy nu-

FIG. 3. Comparison of the Schiimger-equivalent\ and neu-  clej are displayed. It is clearly seen that the rearrangement
tron central potentials including rearrangement. Results3fé®Pb polarization effects are most important in the surface domi-
and °0 are shown in the upper and lower part of the figure, respecnated light nuclei. Still, the rearrangement self-energies play
tiyely. The A and neutron potentials are of a similar shape bUtOI’“y a minor role for singleA hypernuclei since they are
different depth. weighted by the\ vector densitysee Eqs(21), (22)] which

is obviously fairly small. The more important effect of the

light nuclei the coupling decreases rapidly towards thedensity dependent treatment arises in hypernuclei through
nuclear center while in lead the DDRH vertices are almosthe nuclear core creating th€s mean-field potentials. The
constant. The behavior follows closely the density distribu-density dependence of the nucleon vertices modifies the core
tions of the B A states. Their radial extensions are deter-
mined by the size of the mean field produced by the nuclear  5p———v—— T
core. Of particular interest is the variation of the vertex func- g ot
tionals with nuclear mass. Apparently, the global density de- _ joF
pendence of the infinite matter DB couplings transforms in % 15|
finite nuclei effectively into a pronounced mass number de- £ )
pendence of the DDRH vertices. From these results it is clears’ -
that a complete test of the medium dependence is only ob-

=
)
x
E=}
<=

radius [fm]

central potential
= = = rearrangement
potential

tained in calculations over a wide mass range. Light hyper- <
nuclei will be most appropriate to study those vertex parts £ st
depending explicitly on the density while heavy nuclei < -
mainly provide information on hyperon interactions at a

saturated density. This also points to possible limitations of

the present model: the use of LDA vertices may lead to un- : L, ———— L
certainties in light nuclei where a particular sensitivity on the B T2 4 6 8 1000 2 4 6 8 10 1
transition to free space conditions appears.

radius [fm] radius [fm]

FIG. 4. Mean-field potentials for single hypernuclei. The low-
est order Schdinger-equivalent conventional potentiablid line)

An appropriate way to understand hypernuclear dynamicand rearrangement potenti@ashed ling are shown. It is clearly
and to compare to other calculations is to consider th&een that the polarization effects described effectively by the rear-
Schralinger-equivalent potentials given in lowest order byrangement potential are most important for light nuclei.

B. Structure of the A mean-field
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L SR T - 1
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= Jl — 14 7
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i ’ ’
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% -16 | - _'/,/’ PR J/ s 10F y
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. . . . 2 [ " 1 2 1 2 L i
FIG. 5. DDRHA single particle spectra in light to heavy hyper- oo s 100 150 200 250
nuclei. A

] S FIG. 7. Dependence of the spin-orbit splitting fopsl 12,
density distribution over the whole nuclear volurfiz5], 1ds2.32 172,502 19gi2.772 and gy 90 A States on nuclear mass.
thereby directly affecting thé mean field. Since the poten- The only available data poiig5] for the 1p3 1> doublet in 33C
tial Shape and Strength is reflected in single particle energie&nd an upper limit for the p—S/Z,l/ZdOUblet in}\ao [48] is also shown
and wave functions A acts as an external probe providing a (see Sec. Ill ¢.
global measure of the core properties.

(2) The spin-orbit splitting of the\ states is reduced fur-

C. Single particle states ther to less than is expected from the overall quenching of
. . . the potential strength.
Hyperon single particle spectra fg5=1 hypernuclei The reason for the smaller spin-orbit splitting is under-

can be seen as a very clean fingerprint of this nucleus, sinCgood by considering the evolution with increasing mass
as discussed in the last section, they are almost undisturbggmper. In Fig. 7 the spin-orbit splitting of states for sev-
by many-body effects. Besides the bulk structure, which conga| nyclei across the whole mass range is shown. It can be
tains information on the mean field, i.e., the nucleonic denseen clearly that the splitting drops as expected for higher
sity distribution, the spectra yield information also on othermasses since it has to go to zero in the nuclear matter limit.
correlations of the baryonic interaction, carried by the finere splitting also drops in the low mass region, since the
structure. _ . _ spin-orbit doublets approach the continuum threshold and get
A and neutron single particle levels for light to heavy compressed before one of them or both become unbound.

nuclei are compared in Figs. 5 and 6. Two major differencesrnis is a remarkable similarity to the situation found in
between the nucleonic and tilespectrum are detected: weakly bound neutron-rich exotic nuclgtd].

(1) A and neutron s_ingle particle spectra are oyerall re- For exactly this reason the data point of tfi€ 1p shell
lated by a constant shift and an additional quenching factogiting is, though the absolute error is not that large, only of
because the\ central potential has a depth of only about e yse 1o further constrain the relative couplify, (see
—30 MeV, compared to-70 MeV for the neutrongsee also g i1 0. Because the low mass hypernuclei are systemati-
Fig. 3 and Table Il cally underbound with our standard choice Ry, the spin-

orbit splittings for *C and }°0 are determined with a read-

-10 justedR,=0.542! Since the spin-orbit splitting data come
> — — e from a different measurement than the separation energies of
= 20 ,,;/,”_' ya j— Fig. 8, to whichR, was adjusted, a somewhat larger devia-
& /;:/ : ”,':/ tion is found. Attempts to reproduce th}éC A-1p shell
g F g = — splitting resulted in unrealistically small values Bf, and
2 " — Ro _ : : oo
'{:.; 40F :,:',’ —‘ The. explanation of the spm—orblt quenchlng is aqtually
s 1d =—=" s found in the overlap of thé single particle wave functions
® gl P and the spin-orbit potential. As seen from binding energies
“ | o m— . ; and confirmed by the rms radii df states shown in Table I1I
£ b 18— and Fig. 9 they are much less localized than nucleonic states
E B ) R ¢ “Ca *0

Iwith this slightly modifiedR,=0.542 the spectra of the low
FIG. 6. DDRH neutron single particle spectra in light to heavy mass hypernuclei are actually nicely described; See Sec. IV D and
hypernuclei. Fig. 8.
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35 T T T T T 2.8 T T T T
208 experimental data: theoretical predictions: 1 L J
S % —=— R, = 0553 24 7\ -
= A2 -0- R,=0542 ] - 16 1
< 5t . 20} O .
& s A ]
gnp Ler )
% 15 12 4
§ ol = 0s k- -- neutron ]
2l . S 04 N A ]
< I [ - 1

of - 2 00
Y s . ~ 08—ttt
= - E
0.00 0.05 0.10 0.15 0.20 0.25 \/3 07 F n
AR > L E
o 0.6 b
FIG. 8. Comparison of DDRH and experimental single particle i;’ 0.5 [ ]
energies. The lines are drawn to guide the eye. ResultRfor  «_ 04 [ h
=0.542 are indicated by a dashed line. In order to remove finite “t ]
size and, especially, surface effects, the energies are shown as 0.3 R ]
function of A~%3, For A—x they converge asymptotically to the 02 F ]
binding energy of a singlé\ in infinite matter,E,=—28 MeV. o1l ]
The data originate froMX(7,K)4X reactiong40—44. I .
0.0

0.1 [ N 1 A 1 N 1 A 1 N i

in the same nucleusee also Fig. 10 The spin-orbit poten-
tial,on the other hand, has its strongest contribution always in
a peak structure at the nuclear surface, as seen in Fig. 9
Hence, the overlap of the delocalizddwave functions and

r [fm]

FIG. 10. The integrand of the spin-orbit energy, i.e., the product
of the two functions presented in Fig. 9, is shown in this plot for the

40 ] neutron and the\ 1p states in°0 and 3°%Pb, respectively. It is
3.5 T seen that the reduction of the spin-orbit energy due to the delocal-
3.0 ] ization of theA is of special relevance for lower mass nuclei.
25 .
> 20 n the rather sharply localized spin-orbit potential is consider-
g L5 ] ably less than for the stronger bound nucleonic wave func-
&= 1 tions; Fig. 9 illustrates this. As a result, a much smaller over-
L0 ] lap integral and a reduced spin-orbit interaction energy are
05 - obtained forA states. As seen from Fig. 7 the calculated
0.0 ] spin-orbit splitting is still larger than experimental results
05 [— — 1 require. This supports an additional mechanism of reduction.
2.0 Presumably, this is related to the quark structure of Ahe
indicating for example a tensor coupling to tlae meson
s [4—6]. The effect of theA spin-orbit potential is largest in
’ the low angular momentum doublets of small hypernuclei.
10 Therefore the ideal nuclei to observe spin-orbit potential ef-
> fects experimentally are those that are heavy enough to bind
> 05 the 1p doublet just without a too large “close-to-threshold
’ squeezing.” This can be seen from Fig. 7 to be the region
0.0 around calcium.
05 , , , , D. Systematics of singleA states
0 2 4 6 8 10 In Fig. 8 the DDRH single particle spectra are compared
r [fm] to spectroscopic data fromr(",K*) reactions. States in in-

FIG. 9. This figure shows a comparison between the overlap ofermediate to high mass nuclei are described fairly well by

the A 1p, density d{3)(r)=r?¥ , ¥ /¢ with its (lowest order the model, while for masses below abd{i8i deviations to
Schradinger equivalentspin-orbit potentiaV/) and the respective the experimental data of up to 2.5 MeV arise. As discussed
potential for the neutron in the hypernucleff®. TheA spin-orbit  in Sec. IV A, in this mass region the limits of using LDA
interaction is, in addition to the smaller spin-orbit potential, reducedvertices may be approached. We seem to overestimate sys-

due to its delocalization compared to the neutron. tematically the strength of the repulsive vector interaction in
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TABLE IV. Transition energies for, ) reactions on a nucle§0,51]. These states includg particle-
n hole excitations of the singl& hypernuclei. The experimental valuesxpt) are compared to DDRH and
a phenomenological RMF modEgs] (phen. RMB with nonlinearo self-interactions.

Expt. DDRH Phen. RMF

n valence shell state [MeV] [MeV] [MeV]

c 1pap (181A,1papn ™Y 6.72+2 6.69 5.02
(1papA,1pgpon ™Y 18.48+2 15.11 17.21

e 1py, (1s1A,1p1n~ Y 3.35+2 5.76 3.53
(1s15A,1pgn 1Y) 9.90+2 10.13 9.46

(1pypA 1pgn~Y) 13.20+2 16.16 13.89

(1papA 1pssn Y 19.20+2 18.40 18.88

2ca 1dg), (1pypA,1dgpn~h) 5.79+2 8.84 7.40
(1dgpA,1dgn~ 1) 14.47€2 11.34 15.48

(1dspA , 1dgn ™ 1) 19.35¢2 20.07 20.71

low mass singleA hypernuclei. This tendency already be- ing the full set of SU(3); octet baryons. Interactions were
comes apparent in going fronttV to 3%Si. In Fig. 8 results described by a model Lagrangian including strangeness-
of a calculation are included in which the vector scaling fac- — =

tor was slightly decreased by about 290Rg=0.542. Figure . . .
1 shows tr?at t};ﬂs value is al)s/o located ithhe valley o?)tﬁe quark character. The medium dependence of interactions was

distribution. TheA separation energies in the light mass nu_described by.meson-baryon vertice§ chosen as functional; of
clei are well reproduced but the agreement in the high mas&'® baryon field operators. Following DDRH theory their
region would deteriorate. The result indicates the sensitivitystructure is determined such that interaction diagrams con-
of the DDRH calculations on fine details of the interplay of tributing nonperturbatively to the ground-state energies and
scalar attraction and vector repulsion. Clearly, under thavave functions are cancelled. Here, the DDRH vertices were
present conditions a 2% variation is well within the uncer-chosen to cancel Dirac-Brueckner ground-state correlations.
tainties of the model and, moreover, may be taken to indicatejence, the approach corresponds to a resummation of ladder
a typical boundary for the validity of LDA in light mass diagrams into the vertices under the constraint that infinite
nuclei. _ _ _ _ matter ground-state self-energies and total binding energies
For the heavier nuclei the microscopic DDRH results are, o yonroquced. As the central theoretical result it was found
of a quality which is at least comparable to the phenomeno;

logical descriptions. This we consider as a remarkable suct-hat the structure of Dirac-Brueckner interactions strongly

cess for a model which essentially contains only a single freénd'(_:ates that the ratio of pucleon and hyperon meedlum
parameter, namely the overall vector vertex scaling factoVertices should be determined already by the ratio of the
R . corresponding free space coupling constants being affected
Finally, we will look at (K~,7) data measured at the only weakly t_)y the background medium. Apparently, the
end of the 1970's at CERIE0,51). This data set was not presently available hypernuclear data are, at least, not con-
included in the determination 6%, because of its relatively tradicting such a scaling law. _
large error bars. Table IV shows these data together with the Pynamical scaling will have several important conse-
DDRH predictions and phenomenological RN#] calcula- ~ dUences for hypemuclear investigations. First of all, it might
tions. These data contain besidesingle particle states also P& considered to give a sound theoretical support to the gen-
information on the energies df-particle neutron-hole states. €ral conviction that hypernuclei are suitable to gain informa-
These were calculated approximately within the Hartredon On octet dynamics. A conclusion of equal importance is
scheme by keeping a neutron hole at the specified place du}ljat hypernuqlel should follow gssentlally the same rules' as
ing the iteration. A more realistic calculation would require 'SOSPIn nuclei except for a shift of energy scales. A point
us to perform a complete RPA calculation which is, how-Worth investigating in more deteyl in the future is whether
ever, at present neither feasible nor worthwhile. A furtherlYPernuclear scaling might provide a way to study the dy-
complication in modeling these nuclei is the relatively smali@mical evolution oSU(3) flavor symmetry in a medium.
mass numbers, as discussed already above. Taking into ac- [N Order to test dynamical scaling, RMF calculations for
count the fairly low energy resolution of the data and keepSingle A hypernuclei were performed. Using the previously
ing in mind the previously discussed subtleties the ) derived meson-nucleon verticg25] and fixing thec A ver-

data are also described satisfactorily well on a level compal®* by a theoretical value from the literatus,31 the
rable to phenomenological RMF models. mesonA vertex scaling factor was determined by a least

squares fit procedure, thus determining the only free param-
eter of the model empirically from a selected set of data.
Calculations over the full range of known singlenuclei led

The DDRH theory introduced previously for neutron andto a very satisfactory description ¢f separation energies.
proton isospin nuclei was extended to hypernuclei by includ-The deviations from the overall agreement for masses below

neutral scalar and vector meson fieldgjof(q=u,d) andss

V. SUMMARY AND CONCLUSION
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A=~16 are probably related to the enhancement of surfac&he present formulation and applications are first steps on
effects in light nuclei. Very likely, they indicate the limita- the way to a more general theory of in-medi@t(3); fla-
tions of static RMF calculations with DB vertices obtained invor dynamics. Future progress on dynamical scaling and
the local density approximation. The minor adjustment ofother theoretical aspects of the approach will depend on the
parameters, necessary to achieve agreement also for the ligitailability of Dirac-Brueckner calculations for the full
mass systems, indicates the sensitivity of these surfacdsaryon octet including also the complete pseudoscalar 0
dominated nuclei on dynamical details. In a recent nonrelaand vector I meson multiplets.
tivistic calculation indeed sizable contributions of hyperon
polarization self-energies especially in light nudlg2] were
found.

The results are encouraging and we conclude that DDRH We thank Carsten Greiner for many useful discussions
theory, extended to the strangeness sector, is in fact an apnd for pointing out open problems on the way to the final
propriate basis for a microscopic treatment of hypernucleiversion of the model by closely scrutinizing it.
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