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The interaction between bi-fermionic and bosonic degrees of freedom is described by using an effective
Hamiltonian inspired in QCD. The Dyson boson mapping technique is utilized in conjunction with a coherent
state basis to construct energy landscapes in a multiparametric space. The appearance of fermionic and bosonic
condensates is studied by minimizing the potential energy surface. The relationship between the domains of
fermion and boson condensates and the order parameters of the model is discussed.

PACS numbds): 21.60.Fw, 11.30-j, 24.85+p

[. INTRODUCTION where bi-fermion and boson operators are coupled is the one
. . . advanced by Schte and Da Providencig/], which consists
The use of bi-fermion operators in the context of theyt 5 mean field approximation followed by a variation which
nuclear many-body problem has been advanced by G&yer getermines the fermionic or bosonic nature of the condensate
and Geyert al. [2,3] and by other authorgt—6]. A model  via an order parameter. In the model of Stthuand Da
which includes the coupling between bi-fermions andProvidencia[7], the order parameter is proportional to the
bosons, and which closely resembles low energy QCD, wagacuum expectation value of the bi-fermion or boson fields.
introduced by Schite and Da Providencifi7]. The same These steps can also be followed when a more general bi-
model was applied to describe the coupling between effecfermion-boson interaction is used, as the one of IRE8].
tive degrees of freedom by other auth{@. The inclusion ~ The use of a generalized definition of coherent stfi6sas
of bi-fermion degrees of freedom in nonperturbative treat-2 100! to identify fermion and boson condensates has been

: advanced if20] and in[21]. In this work we shall discuss
mggtj ?;r%??e?n?'so r?:iglsngggrt:gid[eggtﬁ T:tids‘r?l:]: tgtgfngf d et_he use of coherent states in the framework of a QCD-
: : investig In Sy inspired Hamiltonia) 18,20-22.

scribing high temperature superconductii0], i.e., in @ " \ye shall introduce bi-fermion operators which represent
completely different context. Concerning nonperturbatlvequark_quark and quark-antiquark pajisr particle-particle
approaches to QCD, the recent literature provides definitgpp), hole-hole(hh), and particle-holéph) pairs in the stan-
examples about the use of diquafid] as the relevant de- dard language of the nonrelativistic quantum many-body
grees of freedom as well as the use of pairs of particle and/aheory] and bosondi.e., gluons or scalar and vector boson
hole excitations associated to generalized pions in densfelds) [22]. We shall then map the operators by using Dys-
QCD [12]. The role of diquarks and quarks in a model with on’s expansion methofR3]. The expectation value of the
confinement was studied ifi3] while the weak-coupling transformed Hamiltonian will be calculated in a basis of co-
limit in color superconductivity, by using pairs of quarks herent states. We have chosen a basis of coherent states be-
which are breaking the color symmetry, was reported#].  cause it is particularly suitable for the calculation of matrix
The gluon sector of QCD, treated by using boson mapping@lements of the transformed Hamiltonian. These matrix ele-
techniques, was studied ji5]. Finally, and concerning the ments are expressed as functionals of order parameters,
use of boson expansion techniques in conventional fielgvhich are given in terms of vacuum expectation values of
theory, the reader is kindly referred to the work[&B]. bi-fermion and boson operators, as dong24].

The finding of fermion and boson condensates, for the The identification of bi-fermion and boson condensates is
case of an effective Hamiltonian which contains pairs of fer-done by performing variations in a multiple-parametric space
mions interacting with an external boson, was reported byvhere the quantities to be determined are the vacuum expec-
Schite and Da Providencig7]. The Becchi, Rouet, Stora, tation values of the bi-fermion and boson operators expanded
and Tyutin(BRST) treatment of the same Hamiltonian can in the basis of coherent states. As a test of consistency of the
be found in[17]. The group structure of a purely bi-fermion approximation, we have worked out a limiting case of our
Hamiltonian was investigated in a series of papers by Geyeramiltonian which reproduces the result of the work of
et al.[2]. The extension of this Hamiltonian to a generalizedSchiite and Da Providencif7].
bi-fermion ® boson space has been proposed recdiy. Since the exact results of the model of R&f. are known,

The most simple way of looking at condensates in systemge shall compare them with the results of the boson expan-
sion. This is done in order to illustrate the meaning of the
effective degrees of freedom based on bi-fermions and its

*Electronic address: civitare@venus.fisica.unlp.edu.ar potential use in models where the exact solution is unknown,
TElectronic address: hess@theo.physik.uni-giessen.de as is the case of the QCD inspired Hamiltoni§28—22. In
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coherent states will provide us with a nonperturbative deplings allowed by the model. Details on the notation are
scription of the Hamiltonian. The scope of this treatmentgiven in[1,18].1 In this model, fermions and bosons are in-
will, as a matter of fact, be assessed by the above-mentionatependent degrees of freedom while bi-fermion creation and
comparison with the S@) limit of [7] and with the com- annihilation operators are coupled to bosons in such a man-
parison between variational and exact results, for some paner that the total number of fermions is conserved. The
ticular cases where the diagonalization of the full Hamil-bosonic degrees of freedom describe external excitations
tonian is feasible. It is well known that, in dealing with which change the number of fermionsng, in 0 and+2,
boson mapping techniques, the presence of spurious stats particle-hole, particle-particle, and hole-hole bosons, re-
can affect the resulte2]. This problem has been studied in spectively. In this respect we can think of the bosons as
detail also by other authoi$,6] and it is still a matter of scalars ifAn=0 and vectors ifAng= +2.

discussiong25]. In the present work, we are not concerned

about the effects due to spurious states upon the complete s& pyson mapping procedure and the variational solution of

of solutions of the Hamiltonian. Rather, we shall focus on the model of Schiite and Da Providencia

the validity of the variational treatment of the ground state ) . .
and show to which extent spurious states are affecting our W€ shall now illustrate the Dyson mapping of the Hamil-
final results for the energy of the fermionic and bosonic con{onian (1). For simplicity, we shall first work with the
densates. For the particular case of the use of coherent stat@érticle-hole channels of Eql), by settingG,=G3=0. In

as trial states, the effects due to the corresponding spuriod8iS limit the Hamiltonian of Eq(1) coincides with the one
states will be discussed in connection with the exact diagodiscussed by Sclite and Da Providencig7]. The Dyson
nalization of the fully mapped Hamiltonian in the subspaceP®S0n mapping is performed by introducing the following

of functions with a definite® symmetry. In Sec. Il we intro-  relationships:
duce the model and in Sec. Ill we present and discuss the

= T —_
results of the calculations. Conclusions are drawn in Sec. IV. (S+)p=bp(202=ng),

Il. FORMALISM (S-)p=be,
To start with, we shall introduce an effective model which (v)p=ng, ©)
includes fermion and boson degrees of freedd@]. The
elementary building blocks are two fermion levels and threevhere ( )}, indicates the Dyson mappings=blbg is the
types of bosons associated to bi-fermion excitations. The femumber of ph pairs, antl=2() is the total number of fer-
mions in the upper energy level represent particles and thosaions, ) being half the degeneracy of each fermion level.
in the lower energy level represent holes. The Hamiltonian iAfter applying this transformation to the Hamiltonian, one
written as gets

H:HO+th+pr+Hhhv (1) (H)D:anF‘waBng"’Gle(ZQ_nF)Bg'i‘GleBb.
(4)

Next, we shall calculate the expectation value of the trans-
formed Hamiltonian with respect to a trial state. The trial
state should be defined in the most general form, in such a
Hof:E(VJrj), way that it includes all possible physically allowed states. In

2 addition, we shall assume that the trial state can be param-
etrized by ongor several order parametés). One possible

with

Ho=Hos+Hop,

Hob=wpBiBy+ wa;prL wnBBy, choice is the use of a coherent st@18,26. The coherent
state is a product of a boson part and a fermion part. The
thzGl(S+Bg+ S_By), boson part is given by the exponential of the boson creation
operator multiplied by a complex order parameter. The fer-
pr=Gz(L+Bﬁ+ L_By), mion part of the trial state must obey the Pauli principle, i.e.,
we choose a coherent state which converges to an exponen-
Hhh=Gg(K+B;§+ K_B)). (2)  tialin the limit of infinite degeneracy of the fermion levels

(QQ—). Also, we have to take into account the fact that the
The operators which appear in this equation are the bosoRyson mapping is non-Hermitian, e.g., bra and ket states
Operators representing partide_ho]BgL partic]e-partic]e have different forms. The trial state for bosons is given by
(B:,), and hole-hole BE) excitations and the corresponding .
bi-fermion operators. , L., andK_ , respectively;» and |arep) = €%050]0), 5)
v are the fermion number operators of the upper and lower
level, wg is the energy spacing between levels, and o,

and wy, are the energy of the bosorS;_, , 3y are coupling 1In this paper we follow closely the notation of R¢L]; in Ref.
constants, in units of energy, of the bi-fermion-boson cou{18] the definitions ofSandT are interchanged.
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where|0) is the boson vacuum ang.,= ape'?? is the order  (10). The expectation value of the Hamiltonig#), divided
parameter. For the fermion sector we propose the followindy the norm{acpxcr| @cbXce) = Foo, iS given by

trial

where|0) is the fermion vacuum ang.-=yre '*F is the

states:
F
20 N _ 2" 11 2
X E(xF ¢b,6r) = wpxFz— T wpa
(Xerl =(01 2 T (S2)B. "Foo T
20 n +GiNxpapz—e (9ot 4e)

_2 XcF n 00

xer)= 2 E(SBI0) ©

For .
- GlXEabF—;e'("sW’fF)

complex order parameter corresponding to the fermionic Foi (et £0)
part. The sum of the previous equations is limitedntg,, +GlXFabF_OOe bR (11
=2(), because the operat&, creates a particle-hole and

2Q) is the maximum number of ph pairs allowed by the Pauli
principle.
When the Dyson boson mapping is used, the bra and k

Real values oE( g, dp, &) are obtained foeb,+ & =0
éatnd 7. The structure of the real part of the energy surface is

states are not Hermitian conjugate but rather dual to eacRl ("€ form
other.
By replacing in Eqs(6) the fermion operators by their A(ap,xe) T B(ap,xg)cos ¢dp+ &F), (12

Dyson boson images, E@), one gets

which has a minimum aé,+ &= 7, provided thatG;>0.

_ (0 229 X bo)n Thus, it suffices to fixp,= 7 and =0, since all values of
(Xerl =( |n:0 n! (be)™, ¢, and &g such thatoy, + &= 7 yield the same minimum of
the potential energy surfacdES.
20 n n In the previous equations we have applied the complete
IxcF) = 2 X_ch (20—k+1)(b£)”|0> (7) D_yson mapping. Another possibility is to perform the map-
n' =1 ping by keeping the lowest order terms in the bosons. As

long as the Hamiltonian is mapped exactly, the functional

(by definition, the factor in front of the boson creation op-form of the trial state can be chosen quite arbitrarily without
erator is equal to 1 fon=0). The total trial state, which is loss of generality. Even if the trial state is an exponential
not normalized, is given by the product of EqS) and (6), function, phase transitions can be identified as longNas

ie.,

<(). For higher occupations the Pauli principle leads to in-

stabilities and the potential energy does not have a lower
|ecoxcr) =|acn) | Xcr)- (8 limit. By keeping the lowest order terms in the boson map-

ping, approximately obeying the Pauli principle and by in-

With these trial functions, the boson part of an arbitrary matroducing a cutoff in the sum as explained above, the ob-
trix element takes the form tained PES saturates at a value which is not significantly

different from the exact result. The exact solution of the

t i’ . . .
(acp|(Bp)"H(Bp)"2| acp) _ Schitte and Da Providencia model is constructed as shown

(ab)(n1+n2)e—i(nl—n2)d;b, (9)

(acplach) in [18] in the basis of the symmetry operatér=B|B,
o ] — 2(v+v). Figure 1 shows the results of the exact calcula-
and the fermionic part can be written tion and those of the approximated one constructed at lowest
fon N order in the boson expansion of the trial state and obeying
(Xcrl(bE)"(bg)"? xcp) the Pauli principle approximately. These calculations have
(XcrlxcE) been performed fof) = 15 and two different sets of coupling
constants, as given in the caption to Fig. 1. As it is shown in
min(2€)—ny,20 —ny) 2n Figs. Xa) and 1b), the exact and approximated PES agree
S —itng-npge XF i i
Xg e | quite well. It means that the truncation of the boson expan-
n=0 n sion, in the trial state, does not introduce significant differ-
n+n, ences, provided the Hamiltonian is mapped exactly.

x [T 20-k+1)
k=1
B. Dyson boson mapping and the variational treatment of the
= Fn1n2X21+n2 , (10 complete Hamiltonian

The bi-fermion operators which appear in the Hamil-

where we have introduced the notationF, .  tonian of Eq.(1) are part of the generators of the algebra of
=Fp n,(Xr,&F) to represent the sum which appears in Eq.theO(5)=Sp(4.R) group[27]. The Dyson mapping of these
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Since the total number of fermions is conserved, the follow-
ing relations are preserved by the mapping:

V—>2np+ n|: y

;—>2nH+nF. (14)

We will now construct a coherent state which will be used
to investigate phase transitions that may occur in the model
defined by the Hamiltonian of Eql). The fermion content
of the bi-fermion operators, particle-hole, particle-particle,
and hole-hole will be denoted by the subindeke®, andH,
respectively, and lower case subindeke®, andh will be
used to denote bosonic excitations. The trial state is repre-
sented by the coherent state, which is a product of a boson
and a fermion part,

<P>
FIG. 1. Real part of the potential energy surfagg, in units of | x)=laco, acp. acn)l Xcr Xcp 1 Xen) (15
GeV, as a function of the expectation value of the symmetry operay ith complex order parameters
tor P, for the caséG,#0, G,=G3;=0 [limit corresponding to the
model of Schtte and Da ProvidenciéRef. [3])]. With dashed and o= a,ke*“ﬁk, XcL:XLeiigL: (16)

solid lines we indicate the approximated soluti@yson mapping

at lowest order in the trial wave function, all orders in the Hamil- with k=b,p,h andL=F,P,H. The first factor on the right-

tonian, and the exact one, as described in the (&dc. Il A. The  hand side of Eq(15) is the non-normalized boson coherent
results shown in(@) correspond t0G;=0.365 GeV,Q =15, and  gtate given by

wp=w,=1 GeV, while those of (b) correspond to G;
=0.949 GeV,0=15 andwr=1 GeV, w,=3 GeV. |a>=exp(achl+ ach;+acth)|o>_ (17)

operators is given in Ref[1] and for completeness we The fermionic coherent state is given by
have summarized the procedure in the following set of

expressions: 20 QO-[ng+1/2] Q—[ng+1/2]

=2 > >
ng=0 np=0 ny=0

(S1)p=bf(2Q—ng—2np—2n,) —bEb/ be,

X (81xcr)"F(S2xcp) ™

)o=nNg+np+ny—Q,

(Slo=ne e N (bf)™ (bf)™ (bf;)™
(S—)D:va X(62XCH)nH nF! |

(T+)p=2b{by+bib,

neg! ny! |0>’ (18

with §;=2Q, 6,=Q for the ket state, and,=6,=1 for
the bra state, anfing+1/2]=ng/2 for np=even and[ ng
+1/2]=ng+1/2 for ng=o0dd. The ansatz in Eq18) corre-
sponds to the lowest order mapping of the oper&toin the
Dyson mapping. As shown in the preceding section, we can
still describe phase transitions with this trial state, provided
the Hamiltonian is mapped exactly. The upper limits in Eq.
1 1 (18), represented as(2 and () —[ng], are chosen such that
- e the number of fermions in each level does not exce@d 2
(Lo)p=np+ 5N 5,
2 2 condition which is imposed by the partial fulfilment of the
Pauli principle.

(To)p=bhbp—bfiby,
(T-)p=2b{bp+b/;be,

(L)p=bi(Q—np—ng)—(bf)?by,

(L-)p=bp,
(K+)D:b}:(9_nH_nF)_(bE)ZbPv C. Spurious states
A frequently found drawback of the Dyson boson map-
1 1 ping of a fermion Hamiltonian is the ocurrence of spurious
(Ko)o=nu+5ne— 54, states, as pointed out by Geyer and co-work8ts

This is indeed the case of the stdfe8). Let us now dis-
(K_)p=by, (13 cuss the structure of the spurious states which are introduced
by the use of the coherent state. Following the arguments of
whereng, np, andny are the number operators correspond-[ 3], it can be shown that none is present if a level is less than
ing to the phonon(ph), pairon (pp), and holon(hh) pairs.  half-filled and that spurious states do appear when a level is
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6
G, G,
FIG. 2. Real part of the potential energy surfaég, corre- FIG. 3. Expectation value of the symmetry operatd?), as a

sponding to the casB, =0, G,=G;. The parameters of the model function of G, for the caseéz,;=0, G,=G;. The parameters of the
are given in the text. With solid lines we represent the results of thenodel are given in the text an@, and G are given in units of
calculations using coherent states, dashed lines represent the resékgV. The results are represented with the notation given in the
of the mean field approach, and the dots correspond to the results oéption to Fig. 2
an exact diagonalization. Both quantiti€s, and G,, are given in
units of GeV. physical states of the boson mapping occur when the Young
diagram ofU+(2) has more than Q columns, because the

more than half-filled. The dominant part still comes from theconjugate Young diagram fod (22) has more than @
Pauli-allowed states. That is the reason why, upNte2(Q),  rows and it is not allowed. In consequence, no antisymmetric
we do not expect to find large differences with respect to thetate in the fermion space corresponds to this case. The re-
exact solution(as we shall show explicitly later on; see the |ation ofh; andh, to the total number of particlés is given
discussion which accompanies the results of Figs 2 and 3 by N=h, +h, and the one for the generalized quasispiis

In order to identify spurious states, we shall discuss thejiven above. The restriction in the number of rows, to be less

group chain involved in the calculations. It is than or equal to @ rows, in the Young diagram dfi{(2),
U(40Q)DU(20)x U(2), (19 e»hi=2Q, gives

where 2) is the degeneracy of each level ade(2) distin- Tsmin[ 20 — EQ] (20)

guishes between the upper and lower levels. In order to have 2

a complete antisymmetric state, the irreducible representa-

tion (irrep) of U(4Q) has to be antisymmetric, i.e., the  Next we discuss a simple example, given in Red].
Young diagrams of the two groups to the right(k9) have  There the $—4h case for(0=2 and 3 is discussed.p4
to be conjugate to each other. When we denotghgf,] the ~ —4h corresponds tdl=8. The possible allowed Young dia-
irrep of Ut(2), the one ofU(2Q) should be[ 2"21(N1~M2)], grams[taking into account that itJ+(2) only diagrams of
The generalized quasispin labdl, can be deduced from the form[2n;,2n,,2n;] are allowed because the elemental
there and its value is given by=(h;—h,)/2. As a special ©0ne is[2]; see Ref[4]], are

case let us consider the case of two particlgs)(2s created

by the generators of §6). TheL . creates a @ state with [8] (T=4), [6,2] (T=2), [4?] (T=0) (21
T=1. Applying the operato6_ to it (once and twiceone

obtains theT,=0 andT,=—1 components of =1, corre- all for U(2). ForQ =2 the restriction(20) corresponds to
sponding to a b—1h and a 2 state, respectively. In terms (N=8 and{Q=2) T=0 only. Thus the other states {21)
of a Young diagram this corresponds[®] for Ut(2). Un-  with T>0 correspond to nonphysical states. kb3 the
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condition (20) readsT<2 and thus onlyT=0 and 2 are
physical states. The one with=4 is unphysical. For(}
=4 all states are physical.

The maximal value oT which can be formed i§). When
the numbem of particles and holes is smaller than or equal
to 2Q), all states are physical. The coherent state that we
have used in the present case is not coupled to a definiigherei=b,p,h.
value of T. One can think of a coupling scheme where a The result for the fermionic part is
definite value ofT is kept and all other values are excluded,
i.e., by enforcing the conditiof20) which would take into
account the Pauli principle completely. However, this would
imply a highly involved algebra.

We preferred to perform a variational treatment with the
already defined coherent state and we check the procedure
afterward.

the Hamiltonian. The expectation value of an arbitrary prod-
uct of creation and annihilation operators of the bosonic part
is given by

(] (B)M(B)™|a)=(a)"*MeeMimm), - (22)

(xI(b])"F(bE)"P1(bf))"Ha(bE) "Fo(bp) "Pa( ) el x)
(xlx)

— (XF)nF1+ n,:ze—ig,:(n,:l—n,:z)(XP)npl+ e,

X 67igP(nP17an)(XH)nH1+nHzeiigH(nHlinHz)

Ng +nNp +n
D. Explicit evaluation of the expectation values X QTF2"TP2 Hz(FanannHleooo)' (23

Using the above defined coherent state we can easily cal-
culate the expectation value of the interactions appearing iwith

2().an2 Q*[(n,:+n,:2+ 1)/2]7np2 Q—[(ng+ n,:2+ 1)/2]7nH2

>

ny=0 ng! np! ny!

F = 2 >
NE,Np,MH,

ng=0 np=0

After applying this procedure to the Hamiltonian of Eq.

(1), the real part of the PES is written

Er:Q(F1+ F2+ F3+ F4+ F5+ F6+ F7+ F8+ F9+ FlO)’

(29

with
Fri= 2F 010t X&F 001+ 2x2F 100/ F
1= we(xpFo10t XHFoo1t 2XFF 100/ Fooo:
F2=wba§+wpag+whaﬁ,

F3=Giap[cos — ¢dp— &+ En) 2XrxH(F 101/ Food
+cog — dp— Ept Er) 2xpXF(F110/Fooo 1

F4=Gjap[cog dp— &+ Ep) 2XExP(F 110/ F oo
+cog dp— €+ &) 2XnxE(F01/Fooo 1,

F5=Gaay, oS — ¢n— &) xpl (F oo/ Food — Xp(F oo/ Fooo
—2xE(F110/Fo00 1.

Fo=—Goayp €O — dp— 2&x+ &) xFxn(F 201/ F 000,
F7=Gyay, cog ¢+ €p) xp(Fo10/F oo,

Fg=Gga,cos — ¢p—&n) xul (Foor/Food — X&(Fooa! Fooo
—2xE(F101/Foo0 1,

(xXE)?™ (xp)2"P (xp)2™

2nFQnF+nP+nH' (24)

Fo=—Gzapco8 — ¢p— 28+ Ep)xExp(Fa10/Fooo),

F10=Gsap cod ¢p+ &n) xu(Foor/ Fooo - (26)

The imaginary part of the PES is given by a similar ex-
pression where in the definitions &f;—F,, the factors
cos( ) are replaced by sin(). As was done for the case of the
model of Schtte and Da Providencigsee Sec. Il A and
without loss of generality, we can fix all angles at zero and
determine the amplitudes of the order parameters from the
minimization of the PES.

IIl. RESULTS

The minimization of the PES, for the general case with all
G; different from zero, has been performed numerically by
using a routine of the CERN libray28]. All couplings be-
tween bi-fermions and bosons are included and for the sake
of convenience the rescaled coupling constaitsx,, and
X3 are introduced:

s [ 2Q s [ Q s [ Q
X1=06, —wab, X2=0 —wah7 X3=03 wrop'

(27)

We have found different types of condensates for the fol-
lowing cases:

(i) x;>1, x, and x3 arbitrary and wg=w,=wp=wy
=1 GeV.

(i) X;>1, X, andx3<3 andwg=wp=wp,=1 GeV, wy
=10 GeV.
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(i) x;>1, x,>3, X3>3 and wg=wp,=w,=1 GeV, Figure 2 shows the real part of the PES as a function of
wp,=10 GeV. the interaction strengtks,. Figure 3 shows the expectation
(iv) X;>1, x,>3, X3>3 andwg=w,=1 GeV, w,=w,  value of the symmetry operaté,
=10 GeV.

As it is discussed below, the just introduced energy scale
is taken from[29]. All these cases correspond fo=15
(N=30). In casd(i) the minimization leads to a boson con-
densate dominated bdybosons without significant contribu- as a function of the interaction streng®y. Positive values
tions from the pp- and hh-pair sectors of the Hamiltonian. Inof (P) indicate a boson-dominated ground state and negative
case(ii) the minimization shows the existence of a fermionvalues of(P) indicate the fermion character of the ground-
condensate dominated by ph pairs. The solution which yieldstate correlations. As it is shown in Fig. 3, for values of
a condensate ob bosons can be excluded by choosing aG,<0.15 GeV the expectation value of the symmetry opera-
large value ofw, and small coupling constants=x;. The  tor is(P)=0 and it means that the local ground state is the
new solutions, which are consistent with the set of paramuncorrelated ground state. For 0.15 Ge®,<0.33 GeV,
eters(iii ) and(iv), are dominated by the pp and hh channelsthe ground state is dominated by pairs of fermions while for
As it turns out, the pp and hh channels contribute equallyG,>0.33 GeV the vacuum is a boson condensate.

This is a consequence of the fact that= x5 for all cases. In In order to illustrate the validity of the approximations,
general this is not true. However, considering quarks angve have calculated the potential energy surféeeS and
antiquarks, represented as particles and holes, respectivetyre eigenvalue of thé symmetry in(i) a mean field ap-
these two coupling constants should be equal due to charggoach andii) an exact form, consisting of the diagonaliza-
conjugation. In other applications, however, the couplingtion of H in a certain subspace. The results corresponding to
constants can be chosen in a different way. Due to the choiage mean field approach have been obtained by following the
of x,=X3, the expectation value of the symmetry oper&pr method outlined in Ref.18]. In this reference, the fermionic
fields are transformed by using Hartree-Bogoliubov transfor-
1 _ mations and the bosons are shifted in order to include non-
R=B/By,— BJ{,Bp— S (v v), zero vacuum expectation values. The resulting Hamiltonian
is solved by using the equation of motion method. Concern-

] o ) ) ing the exact solution, we have performed a Lanczos diago-
vanishes at the minimum. We have also considered, in detaifgjization in a restricted subspace corresponding to the zero

P=BIBy+ BB+ BIBy—= (v+7)
b=b p=p hPh Z(V )!

the appearance of condensates for the case eigenvalue of theR symmetry, which for the case d,
= G; exhausts the relevant components of the wave function.
wp=04, v,=wp=1, G;=0, G,=G3=0—-0.5 For any other point in the parametric space, i®;# G3,

(28 one should include all eigenvalues of the symmetry.
The results are shown in Figs. 2 and 3. From these results

(all quantities expressed in GgVwhich corresponds to one can conclude that the comparison between exact results
quarks and antiquarks at an energy of 0.4 Ge¥., given and the variational ones is rather good, a fact which should
the energy in units of GeMandp andh bosons at an energy also indicate the order of magnitude of the effects induced by
of 1 GeV. These values correspond to the assumption th&purious states. Obviously, these results cannot be used to
the first glueball, consisting of two gluons, has an energy ofupport the claim that spurious contributions are removed
about 2 GeV and that the three quark system has an enerd§pm the calculations. Rather, as it is usually the case of the
of about 1.2 GeV. These parameters have been fixed, followvariational approach, the spurious components of the wave
ing the findings reported in Reff29], where the structure of functions will certainly affect the structure of the spectrum
glueballs, as described in lattice gauge calculations, was réut not the ground-state energy, as we have shown. This is
produced using an effective simple model. also the case for the conventional many-body treatment, say,

This is clearly a very rough assumption because pur@f pairing correlations in the BCS theory, as well as in the
glueballs may not exist but they will mix with quarks and case of a model which belongs to a lower group symmetry
antiquarks and their energy will not exactly be 2 GeV. The[24].
choice of wg can be understood as a mean value of the Figure 4 shows the amplitude of the bosonic order param-
lowest nuclear resonances. Moreover, this toy model doegter «, and Fig. 5 shows the amplitude of the fermionic
not have the same number of degrees of freedom of QCDurder parametep, both as a function of the interaction
Therefore, a direct comparison to QCD should be done wittstrengthG,. The phase transition point around the value
caution, though the main structures are present. In our exs,=0.2 GeV is clearly seen. The order paramejgr is
ample the coupling betweeambosons and ph bi-fermions is positive, and it saturates, while the order parametgide-
excluded because it always leads to a global minimum. Unereases steadily with increasing valuesGyf. These results
der these conditions the interaction between p and h bosashow that for an intermediate range of values of the interac-
and pp and hh bi-fermions yields a local minimum. Onetion strengthG,, a fermion condensate is formed. For larger
might interpret it as produced by a ground state dominatedtalues of G, the boson condensate always dominates. As
by a ph condensate. At higher energies a phase transition teas said before, the expectation value of the symmBitry
a pp and hh condensate develops. vanishes because &,=Gs,.
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0.0 03 06 09 1.2 15

FIG. 4. Amplitude of the bosonic order parametgr= ay,, as a
function of the coupling constai@,= G3, for the case5,;=0 and FIG. 6. Gap parametek=(L , ), of Eg. (29), as a function of
for the model parameters discussed in the text. The coupling corthe fermionic order parametgf .
stantG, is given in units of GeV.

IV. CONCLUSIONS

Finally we have investigated the dependence of the gap In this work we have investigated the appearance of fer-

mion and boson condensates in a system described by pairs
A=(L.) (29) of fermions coupled to bosons. The model is a generalization
' of the bi-fermion Hamiltonian due to Gey¢t] and of the
fermion-boson coupling of Schie and Da Providencif7].

which is the expectation value of the pp bi-fermion operator,] "¢ Model has exact solutions which correspond to the

as a function of the order parameter. The results are shown mP4R) symmetry representation. We have performed an
Fig. 6. For small values ofp the gap increases very fast, it €Xact Dyson boson mapping of the Hamiltonian. This map-

reaches a maximum at approximateps=0.5, and after- ping procgdure preserves the algepra of the generators of the
wards it decreases rapidly. For large valuesypfa satura- group. Trial states were expressed in terms of cqherent states
tion is obtained. This feature is an artifact of the procedureWIth 'complex order parameters. The Paull' principle was ap-
since for large values o6, the number of fermion pairs broxmately obeyed in constructing boson images Qf the trlal
does not change. It is interesting to note that, as the result Gfate. Matrix elements of the transformed Hamlltonlan acting
the minimization, we have always obtained values yef on trial states ha}v_e t_)ee_n used to calcula_te potential energy
around the value corresponding to the maximuniofThis surfaces. .The minimization of the potential energy surfgce
result, independent of the value of the order paramefgr leads to d|ff§rent values of the order parameters, as funcu_ons
indica:tes that the system maximizes the gap of the coupling strgngth of the model, wh|ch.have been in-

' terpreted as the signatures of phase transitions. We have
shown that the model, which reproduces correctly the results
0.8 y T T of Schiute and Da Providencia as a limiting case, predicts the

o7 | appearance of fermion and boson condensates.
06l For the case in which realistic masses for the quarks and
for the gluons were used, we obtained a fermion condensate
0.5} for only a small range of the interaction parame®ey. Ex-
o 04t cept for very small interaction strength, the boson condensate
x always dominates. This does not mean that only bosons are

0.3} . . .
present in the condensate but rather a mixture of ph fermions

with bosons, such that the expectation value of the symmetry
operatorP, which is the difference of boson number to the
particle and hole fermions, is positive. However, a large

0.2

0.1}

0.0 - : .
value of (P) indicates an overwhelming dominance of the
0 e o3 o6 o5 1z 1s bosons. The characteristics of the phase transitions of the
G cases studied above and depicted in Fig. 3 depend mainly on
2

the interaction strength and not so much on the relative en-
FIG. 5. Amplitude of the fermionic order paramefgs=yy, as  €rgies. The result of Fig. 3 was obtained by excluding the

a function of the coupling consta®,= G, given in units of Gev, boson condensate of tydge which means that we investi-
for the caseG;=0 and for the model parameters discussed in thegated a local minimum at a higher energy than the ground-
text. state minimum. This might also indicate a phase transition of
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QCD at higher energies. No detailed conclusions can barea completely remote to the QCD, namely high-

drawn because of the schematic character of our model. temperature superconductivit{0]. There the Hamiltonian is
Due to the nonperturbative character of the method whiclmore directly related, in form and structure, to the one used

we have used to find the condensates, it may be relevant in the present work.

the analysis of QCD at low energies. The model contains all

basic ingredients, namely the interaction between particle

(quarks and hole(antiquarks fermions with bosonggluong ACKNOWLEDGMENTS
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