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Fermion and boson condensates in a QCD-inspired model Hamiltonian
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The interaction between bi-fermionic and bosonic degrees of freedom is described by using an effective
Hamiltonian inspired in QCD. The Dyson boson mapping technique is utilized in conjunction with a coherent
state basis to construct energy landscapes in a multiparametric space. The appearance of fermionic and bosonic
condensates is studied by minimizing the potential energy surface. The relationship between the domains of
fermion and boson condensates and the order parameters of the model is discussed.

PACS number~s!: 21.60.Fw, 11.30.2j, 24.85.1p
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I. INTRODUCTION

The use of bi-fermion operators in the context of t
nuclear many-body problem has been advanced by Geye@1#
and Geyeret al. @2,3# and by other authors@4–6#. A model
which includes the coupling between bi-fermions a
bosons, and which closely resembles low energy QCD,
introduced by Schu¨tte and Da Providencia@7#. The same
model was applied to describe the coupling between ef
tive degrees of freedom by other authors@8#. The inclusion
of bi-fermion degrees of freedom in nonperturbative tre
ments of QCD has been introduced in@9#. The same type of
model for bi-fermions has been investigated in systems
scribing high temperature superconductivity@10#, i.e., in a
completely different context. Concerning nonperturbat
approaches to QCD, the recent literature provides defi
examples about the use of diquarks@11# as the relevant de
grees of freedom as well as the use of pairs of particle an
hole excitations associated to generalized pions in de
QCD @12#. The role of diquarks and quarks in a model wi
confinement was studied in@13# while the weak-coupling
limit in color superconductivity, by using pairs of quark
which are breaking the color symmetry, was reported in@14#.
The gluon sector of QCD, treated by using boson mapp
techniques, was studied in@15#. Finally, and concerning the
use of boson expansion techniques in conventional fi
theory, the reader is kindly referred to the work of@16#.

The finding of fermion and boson condensates, for
case of an effective Hamiltonian which contains pairs of f
mions interacting with an external boson, was reported
Schütte and Da Providencia@7#. The Becchi, Rouet, Stora
and Tyutin ~BRST! treatment of the same Hamiltonian ca
be found in@17#. The group structure of a purely bi-fermio
Hamiltonian was investigated in a series of papers by Ge
et al. @2#. The extension of this Hamiltonian to a generaliz
bi-fermion ^ boson space has been proposed recently@18#.
The most simple way of looking at condensates in syste
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where bi-fermion and boson operators are coupled is the
advanced by Schu¨tte and Da Providencia@7#, which consists
of a mean field approximation followed by a variation whic
determines the fermionic or bosonic nature of the conden
via an order parameter. In the model of Schu¨tte and Da
Providencia@7#, the order parameter is proportional to th
vacuum expectation value of the bi-fermion or boson fiel
These steps can also be followed when a more genera
fermion-boson interaction is used, as the one of Ref.@18#.
The use of a generalized definition of coherent states@19# as
a tool to identify fermion and boson condensates has b
advanced in@20# and in @21#. In this work we shall discuss
the use of coherent states in the framework of a QC
inspired Hamiltonian@18,20–22#.

We shall introduce bi-fermion operators which repres
quark-quark and quark-antiquark pairs@or particle-particle
~pp!, hole-hole~hh!, and particle-hole~ph! pairs in the stan-
dard language of the nonrelativistic quantum many-bo
theory# and bosons~i.e., gluons or scalar and vector boso
fields! @22#. We shall then map the operators by using Dy
on’s expansion method@23#. The expectation value of the
transformed Hamiltonian will be calculated in a basis of c
herent states. We have chosen a basis of coherent state
cause it is particularly suitable for the calculation of mat
elements of the transformed Hamiltonian. These matrix e
ments are expressed as functionals of order parame
which are given in terms of vacuum expectation values
bi-fermion and boson operators, as done in@24#.

The identification of bi-fermion and boson condensates
done by performing variations in a multiple-parametric spa
where the quantities to be determined are the vacuum ex
tation values of the bi-fermion and boson operators expan
in the basis of coherent states. As a test of consistency o
approximation, we have worked out a limiting case of o
Hamiltonian which reproduces the result of the work
Schütte and Da Providencia@7#.

Since the exact results of the model of Ref.@7# are known,
we shall compare them with the results of the boson exp
sion. This is done in order to illustrate the meaning of t
effective degrees of freedom based on bi-fermions and
potential use in models where the exact solution is unkno
as is the case of the QCD inspired Hamiltonians@20–22#. In
this respect, the boson mapping of the bi-fermion and bo
degrees of freedom in conjunction with the use of a basis
©2000 The American Physical Society03-1



de
n
n

pa
il
h
ta
in

ed
e
on
te
o

on
ta
io
go
c

t
IV

ch

re
fe
o

n

s

g

we

ou

re
n-
and
an-
he

ions

re-
as

il-

g

el.
e

ns-
ial
h a
In
am-

he
tion
er-
e.,
nen-
ls
he
tes
y

CIVITARESE, HESS, HIRSCH, AND REBOIRO PHYSICAL REVIEW C61 064303
coherent states will provide us with a nonperturbative
scription of the Hamiltonian. The scope of this treatme
will, as a matter of fact, be assessed by the above-mentio
comparison with the SO~3! limit of @7# and with the com-
parison between variational and exact results, for some
ticular cases where the diagonalization of the full Ham
tonian is feasible. It is well known that, in dealing wit
boson mapping techniques, the presence of spurious s
can affect the results@2#. This problem has been studied
detail also by other authors@5,6# and it is still a matter of
discussions@25#. In the present work, we are not concern
about the effects due to spurious states upon the complet
of solutions of the Hamiltonian. Rather, we shall focus
the validity of the variational treatment of the ground sta
and show to which extent spurious states are affecting
final results for the energy of the fermionic and bosonic c
densates. For the particular case of the use of coherent s
as trial states, the effects due to the corresponding spur
states will be discussed in connection with the exact dia
nalization of the fully mapped Hamiltonian in the subspa
of functions with a definiteP symmetry. In Sec. II we intro-
duce the model and in Sec. III we present and discuss
results of the calculations. Conclusions are drawn in Sec.

II. FORMALISM

To start with, we shall introduce an effective model whi
includes fermion and boson degrees of freedom@18#. The
elementary building blocks are two fermion levels and th
types of bosons associated to bi-fermion excitations. The
mions in the upper energy level represent particles and th
in the lower energy level represent holes. The Hamiltonia
written as

H5H01Hph1Hpp1Hhh , ~1!

with

H05H0 f1H0b ,

H0 f5
vF

2
~n1 n̄ !,

H0b5vbBb
†Bb1vpBp

†Bp1vhBh
†Bh ,

Hph5G1~S1Bb
†1S2Bb!,

Hpp5G2~L1Bh
†1L2Bh!,

Hhh5G3~K1Bp
†1K2Bp!. ~2!

The operators which appear in this equation are the bo
operators representing particle-hole (Bb

†), particle-particle
(Bp

†), and hole-hole (Bh
†) excitations and the correspondin

bi-fermion operatorsS6 , L6 , andK6 , respectively;n and
n̄ are the fermion number operators of the upper and lo
level, vF is the energy spacing between levels, andvb , vp ,
andvh are the energy of the bosons.G( i 51,2,3) are coupling
constants, in units of energy, of the bi-fermion-boson c
06430
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plings allowed by the model. Details on the notation a
given in @1,18#.1 In this model, fermions and bosons are i
dependent degrees of freedom while bi-fermion creation
annihilation operators are coupled to bosons in such a m
ner that the total number of fermions is conserved. T
bosonic degrees of freedom describe external excitat
which change the number of fermions,DnF , in 0 and62,
for particle-hole, particle-particle, and hole-hole bosons,
spectively. In this respect we can think of the bosons
scalars ifDnF50 and vectors ifDnF562.

A. Dyson mapping procedure and the variational solution of
the model of Schütte and Da Providencia

We shall now illustrate the Dyson mapping of the Ham
tonian ~1!. For simplicity, we shall first work with the
particle-hole channels of Eq.~1!, by settingG25G350. In
this limit the Hamiltonian of Eq.~1! coincides with the one
discussed by Schu¨tte and Da Providencia@7#. The Dyson
boson mapping is performed by introducing the followin
relationships:

~S1!D5bF
†~2V2nF!,

~S2!D5bF ,

~n!D5nF , ~3!

where ( )D indicates the Dyson mapping,nF5bF
†bF is the

number of ph pairs, andN52V is the total number of fer-
mions,V being half the degeneracy of each fermion lev
After applying this transformation to the Hamiltonian, on
gets

~H !D5vFnF1vbBb
†Bb1G1bF

†~2V2nF!Bb
†1G1bFBb .

~4!

Next, we shall calculate the expectation value of the tra
formed Hamiltonian with respect to a trial state. The tr
state should be defined in the most general form, in suc
way that it includes all possible physically allowed states.
addition, we shall assume that the trial state can be par
etrized by one~or several! order parameter~s!. One possible
choice is the use of a coherent state@19,26#. The coherent
state is a product of a boson part and a fermion part. T
boson part is given by the exponential of the boson crea
operator multiplied by a complex order parameter. The f
mion part of the trial state must obey the Pauli principle, i.
we choose a coherent state which converges to an expo
tial in the limit of infinite degeneracy of the fermion leve
(V→`). Also, we have to take into account the fact that t
Dyson mapping is non-Hermitian, e.g., bra and ket sta
have different forms. The trial state for bosons is given b

uacb&5eacbBb
†
u0&, ~5!

1In this paper we follow closely the notation of Ref.@1#; in Ref.
@18# the definitions ofS andT are interchanged.
3-2
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FERMION AND BOSON CONDENSATES IN A QCD- . . . PHYSICAL REVIEW C 61 064303
whereu0& is the boson vacuum andacb5abeifb is the order
parameter. For the fermion sector we propose the follow
trial states:

^xcFu5^0u (
n50

2V xcF
n*

n!
~S2!D

n ,

uxcF&5 (
n50

2V xcF
n

n!
~S1!D

n u0&, ~6!

where u0& is the fermion vacuum andxcF5xFe2 i jF is the
complex order parameter corresponding to the fermio
part. The sum of the previous equations is limited tonmax
52V, because the operatorS1 creates a particle-hole an
2V is the maximum number of ph pairs allowed by the Pa
principle.

When the Dyson boson mapping is used, the bra and
states are not Hermitian conjugate but rather dual to e
other.

By replacing in Eqs.~6! the fermion operators by thei
Dyson boson images, Eq.~3!, one gets

^xcFu5^0u (
n50

2V xcF
n*

n!
~bF!n,

uxcF&5 (
n50

2V xcF
n

n! )
k51

n

~2V2k11!~bF
† !nu0& ~7!

~by definition, the factor in front of the boson creation o
erator is equal to 1 forn50). The total trial state, which is
not normalized, is given by the product of Eqs.~5! and ~6!,
i.e.,

uacbxcF&5uacb&uxcF&. ~8!

With these trial functions, the boson part of an arbitrary m
trix element takes the form

^acbu~Bb
†!n1~Bb!n2uacb&

^acbuacb&
5~ab!(n11n2)e2 i (n12n2)fb, ~9!

and the fermionic part can be written

^xcFu~bF
† !n1~bF!n2uxcF&

^xcFuxcF&

5xF
n11n2 (

n50

min(2V2n2,2V2n1)

e2 i (n12n2)jF
xF

2n

n!

3 )
k51

n1n2

~2V2k11!

5Fn1n2
xF

n11n2 , ~10!

where we have introduced the notationFn1n2

[Fn1n2
(xF ,jF) to represent the sum which appears in E
06430
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~10!. The expectation value of the Hamiltonian~4!, divided
by the norm^acbxcFuacbxcF&5F00, is given by

E~xF ,fb ,jF!5vFxF
2F11

F00
1vbab

2

1G1NxFab

F10

F00
e2 i (fb1jF)

2G1xF
3ab

F21

F00
ei (fb1jF)

1G1xFab

F01

F00
ei (fb1jF). ~11!

Real values ofE(xF ,fb ,jF) are obtained forfb1jF 50
andp. The structure of the real part of the energy surface
of the form

A~ab ,xF!1B~ab ,xF!cos~fb1jF!, ~12!

which has a minimum atfb1jF5p, provided thatG1.0.
Thus, it suffices to fixfb5p andjF50, since all values of
fb andjF such thatfb1jF5p yield the same minimum of
the potential energy surface~PES!.

In the previous equations we have applied the comp
Dyson mapping. Another possibility is to perform the ma
ping by keeping the lowest order terms in the bosons.
long as the Hamiltonian is mapped exactly, the functio
form of the trial state can be chosen quite arbitrarily witho
loss of generality. Even if the trial state is an exponen
function, phase transitions can be identified as long asN
<V. For higher occupations the Pauli principle leads to
stabilities and the potential energy does not have a lo
limit. By keeping the lowest order terms in the boson ma
ping, approximately obeying the Pauli principle and by i
troducing a cutoff in the sum as explained above, the
tained PES saturates at a value which is not significa
different from the exact result. The exact solution of t
Schütte and Da Providencia model is constructed as sho
in @18# in the basis of the symmetry operatorP5Bb

†Bb

2 1
2 (n1 n̄). Figure 1 shows the results of the exact calcu

tion and those of the approximated one constructed at low
order in the boson expansion of the trial state and obey
the Pauli principle approximately. These calculations ha
been performed forV515 and two different sets of couplin
constants, as given in the caption to Fig. 1. As it is shown
Figs. 1~a! and 1~b!, the exact and approximated PES agr
quite well. It means that the truncation of the boson exp
sion, in the trial state, does not introduce significant diff
ences, provided the Hamiltonian is mapped exactly.

B. Dyson boson mapping and the variational treatment of the
complete Hamiltonian

The bi-fermion operators which appear in the Ham
tonian of Eq.~1! are part of the generators of the algebra
theO(5).Sp(4,R) group@27#. The Dyson mapping of thes
3-3
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operators is given in Ref.@1# and for completeness w
have summarized the procedure in the following set
expressions:

~S1!D5bF
†~2V2nF22nP22nH!2bP

†bH
† bF ,

~S0!D5nF1nP1nH2V,

~S2!D5bF ,

~T1!D52bF
†bH1bP

†bF ,

~T0!D5bP
†bP2bH

† bH ,

~T2!D52bF
†bP1bH

† bF ,

~L1!D5bP
† ~V2nP2nF!2~bF

† !2bH ,

~L0!D5nP1
1

2
nF2

1

2
V,

~L2!D5bP ,

~K1!D5bH
† ~V2nH2nF!2~bF

† !2bP ,

~K0!D5nH1
1

2
nF2

1

2
V,

~K2!D5bH , ~13!

wherenF , nP , andnH are the number operators correspon
ing to the phonon~ph!, pairon ~pp!, and holon~hh! pairs.

FIG. 1. Real part of the potential energy surface,Er , in units of
GeV, as a function of the expectation value of the symmetry op
tor P, for the caseG1Þ0, G25G350 @limit corresponding to the
model of Schu¨tte and Da Providencia~Ref. @3#!#. With dashed and
solid lines we indicate the approximated solution~Dyson mapping
at lowest order in the trial wave function, all orders in the Ham
tonian!, and the exact one, as described in the text~Sec. II A!. The
results shown in~a! correspond toG150.365 GeV,V515, and
vF5vb51 GeV, while those of ~b! correspond to G1

50.949 GeV,V515 andvF51 GeV, vb53 GeV.
06430
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Since the total number of fermions is conserved, the follo
ing relations are preserved by the mapping:

n→2nP1nF ,

n̄→2nH1nF . ~14!

We will now construct a coherent state which will be us
to investigate phase transitions that may occur in the mo
defined by the Hamiltonian of Eq.~1!. The fermion content
of the bi-fermion operators, particle-hole, particle-partic
and hole-hole will be denoted by the subindexesF, P, andH,
respectively, and lower case subindexesb, p, andh will be
used to denote bosonic excitations. The trial state is re
sented by the coherent state, which is a product of a bo
and a fermion part,

ua,x&5uacb ,acp ,ach&uxcF ,xcP ,xcH&, ~15!

with complex order parameters

ack5ake
2 ifk, xcL5xLe2 i jL, ~16!

with k5b,p,h andL5F,P,H. The first factor on the right-
hand side of Eq.~15! is the non-normalized boson cohere
state given by

ua&5exp~acbBb
†1acpBp

†1achBh
†!u0&. ~17!

The fermionic coherent state is given by

ux&5 (
nF50

2V

(
nP50

V2[nF11/2]

(
nH50

V2[nF11/2]

3~d1xcF!nF~d2xcP!nP

3~d2xcH!nH
~bF

† !nF

nF!

~bP
† !nP

nP!

~bH
† !nH

nH!
u0&, ~18!

with d152V, d25V for the ket state, andd15d251 for
the bra state, and@nF11/2#5nF/2 for nF5even and@nF
11/2#5nF11/2 for nF5odd. The ansatz in Eq.~18! corre-
sponds to the lowest order mapping of the operatorS1 in the
Dyson mapping. As shown in the preceding section, we
still describe phase transitions with this trial state, provid
the Hamiltonian is mapped exactly. The upper limits in E
~18!, represented as 2V andV2@nF#, are chosen such tha
the number of fermions in each level does not exceed 2V, a
condition which is imposed by the partial fulfillment of th
Pauli principle.

C. Spurious states

A frequently found drawback of the Dyson boson ma
ping of a fermion Hamiltonian is the ocurrence of spurio
states, as pointed out by Geyer and co-workers@3#.

This is indeed the case of the state~18!. Let us now dis-
cuss the structure of the spurious states which are introdu
by the use of the coherent state. Following the argument
@3#, it can be shown that none is present if a level is less t
half-filled and that spurious states do appear when a leve

a-
3-4
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more than half-filled. The dominant part still comes from t
Pauli-allowed states. That is the reason why, up toN52V,
we do not expect to find large differences with respect to
exact solution~as we shall show explicitly later on; see th
discussion which accompanies the results of Figs 2 and!.

In order to identify spurious states, we shall discuss
group chain involved in the calculations. It is

U~4V!.U~2V!3UT~2!, ~19!

where 2V is the degeneracy of each level andUT(2) distin-
guishes between the upper and lower levels. In order to h
a complete antisymmetric state, the irreducible represe
tion ~irrep! of U(4V) has to be antisymmetric, i.e., th
Young diagrams of the two groups to the right in~19! have
to be conjugate to each other. When we denote by@h1h2# the
irrep of UT(2), the one ofU(2V) should be@2h21(h12h2)#.
The generalized quasispin label,T, can be deduced from
there and its value is given byT5(h12h2)/2. As a special
case let us consider the case of two particles (2p), as created
by the generators of SO~5!. The L1 creates a 2p state with
T51. Applying the operatorS2 to it ~once and twice! one
obtains theTz50 andTz521 components ofT51, corre-
sponding to a 1p21h and a 2h state, respectively. In term
of a Young diagram this corresponds to@2# for UT(2). Un-

FIG. 2. Real part of the potential energy surface,Er , corre-
sponding to the caseG150, G25G3. The parameters of the mode
are given in the text. With solid lines we represent the results of
calculations using coherent states, dashed lines represent the r
of the mean field approach, and the dots correspond to the resu
an exact diagonalization. Both quantities,Er and G2, are given in
units of GeV.
06430
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physical states of the boson mapping occur when the Yo
diagram ofUT(2) has more than 2V columns, because th
conjugate Young diagram forU(2V) has more than 2V
rows and it is not allowed. In consequence, no antisymme
state in the fermion space corresponds to this case. The
lation of h1 andh2 to the total number of particlesN is given
by N5h11h2 and the one for the generalized quasispinT is
given above. The restriction in the number of rows, to be l
than or equal to 2V rows, in the Young diagram ofUT(2),
i.e., h1<2V, gives

T<minH 2V2
N

2
,VJ . ~20!

Next we discuss a simple example, given in Ref.@3#.
There the 4p24h case forV52 and 3 is discussed. 4p
24h corresponds toN58. The possible allowed Young dia
grams†taking into account that inUT(2) only diagrams of
the form @2n1,2n2,2n3# are allowed because the elemen
one is@2#; see Ref.@4#‡, are

@8# ~T54!, @6,2# ~T52!, @42# ~T50! ~21!

all for UT(2). For V52 the restriction~20! corresponds to
(N58 andV52) T50 only. Thus the other states in~21!
with T.0 correspond to nonphysical states. ForV53 the

e
ults
of

FIG. 3. Expectation value of the symmetry operator,^P&, as a
function ofG2 for the caseG150, G25G3. The parameters of the
model are given in the text andG2 and G3 are given in units of
GeV. The results are represented with the notation given in
caption to Fig. 2
3-5
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CIVITARESE, HESS, HIRSCH, AND REBOIRO PHYSICAL REVIEW C61 064303
condition ~20! readsT<2 and thus onlyT50 and 2 are
physical states. The one withT54 is unphysical. ForV
>4 all states are physical.

The maximal value ofT which can be formed isV. When
the numberN of particles and holes is smaller than or equ
to 2V, all states are physical. The coherent state that
have used in the present case is not coupled to a defi
value of T. One can think of a coupling scheme where
definite value ofT is kept and all other values are exclude
i.e., by enforcing the condition~20! which would take into
account the Pauli principle completely. However, this wou
imply a highly involved algebra.

We preferred to perform a variational treatment with t
already defined coherent state and we check the proce
afterward.

D. Explicit evaluation of the expectation values

Using the above defined coherent state we can easily
culate the expectation value of the interactions appearin
q.

06430
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the Hamiltonian. The expectation value of an arbitrary pro
uct of creation and annihilation operators of the bosonic p
is given by

^au~Bi
†!ni~Bi !

miua&5~a i !
ni1mie2 iw i (ni2mi ), ~22!

wherei 5b,p,h.
The result for the fermionic part is

^xu~bF
† !nF1~bP

† !nP1~bH
† !nH1~bF!nF2~bP!nP2~bH!nH2ux&

^xux&

5~xF!nF1
1nF2e2 i jF(nF1

2nF2
)~xP!nP1

1nP2

3e2 i jP(nP1
2nP2

)~xH!nH1
1nH2e2 i jH(nH1

2nH2
)

3VnF2
1nP2

1nH2~FnF2
nP2

nH2
/F000!, ~23!

with
FnF2
nP2

nH2
5 (

nF50

2V2nF2

(
nP50

V2[(nF1nF2
11)/2]2nP2

(
nH50

V2[(nF1nF2
11)/2]2nH2 ~xF!2nF

nF!

~xP!2nP

nP!

~xH!2nH

nH!
2nFVnF1nP1nH. ~24!
x-

the

nd
the

all
by

ake

fol-
After applying this procedure to the Hamiltonian of E
~1!, the real part of the PES is written

Er5V~F11F21F31F41F51F61F71F81F91F10!,

~25!

with

F15vF~xP
2F0101xH

2 F00112xF
2F100!/F000,

F25vbab
21vpap

21vhah
2 ,

F35G1ab@cos~2fb2jF1jH!2xFxH~F101/F000!

1cos~2fb2jP1jF!2xPxF~F110/F000!#,

F45G1ab@cos~fb2jF1jP!2xFxP~F110/F000!

1cos~fb2jH1jF!2xHxF~F101/F000!#,

F55G2ah cos~2fh2jP!xP@~F010/F000!2xP
2 ~F020/F000!

22xF
2~F110/F000!#,

F652G2ah cos~2fh22jF1jH!xF
2xH~F201/F000!,

F75G2ah cos~fh1jP!xP~F010/F000!,

F85G3ap cos~2fp2jH!xH@~F001/F000!2xH
2 ~F002/F000!

22xF
2~F101/F000!#,
F952G3ap cos~2fp22jF1jP!xF
2xP~F210/F000!,

F105G3ap cos~fp1jH!xH~F001/F000!. ~26!

The imaginary part of the PES is given by a similar e
pression where in the definitions ofF3→F10 the factors
cos( ) are replaced by sin( ). As was done for the case of
model of Schu¨tte and Da Providencia~see Sec. II A! and
without loss of generality, we can fix all angles at zero a
determine the amplitudes of the order parameters from
minimization of the PES.

III. RESULTS

The minimization of the PES, for the general case with
Gi different from zero, has been performed numerically
using a routine of the CERN library@28#. All couplings be-
tween bi-fermions and bosons are included and for the s
of convenience the rescaled coupling constantsx1 , x2, and
x3 are introduced:

x15G1A 2V

vFvb
, x25G2A V

vFvh
, x35G3A V

vFvp
.

~27!

We have found different types of condensates for the
lowing cases:

~i! x1.1, x2 and x3 arbitrary andvF5vp5vh5vb
51 GeV.

~ii ! x1.1, x2 and x3,3 andvF5vp5vh51 GeV, vb
510 GeV.
3-6
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~iii ! x1.1, x2.3, x3.3 and vF5vp5vh51 GeV,
vb510 GeV.

~iv! x1.1, x2.3, x3.3 andvF5vb51 GeV, vp5vh
510 GeV.

As it is discussed below, the just introduced energy sc
is taken from @29#. All these cases correspond toV515
(N530). In case~i! the minimization leads to a boson co
densate dominated byb bosons without significant contribu
tions from the pp- and hh-pair sectors of the Hamiltonian.
case~ii ! the minimization shows the existence of a fermi
condensate dominated by ph pairs. The solution which yie
a condensate ofb bosons can be excluded by choosing
large value ofvb and small coupling constantsx25x3. The
new solutions, which are consistent with the set of para
eters~iii ! and~iv!, are dominated by the pp and hh channe
As it turns out, the pp and hh channels contribute equa
This is a consequence of the fact thatx25x3 for all cases. In
general this is not true. However, considering quarks
antiquarks, represented as particles and holes, respecti
these two coupling constants should be equal due to ch
conjugation. In other applications, however, the coupl
constants can be chosen in a different way. Due to the ch
of x25x3, the expectation value of the symmetry operatorR,

R5Bh
†Bh2Bp

†Bp2
1

2
~n2 n̄ !,

vanishes at the minimum. We have also considered, in de
the appearance of condensates for the case

vF50.4, vp5vh51, G150, G25G350→0.5
~28!

~all quantities expressed in GeV!, which corresponds to
quarks and antiquarks at an energy of 0.4 GeV~i.e., given
the energy in units of GeV! andp andh bosons at an energ
of 1 GeV. These values correspond to the assumption
the first glueball, consisting of two gluons, has an energy
about 2 GeV and that the three quark system has an en
of about 1.2 GeV. These parameters have been fixed, foll
ing the findings reported in Ref.@29#, where the structure o
glueballs, as described in lattice gauge calculations, was
produced using an effective simple model.

This is clearly a very rough assumption because p
glueballs may not exist but they will mix with quarks an
antiquarks and their energy will not exactly be 2 GeV. T
choice of vF can be understood as a mean value of
lowest nuclear resonances. Moreover, this toy model d
not have the same number of degrees of freedom of Q
Therefore, a direct comparison to QCD should be done w
caution, though the main structures are present. In our
ample the coupling betweenb bosons and ph bi-fermions i
excluded because it always leads to a global minimum.
der these conditions the interaction between p and h bo
and pp and hh bi-fermions yields a local minimum. O
might interpret it as produced by a ground state domina
by a ph condensate. At higher energies a phase transitio
a pp and hh condensate develops.
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Figure 2 shows the real part of the PES as a function
the interaction strengthG2. Figure 3 shows the expectatio
value of the symmetry operatorP,

P5Bb
†Bb1Bp

†Bp1Bh
†Bh2

1

2
~n1 n̄ !,

as a function of the interaction strengthG2. Positive values
of ^P& indicate a boson-dominated ground state and nega
values of^P& indicate the fermion character of the groun
state correlations. As it is shown in Fig. 3, for values
G2,0.15 GeV the expectation value of the symmetry ope
tor is ^P&50 and it means that the local ground state is
uncorrelated ground state. For 0.15 GeV,G2,0.33 GeV,
the ground state is dominated by pairs of fermions while
G2.0.33 GeV the vacuum is a boson condensate.

In order to illustrate the validity of the approximation
we have calculated the potential energy surface~PES! and
the eigenvalue of theP symmetry in ~i! a mean field ap-
proach and~ii ! an exact form, consisting of the diagonaliz
tion of H in a certain subspace. The results correspondin
the mean field approach have been obtained by following
method outlined in Ref.@18#. In this reference, the fermionic
fields are transformed by using Hartree-Bogoliubov transf
mations and the bosons are shifted in order to include n
zero vacuum expectation values. The resulting Hamilton
is solved by using the equation of motion method. Conce
ing the exact solution, we have performed a Lanczos dia
nalization in a restricted subspace corresponding to the
eigenvalue of theR symmetry, which for the case ofG2
5G3 exhausts the relevant components of the wave funct
For any other point in the parametric space, i.e.,G2ÞG3,
one should include all eigenvalues of the symmetry.

The results are shown in Figs. 2 and 3. From these res
one can conclude that the comparison between exact re
and the variational ones is rather good, a fact which sho
also indicate the order of magnitude of the effects induced
spurious states. Obviously, these results cannot be use
support the claim that spurious contributions are remo
from the calculations. Rather, as it is usually the case of
variational approach, the spurious components of the w
functions will certainly affect the structure of the spectru
but not the ground-state energy, as we have shown. Th
also the case for the conventional many-body treatment,
of pairing correlations in the BCS theory, as well as in t
case of a model which belongs to a lower group symme
@24#.

Figure 4 shows the amplitude of the bosonic order para
eter ap and Fig. 5 shows the amplitude of the fermion
order parameterxP , both as a function of the interactio
strengthG2. The phase transition point around the val
G250.2 GeV is clearly seen. The order parameterxP is
positive, and it saturates, while the order parameterap de-
creases steadily with increasing values ofG2. These results
show that for an intermediate range of values of the inter
tion strengthG2, a fermion condensate is formed. For larg
values ofG2 the boson condensate always dominates.
was said before, the expectation value of the symmetrR
vanishes because ofG25G3.
3-7
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Finally we have investigated the dependence of the g

D5^L1&, ~29!

which is the expectation value of the pp bi-fermion operat
as a function of the order parameter. The results are show
Fig. 6. For small values ofxP the gap increases very fast,
reaches a maximum at approximatelyxP50.5, and after-
wards it decreases rapidly. For large values ofxP a satura-
tion is obtained. This feature is an artifact of the procedu
since for large values ofG2 the number of fermion pairs
does not change. It is interesting to note that, as the resu
the minimization, we have always obtained values ofxP
around the value corresponding to the maximum ofD. This
result, independent of the value of the order parameterap ,
indicates that the system maximizes the gap.

FIG. 4. Amplitude of the bosonic order parameterap5ah , as a
function of the coupling constantG25G3, for the caseG150 and
for the model parameters discussed in the text. The coupling
stantG2 is given in units of GeV.

FIG. 5. Amplitude of the fermionic order parameterxP5xH , as
a function of the coupling constantG25G3, given in units of GeV,
for the caseG150 and for the model parameters discussed in
text.
06430
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IV. CONCLUSIONS

In this work we have investigated the appearance of
mion and boson condensates in a system described by
of fermions coupled to bosons. The model is a generaliza
of the bi-fermion Hamiltonian due to Geyer@1# and of the
fermion-boson coupling of Schu¨tte and Da Providencia@7#.
The model has exact solutions which correspond to
Sp(4,R) symmetry representation. We have performed
exact Dyson boson mapping of the Hamiltonian. This ma
ping procedure preserves the algebra of the generators o
group. Trial states were expressed in terms of coherent s
with complex order parameters. The Pauli principle was
proximately obeyed in constructing boson images of the t
state. Matrix elements of the transformed Hamiltonian act
on trial states have been used to calculate potential en
surfaces. The minimization of the potential energy surfa
leads to different values of the order parameters, as funct
of the coupling strength of the model, which have been
terpreted as the signatures of phase transitions. We h
shown that the model, which reproduces correctly the res
of Schütte and Da Providencia as a limiting case, predicts
appearance of fermion and boson condensates.

For the case in which realistic masses for the quarks
for the gluons were used, we obtained a fermion conden
for only a small range of the interaction parameterG2. Ex-
cept for very small interaction strength, the boson conden
always dominates. This does not mean that only bosons
present in the condensate but rather a mixture of ph ferm
with bosons, such that the expectation value of the symm
operatorP, which is the difference of boson number to th
particle and hole fermions, is positive. However, a lar
value of ^P& indicates an overwhelming dominance of th
bosons. The characteristics of the phase transitions of
cases studied above and depicted in Fig. 3 depend mainl
the interaction strength and not so much on the relative
ergies. The result of Fig. 3 was obtained by excluding
boson condensate of typeb, which means that we investi
gated a local minimum at a higher energy than the grou
state minimum. This might also indicate a phase transition

n-

e

FIG. 6. Gap parameterD5^L1&, of Eq. ~29!, as a function of
the fermionic order parameterxP .
3-8
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QCD at higher energies. No detailed conclusions can
drawn because of the schematic character of our model.

Due to the nonperturbative character of the method wh
we have used to find the condensates, it may be releva
the analysis of QCD at low energies. The model contains
basic ingredients, namely the interaction between part
~quarks! and hole~antiquarks! fermions with bosons~gluons!
with different degrees of freedom~color and flavor!. Of
course, the version used here can only be used as a toy m
to understand phase transitions in QCD. For a more real
treatment the correct number of degrees of freedom has t
used, instead, without changing the procedure. The ab
presented case has the advantage that the solutions ar
tained in an algebraic way.

The Hamiltonian used in this work may be relevant in
C

e

py

.
.

-

-
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area completely remote to the QCD, namely hig
temperature superconductivity@10#. There the Hamiltonian is
more directly related, in form and structure, to the one u
in the present work.
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@7# D. Schütte and J. Da Providencia, Nucl. Phys.A282, 518

~1977!.
@8# B. Buck and C.V. Sukumar, Phys. Lett.81A, 132 ~1981!; J.

Phys. A17, 877 ~1984!; M. Tavis and F.W. Cummings, Phys
Rev. 170, 360 ~1968!; K. Hepp and E.H. Lieb, Ann. Phys
~N.Y.! 76, 360 ~1973!.

@9# K. Bleuler, H. Hofesta¨dt, S. Merk, and H.R. Petry, Z. Natur
forsch. A 38a, 705 ~1983!; H. Hofestädt, S. Merk and H.R.
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