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A method for incorporating the effect of the resonant continuum into Hartree-#8CIS equations is
proposed. The method is applied for the case of a neutron-rich nucleus calculated with a Skyrme-type force
plus a zero-range pairing interaction and the results are compared with Hartree-Fock-Bogoliubov calculations.
It is shown that the widths of resonant states have an important effect on the pairing properties of nuclei close
to the drip line.

PACS numbd(s): 21.60—n, 21.30.Fe

In nuclei far from theg-stability line there are circum- free -
stances in which the resonant part of the particle continuum g(e)=2 {g.(e)+a)*%(e)}=2>9,, (N
plays an important role. One of the first examples was given ' !
by Migdal [1], who anticipated the existence of halo nuclei
such as*'Li by showing that two neutrons in a potential well " _ X :
can form a dineutron state in the region of the nuclear surlinuum level densitj4] and s, is the pﬂige shift of angular
face if the potential has a resonant level with energy close tgomentumv=(l,,j,). The quantityg,(e) is the level
zero. Here, the role of the resonance is to enhance the pairirff£1Sity in the absence of the mean field and is given by
correlations of the two neutrons whose attraction is otherd,  (€)=(1/m)(2],+1)(dk/d€e)R,, wherek is the mo-
wise too weak to bind the system. The interplay between th&entum corresponding to the energyThe wave functions
resonant continuum and pairing correlations can also be inrcorresponding to the positive energy states and normalized
portant for the estimation of unbound processes such awithin the box are defined by, (e,r)=N, "4 €)¢,(e.r),
single-particle excitations lying above the particle emissionwhereN (¢€) is the norm of the scattering staig,(e,r) in
threshold, which may be found especially in nuclei close tothe box volume. It can be easily shown that for the scattering

the drip line. Thus, if the excitation energy is close to thestates selected by the bdk,(€)=(2j,+ 1)—1§V(5)_
energy of a narrow resonance then one expects an excitation The gap equations for the states in the box can be written
of one-quasiparticle type, in which the excited nucleon staysn terms of level density as follows:
a finite time before decaying. Besides the unbound processes
mentioned above, resonant states are important for determin-
ing the pairing properties of the ground state of bound nuclei A;=2, Viijjujp;+ X f 9OV el (€ ,(€)de,
far from the B-stability line. Although in such calculations J v Jh
one should consider in principle the complete particle con- 2
tinuum, the largest contribution to the pairing correlations is
expected to come from the resonant continuum [&rt ~
The aim of this Rapid Communication is to propose a Av(e):; v
method for incorporating the effect of the resonant con-
tinuum in the Hartree-FockBCS (HF+BCS) approxima- XV, oz o, (€, (e )de, (3)
tion. More precisely we investigate here the effect of the '
¥wdth of the resonances on the pairing properties Of r.IUCIe\INhere the indices,j run over the bound states ahdis an
ar from stability. As discussed below, this effect is difficult energy interval associated with each partial wabg,J()
to estimate in self-consistent Hartree-Fock—BogoIiubov_l_h 9y trix el ts of the int i P Vi ¢ %J S th
(HFB) calculations which are presently used for describing € .ma fx e emeh S OfIhe interaction involving states In the
pairing correlations in nuclei close to the drip line. continuum are given byii ,ee=(uitilV|y,(€) ¥ (e)),
In order to derive the BCS equations in the presence o¥ ,ce., e'vrer={¥,(€) ¥, (€)|V| ¢, (€' ) ¥, (€")). The rest of
the continuum we first discretize the single-particle con-the notations are standaff]. It can be noticed that accord-
tinuum spectrum by enclosing the nucleus inside a box of @ng to the BCS approach the generalized gap equations above
very large radiugy, . This is only a formal step, since it will take into account only pairing between time-reversed con-
be seen that the paramet®y does not appear in the final tinuum states’e, ve. A more general pairing between con-
results. Thus the genuine continuum is replaced by a set ainuum states at neighboring energies is conceivable and this
discrete states with the level density given[By would just be taken care of by a continuum HFB approach.
At the moment there exist only HFB calculations performed
with a box boundary condition and we shall numerically
*On leave from the Institute of Atomic Physics, Bucharest, Ro-compare their results with those obtained in the present ap-
mania. proach.

whereg, (€)= (1/7)(2j,+1)(ds,/de) is the so-called con-

Vez,jj_UjUj"'Z fl g,/ (€")
v v’
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The largest contributions to the integrals above comeA similar relation can be derived for the positive energy
from the regions where the wave functiogis(e) have a single-particle spectrum. By using these relations it can be
large localization inside the nucleus. This condition is ful-seen that the gap equatiofis,(6) are independent of the box
filled in energy regions where tf&matrix has poles close to radius. As shown above, this is a consequence of the finite
the real energy axis, i.e., near narrow single-particle resorange of the pairing interaction, which is sensitive only to the
nances. The integrals can also have large contributions fronmner part of the resonant continuum wave functions.
energy intervals close to zero energy if Bmatrix has poles In the BCS approximation the number of particles is fixed
corresponding to loosely bound states or virtual states neaionsistently with the gap equations by counting the particles
threshold 1,6]. In thel, intervals defined above the positive distributed in the model space in which the pairing interac-
energy wave functions have the largest localization inside &on is effective. Using the same approximations as for de-
sphere of radiu®, whereD is of the order of a few times the riving the gap equations one gets
nuclear radius. WithiD the positive energy wave functions

can be related to the scattering wave function at resonant B 2 2
energy €, through simple factorization formulajsl,6—§. N—Z« Ui +§V: flygy(e)v,,(e)de. (8
Following Refs.[7,8], the wave functiony,(€) insideD can
be approximated by This equation together with the gap equati¢Bs(6) are the
~ extended BCS equations for a gendfalite range pairing
U (e)~014e)a, e b, (e, 1)=Te)b,(€,.1), interaction including the contribution of the resonant con-

4) tinuum. Each resonance is characterized be the quakjity

whereg¢, (€, ,r) is the scattering wave function calculated at Wh_'ﬁ:]eagésos: g]cesa\gerjgﬁgnga:rgfv\t/gﬁt;Si?ggatgct?é special-
the resonant energy, and normalized within a sphere of . q P

radius D. This factorization relation is very useful for 'Z.ed to the approximation of constant pairing interaction
evaluating matrix elements of finite range interactions fors'nﬁe thg r.?esolnanlt.stgtég(ely,rc)j anhd the kljoundehtates hav_e
which it is sufficient to carry space integrals over theLat er S|m||ar opalgzatlon%mslll et gnulc eus. ben, one just
volume inside the radiusD only. For instance, we as to replace in Eqs5).(6) a matnx eements' y a con-

, ~ ~ stant valueG. The corresponding BCS equations are the
will - use Vi ae=7.(€)Viiveve, aNd Viaz,ei’e  same as the ones of RES). It is worthwhile to point out that
~7(€)7, (€' )V e v v, ve,» Where on the right hand in the constant pairing approximation as defined here one
sides the matrix elements of the interaction are calculate@reserves the variation of the matrix elements of the pairing
using the wave functions, (e, ,r). For a discussion of the interaction over the resonance region. Consequently, as seen

accuracy of these approximations see R&¥. in Eq. (7), the gap also chgnges |n the_resqnance region ar_ld,
With the help of this factorization the gap equationstherefore, the corresponding pairing field is not constant in
(2),(3) become the whole space.

We can now extend the above treatment of the resonant
_ _ - continuum to HR-BCS. In the case of a Skyrme force this is
Ai_zj: V“JWJ'UJJFE,:‘ V“~”EVVEVJ|ng(e)u”(e)vv(e)de’ done by including into the nucleon densities the contribu-
(5) tions of the positive energy states with energies in the se-
lected intervald , and by using the factorization relatig#).
Thus the resonant continuum contribution to the particle den-

AVE; VVEVV_EwiJ'_UiUi+2, Vieve,ve, ve, sity inside the sphere of radiu® reads
XL gvr(E,)UV/(E,)UVr(E,)dG,, (6) pC(r)%E |¢)V(€v!r)|2JAI gv(E)Ulzj(E)dE
with A (e)=7,(e)A,. The last expression can be written as EE Ib,(e r)|2<vz> ©)
9,(e)A,(€)=g,(€)A, and gives the connection between the y .

gaps calculated with the wave functiogis(e) and ¢,(€).
One can get the same relation if one writes the gap equatiofiimilar expressions can be derived for the kinetic energy
(3) in terms of a local pairing field (r) of finite range which  densityT(r) and spin densityl(r):

cuts off the contributions of the tail of the wave function
¢, (e,r) beyond the radiu®. Thus,

T(r)=~ 2> V(N2 + 2 (v?),|V (€, (10)
R I v
Ay<e>:f0 (e PA(r)dr

. I~ =12 ol (DIVi(r) X o]
~ [ 1guenPamar

i 2 * o
o (OA,. @ 12 (0), 85 (e, NIV bile, 1) X0l (1D

061301-2



RAPID COMMUNICATIONS

RESONANT CONTINUUM IN THE HARTREE-FOCK-BCS . . . PHYSICAL REVIEW C 61 061301R)

where the first sum represents the contribution of the bound TABLE I. Results of HF-BCS calculations for the nucleus
states. The above densities define the mean field and tH&\i. A, and v? are the averaged gap and averaged occupation
single-particle spectrum. They depend on the occupationrobability of the single-particle stateof energye, and widthl’, .
probabilities and they are calculated iteratively with the BCSThe notations ,, v 2, ¢, andT',, stand for the corresponding quan-
equations, as in the usual HBCS calculation$10]. tities calculated without including the effect of the widths of reso-

At this point we would like to comment on the relation nant states in HFBCS equations. The single-particle energies,
between the HFBCS equations derived above and the HFBtheir widths and the pairing gaps are expressed in MeV.

approach. The advantage of the HFB approach to treat pra

cesses that involve the continuum part of the nuclear spec-n €n €, e T, vi 22 Ay 3§,
trum is that the finite range of the pairing field is explicitly
taken into account. Therefore, the particle and pairing densi-Sv2 —0647 —0644 —  — 0.295 0.294 0.505 0.674

ties automatically acquire a proper asymptotic behaviordsz 0441~ 0.417 0.077 0.068 0.041 0.075 0.630 0.847
[11,12. In order to preserve the same behavior in the HF 972  1.604  1.587 0.009 0.008 0.029 0.055 0.966 1.306
+BCS limit one should keep the physical condition of a N2 3.309 3.302 0.017 0.016 0.017 0.034 1.227 1.658
finite range pairing field, as it is also done in HFB calcula-
tions in which the pairing field is not calculated self-
consistently{13]. As seen in Eq(7), a finite range pairing resonant states and the last bound statg,3re given in
field implies a cutoff in the tail of the positive energy wave Table |I. The change of the particle density due to pairing
functions. Without this cutoff the solution of a HBBCS  correlations is shown in Fig. 2. It can be seen that in the tail
calculation with the positive energy states discretized in aegion the contribution of the bound states to the total den-
box would correspond to a nucleus in dynamical equilibriumsity, given mainly by the loosely bound stats;3, is domi-
with a nucleonic gas and not to the nucleus it$8lf Gen-  nant. In order to see how the neutrons are distributed at large
erally the cutoff radius may be ambiguous but if one restrictsiistances, we have calculated the number of neutrons outside
oneself to the resonant continuum, then there is a rather large sphere of radius 12 fm. We find that the total numbers of
region outside the nucleus where the resonant wave fungreutrons distributed in bound and resonant states between 12
tions have values close to zero before they start oscillatingand 22 fm are 0.069 and 0.037, respectively.
In this case the HFBCS results do not depend sensitively A proper estimation of the particle distribution at large
on the cutoff radius chosen in such region. distances is difficult in HFB calculations based on a box
We now apply the above resonant HBCS approach to boundary condition. Due to the box the wave functions
a nucleus far from stability, namel§Ni for which HFB  which are spread far from the nucleus are generally pushed
results can be founfll4]. Here, we wish to compare the towards smaller distances. Thus, in the HFB calculations of
results of three types of calculation@®) the resonant HF  Ref. [14] the occupancy of the loosely bound state;3,
+BCS approach where the widths of single-particle resowhich gives the dominant contribution in the density tail
nances are taken into accoufi) a discrete version of the region, depends strongly on the box radius and is generally
approach where the widths are set to zéf@);the HFB ap-  underestimated. Consequently the HFB density is smaller in
proach of Ref[14] where the coordinate space equations arehe tail region than the HFBCS density. As seen in Fig. 2
solved with a box boundary condition and, therefore, thethe tail of the HFB density is actually even smaller than the
width effects would be missing. The HF field is calculated HF density.
with the SllI interactior{ 15] whereas for the pairing channel
a zero-range density-dependent interaction is used,
V(ry.r,)=Vo[1—p(ry)/pc]8(ri—r5), wherep(r) is the to-
tal density,Vy=1128.75 MeV fni, and p,=0.134 fm 3.
All calculations are carried out up to a distarige=22.5 fm .
[see Eq.(4)], but the numerical results discussed in the fol-
lowing do not depend sensitively on the precise choicB of
in the range (3-4)R, whereR is the nuclear radius. The
resonant states included in the HBCS calculations, with
energies smaller than 5 Melthe energy cutoff used in Ref.
[14]), together with the last bound state are listed in Table I. -2}
The energye, (width I',) of a given resonance is extracted
from the energy where the derivative of the phase shift
reaches its maximurthalf of its maximum value. The en-
ergy intervalsl , are defined such tha¢—e€,|<2T, . »
Let us first look at the results of case A. The total aver-  ° 2 ’ e 8 10 2 "
aged gap and the Fermi energy &re)=0.51 MeV and\ rLiml
=—0.874 MeV, respectively. The total binding energy and F|G. 1. Neutron pairing field as a function of the radius. The full
the pairing energy are=—652.7 MeV andEp=3.4 MeV.  (dashedl line shows the results of the HBBCS calculations with
The corresponding pairing field is shown in Fig. 1 while the (without) the effect of the width included. The line marked by
averaged occupation probabilities and the averaged gaps ofosses shows the HFB results of Rf4].

2 T T T T T

[¢]

A [Mev ]

061301-3



RAPID COMMUNICATIONS

N. SANDULESCU, NGUYEN VAN GIAI, AND R. J. LIOTTA PHYSICAL REVIEW C61 061301R)

! ' ' ' ' ' tributing less to the pairing correlations as compared to the
T T case of a very narrowquasibound state. In the HF-BCS
approach presented here this effect is taken into account au-
tomatically through the continuum level density.

Formally, in a coordinate space HFB approach the contri-
bution of the whole continuum is taken into account and,
therefore, the effect of the resonant continuum discussed
above should be also present. Furthermore, a HFB calcula-
tion also contains correlations from pairs in states which are
not time-reversal partners. These correlations, which are ab-
sent in a HR-BCS approach, could be important for the
scattering states with energies close to a resonance because
their wave functions have similar localization proper{ig
However, the estimation of the effect of the resonance widths
upon pairing correlations is still an open problem in the ex-

r [fm1 isting self-consistent HFB calculations. This is because the

o ) numerical methods used for solving the coordinate space

~ FIG. 2. Neutron density ir¥*Ni, calculated in HF(long dashed HFB equations are based on discretizations of the continuous
line) and HF-BCS. In the order of decreasing tail the results of spectrum. With the currently used values of box radiBs (

HF+BCS correspond to the following approximations: effect of the — 15 3¢ fm) each resonance is represented by a single dis-

widths neglected; effect of the widths included; contribution of the crete state in the spherically symmetric case. To have a dis-

bound states to the d_ensity. AII de_nsi_ties are in fmThe inset crete level density high enough to properly describe the

shows the corresponding densities in linear scale. shape of the resonance would require an extremely large box

radius, a condition which makes practical calculations un-

For case B the total averaged gap becores=0.72  {ractable. This is the same difficulty one expects for HFB
MeV and the Fermi energy is= — 0.948 MeV. The binding calcullatlons in wh|ch 'the continuum is dllscret'|zed by ex-
energy increases to the valle=—653.1 MeV while the panding the quasiparticle wave functions in a single particle

pairing energy is equal t&p=6.2 MeV. From Table | one basis[16]. In order to get, in these types of calculations, a

can see that the occupancy of the resonant states is alimd¥pPrer level density in the region of a resonance one needs to

doubled compared to the case when the effect of the widthg>€ @ basis of very large dimgnsions, larger than the dimen-
is taken into account. The corresponding changes in the pai?‘-Ions commonly used for getting a correct asymptotic behav-

ing field and particle density are shown in Figs. 1,2. As seer®’ of the weakly bound states. Thus, although the coordinate

in Fig. 2 the pairing field given by the HFB calculations space HFB QppmaCh IS I pr|nC|_pIe the appropnate_tool for
based on a box boundary condition are quite similar to thet'reatm_g continuum effects, sonmg the HFB eq_uat|ons by
HF+BCS pairing field of case B, i.e., calculated without Imposing a box bo_undary f:ondmon to the solutions, or by
taking into account the width effect. The same similaritiest> 9 & single-particle ba_15|s expansion, does not guarantee
are seen in the Fermi, binding, and pairing energies, which iI1|h_at all effects of the continuum, particulary th_e effect of the
the case of HFB arer— —0.956 MeV, E— — 653.7 MeV, widths of resonant states, are properly taken into account.

e . In summary, a method to include the resonant continuum
andEp . 6.9 MeV. These similarities S.h.OW that in the HFB in the HFH-BCS approximation is presented. We have here
calculations with a box boundary condition the resonant con- . . .
. . ; : concentrated on the regions of the continuous spectra which
tinuum is actually described by quasibound states and, therg-

fore, in such calculations the effect of the widths of resonanf: ¢ close to single-particle resonances because they bring the

L o . most important contributions to pairing correlations. The
states upon pairing properties is not taken into account prop-

erl method can be used to also take into account the effect of
y- . . . . ._nonresonant continuum states close to the continuum thresh-

In conclusion one sees that in neglecting the contrlbutlonOId which can be important in the presence of looselv bound
of the widths in HFR-BCS calculations one enhances artifi- ! P P y

) -~ : . tc,tates or virtual states. In the numerical example it has been
cially the amount of pairing correlations. This enhancemenshown that the widths of resonant states have an important
is due to the fact that if the width is neglected then all the b

o : . effect on the pairing properties of nuclei close to the dri
pairing strength is coIIec_ted from the scatterlng state at th‘ﬁne In order tg desgrige ?his effect in a self-consistent HFIg
resonance energy. At this energy the scattering wave func:_~

tion has the highest spatial concentratias compared with z;pproach one m_aeds to solve th? HFB equations with proper
. . o . oundary conditions. This work is in progress.

the nearby scattering functionwithin the nuclear region.

The effect of the width is to diminish the pairing strength  We thank P.H. Heenen and J. Terasaki for useful discus-

because the pairs can now scatter also in the nearby statsi®®ns and for the detailed results of their HFB calculations.

around the resonance energy which are less confined insidavo of us(N.V.G. and N.S.would like to thank the IN2P3-

the nucleus. In a time dependent picture the dependence dNPE Collaboration in the frame of which part of this work

the width seen above would correspond to the fact that a paiwas performed. N.S. acknowledges the financial support of

scattered to a resonance state has a finite lifetime, thus cothe Wenner-Gren Foundation.
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