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Resonant continuum in the Hartree-Fock¿BCS approximation
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A method for incorporating the effect of the resonant continuum into Hartree-Fock1BCS equations is
proposed. The method is applied for the case of a neutron-rich nucleus calculated with a Skyrme-type force
plus a zero-range pairing interaction and the results are compared with Hartree-Fock-Bogoliubov calculations.
It is shown that the widths of resonant states have an important effect on the pairing properties of nuclei close
to the drip line.

PACS number~s!: 21.60.2n, 21.30.Fe
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In nuclei far from theb-stability line there are circum
stances in which the resonant part of the particle continu
plays an important role. One of the first examples was gi
by Migdal @1#, who anticipated the existence of halo nuc
such as11Li by showing that two neutrons in a potential we
can form a dineutron state in the region of the nuclear s
face if the potential has a resonant level with energy clos
zero. Here, the role of the resonance is to enhance the pa
correlations of the two neutrons whose attraction is oth
wise too weak to bind the system. The interplay between
resonant continuum and pairing correlations can also be
portant for the estimation of unbound processes such
single-particle excitations lying above the particle emiss
threshold, which may be found especially in nuclei close
the drip line. Thus, if the excitation energy is close to t
energy of a narrow resonance then one expects an excit
of one-quasiparticle type, in which the excited nucleon st
a finite time before decaying. Besides the unbound proce
mentioned above, resonant states are important for deter
ing the pairing properties of the ground state of bound nu
far from theb-stability line. Although in such calculation
one should consider in principle the complete particle c
tinuum, the largest contribution to the pairing correlations
expected to come from the resonant continuum part@2#.

The aim of this Rapid Communication is to propose
method for incorporating the effect of the resonant co
tinuum in the Hartree-Fock1BCS ~HF1BCS! approxima-
tion. More precisely we investigate here the effect of t
width of the resonances on the pairing properties of nu
far from stability. As discussed below, this effect is difficu
to estimate in self-consistent Hartree-Fock-Bogoliub
~HFB! calculations which are presently used for describ
pairing correlations in nuclei close to the drip line.

In order to derive the BCS equations in the presence
the continuum we first discretize the single-particle co
tinuum spectrum by enclosing the nucleus inside a box o
very large radiusRb . This is only a formal step, since it wil
be seen that the parameterRb does not appear in the fina
results. Thus the genuine continuum is replaced by a se
discrete states with the level density given by@3#

*On leave from the Institute of Atomic Physics, Bucharest, R
mania.
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g~e!5(
n

$gn~e!1gn
f ree~e!%[(

n
g̃n , ~1!

wheregn(e)[(1/p)(2 j n11)(ddn /de) is the so-called con-
tinuum level density@4# anddn is the phase shift of angula
momentumn[( l n , j n). The quantitygn

f ree(e) is the level
density in the absence of the mean field and is given
gn

f ree(e)[(1/p)(2 j n11)(dk/de)Rb , where k is the mo-
mentum corresponding to the energye. The wave functions
corresponding to the positive energy states and normal
within the box are defined bycn(e,r )[Nn

21/2(e)wn(e,r ),
whereNn(e) is the norm of the scattering statewn(e,r ) in
the box volume. It can be easily shown that for the scatter
states selected by the boxNn(e)5(2 j n11)21g̃n(e).

The gap equations for the states in the box can be wri
in terms of level density as follows:

D i5(
j

Vi ī , j j̄ ujv j1(
n
E

I n

g̃n~e!Ṽi ī ,neneun~e!vn~e!de,

~2!

Dn~e!5(
j

Ṽnene, j j̄ ujv j1(
n8

E
I n8

g̃n8~e8!

3Ṽnene,n8e8n8e8un8~e8!vn8~e8!de8, ~3!

where the indicesi , j run over the bound states andI n is an
energy interval associated with each partial wave (l n , j n).
The matrix elements of the interaction involving states in
continuum are given byṼi ī ,nene[^c ic ī uVucn(e)cn̄(e)&,
Ṽnene,n8e8n8e8[^cn(e)cn̄(e)uVucn8(e8)cn̄8(e8)&. The rest of
the notations are standard@5#. It can be noticed that accord
ing to the BCS approach the generalized gap equations a
take into account only pairing between time-reversed c
tinuum statesne, ne. A more general pairing between con
tinuum states at neighboring energies is conceivable and
would just be taken care of by a continuum HFB approa
At the moment there exist only HFB calculations perform
with a box boundary condition and we shall numerica
compare their results with those obtained in the present
proach.

-

©2000 The American Physical Society01-1



m

ul

s
ro

e
e
e

s
a

a
f
r
fo
he

te

ns

as
he

ti

n

gy
be

x
nite
he

ed
les
c-

de-

n-

ial-
on
e
just
-
he

one
ing
seen
and,
t in

ant
is
u-
se-

en-

rgy

RAPID COMMUNICATIONS

N. SANDULESCU, NGUYEN VAN GIAI, AND R. J. LIOTTA PHYSICAL REVIEW C61 061301~R!
The largest contributions to the integrals above co
from the regions where the wave functionscn(e) have a
large localization inside the nucleus. This condition is f
filled in energy regions where theSmatrix has poles close to
the real energy axis, i.e., near narrow single-particle re
nances. The integrals can also have large contributions f
energy intervals close to zero energy if theSmatrix has poles
corresponding to loosely bound states or virtual states n
threshold@1,6#. In the I n intervals defined above the positiv
energy wave functions have the largest localization insid
sphere of radiusD, whereD is of the order of a few times the
nuclear radius. WithinD the positive energy wave function
can be related to the scattering wave function at reson
energy en through simple factorization formulas@1,6–8#.
Following Refs.@7,8#, the wave functioncn(e) insideD can
be approximated by

cn~e,r !'gn
1/2~e!g̃n

21/2~e!fn~en ,r ![tn
1/2~e!fn~en ,r !,

~4!

wherefn(en ,r ) is the scattering wave function calculated
the resonant energyen and normalized within a sphere o
radius D. This factorization relation is very useful fo
evaluating matrix elements of finite range interactions
which it is sufficient to carry space integrals over t
volume inside the radiusD only. For instance, we
will use Ṽi ī ,nene'tn(e)Vi ī ,nennen

and Ṽnene,n8e8n8e8
'tn(e)tn8(e8)Vnennen,n8en8n8en8

, where on the right hand
sides the matrix elements of the interaction are calcula
using the wave functionsfn(en ,r ). For a discussion of the
accuracy of these approximations see Ref.@8#.

With the help of this factorization the gap equatio
~2!,~3! become

D i5(
j

Vi ī j j̄ ujv j1(
n

Vi ī ,nennen
E

I n

gn~e!un~e!vn~e!de,

~5!

Dn[(
j

Vnennen, j j̄ ujv j1(
n8

Vnennen,n8en8n8en8

3E
I n8

gn8~e8!un8~e8!vn8~e8!de8, ~6!

with Dn(e)5tn(e)Dn . The last expression can be written
g̃n(e)Dn(e)5gn(e)Dn and gives the connection between t
gaps calculated with the wave functionscn(e) and fn(e).
One can get the same relation if one writes the gap equa
~3! in terms of a local pairing fieldD(r ) of finite range which
cuts off the contributions of the tail of the wave functio
cn(e,r ) beyond the radiusD. Thus,

Dn~e!5E
0

Rb
ucn~e,r !u2D~r !dr

'tn~e!E
0

D

ufn~e,r !u2D~r !dr

[tn~e!Dn . ~7!
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A similar relation can be derived for the positive ener
single-particle spectrum. By using these relations it can
seen that the gap equations~5!,~6! are independent of the bo
radius. As shown above, this is a consequence of the fi
range of the pairing interaction, which is sensitive only to t
inner part of the resonant continuum wave functions.

In the BCS approximation the number of particles is fix
consistently with the gap equations by counting the partic
distributed in the model space in which the pairing intera
tion is effective. Using the same approximations as for
riving the gap equations one gets

N5(
i

v i
21(

n
E

I n

gn~e!vn
2~e!de. ~8!

This equation together with the gap equations~5!,~6! are the
extended BCS equations for a general~finite range! pairing
interaction including the contribution of the resonant co
tinuum. Each resonance is characterized be the quantityDn ,
which acts as the averaged gap of that resonance.

The above BCS equations are well suited to be spec
ized to the approximation of constant pairing interacti
since the resonant statesfn(en ,r ) and the bound states hav
rather similar localizations inside the nucleus. Then, one
has to replace in Eqs.~5!,~6! all matrix elements by a con
stant valueG. The corresponding BCS equations are t
same as the ones of Ref.@9#. It is worthwhile to point out that
in the constant pairing approximation as defined here
preserves the variation of the matrix elements of the pair
interaction over the resonance region. Consequently, as
in Eq. ~7!, the gap also changes in the resonance region
therefore, the corresponding pairing field is not constan
the whole space.

We can now extend the above treatment of the reson
continuum to HF1BCS. In the case of a Skyrme force this
done by including into the nucleon densities the contrib
tions of the positive energy states with energies in the
lected intervalsI n and by using the factorization relation~4!.
Thus the resonant continuum contribution to the particle d
sity inside the sphere of radiusD reads

rc~r !'(
n

ufn~en ,r !u2E
I n

gn~e!vn
2~e!de

[(
n

ufn~en ,r !u2^v2&n . ~9!

Similar expressions can be derived for the kinetic ene
densityT(r ) and spin densityJ(r ):

T~r !'(
i

v i
2u¹c i~r !u21(

n
^v2&nu¹fn~en ,r !u2, ~10!

J~r !'2 i(
i

v i
2c i* ~r !@¹c i~r !3s#

2 i(
n

^v2&nfn* ~en ,r !@¹fn~en ,r !3s#, ~11!
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where the first sum represents the contribution of the bo
states. The above densities define the mean field and
single-particle spectrum. They depend on the occupa
probabilities and they are calculated iteratively with the B
equations, as in the usual HF1BCS calculations@10#.

At this point we would like to comment on the relatio
between the HF1BCS equations derived above and the HF
approach. The advantage of the HFB approach to treat
cesses that involve the continuum part of the nuclear sp
trum is that the finite range of the pairing field is explicit
taken into account. Therefore, the particle and pairing de
ties automatically acquire a proper asymptotic behav
@11,12#. In order to preserve the same behavior in the
1BCS limit one should keep the physical condition of
finite range pairing field, as it is also done in HFB calcu
tions in which the pairing field is not calculated se
consistently@13#. As seen in Eq.~7!, a finite range pairing
field implies a cutoff in the tail of the positive energy wav
functions. Without this cutoff the solution of a HF1BCS
calculation with the positive energy states discretized i
box would correspond to a nucleus in dynamical equilibriu
with a nucleonic gas and not to the nucleus itself@3#. Gen-
erally the cutoff radius may be ambiguous but if one restr
oneself to the resonant continuum, then there is a rather l
region outside the nucleus where the resonant wave fu
tions have values close to zero before they start oscillat
In this case the HF1BCS results do not depend sensitive
on the cutoff radius chosen in such region.

We now apply the above resonant HF1BCS approach to
a nucleus far from stability, namely84Ni for which HFB
results can be found@14#. Here, we wish to compare th
results of three types of calculations:~A! the resonant HF
1BCS approach where the widths of single-particle re
nances are taken into account;~B! a discrete version of the
approach where the widths are set to zero;~C! the HFB ap-
proach of Ref.@14# where the coordinate space equations
solved with a box boundary condition and, therefore,
width effects would be missing. The HF field is calculat
with the SIII interaction@15# whereas for the pairing channe
a zero-range density-dependent interaction is us
V(rW1 ,rW2)5V0@12r(rW1)/rc#d(rW12rW2), wherer(rW) is the to-
tal density,V051128.75 MeV fm3, and rc50.134 fm23.
All calculations are carried out up to a distanceD522.5 fm
@see Eq.~4!#, but the numerical results discussed in the f
lowing do not depend sensitively on the precise choice oD
in the range (324)R, whereR is the nuclear radius. The
resonant states included in the HF1BCS calculations, with
energies smaller than 5 MeV~the energy cutoff used in Ref
@14#!, together with the last bound state are listed in Tabl
The energyen ~width Gn) of a given resonance is extracte
from the energy where the derivative of the phase s
reaches its maximum~half of its maximum! value. The en-
ergy intervalsI n are defined such thatue2enu<2Gn .

Let us first look at the results of case A. The total av
aged gap and the Fermi energy are^D&50.51 MeV andl
520.874 MeV, respectively. The total binding energy a
the pairing energy areE52652.7 MeV andEP53.4 MeV.
The corresponding pairing field is shown in Fig. 1 while t
averaged occupation probabilities and the averaged gap
06130
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resonant states and the last bound state 3s1/2 are given in
Table I. The change of the particle density due to pair
correlations is shown in Fig. 2. It can be seen that in the
region the contribution of the bound states to the total d
sity, given mainly by the loosely bound state 3s1/2, is domi-
nant. In order to see how the neutrons are distributed at la
distances, we have calculated the number of neutrons ou
a sphere of radius 12 fm. We find that the total numbers
neutrons distributed in bound and resonant states betwee
and 22 fm are 0.069 and 0.037, respectively.

A proper estimation of the particle distribution at larg
distances is difficult in HFB calculations based on a b
boundary condition. Due to the box the wave functio
which are spread far from the nucleus are generally pus
towards smaller distances. Thus, in the HFB calculations
Ref. @14# the occupancy of the loosely bound state 3s1/2,
which gives the dominant contribution in the density t
region, depends strongly on the box radius and is gener
underestimated. Consequently the HFB density is smalle
the tail region than the HF1BCS density. As seen in Fig. 2
the tail of the HFB density is actually even smaller than t
HF density.

TABLE I. Results of HF1BCS calculations for the nucleu
84Ni. Dn and vn

2 are the averaged gap and averaged occupa
probability of the single-particle staten of energyen and widthGn .

The notationsD̃n , ṽ n
2 , ẽn andG̃n stand for the corresponding quan

tities calculated without including the effect of the widths of res
nant states in HF1BCS equations. The single-particle energie
their widths and the pairing gaps are expressed in MeV.

n en ẽn
Gn G̃n

vn
2

ṽn
2 Dn D̃n

s1/2 20.647 20.644 — — 0.295 0.294 0.505 0.67
d3/2 0.441 0.417 0.077 0.068 0.041 0.075 0.630 0.8
g7/2 1.604 1.587 0.009 0.008 0.029 0.055 0.966 1.3
h11/2 3.309 3.302 0.017 0.016 0.017 0.034 1.227 1.6

FIG. 1. Neutron pairing field as a function of the radius. The f
~dashed! line shows the results of the HF1BCS calculations with
~without! the effect of the width included. The line marked b
crosses shows the HFB results of Ref.@14#.
1-3
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For case B the total averaged gap becomes^D&50.72
MeV and the Fermi energy isl520.948 MeV. The binding
energy increases to the valueE52653.1 MeV while the
pairing energy is equal toEP56.2 MeV. From Table I one
can see that the occupancy of the resonant states is al
doubled compared to the case when the effect of the wid
is taken into account. The corresponding changes in the p
ing field and particle density are shown in Figs. 1,2. As se
in Fig. 2 the pairing field given by the HFB calculation
based on a box boundary condition are quite similar to
HF1BCS pairing field of case B, i.e., calculated witho
taking into account the width effect. The same similarit
are seen in the Fermi, binding, and pairing energies, whic
the case of HFB are:l520.956 MeV,E52653.7 MeV,
andEP56.9 MeV. These similarities show that in the HF
calculations with a box boundary condition the resonant c
tinuum is actually described by quasibound states and, th
fore, in such calculations the effect of the widths of reson
states upon pairing properties is not taken into account p
erly.

In conclusion one sees that in neglecting the contribut
of the widths in HF1BCS calculations one enhances arti
cially the amount of pairing correlations. This enhancem
is due to the fact that if the width is neglected then all t
pairing strength is collected from the scattering state at
resonance energy. At this energy the scattering wave fu
tion has the highest spatial concentration~as compared with
the nearby scattering functions! within the nuclear region.
The effect of the width is to diminish the pairing streng
because the pairs can now scatter also in the nearby s
around the resonance energy which are less confined in
the nucleus. In a time dependent picture the dependenc
the width seen above would correspond to the fact that a
scattered to a resonance state has a finite lifetime, thus

FIG. 2. Neutron density in84Ni, calculated in HF~long dashed
line! and HF1BCS. In the order of decreasing tail the results
HF1BCS correspond to the following approximations: effect of t
widths neglected; effect of the widths included; contribution of t
bound states to the density. All densities are in fm23. The inset
shows the corresponding densities in linear scale.
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tributing less to the pairing correlations as compared to
case of a very narrow~quasibound! state. In the HF1BCS
approach presented here this effect is taken into accoun
tomatically through the continuum level density.

Formally, in a coordinate space HFB approach the con
bution of the whole continuum is taken into account an
therefore, the effect of the resonant continuum discus
above should be also present. Furthermore, a HFB calc
tion also contains correlations from pairs in states which
not time-reversal partners. These correlations, which are
sent in a HF1BCS approach, could be important for th
scattering states with energies close to a resonance bec
their wave functions have similar localization properties@2#.
However, the estimation of the effect of the resonance wid
upon pairing correlations is still an open problem in the e
isting self-consistent HFB calculations. This is because
numerical methods used for solving the coordinate sp
HFB equations are based on discretizations of the continu
spectrum. With the currently used values of box radiusR
.15230 fm! each resonance is represented by a single
crete state in the spherically symmetric case. To have a
crete level density high enough to properly describe
shape of the resonance would require an extremely large
radius, a condition which makes practical calculations u
tractable. This is the same difficulty one expects for HF
calculations in which the continuum is discretized by e
panding the quasiparticle wave functions in a single part
basis@16#. In order to get, in these types of calculations,
proper level density in the region of a resonance one need
use a basis of very large dimensions, larger than the dim
sions commonly used for getting a correct asymptotic beh
ior of the weakly bound states. Thus, although the coordin
space HFB approach is in principle the appropriate tool
treating continuum effects, solving the HFB equations
imposing a box boundary condition to the solutions, or
using a single-particle basis expansion, does not guara
that all effects of the continuum, particulary the effect of t
widths of resonant states, are properly taken into accoun

In summary, a method to include the resonant continu
in the HF1BCS approximation is presented. We have he
concentrated on the regions of the continuous spectra w
are close to single-particle resonances because they brin
most important contributions to pairing correlations. T
method can be used to also take into account the effec
nonresonant continuum states close to the continuum thr
old, which can be important in the presence of loosely bou
states or virtual states. In the numerical example it has b
shown that the widths of resonant states have an impor
effect on the pairing properties of nuclei close to the d
line. In order to describe this effect in a self-consistent H
approach one needs to solve the HFB equations with pro
boundary conditions. This work is in progress.

We thank P.H. Heenen and J. Terasaki for useful disc
sions and for the detailed results of their HFB calculatio
Two of us~N.V.G. and N.S.! would like to thank the IN2P3-
INPE Collaboration in the frame of which part of this wor
was performed. N.S. acknowledges the financial suppor
the Wenner-Gren Foundation.
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