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One-loop calculations of hyperon polarizabilities under the largeN. consistency condition
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The spin-averaged electromagnetic polarizabilities of the hyperorend 3 are calculated within the
one-loop approximation by use of the dispersion theory. The photon and meson couplings to hyperons are
determined so as to satisfy the larbe consistency condition. It is shown that in order for the laMe
consistency condition to hold, exotic hyperon states such s with | =2 andJ=3/2 are required in the
calculation of the magnetic polarizability of tfi& state.

PACS numbgs): 24.85:+p, 13.60.Fz, 13.60.Le, 14.20.Jn

[. INTRODUCTION ons in largeN, QCD[19,20, and the results are shared with
any largeN. baryon theories at leading order in theNg/
Beyond the spin averaged electromagnetic polarizabilitiegxpansion. We call the model the bound kaon-soliton model
of the nucleon, the spin polarizabiliti€$] have recently at- (BKSM) hereafter.
tracted theoretical attention, because these quantities serve asThe Born terms in the pion and kaon photoproduction
a crucial test of the low-energy effective theories. Using theamplitudes with the electric coupling of the photon, which
heavy baryon chiral perturbation theori@$BChPT) [2-4],  we call the electric Born terms, contribute to the electric and
the spin polarizabilities have been calculated and compareghagnetic polarizabilities. The polarizabilities by the pion
with the multipole analysef5—-7]. The spin polarizabilities  g|ectric Born terms are of @) in the 1N, expansion,
are also calculated by using the dispersion theory, where thehiie those by the kaon electric Born terms are oi\@x.
imaginary parts are given by the Born terms of the one pion The Born terms through the magnetic coupling of the
photoproduction amplitudgs,9]. The dispersion theory with photon, which we call the magnetic Born terms, also contrib-

the Born terms is a method to calculate loop diagrabis- . A .

12], and it reproduces almost the same results by HBChPJI(':';t% :Qr?‘eT:gr']titltigoellt’?enc??gt:)?ic;l;wheesE?gnegctr?eorr;j[tzrrngs

up to O@E%) or O(e?), but it includes partially higher chiral ! with t ' ough the unitarity
relation and contribute also to the magnetic polarizabilities.

order diagrams than @f); for example Ref[9] gives the h . : ; h fh in 1/
forward spin polarizability yo=—0.4x 104 fm®, while The magnetic Born term is written as the sum of the spin 1/2

HBChPT up to OF%) doesy,=2.0x104 fm* [4]. and 3/2 baryon poles, each of which is of\{%). The large

As to hyperons the spin-averaged polarizabilities have slc consistency condition leads to the cancellation among the
far been studied in the quark mod@B], the SU3) extension ~ pole terms: The whole amplitude reduces td\&f), and as
of the HBChPT resultd14] and the bound-state soliton a result the amplitude is finite at infinite energies. We show
model[15], but the study of hyperon polarizabilities is quite that in order for the largél, consistency condition to work
insufficient, because the hyperon polarizabilities involvein the pion production process off tHe target the exotic
much more physical contents than those of the nucleon. Fuktrange baryon state denoted%#%* with the isospin 2 and

ther, since measurements & interactions are planned spin 3/2, has to contribute to the amplitudes. Similarly, the
[16], detailed and comprehensive studies will be required. ¢ondition requires two exotic stateE** and E%* with

: X o =3
In this paper we calculate the spin-averaged polarizabiligogpin 3/2 and spin 1/2 and 3/2, respectively, for the kaon
ities of theA andX hyperons within the one-loop approxi-

: . x . production amplitudes. The necessity of such exotic states is
mation by appl_ymg the dlsperSK_)n th_eory to the Comptoncommon to the largeN,; baryon theories in order for the
scattering amphtude, where the imaginary parts of the am[mitarity relations not to violate a definité, dependence of
plitudes are given by the Born terms of the pion and kaon . . 1—n/2 . .
photoproduction amplitudes. The coupling constants of thgmplltudes, that is of CNC_ _) for n-meson reaction .amph-
photon and meson to the nucleon and hyperons in the mesdfdes [19,20. The contributions from the magnetic Born
photoproduction amplitudes are given by the spin-flavol€ms are of the_ same order as thoge from the e_lect_rlc ones in
symmetry which leads to the lardé, consistency condition. the 1N, expansion, but the magnetic Born contributions par-
We refer sometimes to the bound state approach to strangti@lly go beyond the calculation of @f) chiral order dia-
ness in the chiral soliton mod¢l7,18, because it is an grams in HBChPT.
explicit model realizing the spin-flavor symmetry for bary- ~ This paper is organized as follows. We discuss the pion

and kaon electric Born contributions in the next section. The

pion and kaon magnetic Born terms are given in Sec. I, and

*Electronic address: tanushi@nuc-th.phys.nagoya-u.ac.jp it is also discussed how the lardé. consistency condition
TElectronic address: saito@nuc-th.phys.nagoya-u.ac.jp works with the exotic states. The conclusions and discussion
*Electronic address: ueharam@cc.saga-u.ac.jp are given in the last section.
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TABLE |. The electromagnetic polarizabilities from the pion electric Born terms in units of 1ien®.
fyar/V4m=0.22 is used to fix the pion coupling constants.

Y A Ei 20
Y’ 3 3 Total A p * Total > * Total
ay 5.40 7.13 12.54 11.89 4.30 0.98 17.17 8.61 1.95 10.56
,85 0.34 —-1.29 —-0.95 0.87 0.43 —0.07 1.23 0.86 —-0.14 0.72
II. CONTRIBUTIONS FROM THE PION 1 2 1

AND KAON ELECTRIC BORN TERMS Aps=—Ass=— EAE*A: — ﬁAE*E: _ANN:§_

As stated in the Introduction we use the dispersion inte- (2.9
grals to compute the one-loop diagrams in the Compton scat-

tering amplitudes, the imaginary parts of which are givenThis relation will play an important role for the largd,

through the electric Born terms.

A. Pion loop contributions

We start with the pion photoproduction amplitudg
=g,T5 for y+Y—m,+Y" with Y(Y') being the initial(fi-
nal) hyperon with the strangeneSs= —1, which is decom-
posed as

To=tOTO (N7t OTO TG (2.9)
where each amplitude is a function of the pion momentum
and photonk, and the isospin factors are as follows: Hor
=1 channel such asy3—=3, t{ ) =ie gly, ti"
={l.13}, tO=1,, t{)=5,,1 with I, being the conven-
tional isospin matrix, and the 3X3 unit matrix, and for
yA—73, t ) =ie g T2 and t{V=0 with (73™)mo

= Omb-

consistency condition in the magnetic Born terms. To fix the
pseudovector coupling constant we adofft , .|/ 4
=0.22 [21], which is close to the empirical value 0.20
+0.01[22], and other coupling constants are obtained ac-
cording to theA factor in the above.

According to Refs[10-12 the forward dispersion rela-
tion with use of the electric Born term is known to give the
electromagnetic polarizabilities as follows:

aY(Y,)) B
Be(Y) Y

f(d)

efyry, |2 1 (
24m3 \ g(d)

"\ aw

L as

where the factoAy is the multiplicity coming from the sum
over a and the spin components. The functiof®) and
g(d) are defined as, fod>—1 andd#1 with d=(My,
—My)/m_,

The electric Born term of QNY?), which is of leading td 9(d+2A(d))
order in the 1IN, expansion, is written model independently ( ( )> :E d—2A(d)+ (d2—1) (2.6
as gd)) ’
—(d+2A(d))
ef 'Y E-
T(E’z(L> o e+ 2iot— d , (2.2 where
4mm, m>—(q—k)

. — . 1 d 1+d
wheret=k—q, ande is the polarization vector. Since other ) tan 2—tan‘1 > (Jdl<1)
electric Born termsT™? are of ON; %) and break the Ad)— 1-d7 vl-d vi-d
unitarity limit at high energy, we ignore them hereaftét]. (d)= 1

The pseudovector pion coupling constants to the hyperons ————In(d+yd’-1) (d>1),
fyy . are given as 2yd*-1
2.7
1 fY/Y,ﬂ.
m e =AyyG, (2.3 and ford=1 we havef(d)=16/7,g(d)=0. In the above

in the largeN. baryon model and in the BKSNR1], where
the overall constanG . is given empirically in the former
and given in terms of the chiral angk(r) of the Skyrme
model in the latter. The factoky.y satisfies the following
spin-flavor symmetry relatidn

The sign ofAss and As«y is different from those in Ref.21],
because the sign of the isospin matrix fer1 is changed to the
usual one, here.

3,*(1385) is also included iiY’. We use the empirical mass
spectrum for the hyperons, the nucleon, anithroughout the
paper. The calculated results of the electromagnetic polariz-
abilities from the pion electric Born terms are tabulated in
Table 1.

We observe from Table | that the electric polarizability of
the hyperons are in order

Ay +> @) > A50. (2.8

Due to the large coupling constafi« , ., the contribution
from =* to the A electric polarizability is rather large, simi-
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TABLE II. The electromagnetic polarizabilities from the kaon electric Born terms in units of Ifén®.
frpk-/\4m=0.92 is used to fix the kaon coupling constants.

Y A PR 30 pi

B N+Z E* Total = A+E* Total N+Z A+ZE* Total N A Total

ay 3.16 236 552 236 256 491 1.62 1.61 323 0.88 0.67 1.55
B5 028 0.06 034 021 0.22 044 0.14 0.14 0.28 0.07 0.07 0.13

lar to the nucleon case. We note that the effect by the mass The kaon-loop contributions to polarizabilities are in or-
difference among the hyperons is rather significant as seen iher

the difference between th&s contribution in theX target
andX 7 in the A target, where the former is exothermal and
the latter endothermal. The difference betwegn andasy -
cannot be calculated within this approximation.

(2.13

We see that the contributions from the decuplet baryons in
the final states are of the same order as those from the octet
baryons.

The kaon contribution leads to the resak+> as -, that
is of the same sign in Ref14]. At the same time the kaon
contribution to the nucleon makes the proton polarizabilities

N> Ay +> A50> Ay —.

B. Kaon loop contributions

We obtain the kaon electric Born term of ) at lead-
ing order in the M, expansion fory+Y—K,(K,) + B with

B beingN andA (E andE*) by replacingm,. by mx and
the coupling constanty.y, by fygk in Eq. (2.2). The
P-wave kaon coupling constaf gy is of O(Ng) and given
as

larger than the neutron ones, but it does not agree with the
experimental tendencyt,> «a,, .

IIl. MAGNETIC BORN TERMS AND THE LARGE N

CONSISTENCY CONDITION

1 f
— YBK =AvexGk, (2.9 The spatial part of the electromagnetic curréntontrib-
Mg V4 utes to the magnetic Born term, where

and we fix the pseudovector kaon coupling constant of (Y'(p)|e-IIY(p))=(Y'|is mY)

ApK™ asf ,x/\4m=0.92[21], while the empirical one is

0.89+0.10. The value 0.92 in the kaon mass scale as in Equith s=(p’ —p) X € and u being the magnetic moment op-
(2.9 is reduced to 0.26 in the case of the pion mass scalerator. The magnetic moment is decomposed as

that is of the same order as the pion coupling constant. The
large N, relation of Ay gy for the charged kaons is given as

3.1

A =3A = 1A = ! 2.1
ApK—= Akt = T pMEe =T s (2.10
for A vertices, and
A ! A 3A
e — —AOK—= — — +=0K+
37 nK /—3 3 -AK 5 3STEOK
1

:_EAE+E*OK+:_§ (211)

for 3 vertices.
The kaon contributions are given as

(35)_2 AB( 4m | 24m3\g(d))’ (212

whereAg is the same multiplicity ad\y in the pion produc-
that the factor

tion, and d=(My—Mg)/my. Note

e
<Y,|M|Y>:S_2MN(M¥ry7§+M$rY), (3.2
where S(73) is the transition spin(isospin matrix, and
M¥,Y(M3,Y) is the isovectoi(isoscalay part of the hyperon
magnetic moment in units of Bohr magneton. Since the is-
ovector partue/2M is of O(N,), while the isoscalar part
is of O(Ng), the leading contributions come from the isovec-
tor part of the magnetic moments. We further note tcla}{a,tY
having the same strangen&Sss proportional to the factor
Ayry of Eq. (2.4 [19,23,24.

The magnetic Born term for a procegs- Y —72+Y' is
written as

efY,Y,,W) v (89S 9T T
M

NG 8 7Tm,n.M N Yy

-3 [(

MY"_Myr_wq

(S-9'(sa7i'T,
Myn_ My+ (l)q

(3.3

efY//Yﬂ. Vv
Moy ryr
877va N

at leading order of the N, expansion, wher&'(7)) is the

(m,/my)=0.279 reduces the size of the kaon contributionstransition spin(isospin matrix for theY”—Y’ vertex, while
The numerical results from the kaon electric Born terms arghose without a prime for th& —Y” vertex. The magnetic

tabulated in Table II.

Born terms are decomposed as
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A A A () and those with theA pole are similarly written, but not
TM_|§3 n:Et 5 (a9t T (wq), (34 shown explicitly. We note that each pole term is oN3).

' ' If we use the relation given by th& factors
whereP,(P3) is the projection operator for tHe-wave pion
production amplitude with total angular momentuin
=1/2(3/2): v v v

. o Fysaps =3 Tsrsalbyns = Funntsa (3.9
P1(q,8)=(o-q)(o-s) and

P3(0,9)=3(q-5)~(o-q)(0"9), (39 e see that the cancellation does not occur for the sums of
o - ;o . . the above amplitudes. Notice, however, that¥he 7 chan-
W'th q=d/q a_nds-s/k,for .Y W't.h spin 1/2. S_lmllar EXPreS-  hel can communicate with tHe=2 channel with strangeness
sions are written fory’ with spin 3/2. The final states are 1. The largeN, baryon theories and BKSM predict two
restricted to the states with an octet or decuplet baryon acs—uc'h exotic barygn s with spin 3/2 and 5/2, whereRheave
cor\r;vpanlet(_j W':]h a E)rlwort] or k?jon.f the | st antikaon is bound around the soliton with isospin 2 in the
€ notice here that in order for the larglg consistency latter model. In this channel we need the exotic state Wwith

condition to hold the exotic hyperon states are required for:2 and spin 3/2 in order for the larde, consistency con-

g1e2 target. kDue tg t_he C(?nssltg)ncy gondmon the magneliGyition to hold.(The exotic state with spin 5/2 cannot interact
Born terms (éep being o @(") and are convergent at with P-wave 72, states. We denote the exotic state with
infinite energies, as a result. So, we concentrate ourselves [0 3/5 oo5 %+ Including the exotic state, we can see that

itseﬂ?et?gﬁlg\fvﬁgh for the pion and kaon magnetic Born termse cancellation occurs with the spin-flavor symmetry rela-

tion
A. The pion magnetic Born terms
Here we discuss explicitly the magnetic Born terms of the v 3 v 9 v 9 v
processy+ 3 — w2+ 3. Using the mass abbreviatiahyy Sk Sy e E_Efz*AWU’E*A_EfEEﬂ'luE_EfEAﬂ'/J'EA-
=My,— My, we write the nonexotic pole amplitudes with (3.9

theX and3* poles in this channel as

Ty | _Ehsa Y _ ka _ka Indeed, BKSM gives the factoky« s as
Loolsmm My T3 20 6oy

1 efz*gﬂ. ) v 2 kq

Tolo——— I Ms«s|s—— |, (3.6 1
3(8meMN e e L Asws=- o, (310

ef kq 1/ efss

[COT AL Y] I ) Bl oL DAY
T3 (87rm,,MN)’u2 —3wJ+ 3(87rm,7MN Hsxs

that is consistent with the above condition for the cancella-

1 kq 1 kq tion, of course. This result is shared with the laNebaryon
- +Z , (3.7 theories.
2 As+s—wq 6 Asxs+wq We summarize the resultant Born terms as

T()—< efAEW )MV kq 1 AE*A 1 AE**E 1 (AE** E_AEA)
- SAT B Y 5 ,
oo l8am My 6 (Asss+wg)(Asp—wg) 3 wg(Assrs+twg) 2 (Asp+wg)(Aswr s+ wg) a1
T(+)=(M) uY, kgl - 1 Asa 1 Asxy N 1 Assx p (3.12
! 877mﬂ'MN A 2 wq(AEA+wq) 6 wq(AE*z-i-wq) 6 (_AEA+ wq)(AE**2+wq) ' .
T(‘S)=< efAqu )MV kq _ AE** E_AEA 1 AE**A (313
! 87Tm77MN =A (AEA‘qu)(AE**E‘qu) 3 (AEA—wq)(AE** E+ wq) ’
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T():( EfAzﬂ. )MV kq } AE*E _E Az**z _l AE**E
TMZVIN s Wy | * * % —wgy— | Hk % [0 st ®
° 8rm My /"> T 4 (A2 GmiAsesTys) A (Asaes?=0i—iAsunsTyun) 3 wg(Agar s+ 0g)
_ E AE** S * _ E AE** A (3 14)
6 (Asss+og)(Asms+og) 3 (—Asp+ o) (Aswstag) ]
T(+>:(M wY, kg 1 Asrs 1 Asers L1 Asa
3 87Tm7rMN A 4 (AE*Ez_wS_iAE*EFE*) 4 (AE** Ez_wg_iAz** EFE**) 3 C’)q(AEA_(J‘)q)
1 As sk s
— 3 , (3.15
(A2*2+wq)(A2**2+wq)
efAEﬂ. ZAE**E 2 AE**A
ga):(s M_)M\EIA'kq SR -3 . (3.16
7Tm7r N AE**E _wq_IAE**EFE** (AEA—wq)(AE** 2+wq)

Since the mass differences of K)(*) appear in the numera- s— o — 2, contribute to thek or K photoproduction am-
tors, the resultant amplitudes are reduced i) and fi-  plitudes. Although the magnetic moment is not completely
nite at high energies. We stress here that we have not intrgs.qhortional to the\ factor, we take the experimental value
duced any vertex functions depending on the meson of,, u¥,, by which the other magnetic moments are fixed,
photon momentum, because the vertex corrections go b%’ecause it may be regarded as giving an average

yond the one-loop approximation. In this sense the exotic In the case of the/+ 3 —K+ E process, the cancellation

states play a role similar to a natural cutoff function W|thoutdoes not occur among tHe and E* pole terms: The two

destroying the analytic structure of the one-loop amplitudes L L : . :
. . exotic = states with isospin 3/2 contribute to this process,
In the above we inserted the total widih» and I's«« P b

. ) I the one with spin 1/2 denoted &S™* and the other with spin
into the pure resonance terms™f. The widthI's« is given 3/2 as=%* . The resultant amplitudes are written as

as
2(f5unn| O 4(fs, | @ efy+zox+ 16 Asxz
3\ 4w |m2 3\ 47w |m? MMy (Azs+ 0 (Azes + 0g)
whereq, (Qs) is the pion momentum decaying into the chan- 4 Acr —
:1 =]

nel A(X)+ . This form of the width is the same as that -

adopted in the previous work9,12], which guarantees the 45 (Azs+wo)(Ags s+ wq)

narrow width limit. Numerical values for the widths includ- '

ing recoil arel“gf=44.8 MeV andl“§17=4.7 MeV. Similar 4

form of the width of>** is used, wher&** is supposed to + =

decay only toX 7 channel, because the** mass is not 9

expected to be so higher than tB& = threshold as seen

below. Then, we havé‘éf* =138 MeV, but sinceA +27

channel is not taken into account, though it opens, the width

of ** would be underestimated. T3=(
Since all the isovector magnetic moments appearing in the

amplitudes are for the hyperons wi=—1, we take the

empirical value,,u\E’A= —1.61, to fix the magnetic coupling N 4 Aysz

constants. The isoscalar magnetic moment can give pole 45 (Azs + wg)(Azss + wyg)

terms of O(\Ii’z), but they are not of leading order. Since the a = d

cancellation among the pole terms does not hold at nonlead- 8 Agxx o

ing order and then the unitarity bound is broken, we disre- R !

gard them as in the case of the electric pion Born terms. 45 (Azs+ wq)(Agzxx 3+ wg)

AE** E
3

: (3.18
(AEE+ a)q)(AEg* 2+ wq)

efs+zok+
87TmKM N

k —
HN N B (A oyt 0g) (Ayez—wg)

B. The kaon magnetic Born terms

AE’** E’
3

(3.19

1
. . . _ + —_ ,
Contrary to the pion photoprodpctlon processes, the is 9 (Azs + wg)(Amsrs + wg)
ovector magnetic moments with different strangeness from = R q
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for y+3 " —K"+E° and similar amplitudes are written for ~ D. Magnetic polarizability from the magnetic Born terms

otherX targets. In the above we used The magnetic polarizabilitg¥' is given by the integration
over energy as follows:

J5
As+gmroge=—= and Ay+gro+=—, 2 (*dwy q *
1 3\/§ 3 3 EQA:_ _2_ 2 (Tg_n) Tg_m)
(3.20 TJoph @ @k mn
* T
which are predicted by BKSM. Each pole term in the above +2TE T D 1 (3.23

a

is of O(N.), but the resultant amplitudes are of N@O, be- . _ .
cause the mass differences appearing in the numerators e the spin 1/2 final baryon. The magnetic Born term can
of O(Nc_l) The |argeNC Consistency condition also works interfere with the electriC one: By the angular |ntegrat|0n we
to reduce thé\. dependence and to converge the asymptoti(f'ave

behavior. Since the resonance poles do not develop in the 2Ge [ d 1 1-p2 (14
hysical region ofw,, thei ibuti h I | _ E [ 9% 9 v v
physical region ofw,, their contributions are rather small. BY_E it . S I n
v wﬁ wy|v 202 1-v
C. Mass spectrum of the exotic states t
. _ _ X Y, (ReT{"—ReT{M)t{ ) t{M 3.2
The exotic states are required to satisfy the la¥gecon- nEa ( ! st (3.24

sistency condition of the production amplitudes as shown in ) .
previous subsections. Here we estimate the masses with{A" the spin 1/2 final baryon, wher@g denotes the corre-

BKSM. The baryon mass spectrum of the model is given by>Ponding coupling constant if: . In the case of the spin 3/2
the following formula as final baryon, the above expressions are little changed. In

Table Il we show the numerical results of the magnetic po-
larizabilities, in which all the contributions are included.
cJI+D)+(1-0o)l(1+1) Instead of integrating the full amplitudes, if we pick up
only the theX* state and ignore the exotic state and the
background contributions at all, we may get rid of the con-

, (3.2)  tributions from the exotic state. Such a narrow width ap-
proximation has been discussed in the case of the nucleon
polarizabilities and shown to give the same result as the one

whereMg,w,c, andA are the parameters to be calculated byby HBChPT in Refs[9,12]. So, we proceed to the narrow

the mode[18,23. Instead of calculating these parameters bywidth approximation for they+A— A+« channel as a

the model we estimate them by the existing mass spectrunypical example:|T§f)|2 contains theX* resonance and its

of the nonstrange and strange baryons: The result we adoptdentribution in Eq.(3.23) is proportional to

M;=866 MeV, c=0.630, ©=221 MeV, and M,—My

1
M:MS+|S|w+ﬁ

S|

E
—c(l—c)7

51

=3/(2A)=293 MeV. The same parameters give the masses €[ Ksp _j oy Tsaz 97
of the exotic states as 47\ 2My/) 7 wﬁ A mi

" Ay )2
(Ass ) 2= 02) 2+ (Asx AT io)? ’

3
Pk (I=2,J= —) =1517 MeV, (3.29

2

whereT  is the total width of¥*. Using the relation

3 1
E{*(|:§,J:§):1444 MeV, (3.22 ih. 0 1 22\, @ _1F 2
4 m2 2|3 4w m2| 20T (3.29
= k% (I— E J= §) —1639 MeV and taking the narrow width limit as
2 2 '
_ lim AE*AF““ = 78(Age %~ 02),
We note that almost the same values are obtained for the r,.o(Asx x>~ w5)?+ (Asx \I'i)?
masses of the exotic states by the mass formula in the tree (3.27
level of the largeN, chiral perturbation theorj25]. we mav have
The mass of3** is high enough to decay into Y
S, Sam, andA 7w channels, while the mass &7* is " e [uyn\® 4 [Ty,
low and seems to be stable. It should be noticed, however, Bi-alsx= 47\ 2M r..0 (3.28
™ N/ Asxp\ Lot

that the exotic states could disappeaNat=3. The masses

of the exotic states may be sensitive to higNercorrections,  where the spin factor 2 is multiplied and the last factor is the
but we use 1520 MeV fox**, 1450 (1640 MeV for  branching ratio ofS* — A 7. Adding the>*#* channels,

= kk (kK

ET* (E3”) in this paper. we get
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TABLE IlI. Total magnetic polarizability3 and each contributiogS, 8Y , or 8% in units of 10°* fm?®,
M§A= —1.61 is used to fix the isovector part of hyperon magnetic moments.

Y Total B o or K loop BE Jeid B Sum
A 3.22 T+AS 0.34 5.36 —-0.73 4.97
T+I* —-1.29 0.24 —-1.25 —-2.31
K+N,K+5E 0.28 1.04 —-0.58 0.74
K+E* 0.06 0.07 —-0.31 —-0.18
P 6.67 m+A2 1.30 5.08 0.24 6.61
T+ —0.07 0.13 —-0.20 —-0.13
K+N,K+E 0.21 0.40 -0.34 0.27
K+AK+E* 0.22 0.14 —0.45 —-0.08
30 5.52 T+ 0.86 4.06 0.46 5.38
T+ —-0.14 0.52 —-0.42 —0.03
K+N,K+5E 0.14 0.18 —-0.19 0.13
K+AK+E* 0.14 0.16 —-0.25 0.05
3" 7.13 T+A2 1.30 5.08 0.24 6.61
T+ —0.07 0.13 —-0.20 —-0.13
K+N,K+5E 0.07 0.40 0.04 0.51
K+AK+E* 0.07 0.14 —-0.07 0.14
e\ [ wl,\2 4 we used the dispersion relations, where the imaginary parts
M A . . .
B s+ = (4—) oM , (3.29 are given by the Born terms in the pion and kaon photopro-
i N/ Asxp duction Born terms. The Born terms satisfy the low energy

which is similar to the case of the nucleon. For thearget

we have

M _ e
B2t|2*_(ﬂ

(N\Z/A)z
2MN AE*E

y ﬁglo|2*:0. (33@

theorems, and their form is model independent. The coupling
constants are determined so as to satisfy spin-flavor symme-
try of the largeN, QCD.

The calculated electromagnetic polarizabilities through
the pion and kaon Born terms are summarized aas
=18.05, ay+=22.08, as0=13.79, andas-=18.71 and
Br=3.22, Bs+=6.67, Bs0=5.52, andBs-=7.13 in units

Since>° does not have the leading isovector magnetic moof 10-4 fm?3. These values would be too large as seen from
ment, Bxo|narrowiS Z€r0 at leading order. Even if the isoscalar the large values of the polarizabilities of the nucleon given

magnetic moment is used, it is at most 1/4 of fhe-, be-
causeu S~ 1/2M§. The numerical results are as follows:

BY|s+=6.13 and BY.|sx=2.15

in units of 1074 fm3.

Similar narrow width approximation t&** gives the

values

Bglt|2** :378 and ,Bglo|2** :504

by the same calculatiofiL2] as well as the one-loop calcu-
lation in HBChPT[3]. This is because the high-energy con-
tributions from the one-loop diagrams are not fully reduced
for the spin-averaged polarizabilities compared to the spin
polarizabilities owing to the power behavior of the energy
denominator in the integrals. In order to reduce the values of
the spin-averaged polarizabilities within the one-loop calcu-
lations we would have to go to the approximation beyond the
one-loop level, such as vertex corrections and the unitariza-
tion of the Born amplitudes.

The electric Born terms would give the same spin-

Sincel's* is broad as seen previously, these values wouldiveraged polarizabilities as the @Yextension of HBChPT
be an overestimate, but the exotic resonance contributior{d4], if the hyperon mass differences are ignored. But we

cannot be discarded, especially38. Finally, we note thaB
in the narrow width approximation is of ®), because the
limit picks up only the relevant pole of ®C?); that is, the

limit is not consistent with the N, expansion.

IV. CONCLUSIONS AND DISCUSSION

observed that the polarizabilities strongly depend on the hy-
peron mass difference, and then SJUsymmetry of the po-
larizabilities is further broken besides the symmetry breaking
due to the pion and kaon mass difference, even if the cou-
pling constants satisfy S8) symmetry with an appropriate
F/D ratio.

As to the magnetic Born amplitudes we have shown that

We have calculated the spin-averaged electromagnetic p@xotic hyperon states are inevitably required even in the non-

larizabilities of the hyperong. and 3, within the one-loop

exotic reaction channel in order for the lariye consistency

approximation. In order to calculate the one-loop diagramsondition to hold. The consistency condition guarantees
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meson-baryon reaction amplitudes to have a meaningful tions of ON.). Taking the narrow width approximation
limit. Due to the consistency condition the magnetic Borngiven by

terms remain at 043’2), and as a result they become finite at 5 5
high energies and give finite magnetic polarizabilities as the aD:e_( KA*Y) 2
2My) My« =My

electric Born ones. We also noted that the narrow width limit A
is not consistent with the I, expansion, because the limit

picks up the single resonance pole term oN3f) and the we get a3 =0.18 and ago=0.24 in units of 104 fm?,
resultant polarizability is of O2). If we reduceN, to 3, the ~ where we used the transition dipole momenis y = ks
coupling constants of the exotic hyperons to nonexotic ones=0.41 in units of the Bohr magneton, which are given by
would vanish, but simultaneously it makes the magnetidKSM. The model also predicts that the dipole moment of
Born amplitudes break the unitarity bound at high energie§’1‘/2, is —1/3 of the A*, and then the contribution te
even for such a case of the nucleon. Thus, it is impossible tq,oyid be tiny:a§+=0.08,ago=0.02, andag,zo. Our val-
have finite results within the one-loop approximation. Con- ;o are quite different from those of RéL3], but of the

trary, it is & serious problem for the largg baryon theories  game order as Reff15]. The interference terms between the
to study the I, corrections to physical quantities related t0 gjactric Born and the electric dipole moment terms are also
the exotic states and what physical effects are expected hyy, 4.
the exotic states besides a role of the natural cutoff, if the  Goppiet al. calculated the polarizabilities of the hyperons
leading terms in t_he NC_ expansion are valid. These tasks j, Bksm [15], but they used the two-photon seagull terms in
are left to further investigations. _ _ the Lagrangian. It is, however, pointed out that it is danger-
*lt is_known that there is a negative parity hyperon o g to use the two-photon-seagull terms in the Lagrangian to
A*(1405), which BKSM predicts as a&wave bound state c5|cylate the polarizabilities, because the gauge invariance
of the antikaon around thle=J=0 chiral SU2) soliton. The  makes the seagull terms vanish for the electric polarizability
model also predlct§1,2'f and X4, which are the bound 17 26 27. Although we referred to the same BKSM, our
states to the=J=1 soliton[21]. The electric dipole transi-  approach to the subject is quite different from theirs, and the
tion amplitudes with the poles at the negative parity hyperyesylts are also different: We point out that the chiral soliton
ons of spin 1/2 give the electric polarizabilities. Since themgdel including BKSM gives the model-independent form
transition electric dipole moment is of @f) and theSwave  of the pion and kaon photoproduction amplitudes at tree
pion coupling constant of O{_ *%), the electric polarizabil- |evel and then the polarizabilities are given by calculating the
ities are of ON, %), compared to the electric Born contribu- loop integrals with the dispersion relations.
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