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Chiral quark-soliton model in the Wigner-Seitz approximation

P. Amore
College of William and Mary, Williamsburg, Virginia 23185

A. De Pace
Istituto Nazionale di Fisica Nucleare, Sezione di Torino, via P. Giuria 1, 1-10125 Torino, Italy
(Received 29 October 1999; published 30 March 2000

In this paper we study the modification of the properties of the nucleon in the nucleus within the quark-
soliton model. This is a covariant, dynamical model, which provides a nonlinear representation of the sponta-
neously broken SU(2)X SU(2)z symmetry of QCD. The effects of the nuclear medium are accounted for by
using the Wigner-Seitz approximation and therefore reducing the complex many-body problem to a simpler
single-particle problem. We find a minimum in the binding energy at finite density, a change in the isoscalar
nucleon radius, and a reduction of the in-medium pion decay constant. The latter is consistent with a partial
restoration of chiral symmetry at finite density, which is predicted by other models.

PACS numbse(s): 24.85+p, 12.39.Fe, 12.39.Ki, 21.65f

I. INTRODUCTION by Wigner and Seit412], in which the effect of the sur-
rounding matter on each particle is accounted in an average
In this paper we want to address the possibility that themanner, by enclosing it in a spherically symmetric cell: This
nucleon properties be modified in the nuclear medium. In dechnique does not depend on any particular structure of the
conventional nuclear physics approach, where nucleons aridttice and it is particularly suitable for nuclear matter, which
mesons are elementary degrees of freedom, such questiomay be pictured more as a fluid than a crystal. In this way, a
cannot be answered consistently and any modification of theomplex many-body problem is reduced to a single particle
nucleon properties has to be put in by hand. In order tgroblem, where the effects of the nuclear medium enter only
address the problem, one has to consider models in which thirough average boundary conditions. The long-range order
substructure of the nucleon is not neglectede, e.g, Refs. implied by imposing periodic boundary conditions gives rise
[1-3]), and properly implement these models in order to acto a band structure of the energy levels and one has to choose

count for the presence of a medium. . suitable boundary conditions for the lowest and highest en-
In the present work we have considered a chiral model ofgy |evels.
the nucleon, which has been developed by Diakoebel. The Wigner-Seitz approximation to the treatment of soli-

[4,5] on the basis of the instanton picture of the QCDy,n matter has already been applied using other models of
vacuum. It provides a low-energy approximation 0 QCDye cleon structure: The Skyrme mogie8,14), nontopo-
that incorporates a nonlinear representation of the Spoman?dgical soliton model§15—17, the hybrid soliton model

ously broken chiral symmetry. In th_ls framework p'onslj;18—20,l‘], and the global color modd1-23. In these
emerge as Goldstone bosons, dynamically generated by the » !
models the boundary conditions for the spherically symmet-

Dir .V m fl i rk | r ri . . .
ac sea. vacuu uctuatiorguark loops are described ric bottom level of the baridare an extension to a Dirac

by an effective action that yields the pion kinetic term— "~ L . .
which is already included at the classical level in the La-SPInOr of the nonrelativistic requirement of having a flat

grangian of other chiral models—and higher order nonlocalVave function. Moreover, in the chiral soliton modgls’—
contributions. The model is also Lorentz covariant and ha€0l the requirement of unit topological number inside the
essentially only one free parametapart from the regular- qell is also taken into account through the boundary condi-
ization scalg, namely, the constituent quark mass. Althoughtion on the chiral angle. L _
the latter should in principle be momentum dependent, in In this vyork we_explore the sensitivity _o_f the calculatl_on
practice a constant value is usually chosen, which better rd® the choice of different boundary conditions, by also im-
produces the phenomenological properties. The model hdosing the requirement of flatnes_s on the chiral angle, as in
been successfully applied to the description of a variety of:€fS:[8,14. We also show that it does not make sense to
nucleon propertie§4—7]. discuss the band structure of the nuclear system without ac-
Solving the many-body problem is already a formidablecounting for the spurious contrlbu.tlon to the energy stem-
task in a conventional nuclear physics approach, the more s81iNg from the center-of-mass motion of the bags, since the

of course, when one deals with extended objects. Early aGoTections tum out to be larger than the band width and

tempts treated nuclear matter as a crystal, letting the particledrondly dependent on the boundary condition for the level.
sit on a regular latticé8—11]. However, one has still to face Another important difference of the present work from the
serious computational difficulties in properly imposing the

Bloch boundary conditions and moreover, nuclear matter

does not show long-range crystalline order. These facts'For the top level the problem is complicated by the lack of
prompt the application of an approximation first introducedspherical symmetrysee Ref[17]).
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above mentioned calculations is the fact that here we alsblowever, solutions to the classical field equations derived
account for contributions coming from the Dirac sea. Sincefrom Eq. (2.5 do not describe nucleon anil states, since
the chiral field is a mean field, it means that we includeangular momentum and isospin do not commute \itfOne
one-loop quark fluctuations. The latter generate the kinetidefines the so calledyrand spin K=J+ /2, for which
pion term—which is included by hand in the model [H,K]=0, and the quark wave function can be written as
Lagrangians of Refd17—20—and a(attractive nonlocal

contribution, which is known to be important for the calcu- 1 ( u(r)é )

lation of free nucleon propertigd—7]. Dirac fluctuations are h=—7= L.
usually neglected in the in-medium calculations, although Vamlv(nio-e
fchere is no reason to expect they are negligible or at 'ea%hereg is the grand spin state fulfilling
independent of the density.

The paper is organized as follows. In Secs. Il Aand || B (o+7€E=0 (2.7
we briefly discuss the main features of the quark-soliton
model and the approximations employed in its implementaand the normalization is
tion. In Secs. Il C—Il H we introduce the Wigner-Seitz ap-

roximation, the appropriate boundary conditions for the 270

fF;eIds and show hofvpa fr:aw observablez can be calculated in 477J'0 ey y=1. 2.8
this model. A new orthonormal and complete basis in the
elementary cell is also obtained, in which physical quantities, Good spin and isospin quantum numbers may be obtained
such as the vacuum energy, are expressed. In Sec. Il wig the end in a semiclassical approximation by quantizing the
present the numerical results, obtained by solving the equadiabatic rotational motion in isospin spd@d,2]. However,
tions of motion. Finally, in Sec. IV we draw our conclusions in the present paper, for the sake of simplicity, we limit
and discuss possible future developments of the model.  ourselves to consider soliton matter, leaving the projection of
spin-isospin quantum numbers for future work.

The classical solutions are found self-consistently by
solving the equations obtained by minimization of the total
A. Chiral quark-soliton model energy

(2.6

IIl. NUCLEONIC AND NUCLEAR MODELS

The chiral soliton mode[4—6], which provides a non- — —
linear representation of the SU@2¥ SU(2); symmetry of Etod .1, 01=NcEval 4, 6]+ Evad 6], 2.9

QCD, is based on the Lagrangian whereE,,=(#|H|¥) andE, . are the valence and vacuum

part of the energy, respectively. The vacuum enefgy.
incorporates, at the mean field level, one-quark-loop contri-
butions and, formally, can be evaluated through the effective
action, which is obtained by considering the following path
integral over the quark fields:

L=ylib—MUs(x)]4, (2.2)

where ¢ represents the quark fields, carrying color, flavor,
and Dirac indices, whiléJs is a chiral field defined as

1+y 1-y wa
Us(x)= 2Ut(x)+ 5 U(x), (2.2 exp[iSeﬁ[U]}ZJ[dl//][d‘/’]
U(x)=exli 7 0(x)]. 2.3 xexp[i f d4xJ(x>[m—MU5<x>]w<x)]
The large &350 MeV) dynamical quark mass! which ={defid—MU5(x)]}"e. (2.10

appears in Eq(2.1) is the result of the spontaneous break-

down of chiral symmetry, which also accounts for the ap-The |atter can be easily cast in a more suitable form by
pearance of massless Nambu-Goldstone pions. In this modgleans of simple algebraic manipulations

the nucleon emerges as a bound statl ofjuarks in a color

singlet state, kept together by the chiral mean field. Note that i O+ M2+iM dUg(x)

no explicit kinetic energy term for the pion is present in Eq. Se[U]=— ENCtr log 5 ,

(2.D: Actually, the s and U fields are not independent and L+M

the latter is in the end interpreted as a composite field in the (211

qguark-antiquark channel.

Introducing the familiar hedgehog shape of the soliton where the trace is over Dirac and flavor indices. Despite its

apparent simplicity, Eq(2.11) is actually a complicate non-

R local object.
U(x)=expliT-ro(r)}, (2.4 Although a local derivative expansion of course is pos-
o sible, it is of little practical use in this case, since the soliton
the quark Hamiltonian reads field turns out to vary significantly over the relevant distance

R scaleM ~! and no stable solutions are found for expansions
H=—ia - V+BM[coso(r)—iys7rsind(r)]. (2.5  up to sixth order in derivativel25|. Kahana and Ripkg26]
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on the other hand have developed a numerical algorithm to -
directly evaluate vacuum polarization contributions to soli- ¢o(Q)=47wafo drrejo(qr)[coso(r)—1],
ton observables. This technique has been extended in Ref.

[6] to the calculation of nucleon observables, that is after (2173
collective quantization has been applied to project out states .
of definite spin and isospin. ¢i(Q)=iai47waf drr2j,(qr)sind(r)=ig ¢(q),
0
(2.17b

B. Effective action up to second order in the soliton field

Another path, to which we shall adhere in the following, g3ng
has been followed in Ref§4,27] by expanding Eq(2.11) up
to second order iM (4U5), obtaining

K(q)=J dred"K(r),

<2>[u1~—|\| tr{ x ! ———[iM§Us]
O+ M?2 °
1 © ©
K(r):—f dksz dk'k’?
1 . 87°Jo 0
X MZ[IM HUsg]| x
7 C[(k+k")/2] ,
1 Jo(kr)jo(k'r). (2.18
=—ZNCtrf dxd*x' V(x)K(x,x")V(x'), ExEw  ExtEw
(2.12 In Eq. (2.18 E,=Jk?+M?, whereasC(k) is a regulating
function, which will be discussed later. Although here and in
where the following we display, for convenience, formulas using a
momentum cutoff regularization scheme, we shall employ
V(x)=iM hUsg, also the Pauli-Villars regularization, also to be discussed
later.
K(x,x")=—iG(x,x')G(X’,X), E{2) must contain theneson kinetic energy contribution
which can be seef27] to correspond to keeping only the
M2 "— ) _ g=0 term in an expansion df(q) in Eqg. (2.19. This re-
(B+M3G(xx")=%x=x") 213 quirement fixes the normalization &fin such a way that
Note that in the standard derivative expansion the second )
order action would read 1 (= C(k e
K(O)E—J dkk? (3) =—. (2.19
8m<Jo E;y 4NM
1
(2)[U]~——N M2t UshUs]( X| —— ———|x ). o
4 T\ Tlo+m2 O+ m2 Then one find€2) =EX" + E®?), where
(2.19
In cqntrast .to Eq_(2.14), Eq_. (2.12_) does not assume a sIo_vay gkin :izfmdqqél[ ¢§(Q)+ $%(q)]
varying soliton field and gives rise to nonlocal contributions. A

Furthermore, one can see that it gives a good approximation .
both for small and large momenta, thus providing an inter- :27Tfif dr[r26'2+ 2 sirf6], (2.20
polation formula between these reginjdss|.
Specializing to static field configurations, introducing
E() = -5/ /dx® and going to momentum space, one getswith 6’ =dé/dr, and

- 1 (a)
g2 =_°¢ (@)=
Evac f FUV@V(=g]K(a), (219 E 4W2f0 dqq“[K(o) }[¢>0(Q)+¢ (a)].
(2.21
where
The propagatoK(q) can be broughfsee Appendix Ainto
8M2 the form
trV(a) q)]—— ?[o(a) do(a) + di(a) $i(—a)],
1 (= k (k+q k' C[(k+k")/2]
(2.1 K(q)= o K “HErR el
(q) 87T2q 0 Ek ‘k*(ﬂd Ekr Ek+Ek’
with (2.22
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C. Nuclear matter in the Wigner-Seitz approximation As in the free space case, this fixes the normalization of

In order to describe nuclear matter we shall employ, ad<o(r) in such a way that
anticipated in the Introduction, the Wigner-Se{t/S) ap-

proximation[12], which amounts to enclose the fields in a 1 C(ap/R) f2
spherically symmetric cell of radiuR, imposing suitable KO(O):E 3—p§0(r)= > (2.29
boundary conditions. Before discussing our choice of bound- “o an/R 4NM
ary conditions, let us describe the evaluation of the vacuum
energy in the WS cell. Then, one can write
We have first to find an orthonormal and complete basis
of functions inside the elementary cell. We have chosen a
spherical basis, in which the radial dependence is expressed Ekm —2m f2f dr [r 29'2(r)+ 2 sirfo(r)].
through spherical Bessel functions, which have vanishing de-
rivative at the boundary. This is the most useful basis in (2.30
which to perform the calculation, whelat (zero derivativg
boundary conditions for the fields are invoked. More detailspas we shall discuss below, one can view
on the basis are given in Appendix B. All the quantities
involved in the calculation of the vacuum energy turn out to (1)
converge quickly using this basis. They also converge rap- £2 WSEf2 Ko (2.3
idly when zero boundary conditions are employed for the n "Ko(0)
fields.
Starting again from the static limit of Eq$2.12 and  as an in-medium;-dependent pion decay “constant.”
(2.13, one can introduce the Bessel transfornkdf,r’) as On the other hand, the nonlocal contributiBff) —the
in-medium extension of Eq2.21)—can be cast into the fol-
(=20 2 YVim(D Y[ pa (e (r)K (e, lowing form:
a|0z|
(223 ~(2)87-rNCM 1 , ,
where Ews 2 gr 3 fol@o) AKo(ap, ag) folao)
. dp,, +fi(a)AK (ag, ) fi(ag)
Pa(N=keii(alR), | =0, (224 ,
=R ’ ’
' +gfz(az)AKz(azyaz)fz(az)]: (2.32

K, being a normalization constant. Inserting £2.23 into

Eq. (2.12, one finds where

E@L=Ews +E{ZL (2.25

12
where, as in the previous subsection, the kinetic energy fo(ag)=M J drrpq,(r)| coso(r) 6" (r)+2
contribution—the one stemming from the local part of (2.333
K(r,r')=68(r—r")Ky(r)+---, —has been separated. In-
deed, one has

0(r)}

fl(al):Ml’zjoRdrrzpal(r)sin a(r)6'(r),

R
EL = 877Nc|v|zf drKo(r)[r26'2(r)+2 sirfé(r)], (2.33h
0
(2.2
R siné(r
with fz(az)=M”2f drr2p,,(r)| cos(r) 6’ (r)— r( al
0
21+1 C(a/R) , (2339
Ko(=2 X G —5—pa(r) (229
b Ey iR and
andEal/R: \/(a|/R) +M?“.
In the limit R—oo one can check that AK (e, a))= 8_ E (2L+1)(2L"+1)
T’
1 o C(k)_ fqu L L | 2
KO(r)_}Qfo dkic E3 =4NCM2' (229 “lo o o kit (e, ), (2.343
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T nique. The calculation requires the introduction of a few
ki (ay,af)= Z E_ renormalization parameters, which cannot be estimated
e me within the model and have to be determined by comparison
with some phenomenological properties of the system. Note
Cllanta)f2]  Clan) that such Casimir contributiodoes not have any dynamical
Eq (Eq tEa ) ZEiL content because it depends only on the geometry of the cell
and not on the fields, and therefore it can only provide a
XE&(ay,ap,au)é(a] ay,a), (2.34b  density-dependent shift of the energy. As a result, the Euler-
Lagrange equations for the fields are unaffected by this term,
(R, although it could affect the position of the energy minimum.
glay, o) = fo drropa (1)pa (NP (1) For the sake of simplicity, in the present work we will ne-
(2.340 glect this contribution to the total energy.

X

aL,

One should now natice that the straightforward applica- D. Regularization of integrals and sums
tion of Eqg. (2.11) to the Wigner-Seitz cell is incomplete,
because it does not account for the Casimir energy intrinsi
cally connected with the change of topology, which is
present even in the absence of background fields. As a matt
of fact one should write

_In calculating the vacuum contributions to the physical
observables one has to deal with the appearance of divergent
S;(pressions. In this paper we consider two different regular-
Ization schemes, applying a momentum cutoff and using the
Pauli-Villars regularization.

In the first case we introduce a regulating function, which

Se[U]=— 5 N, tr{log[ 0+ M2+iM dU5(X) lws suppresses the contribution to integrals and sums at momenta
k> A, where the scalé\ is determined by fitting the pion
—log[ 0+ M?]jree} decay constant in free spafsee Eq(2.19]. The regulating

function we have chosen has the form
O+M2+iM dUg(x)

i
=-— =N.trlog

> O+ M2 _ 1+1/e
N ws cl ex (K2—A2)/A2]+1 &9
+ASGES™ (2.39
In the Pauli-Villars regulating schenj@9], on the other
where hand, the divergent contributions are eliminated through the
. subtraction
AsCasmi— _ Ly tr{log[ I+ M?]yys — log[ 1+ M?Jee ) ' N KPY(y x!
eff 2 Ne ws frees - K(x,x")—K(x,x")—=K™(x,x"), (2.39

(239 whereK(x,x") is the propagator previously defined, while in
Note that the first term in Eq2.35) is just the application of KPY(x,x’) the quark mass\ has been substituted by the
Eg. (2.11) to the Wigner-Seitz case; on the other hand, thegmass scaléMp,, obtained again by fitting the free space
second term is the genuine Casimir energy due to the changion decay constarithe analog of Eq. 2.1%
of configuration space. By performing the intermediate alge-

bra one obtains N.M?2 1 1
f2= ki - :
5 27T2 (k2+M2)3/2 (k2+ M|23\/)3/2
e o
As§§5'm'fz4NcT[2 S (21+1) \/M2+R—I2 (2.40
| a
! One gets
2
. @) 2¢2
— lim 21+1) \/ M2+ —1. 27?2
Rélez %: ( ) Rz] Mpy=M eXP( N MZ)' (2.4
Cc

(2.37)

The Casimir energy, which is obtained by dividing this ex-
pression by the time-T, has now the expected form: It is Let us now consider the axial current. Its valence part is
the difference between the zero-point energy in the finite .

volume, obtained by filling all the negative energy orbitals in ey

the Dirac sea, and the same expression in free space. As it Ag(x)_w(x)?yﬂﬁﬂx)' (242
stands, however, Eq2.37) is badly divergent and needs to

be regularized. Such a task has been recently carried out fie wish to calculate also the vacuuiire., from the Dirac
massive fermions, in the context of the MIT bag model, insea at the one-quark-loop leyebntribution to the axial cur-
Ref.[28] by means of the zeta function regularization tech-rent: This can be done by defining the generating functional

E. Pion decay constant

055201-5
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_ _ F. Axial coupling constant
\/V[a]=f[dtﬂdlﬂ]eXp[ifd“X[w(iﬂ—MUza)w—aiAé‘] .
(2.43

whereal are classical axial sources coupled to the quantum
axial current; then, the vacuum axial current can be obtained
by means of a functional derivative with respect to the

The axial coupling constant, for a system with a finite
pion mass is given by

1 z
59A=<pT|J drA3[pT). (25D

source as The matrix element between proton states requires one to
adopt a collective quantization procedure in order to project
. .6 out the correct quantum numbers. In the casgsfas dis-
Agvad X) =1 52% () InW[a] (249 cussed, e.g., in Ref30]—it amounts simply to multiply the
e a?=0

" expression for the hedgehog axial current by the matrix ele-
ment of the cranking operator 1/3. Furthermore, as dis-
cussed in Refl24], them_=0 limit requires one to perform
first the angular integral and then the radial integral in Eq.

Calculation provides

4N MZ
A= 5 [ KX 600
= $*(X") po(X)]. (2.49
By setting
K(x,x")=Kgo(r)s*x—x")+AK(x,x"), (2.4

whereK(r) is given by Eq.(2.27), one is able to write

— 7 AN M?
AZO) = 9(X) 5 Y ysip(X) +

f2

X Ko(r)[d*o(X) $%(x) = 9 h*(X) do(X) ]

4N M?
f2

X[3*o(X") pH(X) = * *(X") ho(X) ],

fd"’x’AK(x,x’)

(2.47)

in which local and nonlocal contributions have been sepa-

rated.

Remembering now that the pion decay constant is defined

as

(OJAL(X)|m°(p))=—ip*f B0 P*, (248

(2.57), multiplying the result by a factor 3/2.
Use of Eq.(2.47) yields

R N 1
_ 2l el 2 T 2
Ja jodrr[z(u 30)

_?fi,ws( - sin(20)”_j drAAL

r

(2.52
with
j drAAg:_M 2 {f_()(ao)AKo(QOaaé)fo(aé)
3 wa!
+f1(a) AK (e, p)f1(ap)}
and

f_o(ao)EM3’2J0Rdrr2pao(r)[c080(r)—1],

— R
fl(al)stf drr?p, (r)siné(r).
0

These are the expressions we shall employ in the next sec-
tion to evaluate the in-medium modification of the axial cou-

one is able to obtain the in-medium pion decay constant agling constant.

f2 W) =4NM2K(r), (2.49

that is expressiofR.31), which depends, in a medium, on the

radial coordinate.

An estimate of the average value bf at fixed density

can be obtained by calculating the constant valug ofys

that would vyield the same pion kinetic energy as the

r-dependent onfcompare Eqgs(2.20 and(2.307:

f:drffnws(r)[rzﬂ’z(r)+sin20(r)]

(fn)?= . (250

JORdr[rZH’Z(r)Jrsinze(r)]

G. Equations of motion

The equations of motion are found by minimizing the
total energy(2.9) with respect to the Dirac fieldsandv and
to the chiral angled. It is convenient to write them in a
dimensionless form by letting— Mg and introducing

x=Mr, u(x)=M"¥(r),

2(X)=M 3% (1).
(2.53

Minimization of €= E /M = .4+ €2 then yields

u o~ ~
——=—SinfOu— (€yy+ COSH)v,

dx (2.543
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dv 2 ~ -
= v+ (€yy—COSH)U,

& — ;—sm&

(2.54b

d?¢ 2d6 sin20 NM?

— o= +
dx@ xdx  x2  4qf2

2 = k@ |
. ;sm@fo dqqz{wg)—lbo(qxw(m

[(U?—v?)sin 6+ 2uvcosh]

2 » K(q) .
— ;cosﬁfo dqqz[%—l}h(qX)S(Q):O,

(2.549

where

o(q)= f:dx(qx>21o<qx>[cosa<x>—1], (2553

()= f:dxmx)zjl(qx)sino(x). (2,550

and K(q) is still given by Eq.(2.22), but nowk, k' are
dimensionless ané&,—E,=k?*+1. This is a set of inte-

PHYSICAL REVIEW C 61 055201

dpay(X)

~ 1
Wb(x):§ aE { dx

AKg(ag,ap)folag)

AKz(az-aé)fz(aé)}-
(2.57b

H. Boundary conditions

In the free space problem the boundary conditions on the
fields are determined straightforwardly. From inspection of
the Dirac equations one hag0)=0 and{u(x),v(x)}—0,
x—oo; finiteness of the energy requirggx)—0 when x
—oo, whereas by choosing(0)= 7 one fixes to unity the
topological charge associated to the pion field. This is some-
times interpreted as the baryon number, but not in the present
model[4], where it is connected to the number of valence
levels that are pushed out of the Dirac sea. Baryon number is
fixed by the normalization conditioflgdxxzf)(x)= 1, where
p(X)=U3(x) +v3(x) represents thédimensionlessbaryon
density.

If we consider now nuclear matter as a collection of
hedgehog field configurations centered at lattice points, we
have to impose periodic boundary conditions on the fields
(Bloch’s theorem One then obtains a band structure, that is

grodifferential equations that has to be solved iteratively ag continuous set of states and an energy gap above the high-

shown, for instance, in Ref27].

est energy state. The physical meaning of a band structure of

The same procedure, applied to the system enclosed inthe quark levels is not clear in the present context, since it

the WS cell, yields

du o~ ~
—— =—sinfu—(€,,+COSH)v,

dx (2.56a
dv 2 e 5
x| x sind]v+(ea—cosou, (2.56bh

d29+2 L de sin26

ae X Ao g T

+ ;[(TJZ—ZZ)sin 6+ 2uv cos6]

167K o(X)

- Wa(x) Wy(x)
+sing +coséd =0, 256
Ko(X) Ko(X) (2.569

where Ky(x) is still given by Eg.(2.27), but now Eq iR
—Eq r= (@ /X)7+1 and Py (1) =P (X)
=M~¥, ji(ax/X), having seX=MR. In Eq.(2.560 we
have also set

dpa, (X)

a1
— X)+
Xpal( ) ax

Wo(x)= >,

!

AKl(al!ai)fl(ai)!

(2.573

implies long-range correlations among quarks and one
should be aware that thignd similay model does not ac-
count for confinement. We shall come back to this point
later.

In order to simplify the approach, the Wigner-Seitz ap-
proximation assumes that the cell be symmetric: Then, the
state at the bottom of the band is also spherically symmetric
and the wave functions are flat. To describe the other
states—and, in particular, the top of the band—many differ-
ent assumptions have been made in the literafsee, e.g.,
Ref.[17] for a brief summary. In the calculations presented

in Sec. lll—besides the normalization condition
fédxxzﬁ(x)=1, which fixes the baryon humber—we shall
use three distinct sets of boundary conditigssts I, 1, and
).

In order to make contact with previous calculations, we
follow for set | the choice of Ref[19], where the authors
insist in maintaining unit topological charge inside the cell:

0(0)=m, 6(X)=0,

2(0)=0, v(X)=0 (“bottom” of the band,

U(X)=0 (“top” of the band), (2.58
where v(X)=0, which impliesu’(X)=0. For set Il we
choose to impose “flatness” also on the chiral angle, as in
Refs.[8,14]. Since in general one h&%X) # 0 at the bound-
ary, from inspection of the Dirac equations one sees that
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2(X)=0 no longer impliesu’ (X)=0. We have chosen to medium properties in the Wigner-Seitz approximation, it

impose the physically motivated constraint turns out not only to be sizeable but also to affect the relative
position of the “top” and “bottom” levels, as it will be
' (X)=0, (2.59  discussed in the next section.

In the following, for definiteness, we shall follow the no-
that is we require thélatness of the baryon dens#ythe cell menclature adopted in the literature and we shall label “bot-
boundary. Set Il then turns out to be tom” and “top” the two solutions of each set of boundary

conditions, as indicated in Eg&.58), (2.59, and(2.61).
0(0)=m, 6'(X)=0,
- Ill. RESULTS
v(0)=0,
The numerical results have been obtained by integrating
5 X cosf(X) T VX2—2X sin (X) the equat'ions of_motip(2.56) for the quarks and the meson
v(X)= Xsin0(X)—2 fields, using an iterative procedure as, e.g., in R&f] and
moving from larger to smaller values B For a given value
(2.60 of R, i.e., for a given density, a self-consistent solution has
been found by using as initial ansatz the self-consistent chiral

For set Ill we require the flatness of the baryon density toProfile obtained at the previous value Bf The nonlocal

XU(X) (“bottom”/“top” ).

gether with the requirement of unit topological charge term in Eq.(2.569 has been switched on adiabatically in
order to allow a better convergente.
0(0)=m, 6(X)=0, At the smallest density, corresponding R=5 fm, an
exponential profiled(r)=mexp(—r/ry) has been used as
_ 2(X)=0 (“bottom™ ) , initial ansatz. A dynamical(constituent quark massM
v(0)=0, . ~ (2.61 =350 MeV has been assumed in the calculations. This is a
v(X)=—Xu(X) (“top”). value suggested by the phenomenology of the single nucleon

) . i [4-6], which also turns out to be in the rang800-400
One might be tempted to interpret the two solutions of Eqyjev) where the second order expansion for the effective
(2.59 as corresponding to the bottoin and top of the energyction works well[27].
band. Indeed, from set Ill one sees th&K) =0 corresponds The divergences that appear both in free spacethe
to the bottom of the band in set |, whereas in the nonrelativmomentum integrajsand in the mediungin the sumg have
istic limit (v—0) the second condition in Eq2.61), thatis ~ been regulated as explained in Sec. Il D, using both a regu-
— XU(X)=2(X), reduces tai(X)=0 as in set I. lating function and the Pauh—VHIgr_s regularizations, whose

A word of caution is necessary in analyzing the boundaryparar_neters have been fixed by fitting the free space value of
conditions. In our view one cannot accept without questiorfN® Pion decay constant. Fbt=350 MeV, the cutoff in the
the presence of a band of quark states. The presence off@gulating function turns out to b&=500 MeV, whereas
band, in fact, would be affected by confinement, which isth_e mass scalép, of the Paull-Vlll_ars_ regularization is
absent in the present model. In free space, where the quarkiven by Eq.(2.41). The two regularization schemes yield
are deeply bound in the ground state of the chiral fields, thigualitatively similar results and in the following we shall
shortcoming is not cruciabf course, the study of the highly display only the outcome from the regulating function ap-
excited states of the nucleon would then be problematic  Proach. _ _
the medium, however, because of the lack of confinement, Before discussing the results a comment on the flat basis
quarks exhibit unrealistic long-range correlations. As a re\e have adopted is in o_rder. In fact, this basjs contains a zero
sult, one observes a relatively large probability of having gnomentum state, that is, a term constant in space and pro-
quark sitting at the surface of the WS cell. portional toR ._Whe_n R—0, it _vvould give rise to diver-

In the next section we shall see that when the density o§€nces. As explained in Appendix B, the appearance of such
the medium increases the quark density tends to be mor@ Mmode is peculiar of the flat basis: One might introduce
concentrated in the interior of the bag for tvestend of bases .|nf|n|te5|mally plose to the .fIat.on_e, in which the zero
the energy bandlowest when all effects have been in- mode is absent and its streng_th is distributed among all the
cluded, whereas theppositehappens on thapperend. As other modes. In thv_ase alternatn_/e_b_ases the eff_ecfc (_)f th_e zero
a consequence, quarks sitting in the upper part of the energjpode would be given by an infinite sum of infinitesimal
band would be more affected by the confining forces than th&0ntributions; since we are regularizing the sums, only a fi-
ones in the lower part. Since the confining forces would tend'ité number of modes enters into the calculation of physical
to reduce the quark density at the boundary, the net resyffuantities and the contrlbutllon.to_ t'hem of the redistributed
would then be mainly a lowering—and hence astrength of the zero mode is infinitesimal. Hence, we can
narrowing—of the highest end of the band.

Another problem one should cope with in identifying the
top and bottom energy levels is posed by the presence of theé’The sums over the modes in the orthonormal and complete basis
spurious center of mass energy. Although this contributionnside the spherical cell have been restrictetitd5 and to the first
has been neglected in most existing calculations of in30 rootse,, which provides a good degree of accuracy.
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FIG. 2. Total energy of the WS bagolid) for the “bottom”
FIG. 1. The chiral angle in free spatslid line) and in the WS solution of set I. Also shown are the valen@®tted and vacuum
approximation aR=5 fm, using the boundary conditions of set | (dashed Econtributions; of the latter one, we display also the local
(dashedl and of sets | and Il{dotted. (dashed pand nonlocaldashed bcomponents.

cure the divergence simply by dropping the zero mode.  saw in Sec. Il, a-dependent pion decay constdsee Egs.

In order to exhibit the convergence of the WS calculations(2.30 and (2.31)]; we have, however, checked that setting
to the free space results, let us start by comparing, in Fig. 1f, . ws constant in our calculation, the results of R&0] are
the chiral angle obtained by solving the equations of motiorrecovered. On the other hand, the nonlocal vacuum contribu-
in free spacésolid lineg to the WS solutions corresponding tion provides substantial attraction and displays a moderate
to R=5 fm and obeying the boundary conditions of set Il dependence oR, however, it turns out that the valence and
(dashed linpand of sets | and ll(dotted ling. Note that at  kinetic meson terms compensate each other to a large extent
such a low density, the top and bottom energy levels practiyielding a total contribution without any minimum and the
cally coincide. In both cases a regulating function has beenonlocal term is then instrumental in order to get trather
used to regulate sums and integrals. As expected, the diffeghallow) minimum displayed by the solid line.
ence between the solutions inside the WS cell and the one in By looking at Fig. 3 one notices that solutions to the
free space is barely noticeable at this density. By looking akquations of motion are no longer found bel®&=1.4 fm.
Table | we also notice that the free space energies are recothis depends also on the choice of the boundary conditions
ered with good precision, using any of the boundary condiand in the other cases discussed below we shall see that
tions. solutions are found tilR=1.1 fm. In Ref.[20] solutions

An important difference between our work and previoushave been found till much higher densiti®~0.4 fm). In
calculations employing chiral quark mod¢ls7—2( is due  the case of Fig. 2 in that paper—where a simple Lagrangian
to the inclusion in our calculations of nonlocal effects stem-containing only terms up to second order in the pion field is
ming from the vacuum contributiofat the one-quark-loop used—this is due to the larger value for the constituent quark
level). In Fig. 2 we display, as a function &, the WS cell massM chosen in that work(in their notationM=gf_

total energy(solid line), separated in the valendelotted ~550 MeV, wherey is the quark-meson coupling constant
line) and vacuum(dashed c lingterms, for the “bottom”
solution of set I. Also shown are the separated local—that is, 1200
kinetic—(dashed a lineand nonlocaldashed b linecontri-
butions. The local term displays a behavior similar to the
results of, e.g., Ref20]: Actually, in the chiral quark model 1100
employed in that paper, the kinetic meson contribution is >
present at the classical level, whereas in our case it is dy- 39
namically generated from the vacuum. This implies, as we & 1000
TABLE I. Comparison between the energi@s MeV) obtained
in free space and in the WS cell using the boundary conditions of goola1 o 1 o+ 1 | P N T T
sets I-lll forR=5 fm. 12 3 4 1 2 3 4 5
R (fm) R (fm)
Eva Elar Eior
Eyin E®@ Eyq+E® FIG. 3. Total energy of the WS bag. The left panel corresponds
to the boundary conditions of set ($olid and dashed lines for the
free 4524 9224  -387.6 534.8 987.2 “top” and “bottom” solutions, respectively, whereas the right
Il 443.6 921.8 -386.2 535.6 979.2 panel corresponds to the boundary conditions for the “bottom”
| and Il 452.9 917.5 -389.6 527.9 980.8 solutions of sets | and Il{dashed and for the “top” solutions of

sets I(dotted and Il (solid).
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FIG. 4. Binding energy obtained by taking out the spurious

center-of-mass energy contribution and subtracting the energy at the FIG. 5. Dependence of the baryon density upon the cell radius

lowest densityhereR=5 fm). The left panel corresponds to the for the “top” (solid) and “bottom” (dashed solutions of set II.
boundary conditions of set [kolid and dashed lines for the “top”

and “bottom” solutions, respectivelywhereas the right panel cor-  Of course, the validity of this assumption at finite density can

responds to the boundary conditions for the “bottom” solutions Ofonly be checked through an explicit calculation of the
sets | and lli(dashed and for the “top” solutions of sets (dotted

: vacuum terms, which is however beyond the scope of the
and Il (solid). present analysis.

_ In Fig. 4 we plot the binding energy for the system taking
We have checked that by dropping the nonlocal term and byt the spurious contributions stemming from the motion of

increasingM their results can be recovered. Indeed, from EQihe center of mass. In order to minimize the numerical un-

(2.56 one sees that the equations of motion depend on thgertainty, the binding energy has been obtained by subtract-
combinationX=MR: By increasingM, one can lower the

- ing the total energy at the lowest considered densRy (
minimum value ofR. However, the authors of R€f20] are

. - ) -~ ' =5 fm). Interestingly, we find that, when the center-of-
able to find solutions at higher densities by using more comg 355 motion is taken out, a stronger minimum in the energy

plex Lagrangians containing terms of higher order in theg found, roughly at the same density as in Fig. 3, namely,
pion field. Following that path in our model would imply pr.1 8 fm corresponding tp~0.04 fm 3. Moreover, the

going beyond the two-point approximation to the effectiveyndary conditions of sets | and Il provide more binding
action of Sec. Il B.

. . _that those of set Il. Note that in nuclear matter one should
In Fig. 3 we display the WS cell total energy as a functiony,5 e g binding energy of about16 MeV atR=1.1 fm

of the cell radius, i.e., of the density. The boundary Condi'corresponding tp~0.17 fm 2.
tions of set Il and of sets | and Il have been used in the left We also notice that the “top” solutions of the various sets

and right panels, respectiv_ely. In Fig. 3 we notice _the Pr€Suf houndary conditions provide more binding than the corre-
ence of a very shallow minimum around a density corre

: L X ‘sponding “bottom” solutions. The reason is easily under-

sponding toR~2 fm; this minimum is deeper for the “bot- stood by looking, for example, at Fig. 5.

tom” solutions. S Here we plot the value of the baryon density at the surface
The occurrence of saturation in nuclear matter cannok¢ the cell. ie. u¥(R)+v

i : X 2(R), as a function of the cell ra-
however be stated by simply looking at these figures, begj s jtself, for the boundary conditions of settihe solid and

cause here the spurious energy contribution due (0 th§ashed lines corresponding to the top and bottom solutions,
center-of-mass motion has been neglected. This, as a maltelsnectively, sets | and 11l show a similar behavior. Since
of fact, is a well known problem associated to the mean field

approximation. An estimate of this effect in the chiral quark 1500
soliton model has been obtained in Re¥l], including also

the vacuum(mesoni¢ contributions to the center of mass
motion. The findings in that paper—that valence terms domi-

nate as long ak,,=0—make us feel confident in retaining % 1000 = =
only the latter in our estimate. It reads 2 :
o i 1 . i
- (P?) 500 |- ";,-1-.-.-_-_:'_'_'_'."_‘_—‘— ";;1—.-.'.'.'.‘.‘.'.'.'.?
cm. 2E 7 7
tot |'/|||||||’I||||||
N, 2 (R J<Rd s 1 1 2 3 4 1 2 3 4 5
=- - r{r=(u’“(r
2E ot P'(R) 0 {r(u™(r) R (fm) R (fm)
by 5 FIG. 6. Decomposition of the total energgolid) into valence
+v'(r)%)+2v(r)}. (dot) and vacuum(dashed contributions, for the “top” solutions of
(3.9

set Il (left pane) and 11l (right pane).
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FIG. 7. The ratio between the kinetic and potential components FIG. 9. Isoscalar mean square radius, as a function of the cell
of the valence energy as a function of the cell radius, using theadius. The solid line corresponds to the “top” solution of set I,
“top” boundary conditions of set I(solid) and set Ill(dashegl whereas the dashed line corresponds to the “bottom” solution of

set 11l

the top solution corresponds to a configuration in which the
quarks are more “compressed” inside the cell, a larger ki-necomes dominant. It is also interesting to display, as a func-
netic energy—and therefore a larger center-of-massion of R, the ratio between the valence contributions that
motion—is associated with it. This problem is of course ab-come from the quark kinetic term in the Lagrangian and
sent in solid state physics, the original field of application offrom the quark coupling to the mean field. This is done in
the Wigner-Seitz approximation, because the electron magsig. 7: As expected, this ratio increases with the density.
is indeed completely negligible with respect to the mass of In Fig. 8 the average value of the pion decay constant in
the ions, which form the periodic structure. In the presenthe cell, defined in Eq(2.50), is plotted as a function of the
case, even admitting the existence of a periodic structure igell radius, for the “top” solution of set II; for all the other
nuclear matter, the center-of-mass motion would be neglegsets of solutions the behavior is very similar. The pion decay
ible only in the largeN, limit (N.—=), given the depen- constant decreases by increasing the density, going in the
dence of the total energy and of the center-of-mass energy direction of a partial restoration of chiral symmetry, although
the number of colors, @ (N,) andO(N?), respectively. On  the lack of solutions beyond roughly the standard saturation
the other hand, foN.=3, the center-of-mass energy will density of nuclear matter, prevents one—at the present stage
vary, for each solution inside the band, by an amount comef development of the model—from drawing firmer conclu-
parable with the width of the band itself. Hence, the calcusions. A reduction off . in matter is found both in linear
lation of a reliable band structure within this model is moresigma and Nambu—Jona-Lasinio modglse, e.g., Ref.32]

delicate. for a list of references

In Fig. 6 the total energy corresponding to the “top”  In Fig. 9 the isoscalar mean radius is plotted as a function
solutions of set I(left) and Il (right) is plotted, and decom- of the cell radius, for the “top” (solid and “bottom”
posed into the valendglotted and vacuum{dashed contri-  (dashed solutions of set Il; the other sets of solutions give

butions. We observe that, at very low densities, the two comvery similar results. We observe that this quantity is ex-
ponents bear approximately the same strength, whereas mémely sensitive to the choice of “top” or ‘“bottom”
larger densities, beloviR=2 fm, the valence contribution

o(r)

f_(MeV)

i

r (fm) r (fm)

FIG. 10. Chiral angle as a function of the distance from the
R (fm) center of the soliton foR=5 (solid), 2 (dasheg, and 1.1 fm(dot-
ted), respectively. The left panel corresponds to the “top” solution
FIG. 8. Dependence of the pion decay constant on the cell raef set Il, whereas the right one corresponds to the “top” solution of
dius for the “top” solution of set II. set lll.
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FIG. 11. Large and small components of the Dirac spinor as a

function of the distance from the center of the soliton R«=5 FIG. 13. The axial coupling constant as a functiorRpfor the
(solid), 2 (dashed} and 1.1 fm(dotted, respectively. The left panel “top” boundary conditions of set Il(left pane) and set IlI(right
corresponds to the “top” solution of set Il, whereas the right onepane). The valencegdashed local mesoniddotted, nonlocal me-
corresponds to the “top” solution of set III. sonic (dot-dashe] and total(solid) contributions are displayed.

boundary conditions, the reason being the same as alreadpmponents of the Dirac spinor and the baryon density, re-
noticed when discussing Fig. 5: The “bottom” solution in spectively, using the “top” solutions of sets Il and IIl. Simi-
fact corresponds to a configuration in which the quarks ardar results apply for the other solutions.
more loosely packed inside the cell. A quantity which is more sensitive to the choice of
The actual isoscalar mean radius depends of course on tl®undary conditions ig,, as one can see in Fig. 13. The
prescription one adopts for band filling: A straightforward local mesonic component varies noticeably in the different
counting of degeneracy would correspond to filling only thecases, even at large In Table Il we display the value of the
bottom quarter of the bansince spin, isospin and color different components of, at R=5 fm, compared to the
provide 12-fold degeneracy, while there are only threeresults for the free soliton caseOne clearly sees that the
quarks per cell on the other hand, the authors of Reff6] quark and nonlocal mesonic components have already
have argued that color forces would tend to mix the levelsreached the asymptotic value, whereas the local mesonic
favoring a uniform filling of the band. In the latter case, from term is still higher. The reason for this behavior can be traced
Fig. 9 one would expect the isoscalar radius averaged ovdrack to the slow decay of the chiral angle in the chiral limit
the band to have a moderate density dependence. Howevér(r)~ 1/r?], which allows sizable contributions from large
as already mentioned in Sec. Il H, we expect confinement tdistances. Although in principle one could continue the WS
affect also the band width, and expecially the “bottom” bor- calculation at larger radii, one would then need to increase
der (actually, the upper end, where quark are more looselghe number of states included in the orthonormal basis em-
packed, thus unbalancing the distribution in favor of the ployed in the expansion. However, it is likely that, when
lower curve of Fig. 9 and yielding a shrinking of the soliton. chiral symmetry is explicitly broken, the exponential decay
This would be at variance with findings of other models.  of the chiral angle would grant a faster convergence and
For completeness we display in Figs. 10, 11, and 12, as suppress the sensitivity to the boundary conditions. Increas-
function of the distance from the center of the WS cell anding the density, the mesonic contributionsgg, both local
for three values oR, the chiral angle, the large and the small and nonlocal, rapidly decrease and most of the strength is
now carried by the quarks alone.

30 BE N IV. OUTLOOK AND PERSPECTIVES

In this paper we have applied the Wigner-Seitz approxi-
mation to the chiral quark-soliton model of the nucleon. This
model, complemented by the WS approximation, provides a
— simple yet interesting framework for studying possible modi-
fications of the nucleon properties in nuclear matter. It is
important to remark that we are actually dealing with a
5 3 parameter-free model, since the only free parametibrs

20 -

p (fm™)

r (fm) t (fm)

FIG. 12. Baryon density as a function of the distance from the 3As noted by the authors of Rei27], the two-point approxima-
center of the soliton foR=5 (solid), 2 (dashegl and 1.1 fm(dot- tion to the effective action works fay, to a lesser extent than for
ted), respectively. The left panel corresponds to the “top” solution the energy and the apparent agreement with the experimental value
of set I, whereas the right one corresponds to the “top” solution ofshould be regarded as accidental, since the self-consistent calcula-
set Ill. tion (see, e.g., Ref6]) gives a smaller value.
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TABLE II. The axial coupling constarg, in free space and in  energy band in the medium. These two levels correspond to
the Wigner-Seitz approximation &=5 fm, for the “top” bound-  specific boundary conditions and we have found the role of
ary conditions of sets Il and III. the boundary conditions generating the upper and lower lev-
els to be exchanged with respect to previous calculations.
Note that the intersection of an occupied band with an empty

Quark  Local mesonic  Nonlocal mesonic  Total

free 1.07 0.50 —-0.35 1.22 one is often interpreted as the onset of color superconductiv-
[ 1.06 0.76 -0.34 148 ity
m 1.06 1.03 —0.34 1.76 We have also explored the effects stemming from differ-

ent choices of boundary conditions. All the cases discussed
. L above display a similar qualitative behavior, although there
constituent quark madd and the regularization scalbave 56 gefinitely quantitative differences, especially for the axial
been fixed in free space. Note thdtcould, in principle, be .o 5ling constant, which is, however, very much affected by
calculated dynamically, as done, e.g., in the Nambu—Jonggg |ong.range behavior of the chiral field in theassless
Lasinio model[2]; this would require the solution of @ gap 4ion) chiral limit. Also the two regularization schemes we
equation and would probably lead to an4|n-medIum SUPPreSRave adopted turned out to give qualitatively similar results.
sion of M, similar to what is found forf,. _ We have calculated a few physical quantities, sucth,as
The value we have been using flsf (350 MeV) is sug-  anq¢r2), _  The pion decay constant has been found to de-
gested by free space phenomenology. We have also tried Qe 456" with increasing density, pointing to a partial restora-
test the sensitivity tVl of our calculations by employing o of chiral symmetry in the medium. The isoscalar mean
other values found in the literaturdyl =500-550 MeV  gqare radius, on the other hand, has been found to depend
[20]. While we find results qualitatively very similar to the_ heavily on the position in the energy band, leaving open the
M =350 MeV case, one should be aware that the two-poing estion whether an average nucleon will swell or shrink,
approximation to the vacuum contributions works better forgiven the present uncertainties in assessing the band struc-
masses of the order of 300-400 MeV, as found in R&T]. e
A more careful investigation of this model for larger con-  jjjike previous calculations with chiral mode[d8—
stituent quark masses might require to go beyond the twoy( 17, we have been able to find binding, but at a density
point approximation presently used. _ much lower than the standard saturation density of nuclear
The same method of accounting for in-medium effects hagyaiter; moreover, solutions of the equations of motion dis-
already been applied to a number of microscopic models ofynear roughly below the latter density. The authors of Ref.
the nucleor[13-23. With respect to previous analyses, We [20] have been able to find solutions at high densities—still
have for the first time consistently calculated effects Stemkeeping realistic values for the constituent quark mass pa-
ming from_ the Dlra_c sea, i.e., from_ excitations of virtual (3 meter M—by incorporating in their chiral Lagrangian
quark—antiquark pairs, including their dependence upon thgsms of higher order in the pion field. In the present model
density of the system. _ , this would correspond to dropping the two-point approxima-
_Vacuum fluctuations manifest themselves in two waySijon, g the effective action in evaluating vacuum fluctuations.
Firstly, by giving rise to a pion decay constant dependent ORrhjs js probably the most needed development of the present
the distance from the center of the bag, which in turn mOd"calculation—employing, e.g., the numerical algorithm of
fies the pion kinetic contribution with respect to chiral mod- ref [26]—since only in the free case it has been explicitly

els where the pion is explicitly included at the classical level g ified that the two-point approximation works reasonably
[18—-20,17 [see EQgs(2.30 and(2.31)]: The contribution to well [27].

the energy from this term is however qualitatively similar to 1o two-point approximation is not the only one that
the one of previous analysgs8-20,17. Secondly, vacuum .4 affect the search for binding: For instance, as already
fluctuations generate a new nonl(_)Gaﬂ,racnveC(_)ntrlbutlon, mentioned, the constituent quak is in principle density
whose density dependence, albeit moderate, is, however, réjyq momentum dependent; although a constant valubifor
evant in order to bind the system, given the compensationios for a fair description of phenomenology in free space,

one observes with increasing density between the valenggis not clear whether the same can be assumed in the me-
quark and kinetic pion contributions. dium.

Another effect that has usually been neglected in previous - another interesting issue in this connection is related to
calcula}tions is.the spurious center—of-.mass motion: We havg,e apsence of confininggolor) forces in this(and similay
found it to be important not only to give, of course, a more el The lack of confinement, while not essential in the
realistic estimate of the energy, but also to determine th@escription of a single nucleon, where the quarks are in any
relative position of the top and bottom ends of the quarkgase tightly bound by the soliton, can become problematic at

nonzero density. In the latter case an unrealistic sharing of
quarks between neighboring nucleons can become possible.
4By increasing the density, only virtual states of higher energy carlt would be very interesting to implement our calculations in
be excited and, eventually, in a very dense system, only states lyingnodels with confining forces, such as the color-dielectric
well above the typical momentum cutoff would be available: Themodel [33]. However, calculations in this model are at
quark condensatéqq) is thus expected to decrease at finite densi-present plagued by insurmountable difficulties when one
ties. tries to include the vacuum effedt®] and therefore limited
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to include only the valence contributions.

PHYSICAL REVIEW (51 055201

We want to build an orthonormal and complete basis inside a

Another feature that is lacking at the present stage is thephere of radiuf, having the same form of E¢B1). While
projection of good spin-isospin quantum numbers out of theén that case the momentum could take a continuum set of
hedgehog state. Since the momentum of inertia is, in generalalues, now only a discrete set of momenta will be allowed.

density dependent, the projection is likely to affect the posi-

tion of the minimum in the energy.
Finally, it is worth noticing that the binding in thi@nd

We start considering the equations for the spherical
Bessel functions, corresponding to two different momenta
ki=a/R andk,= B/R:

similar) model is the result of cancellations between large

contributions. Smallon the scale of the total enengyaria-

tions to one of this components can possibly have sensitive  dr
effects on the saturation curve. We have not included, for
instance, the explicit breaking of chiral symmetry due to

m,#0.
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APPENDIX A: THE PROPAGATOR K(q)

We derive here the expression for the propag#tq),

introduced in Sec. Il B. As a first step we perform the angu-

lar integrals in Eq(2.18, getting

7 Cl(k+k')/2]
E.Ee E+Eq

1 0 0
K(q)=— dksz dk’k’2
(@ 27T4f0 0

% | “areiotaniotkniok'n). (A1)

The inner integral can be done analyticdlBA], yielding

j:drrzjo<qr>jo<kr)jo<k'r>

132 1 o
== ——| dryrd r)Jyo(kr)Jyo(k'r
(2) \/Wfo \/— 120r)Jya(kr)dyK'r)

_mA(g.kk)

; A2
2 qkK (A2)

parts, one gets

R 2
_jo (az_ﬁz)éh(%)h(%)

=Rlajj(a)ji(B)=Bj{ (B)i(a)].

The above equation states the orthonormality of the elements
of the basis, provided that the following condition is met:

aji(a)ji(B)—Bj| (B)ji(a)=0,

The choice of the boundary conditions fulfilled by the ele-

ments of the basis will therefore be constrained by this re-
quirement. It is easy to convince oneself that three different
possibilities are available:

(B3)

a* B. (B4)

Ji()=0, (B5a)
ji(@)=0, (B5b)
aji(a)=7nji(a), (B5¢)

where n will is a constant parameter. In the limit=0 and

n— the first two cases are recovered, respectively.
Notice that, in the limitR— w~—where the modes form a

continuum—all these boundary conditions become equiva-

where the functiord (x,y,z) vanishes whenever it is not pos- |ant.

sible to build a triangle of sides y, andz, and is equal to 1
otherwise. One then obtains

fwd  [eea K CLkK)/2)
8’772q 0 Ek k—q| Ekr Ek+Ek’ .

K(g)=
(A3)

APPENDIX B: A BASIS FOR FLAT FUNCTIONS

In free spaceR— <) an orthonormal and complete set of

states can be chosen as

1.
W kim(X) = ;e'kOXOY{n(Q)h(kr)- (B1)

We then introduce the normalized functions
ar
R/

2
KiI: %(Cuzj ((a)?=fi(a){—2aj|(a)

pa|(r)EKa|j|

+[I(1+D) = aflji(aph L, (B6)

such that

R
fodrrzpa|(r)pﬁ|(r):5a|ﬁl- (B7)
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TABLE llI. Rules for going from free space to the Wigner-Seitz There is a one-to-one correspondence between the modes in
cell. the two bases, in such a way that for egék 0 one can

defineB= 8- €;, whereey<1 if p<1.

Free space Wigner-Seitz boundary conditions Writing down the transformation from one basis to the
[odkik2 — (ml2)=,, other, namely,

k — a IR

Ji(kr) — Pay(r)

pa(r)=2> caapp(r), (B11)
B

The completeness of the basis allows one to write the fol- .
lowing representation for the Dirac delta function inside thewith some algebra one can verify that, for0 and 8=0,
WS cell: one has

, S(r—r")
%: Pay(F) Py, (T ):r—z' (B8) COE:_%/;_EGBv (B12)

It is simple to derive an expression for the Green’s function
of the operator [1+M?2) in the WS cell. It reads which indeed proves that the zero mode is now redistributed
over all the other modes, in the quasiflat basis.
= dko Calculations in the two bases are equival@ntorder »)

! m mx !
G(x.x ):;’n; L2 %: YE(E)Y (@) only when considering convergent quantities. Quantities that
need regularization are therefore different in the two bases,
o Pa(Npg () since only a finite number of modes will contribute. The flat
x e Kolko=x0) — ' : 5. (B9)  basis is the one we have chosen in the calculations of this
afIR?+M?—kj paper, since it is the most convenient in order to impose the

physically motivated boundary conditions discussed in the

text. The zero mode, however, gives rise to divergences
~whenR—0 and one could in principle eliminate this prob-
s . I X g lem by employing a quasiflat basis infinitesimally close to
tamed_ for a strictly vanlshln_gy_ [in fact, it corresp_onds t0 @ he flat one. On the other hand, the very fact that for regu-
negative root of Eq(BSc) at finite values ofy]. This means 5764 quantities only a finite number of modes is relevant,
that the strength of this mode has to be redistributed, fog ;55 ys to keep the flat basis and simply discard the zero
finite », over all the other modes. Let us ca@lland 8 the  mode, since the error introduced in this way will be infini-

The flat basis is obtained, as we said above, in the limnit
—0; in this case, however, the lowest energy mode
corresponding to zero momentum for 0—can only be ob-

modes such that tesimally small. Finally, we display in Table Il a few simple
, -~ - rules that allow one to rewrite in the WS basis quantities
1(B)=0, Bji(B)=nii(B). (B10)  expressed in the free bagBl).
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