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Chiral quark-soliton model in the Wigner-Seitz approximation
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In this paper we study the modification of the properties of the nucleon in the nucleus within the quark-
soliton model. This is a covariant, dynamical model, which provides a nonlinear representation of the sponta-
neously broken SU(2)L3SU(2)R symmetry of QCD. The effects of the nuclear medium are accounted for by
using the Wigner-Seitz approximation and therefore reducing the complex many-body problem to a simpler
single-particle problem. We find a minimum in the binding energy at finite density, a change in the isoscalar
nucleon radius, and a reduction of the in-medium pion decay constant. The latter is consistent with a partial
restoration of chiral symmetry at finite density, which is predicted by other models.

PACS number~s!: 24.85.1p, 12.39.Fe, 12.39.Ki, 21.65.1f
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I. INTRODUCTION

In this paper we want to address the possibility that
nucleon properties be modified in the nuclear medium. I
conventional nuclear physics approach, where nucleons
mesons are elementary degrees of freedom, such que
cannot be answered consistently and any modification of
nucleon properties has to be put in by hand. In order
address the problem, one has to consider models in which
substructure of the nucleon is not neglected~see, e.g, Refs
@1–3#!, and properly implement these models in order to
count for the presence of a medium.

In the present work we have considered a chiral mode
the nucleon, which has been developed by Diakonovet al.
@4,5# on the basis of the instanton picture of the QC
vacuum. It provides a low-energy approximation to QC
that incorporates a nonlinear representation of the spont
ously broken chiral symmetry. In this framework pion
emerge as Goldstone bosons, dynamically generated by
Dirac sea. Vacuum fluctuations~quark loops! are described
by an effective action that yields the pion kinetic term
which is already included at the classical level in the L
grangian of other chiral models—and higher order nonlo
contributions. The model is also Lorentz covariant and
essentially only one free parameter~apart from the regular-
ization scale!, namely, the constituent quark mass. Althou
the latter should in principle be momentum dependent
practice a constant value is usually chosen, which better
produces the phenomenological properties. The model
been successfully applied to the description of a variety
nucleon properties@4–7#.

Solving the many-body problem is already a formidab
task in a conventional nuclear physics approach, the more
of course, when one deals with extended objects. Early
tempts treated nuclear matter as a crystal, letting the part
sit on a regular lattice@8–11#. However, one has still to fac
serious computational difficulties in properly imposing t
Bloch boundary conditions and moreover, nuclear ma
does not show long-range crystalline order. These fa
prompt the application of an approximation first introduc
0556-2813/2000/61~5!/055201~16!/$15.00 61 0552
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by Wigner and Seitz@12#, in which the effect of the sur-
rounding matter on each particle is accounted in an aver
manner, by enclosing it in a spherically symmetric cell: Th
technique does not depend on any particular structure of
lattice and it is particularly suitable for nuclear matter, whi
may be pictured more as a fluid than a crystal. In this way
complex many-body problem is reduced to a single part
problem, where the effects of the nuclear medium enter o
through average boundary conditions. The long-range o
implied by imposing periodic boundary conditions gives ri
to a band structure of the energy levels and one has to ch
suitable boundary conditions for the lowest and highest
ergy levels.

The Wigner-Seitz approximation to the treatment of so
ton matter has already been applied using other model
the nucleon structure: The Skyrme model@13,14#, nontopo-
logical soliton models@15–17#, the hybrid soliton model
@18–20,17#, and the global color model@21–23#. In these
models the boundary conditions for the spherically symm
ric bottom level of the band1 are an extension to a Dira
spinor of the nonrelativistic requirement of having a fl
wave function. Moreover, in the chiral soliton models@17–
20# the requirement of unit topological number inside t
cell is also taken into account through the boundary con
tion on the chiral angle.

In this work we explore the sensitivity of the calculatio
to the choice of different boundary conditions, by also im
posing the requirement of flatness on the chiral angle, a
Refs. @8,14#. We also show that it does not make sense
discuss the band structure of the nuclear system without
counting for the spurious contribution to the energy ste
ming from the center-of-mass motion of the bags, since
corrections turn out to be larger than the band width a
strongly dependent on the boundary condition for the lev

Another important difference of the present work from t

1For the top level the problem is complicated by the lack
spherical symmetry~see Ref.@17#!.
©2000 The American Physical Society01-1
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above mentioned calculations is the fact that here we
account for contributions coming from the Dirac sea. Sin
the chiral field is a mean field, it means that we inclu
one-loop quark fluctuations. The latter generate the kin
pion term—which is included by hand in the mod
Lagrangians of Refs.@17–20#—and a ~attractive! nonlocal
contribution, which is known to be important for the calc
lation of free nucleon properties@4–7#. Dirac fluctuations are
usually neglected in the in-medium calculations, althou
there is no reason to expect they are negligible or at le
independent of the density.

The paper is organized as follows. In Secs. II A and II
we briefly discuss the main features of the quark-soli
model and the approximations employed in its implemen
tion. In Secs. II C–II H we introduce the Wigner-Seitz a
proximation, the appropriate boundary conditions for t
fields and show how a few observables can be calculate
this model. A new orthonormal and complete basis in
elementary cell is also obtained, in which physical quantit
such as the vacuum energy, are expressed. In Sec. II
present the numerical results, obtained by solving the eq
tions of motion. Finally, in Sec. IV we draw our conclusion
and discuss possible future developments of the model.

II. NUCLEONIC AND NUCLEAR MODELS

A. Chiral quark-soliton model

The chiral soliton model@4–6#, which provides a non-
linear representation of the SU(2)L3SU(2)R symmetry of
QCD, is based on the Lagrangian

L5c̄@ i ]”2MU5~x!#c, ~2.1!

wherec represents the quark fields, carrying color, flav
and Dirac indices, whileU5 is a chiral field defined as

U5~x!5
11g5

2
U†~x!1

12g5

2
U~x!, ~2.2!

U~x!5exp@ i t•u~x!#. ~2.3!

The large (>350 MeV) dynamical quark massM which
appears in Eq.~2.1! is the result of the spontaneous brea
down of chiral symmetry, which also accounts for the a
pearance of massless Nambu-Goldstone pions. In this m
the nucleon emerges as a bound state ofNc quarks in a color
singlet state, kept together by the chiral mean field. Note
no explicit kinetic energy term for the pion is present in E
~2.1!: Actually, thec and U fields are not independent an
the latter is in the end interpreted as a composite field in
quark-antiquark channel.

Introducing the familiar hedgehog shape of the soliton

U~x!5exp$ i t• r̂u~r !%, ~2.4!

the quark Hamiltonian reads

H52 i a•“1bM @cosu~r !2 ig5t• r̂ sinu~r !#. ~2.5!
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However, solutions to the classical field equations deriv
from Eq. ~2.5! do not describe nucleon andD states, since
angular momentum and isospin do not commute withH: One
defines the so calledgrand spin K5J1t/2, for which
@H,K#50, and the quark wave function can be written as

c5
1

A4p
S u~r !j

v~r !i s• r̂j
D , ~2.6!

wherej is the grand spin state fulfilling

~s1t!j50 ~2.7!

and the normalization is

4pE
0

`

drr 2c̄g0c51. ~2.8!

Good spin and isospin quantum numbers may be obta
in the end in a semiclassical approximation by quantizing
adiabatic rotational motion in isospin space@24,2#. However,
in the present paper, for the sake of simplicity, we lim
ourselves to consider soliton matter, leaving the projection
spin-isospin quantum numbers for future work.

The classical solutions are found self-consistently
solving the equations obtained by minimization of the to
energy

Etot@c,c̄,u#5NcEval@c,c̄,u#1Evac@u#, ~2.9!

whereEval[^cuHuc& andEvac are the valence and vacuum
part of the energy, respectively. The vacuum energyEvac
incorporates, at the mean field level, one-quark-loop con
butions and, formally, can be evaluated through the effec
action, which is obtained by considering the following pa
integral over the quark fields:

exp$ iSeff@U#%5E @dc̄#@dc#

3expH i E d4xc̄~x!@ i ]”2MU5~x!#c~x!J
5$det@ i ]”2MU5~x!#%Nc. ~2.10!

The latter can be easily cast in a more suitable form
means of simple algebraic manipulations

Seff @U#52
i

2
Nc tr logFh1M21 iM ]”U5~x!

h1M2 G ,

~2.11!

where the trace is over Dirac and flavor indices. Despite
apparent simplicity, Eq.~2.11! is actually a complicate non
local object.

Although a local derivative expansion of course is po
sible, it is of little practical use in this case, since the solit
field turns out to vary significantly over the relevant distan
scaleM 21 and no stable solutions are found for expansio
up to sixth order in derivatives@25#. Kahana and Ripka@26#
1-2
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CHIRAL QUARK-SOLITON MODEL IN THE WIGNER- . . . PHYSICAL REVIEW C 61 055201
on the other hand have developed a numerical algorithm
directly evaluate vacuum polarization contributions to so
ton observables. This technique has been extended in
@6# to the calculation of nucleon observables, that is a
collective quantization has been applied to project out st
of definite spin and isospin.

B. Effective action up to second order in the soliton field

Another path, to which we shall adhere in the followin
has been followed in Refs.@4,27# by expanding Eq.~2.11! up
to second order inM (]”U5), obtaining

Seff
(2)@U#'

i

4
Nc trK xU 1

h1M2
@ iM ]”U5#

3
1

h1M2
@ iM ]”U5#UxL

52
1

4
Nc tr E d4xd4x8V~x!K~x,x8!V~x8!,

~2.12!

where

V~x!5 iM ]”U5 ,

K~x,x8!52 iG~x,x8!G~x8,x!,

~h1M2!G~x,x8!5d4~x2x8!. ~2.13!

Note that in the standard derivative expansion the sec
order action would read

Seff
(2)@U#'2

i

4
NcM

2 tr@]”U5]”U5#K xU 1

h1M2

1

h1M2UxL .

~2.14!

In contrast to Eq.~2.14!, Eq.~2.12! does not assume a slowl
varying soliton field and gives rise to nonlocal contribution
Furthermore, one can see that it gives a good approxima
both for small and large momenta, thus providing an int
polation formula between these regimes@4,5#.

Specializing to static field configurations, introducin
Evac

(2) [2Seff
(2)/*dx0 and going to momentum space, one g

Evac
(2) 5

Nc

4 E dq

~2p!3
tr@V~q!V~2q!#K~q!, ~2.15!

where

tr@V~q!V~2q!#5
8M2

f p
2

q2@f0~q!f0~q!1f i~q!f i~2q!#,

~2.16!

with
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f0~q!54p f pE
0

`

drr 2 j 0~qr !@cosu~r !21#,

~2.17a!

f i~q!5 i q̂i4p f pE
0

`

drr 2 j 1~qr !sinu~r ![ i q̂if~q!,

~2.17b!

and

K~q!5E dreiq•rK~r !,

K~r !5
1

8p5E0

`

dkk2E
0

`

dk8k82

3
p

EkEk8

C@~k1k8!/2#

Ek1Ek8

j 0~kr ! j 0~k8r !. ~2.18!

In Eq. ~2.18! Ek5Ak21M2, whereasC(k) is a regulating
function, which will be discussed later. Although here and
the following we display, for convenience, formulas using
momentum cutoff regularization scheme, we shall emp
also the Pauli-Villars regularization, also to be discuss
later.

Evac
(2) must contain themeson kinetic energy contribution,

which can be seen@27# to correspond to keeping only th
q50 term in an expansion ofK(q) in Eq. ~2.15!. This re-
quirement fixes the normalization ofK in such a way that

K~0![
1

8p2E0

`

dkk2
C~k!

Ek
3

5
f p

2

4NcM
2

. ~2.19!

Then one findsEvac
(2) 5Ekin 1Ẽ(2), where

Ekin 5
1

4p2E0

`

dqq4@f0
2~q!1f2~q!#

52p f p
2 E

0

`

dr@r 2u8212 sin2u#, ~2.20!

with u85du/dr, and

Ẽ(2)5
1

4p2E0

`

dqq4FK~q!

K~0!
21G@f0

2~q!1f2~q!#.

~2.21!

The propagatorK(q) can be brought~see Appendix A! into
the form

K~q!5
1

8p2q
E

0

`

dk
k

Ek
E

uk2qu

k1q

dk8
k8

Ek8

C@~k1k8!/2#

Ek1Ek8

.

~2.22!
1-3
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C. Nuclear matter in the Wigner-Seitz approximation

In order to describe nuclear matter we shall employ,
anticipated in the Introduction, the Wigner-Seitz~WS! ap-
proximation @12#, which amounts to enclose the fields in
spherically symmetric cell of radiusR, imposing suitable
boundary conditions. Before discussing our choice of bou
ary conditions, let us describe the evaluation of the vacu
energy in the WS cell.

We have first to find an orthonormal and complete ba
of functions inside the elementary cell. We have chose
spherical basis, in which the radial dependence is expre
through spherical Bessel functions, which have vanishing
rivative at the boundary. This is the most useful basis
which to perform the calculation, whenflat ~zero derivative!
boundary conditions for the fields are invoked. More deta
on the basis are given in Appendix B. All the quantiti
involved in the calculation of the vacuum energy turn out
converge quickly using this basis. They also converge r
idly when zero boundary conditions are employed for th
fields.

Starting again from the static limit of Eqs.~2.12! and
~2.13!, one can introduce the Bessel transform ofK(r,r8) as

K~r,r8!5(
lm

(
a la l8

Ylm~ r̂!Ylm* ~ r̂8!ra l
~r !ra

l8
~r 8!Kl~a l ,a l8!,

~2.23!

where

ra l
~r ![ka l

j l~a l r /R!,
dra l

dr
U

r 5R

50, ~2.24!

ka l
being a normalization constant. Inserting Eq.~2.23! into

Eq. ~2.12!, one finds

EWS
(2) 5EWS

kin 1ẼWS
(2) , ~2.25!

where, as in the previous subsection, the kinetic ene
contribution—the one stemming from the local part
K(r,r8)5d(r2r8)K0(r )1•••, —has been separated. In
deed, one has

EWS
kin 58pNcM

2E
0

R

drK0~r !@r 2u82~r !12 sin2u~r !#,

~2.26!

with

K0~r !5(
l

(
a l

2l 11

16p

C~a l /R!

Ea l /R
3

ra l

2 ~r ! ~2.27!

andEa l /R5A(a l /R)21M2.

In the limit R→` one can check that

K0~r !→ 1

8p2E0

`

dkk2
C~k!

Ek
3

[
f p

2

4NcM
2

. ~2.28!
05520
s

-
m

is
a
ed
e-
n

s

p-

y

As in the free space case, this fixes the normalization
K0(r ) in such a way that

K0~0!5
1

16p (
a0

C~a0 /R!

Ea0 /R
3

ra0

2 ~r !5
f p

2

4NcM
2

. ~2.29!

Then, one can write

EWS
kin 52p f p

2 E
0

R

dr
K0~r !

K0~0!
@r 2u82~r !12 sin2u~r !#.

~2.30!

As we shall discuss below, one can view

f p,WS
2 [ f p

2 K0~r !

K0~0!
~2.31!

as an in-medium,r-dependent pion decay ‘‘constant.’’
On the other hand, the nonlocal contributionẼWS

(2) —the
in-medium extension of Eq.~2.21!—can be cast into the fol-
lowing form:

ẼWS
(2) 8pNcM

f p
2 (

aa8
H 1

3
f 0~a0!DK0~a0 ,a08! f 0~a08!

1 f 1~a1!DK1~a1 ,a18! f 1~a18!

1
2

3
f 2~a2!DK2~a2 ,a28! f 2~a28!J , ~2.32!

where

f 0~a0!5M1/2E
0

R

drr 2ra0
~r !Fcosu~r !u8~r !12

sinu~r !

r G ,
~2.33a!

f 1~a1!5M1/2E
0

R

drr 2ra1
~r !sinu~r !u8~r !,

~2.33b!

f 2~a2!5M1/2E
0

R

drr 2ra2
~r !Fcosu~r !u8~r !2

sinu~r !

r G ,
~2.33c!

and

DKl~a l ,a l8!5
1

8p2 (
LL8

~2L11!~2L811!

3S L L8 l

0 0 0D
2

k lLL 8~a l ,a l8!, ~2.34a!
1-4
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k lLL 8~a l ,a l8!5 (
aLaL8

p

EaL

3F C@~aL1aL8!/2#

EaL8
~EaL

1EaL8
!

2
C~aL!

2EaL

2 G
3j~a l ,aL ,aL8!j~a l8 ,aL ,aL8!, ~2.34b!

j~a l ,aL ,aL8!5E
0

R

drr 2ra l
~r !raL

~r !raL8
~r !.

~2.34c!

One should now notice that the straightforward appli
tion of Eq. ~2.11! to the Wigner-Seitz cell is incomplete
because it does not account for the Casimir energy intri
cally connected with the change of topology, which
present even in the absence of background fields. As a m
of fact one should write

Seff @U#52
i

2
Nc tr$ log@h1M21 iM ]”U5~x!#WS

2 log@h1M2# free%

[2
i

2
Nc tr logFh1M21 iM ]”U5~x!

h1M2 G
WS

1DSeff
Casimir, ~2.35!

where

DSeff
Casimir[2

i

2
Nc tr$ log@h1M2#WS2 log@h1M2# free%.

~2.36!

Note that the first term in Eq.~2.35! is just the application of
Eq. ~2.11! to the Wigner-Seitz case; on the other hand,
second term is the genuine Casimir energy due to the cha
of configuration space. By performing the intermediate al
bra one obtains

DSeff
Casimir[4NcTH (

l
(
a l

~2l 11!AM21
a l

2

R2

2 lim
R→`

(
l

(
a l

~2l 11!AM21
a l

2

R2J .

~2.37!

The Casimir energy, which is obtained by dividing this e
pression by the time2T, has now the expected form: It i
the difference between the zero-point energy in the fin
volume, obtained by filling all the negative energy orbitals
the Dirac sea, and the same expression in free space.
stands, however, Eq.~2.37! is badly divergent and needs t
be regularized. Such a task has been recently carried ou
massive fermions, in the context of the MIT bag model,
Ref. @28# by means of the zeta function regularization tec
05520
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nique. The calculation requires the introduction of a fe
renormalization parameters, which cannot be estima
within the model and have to be determined by compari
with some phenomenological properties of the system. N
that such Casimir contributiondoes not have any dynamica
content, because it depends only on the geometry of the
and not on the fields, and therefore it can only provide
density-dependent shift of the energy. As a result, the Eu
Lagrange equations for the fields are unaffected by this te
although it could affect the position of the energy minimu
For the sake of simplicity, in the present work we will n
glect this contribution to the total energy.

D. Regularization of integrals and sums

In calculating the vacuum contributions to the physic
observables one has to deal with the appearance of diver
expressions. In this paper we consider two different regu
ization schemes, applying a momentum cutoff and using
Pauli-Villars regularization.

In the first case we introduce a regulating function, whi
suppresses the contribution to integrals and sums at mom
k@L, where the scaleL is determined by fitting the pion
decay constant in free space@see Eq.~2.19!#. The regulating
function we have chosen has the form

C~k!5
111/e

exp@~k22L2!/L2#11
. ~2.38!

In the Pauli-Villars regulating scheme@29#, on the other
hand, the divergent contributions are eliminated through
subtraction

K~x,x8!→K~x,x8!2KPV~x,x8!, ~2.39!

whereK(x,x8) is the propagator previously defined, while
KPV(x,x8) the quark massM has been substituted by th
mass scaleMPV, obtained again by fitting the free spac
pion decay constant@the analog of Eq. 2.19!#:

f p
2 5

NcM
2

2p2 E dkk2F 1

~k21M2!3/2
2

1

~k21MPV
2 !3/2G .

~2.40!

One gets

MPV5M expS 2p2f p
2

NcM
2 D . ~2.41!

E. Pion decay constant

Let us now consider the axial current. Its valence part

Aa
m~x!5c̄~x!

ta

2
gmg5c~x!. ~2.42!

We wish to calculate also the vacuum~i.e., from the Dirac
sea at the one-quark-loop level! contribution to the axial cur-
rent: This can be done by defining the generating functio
1-5



tu
ne
he

pa

ne

a

e

he

ite

e to
ect

le-
-

q.

sec-
u-

e

P. AMORE AND A. De PACE PHYSICAL REVIEW C61 055201
W@a#5E @dc̄dc#expH i E d4x@c̄~ i ]”2MU5!c2am
a Aa

m#J ,

~2.43!

whereaa
m are classical axial sources coupled to the quan

axial current; then, the vacuum axial current can be obtai
by means of a functional derivative with respect to t
source as

Aa,vac
m ~x!5 i

d

dam
a ~x!

ln W@a#U
a

m
a 50

. ~2.44!

Calculation provides

Aa,vac
m ~x!5

4NcM
2

f p
2 E d4x8K~x,x8!@]mf0~x8!fa~x!

2]mfa~x8!f0~x!#. ~2.45!

By setting

K~x,x8!5K0~r !d4~x2x8!1DK~x,x8!, ~2.46!

whereK0(r ) is given by Eq.~2.27!, one is able to write

Aa
m~x!5c̄~x!

ta

2
gmg5c~x!1

4NcM
2

f p
2

3K0~r !@]mf0~x!fa~x!2]mfa~x!f0~x!#

1
4NcM

2

f p
2 E d4x8DK~x,x8!

3@]mf0~x8!fa~x!2]mfa~x8!f0~x!#, ~2.47!

in which local and nonlocal contributions have been se
rated.

Remembering now that the pion decay constant is defi
as

^0uAa
m~x!upb~p!&52 ipm f pda,be2 ip•x, ~2.48!

one is able to obtain the in-medium pion decay constant

f p,WS
2 ~r !54NcM

2K0~r !, ~2.49!

that is expression~2.31!, which depends, in a medium, on th
radial coordinate.

An estimate of the average value off p at fixed density
can be obtained by calculating the constant value off p,WS
that would yield the same pion kinetic energy as t
r-dependent one@compare Eqs.~2.20! and ~2.30!#:

^ f p&25

E
0

R

dr f p,WS
2 ~r !@r 2u82~r !1sin2u~r !#

E
0

R

dr@r 2u82~r !1sin2u~r !#

. ~2.50!
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F. Axial coupling constant

The axial coupling constant, for a system with a fin
pion mass is given by

1

2
gA5^p↑u E drA3

zup↑&. ~2.51!

The matrix element between proton states requires on
adopt a collective quantization procedure in order to proj
out the correct quantum numbers. In the case ofgA—as dis-
cussed, e.g., in Ref.@30#—it amounts simply to multiply the
expression for the hedgehog axial current by the matrix e
ment of the cranking operator21/3. Furthermore, as dis
cussed in Ref.@24#, themp50 limit requires one to perform
first the angular integral and then the radial integral in E
~2.51!, multiplying the result by a factor 3/2.

Use of Eq.~2.47! yields

gA5E
0

R

drr 2FNc

2 S u22
1

3
v2D

2
4p

3
f p,WS

2 S u81
sin~2u!

r D G2E drDA3
z ,

~2.52!

with

E drDA3
z52

16pNcM
2

3 (
a,a8

$ f̄ 0~a0!DK0~a0 ,a08! f 0~a08!

1 f̄ 1~a1!DK1~a1 ,a18! f 1~a18!%

and

f̄ 0~a0![M3/2E
0

R

drr 2ra0
~r !@cosu~r !21#,

f̄ 1~a1![M3/2E
0

R

drr 2ra1
~r !sinu~r !.

These are the expressions we shall employ in the next
tion to evaluate the in-medium modification of the axial co
pling constant.

G. Equations of motion

The equations of motion are found by minimizing th
total energy~2.9! with respect to the Dirac fieldsu andv and
to the chiral angleu. It is convenient to write them in a
dimensionless form by lettingq→Mq and introducing

x5Mr , ũ~x!5M 23/2u~r !, ṽ~x!5M 23/2v~r !.
~2.53!

Minimization of e tot[Etot /M5eval1evac
(2) then yields

dũ

dx
52sinuũ2~eval1cosu!ṽ, ~2.54a!
1-6
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dṽ
dx

52S 2

x
2sinu D ṽ1~eval2cosu!ũ,

~2.54b!

d2u

dx2
1

2

x

du

dx
2

sin 2u

x2
1

NcM
2

4p f p
2 @~ ũ22 ṽ2!sinu12ũṽcosu#

1
2

p
sinuE

0

`

dqq2FK~q!

K~0!
21G j 0~qx!C~q!

2
2

p
cosuE

0

`

dqq2FK~q!

K~0!
21G j 1~qx!S~q!50,

~2.54c!

where

C~q!5E
0

`

dx~qx!2 j 0~qx!@cosu~x!21#, ~2.55a!

S~q!5E
0

`

dx~qx!2 j 1~qx!sinu~x!, ~2.55b!

and K(q) is still given by Eq. ~2.22!, but now k, k8 are
dimensionless andEk→Ẽk5Ak211. This is a set of inte-
grodifferential equations that has to be solved iteratively
shown, for instance, in Ref.@27#.

The same procedure, applied to the system enclosed
the WS cell, yields

dũ

dx
52sinuũ2~eval1cosu!ṽ, ~2.56a!

dṽ
dx

52S 2

x
2sinu D ṽ1~eval2cosu!ũ, ~2.56b!

d2u

dx2
12F1

x
1

d

dx
ln K0~x!Gdu

dx
2

sin 2u

x2

1
1

16pK0~x!
@~ ũ22 ṽ2!sinu12ũṽcosu#

1sinu
W̃a~x!

K0~x!
1cosu

W̃b~x!

K0~x!
50, ~2.56c!

where K0(x) is still given by Eq. ~2.27!, but now Ea l /R

→Ẽa l /R5A(a l /X)211 and ra l
(r )→ r̃a l

(x)

5M 23/2ka l
j l(a lx/X), having setX5MR. In Eq. ~2.56c! we

have also set

W̃a~x!5 (
a1a18

F2

x
r̃a1

~x!1
dr̃a1

~x!

dx
GDK1~a1 ,a18! f 1~a18!,

~2.57a!
05520
s
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W̃b~x!5
1

3 (
aa8

H dr̃a0
~x!

dx
DK0~a0 ,a08! f 0~a08!

12F3

x
r̃a2

~x!1
dr̃a2

~x!

dx
GDK2~a2 ,a28! f 2~a28!J .

~2.57b!

H. Boundary conditions

In the free space problem the boundary conditions on
fields are determined straightforwardly. From inspection
the Dirac equations one hasṽ(0)50 and$ũ(x),ṽ(x)%→0,
x→`; finiteness of the energy requiresu(x)→0 when x
→`, whereas by choosingu(0)5p one fixes to unity the
topological charge associated to the pion field. This is som
times interpreted as the baryon number, but not in the pre
model @4#, where it is connected to the number of valen
levels that are pushed out of the Dirac sea. Baryon numb
fixed by the normalization condition*0

`dxx2r̃(x)51, where

r̃(x)5ũ2(x)1 ṽ2(x) represents the~dimensionless! baryon
density.

If we consider now nuclear matter as a collection
hedgehog field configurations centered at lattice points,
have to impose periodic boundary conditions on the fie
~Bloch’s theorem!. One then obtains a band structure, that
a continuous set of states and an energy gap above the
est energy state. The physical meaning of a band structur
the quark levels is not clear in the present context, sinc
implies long-range correlations among quarks and o
should be aware that this~and similar! model does not ac-
count for confinement. We shall come back to this po
later.

In order to simplify the approach, the Wigner-Seitz a
proximation assumes that the cell be symmetric: Then,
state at the bottom of the band is also spherically symme
and the wave functions are flat. To describe the ot
states—and, in particular, the top of the band—many diff
ent assumptions have been made in the literature~see, e.g.,
Ref. @17# for a brief summary!. In the calculations presente
in Sec. III—besides the normalization conditio
*0

Xdxx2r̃(x)51, which fixes the baryon number—we sha
use three distinct sets of boundary conditions~sets I, II, and
III !.

In order to make contact with previous calculations, w
follow for set I the choice of Ref.@19#, where the authors
insist in maintaining unit topological charge inside the ce

u~0!5p, u~X!50,

ṽ~0!50, ṽ~X!50 ~ ‘‘bottom’’ of the band!,

ũ~X!50 ~ ‘‘top’’ of the band!, ~2.58!

where ṽ(X)50, which implies ũ8(X)50. For set II we
choose to impose ‘‘flatness’’ also on the chiral angle, as
Refs.@8,14#. Since in general one hasu(X)Þ0 at the bound-
ary, from inspection of the Dirac equations one sees t
1-7
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P. AMORE AND A. De PACE PHYSICAL REVIEW C61 055201
ṽ(X)50 no longer impliesũ8(X)50. We have chosen to
impose the physically motivated constraint

r̃8~X!50, ~2.59!

that is we require theflatness of the baryon densityat the cell
boundary. Set II then turns out to be

u~0!5p, u8~X!50,

ṽ~0!50,

ṽ~X!5
X cosu~X!7AX222X sinu~X!

X sinu~X!22

3ũ~X! ~ ‘‘bottom’’/‘‘top’’ !. ~2.60!

For set III we require the flatness of the baryon density
gether with the requirement of unit topological charge

u~0!5p, u~X!50,

ṽ~0!50, H ṽ~X!50 ~ ‘‘bottom’’ ! ,

ṽ~X!52Xũ~X! ~ ‘‘top’’ ! .
~2.61!

One might be tempted to interpret the two solutions of E
~2.59! as corresponding to the bottom and top of the ene
band. Indeed, from set III one sees thatṽ(X)50 corresponds
to the bottom of the band in set I, whereas in the nonrela
istic limit ( ṽ→0) the second condition in Eq.~2.61!, that is
2Xũ(X)5 ṽ(X), reduces toũ(X)50 as in set I.

A word of caution is necessary in analyzing the bound
conditions. In our view one cannot accept without quest
the presence of a band of quark states. The presence
band, in fact, would be affected by confinement, which
absent in the present model. In free space, where the qu
are deeply bound in the ground state of the chiral fields,
shortcoming is not crucial~of course, the study of the highl
excited states of the nucleon would then be problematic!. In
the medium, however, because of the lack of confinem
quarks exhibit unrealistic long-range correlations. As a
sult, one observes a relatively large probability of having
quark sitting at the surface of the WS cell.

In the next section we shall see that when the density
the medium increases the quark density tends to be m
concentrated in the interior of the bag for thelowestend of
the energy band~lowest when all effects have been in
cluded!, whereas theoppositehappens on theupperend. As
a consequence, quarks sitting in the upper part of the en
band would be more affected by the confining forces than
ones in the lower part. Since the confining forces would te
to reduce the quark density at the boundary, the net re
would then be mainly a lowering—and hence
narrowing—of the highest end of the band.

Another problem one should cope with in identifying th
top and bottom energy levels is posed by the presence o
spurious center of mass energy. Although this contribut
has been neglected in most existing calculations of
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medium properties in the Wigner-Seitz approximation,
turns out not only to be sizeable but also to affect the rela
position of the ‘‘top’’ and ‘‘bottom’’ levels, as it will be
discussed in the next section.

In the following, for definiteness, we shall follow the no
menclature adopted in the literature and we shall label ‘‘b
tom’’ and ‘‘top’’ the two solutions of each set of boundar
conditions, as indicated in Eqs.~2.58!, ~2.59!, and~2.61!.

III. RESULTS

The numerical results have been obtained by integra
the equations of motion~2.56! for the quarks and the meso
fields, using an iterative procedure as, e.g., in Ref.@27# and
moving from larger to smaller values ofR. For a given value
of R, i.e., for a given density, a self-consistent solution h
been found by using as initial ansatz the self-consistent ch
profile obtained at the previous value ofR. The nonlocal
term in Eq. ~2.56c! has been switched on adiabatically
order to allow a better convergence.2

At the smallest density, corresponding toR55 fm, an
exponential profileu(r )5p exp(2r /r 0) has been used a
initial ansatz. A dynamical~constituent! quark massM
5350 MeV has been assumed in the calculations. This
value suggested by the phenomenology of the single nuc
@4–6#, which also turns out to be in the range~300–400
MeV! where the second order expansion for the effect
action works well@27#.

The divergences that appear both in free space~in the
momentum integrals! and in the medium~in the sums! have
been regulated as explained in Sec. II D, using both a re
lating function and the Pauli-Villars regularizations, who
parameters have been fixed by fitting the free space valu
the pion decay constant. ForM5350 MeV, the cutoff in the
regulating function turns out to beL>500 MeV, whereas
the mass scaleMPV of the Pauli-Villars regularization is
given by Eq.~2.41!. The two regularization schemes yie
qualitatively similar results and in the following we sha
display only the outcome from the regulating function a
proach.

Before discussing the results a comment on the flat b
we have adopted is in order. In fact, this basis contains a z
momentum state, that is, a term constant in space and
portional toR23/2. WhenR→0, it would give rise to diver-
gences. As explained in Appendix B, the appearance of s
a mode is peculiar of the flat basis: One might introdu
bases infinitesimally close to the flat one, in which the ze
mode is absent and its strength is distributed among all
other modes. In these alternative bases the effect of the
mode would be given by an infinite sum of infinitesim
contributions; since we are regularizing the sums, only a
nite number of modes enters into the calculation of phys
quantities and the contribution to them of the redistribu
strength of the zero mode is infinitesimal. Hence, we c

2The sums over the modes in the orthonormal and complete b
inside the spherical cell have been restricted tol<15 and to the first
30 rootsa l , which provides a good degree of accuracy.
1-8
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CHIRAL QUARK-SOLITON MODEL IN THE WIGNER- . . . PHYSICAL REVIEW C 61 055201
cure the divergence simply by dropping the zero mode.
In order to exhibit the convergence of the WS calculatio

to the free space results, let us start by comparing, in Fig
the chiral angle obtained by solving the equations of mot
in free space~solid lines! to the WS solutions correspondin
to R55 fm and obeying the boundary conditions of set
~dashed line! and of sets I and III~dotted line!. Note that at
such a low density, the top and bottom energy levels pra
cally coincide. In both cases a regulating function has b
used to regulate sums and integrals. As expected, the di
ence between the solutions inside the WS cell and the on
free space is barely noticeable at this density. By looking
Table I we also notice that the free space energies are re
ered with good precision, using any of the boundary con
tions.

An important difference between our work and previo
calculations employing chiral quark models@17–20# is due
to the inclusion in our calculations of nonlocal effects ste
ming from the vacuum contribution~at the one-quark-loop
level!. In Fig. 2 we display, as a function ofR, the WS cell
total energy~solid line!, separated in the valence~dotted
line! and vacuum~dashed c line! terms, for the ‘‘bottom’’
solution of set I. Also shown are the separated local—tha
kinetic—~dashed a line! and nonlocal~dashed b line! contri-
butions. The local term displays a behavior similar to t
results of, e.g., Ref.@20#: Actually, in the chiral quark mode
employed in that paper, the kinetic meson contribution
present at the classical level, whereas in our case it is
namically generated from the vacuum. This implies, as

FIG. 1. The chiral angle in free space~solid line! and in the WS
approximation atR55 fm, using the boundary conditions of set
~dashed! and of sets I and III~dotted!.

TABLE I. Comparison between the energies~in MeV! obtained
in free space and in the WS cell using the boundary condition
sets I-III for R55 fm.

Eval Evac
(2) Etot

Ekin Ẽ(2) Ekin1Ẽ(2)

free 452.4 922.4 -387.6 534.8 987.2
II 443.6 921.8 -386.2 535.6 979.2
I and III 452.9 917.5 -389.6 527.9 980.8
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saw in Sec. II, ar-dependent pion decay constant@see Eqs.
~2.30! and ~2.31!#; we have, however, checked that setti
f p,WS constant in our calculation, the results of Ref.@20# are
recovered. On the other hand, the nonlocal vacuum contr
tion provides substantial attraction and displays a mode
dependence onR, however, it turns out that the valence an
kinetic meson terms compensate each other to a large e
yielding a total contribution without any minimum and th
nonlocal term is then instrumental in order to get the~rather
shallow! minimum displayed by the solid line.

By looking at Fig. 3 one notices that solutions to th
equations of motion are no longer found belowR'1.4 fm.
This depends also on the choice of the boundary conditi
and in the other cases discussed below we shall see
solutions are found tillR'1.1 fm. In Ref. @20# solutions
have been found till much higher densities (R'0.4 fm). In
the case of Fig. 2 in that paper—where a simple Lagrang
containing only terms up to second order in the pion field
used—this is due to the larger value for the constituent qu
mass M chosen in that work~in their notation M5g fp

'550 MeV, whereg is the quark-meson coupling constan!.

of

FIG. 2. Total energy of the WS bag~solid! for the ‘‘bottom’’
solution of set I. Also shown are the valence~dotted! and vacuum
~dashed c! contributions; of the latter one, we display also the loc
~dashed a! and nonlocal~dashed b! components.

FIG. 3. Total energy of the WS bag. The left panel correspo
to the boundary conditions of set II~solid and dashed lines for th
‘‘top’’ and ‘‘bottom’’ solutions, respectively!, whereas the right
panel corresponds to the boundary conditions for the ‘‘bottom
solutions of sets I and III~dashed! and for the ‘‘top’’ solutions of
sets I~dotted! and III ~solid!.
1-9
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We have checked that by dropping the nonlocal term and
increasingM their results can be recovered. Indeed, from E
~2.56! one sees that the equations of motion depend on
combinationX5MR: By increasingM, one can lower the
minimum value ofR. However, the authors of Ref.@20# are
able to find solutions at higher densities by using more co
plex Lagrangians containing terms of higher order in
pion field. Following that path in our model would impl
going beyond the two-point approximation to the effecti
action of Sec. II B.

In Fig. 3 we display the WS cell total energy as a functi
of the cell radius, i.e., of the density. The boundary con
tions of set II and of sets I and III have been used in the
and right panels, respectively. In Fig. 3 we notice the pr
ence of a very shallow minimum around a density cor
sponding toR'2 fm; this minimum is deeper for the ‘‘bot
tom’’ solutions.

The occurrence of saturation in nuclear matter can
however be stated by simply looking at these figures,
cause here the spurious energy contribution due to
center-of-mass motion has been neglected. This, as a m
of fact, is a well known problem associated to the mean fi
approximation. An estimate of this effect in the chiral qua
soliton model has been obtained in Ref.@31#, including also
the vacuum~mesonic! contributions to the center of mas
motion. The findings in that paper—that valence terms do
nate as long asEval>0—make us feel confident in retainin
only the latter in our estimate. It reads

Ec.m.5
^P2&
2Etot

52
Nc

2Etot
S R2r8~R!2E

0

R

dr$r 2~u82~r !

1v82~r !2!12v2~r !% D .
~3.1!

FIG. 4. Binding energy obtained by taking out the spurio
center-of-mass energy contribution and subtracting the energy a
lowest density~hereR55 fm). The left panel corresponds to th
boundary conditions of set II~solid and dashed lines for the ‘‘top’
and ‘‘bottom’’ solutions, respectively!, whereas the right panel cor
responds to the boundary conditions for the ‘‘bottom’’ solutions
sets I and III~dashed! and for the ‘‘top’’ solutions of sets I~dotted!
and III ~solid!.
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Of course, the validity of this assumption at finite density c
only be checked through an explicit calculation of t
vacuum terms, which is however beyond the scope of
present analysis.

In Fig. 4 we plot the binding energy for the system taki
out the spurious contributions stemming from the motion
the center of mass. In order to minimize the numerical u
certainty, the binding energy has been obtained by subtr
ing the total energy at the lowest considered densityR
55 fm). Interestingly, we find that, when the center-o
mass motion is taken out, a stronger minimum in the ene
is found, roughly at the same density as in Fig. 3, name
R'1.8 fm, corresponding tor'0.04 fm23. Moreover, the
boundary conditions of sets I and III provide more bindi
that those of set II. Note that in nuclear matter one sho
have a binding energy of about216 MeV at R>1.1 fm,
corresponding tor'0.17 fm23.

We also notice that the ‘‘top’’ solutions of the various se
of boundary conditions provide more binding than the cor
sponding ‘‘bottom’’ solutions. The reason is easily unde
stood by looking, for example, at Fig. 5.

Here we plot the value of the baryon density at the surf
of the cell, i.e.,u2(R)1v2(R), as a function of the cell ra-
dius itself, for the boundary conditions of set II~the solid and
dashed lines corresponding to the top and bottom solutio
respectively!; sets I and III show a similar behavior. Sinc

he

f

FIG. 5. Dependence of the baryon density upon the cell rad
for the ‘‘top’’ ~solid! and ‘‘bottom’’ ~dashed! solutions of set II.

FIG. 6. Decomposition of the total energy~solid! into valence
~dot! and vacuum~dashed! contributions, for the ‘‘top’’ solutions of
set II ~left panel! and III ~right panel!.
1-10
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CHIRAL QUARK-SOLITON MODEL IN THE WIGNER- . . . PHYSICAL REVIEW C 61 055201
the top solution corresponds to a configuration in which
quarks are more ‘‘compressed’’ inside the cell, a larger
netic energy—and therefore a larger center-of-m
motion—is associated with it. This problem is of course a
sent in solid state physics, the original field of application
the Wigner-Seitz approximation, because the electron m
is indeed completely negligible with respect to the mass
the ions, which form the periodic structure. In the pres
case, even admitting the existence of a periodic structur
nuclear matter, the center-of-mass motion would be neg
ible only in the largeNc limit ( Nc→`), given the depen-
dence of the total energy and of the center-of-mass energ
the number of colors, asO(Nc) andO(Nc

0), respectively. On
the other hand, forNc53, the center-of-mass energy wi
vary, for each solution inside the band, by an amount co
parable with the width of the band itself. Hence, the cal
lation of a reliable band structure within this model is mo
delicate.

In Fig. 6 the total energy corresponding to the ‘‘top
solutions of set II~left! and III ~right! is plotted, and decom
posed into the valence~dotted! and vacuum~dashed! contri-
butions. We observe that, at very low densities, the two co
ponents bear approximately the same strength, wherea
larger densities, belowR>2 fm, the valence contribution

FIG. 7. The ratio between the kinetic and potential compone
of the valence energy as a function of the cell radius, using
‘‘top’’ boundary conditions of set II~solid! and set III~dashed!.

FIG. 8. Dependence of the pion decay constant on the cel
dius for the ‘‘top’’ solution of set II.
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becomes dominant. It is also interesting to display, as a fu
tion of R, the ratio between the valence contributions th
come from the quark kinetic term in the Lagrangian a
from the quark coupling to the mean field. This is done
Fig. 7: As expected, this ratio increases with the density.

In Fig. 8 the average value of the pion decay constan
the cell, defined in Eq.~2.50!, is plotted as a function of the
cell radius, for the ‘‘top’’ solution of set II; for all the othe
sets of solutions the behavior is very similar. The pion dec
constant decreases by increasing the density, going in
direction of a partial restoration of chiral symmetry, althou
the lack of solutions beyond roughly the standard satura
density of nuclear matter, prevents one—at the present s
of development of the model—from drawing firmer concl
sions. A reduction off p in matter is found both in linear
sigma and Nambu–Jona-Lasinio models~see, e.g., Ref.@32#
for a list of references!.

In Fig. 9 the isoscalar mean radius is plotted as a funct
of the cell radius, for the ‘‘top’’ ~solid! and ‘‘bottom’’
~dashed! solutions of set II; the other sets of solutions gi
very similar results. We observe that this quantity is e
tremely sensitive to the choice of ‘‘top’’ or ‘‘bottom’’

ts
e

a-

FIG. 9. Isoscalar mean square radius, as a function of the
radius. The solid line corresponds to the ‘‘top’’ solution of set
whereas the dashed line corresponds to the ‘‘bottom’’ solution
set III.

FIG. 10. Chiral angle as a function of the distance from t
center of the soliton forR55 ~solid!, 2 ~dashed!, and 1.1 fm~dot-
ted!, respectively. The left panel corresponds to the ‘‘top’’ soluti
of set II, whereas the right one corresponds to the ‘‘top’’ solution
set III.
1-11
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P. AMORE AND A. De PACE PHYSICAL REVIEW C61 055201
boundary conditions, the reason being the same as alr
noticed when discussing Fig. 5: The ‘‘bottom’’ solution
fact corresponds to a configuration in which the quarks
more loosely packed inside the cell.

The actual isoscalar mean radius depends of course o
prescription one adopts for band filling: A straightforwa
counting of degeneracy would correspond to filling only t
bottom quarter of the band~since spin, isospin and colo
provide 12-fold degeneracy, while there are only thr
quarks per cell!; on the other hand, the authors of Ref.@16#
have argued that color forces would tend to mix the leve
favoring a uniform filling of the band. In the latter case, fro
Fig. 9 one would expect the isoscalar radius averaged o
the band to have a moderate density dependence. How
as already mentioned in Sec. II H, we expect confinemen
affect also the band width, and expecially the ‘‘bottom’’ bo
der ~actually, the upper end, where quark are more loos
packed!, thus unbalancing the distribution in favor of th
lower curve of Fig. 9 and yielding a shrinking of the solito
This would be at variance with findings of other models.

For completeness we display in Figs. 10, 11, and 12, a
function of the distance from the center of the WS cell a
for three values ofR, the chiral angle, the large and the sm

FIG. 11. Large and small components of the Dirac spinor a
function of the distance from the center of the soliton forR55
~solid!, 2 ~dashed!, and 1.1 fm~dotted!, respectively. The left pane
corresponds to the ‘‘top’’ solution of set II, whereas the right o
corresponds to the ‘‘top’’ solution of set III.

FIG. 12. Baryon density as a function of the distance from
center of the soliton forR55 ~solid!, 2 ~dashed!, and 1.1 fm~dot-
ted!, respectively. The left panel corresponds to the ‘‘top’’ soluti
of set II, whereas the right one corresponds to the ‘‘top’’ solution
set III.
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components of the Dirac spinor and the baryon density,
spectively, using the ‘‘top’’ solutions of sets II and III. Sim
lar results apply for the other solutions.

A quantity which is more sensitive to the choice
boundary conditions isgA , as one can see in Fig. 13. Th
local mesonic component varies noticeably in the differ
cases, even at largeR. In Table II we display the value of the
different components ofgA at R55 fm, compared to the
results for the free soliton case.3 One clearly sees that th
quark and nonlocal mesonic components have alre
reached the asymptotic value, whereas the local mes
term is still higher. The reason for this behavior can be tra
back to the slow decay of the chiral angle in the chiral lim
@u(r )'1/r 2#, which allows sizable contributions from larg
distances. Although in principle one could continue the W
calculation at larger radii, one would then need to incre
the number of states included in the orthonormal basis
ployed in the expansion. However, it is likely that, whe
chiral symmetry is explicitly broken, the exponential dec
of the chiral angle would grant a faster convergence a
suppress the sensitivity to the boundary conditions. Incre
ing the density, the mesonic contributions togA , both local
and nonlocal, rapidly decrease and most of the strengt
now carried by the quarks alone.

IV. OUTLOOK AND PERSPECTIVES

In this paper we have applied the Wigner-Seitz appro
mation to the chiral quark-soliton model of the nucleon. Th
model, complemented by the WS approximation, provide
simple yet interesting framework for studying possible mo
fications of the nucleon properties in nuclear matter. It
important to remark that we are actually dealing with
parameter-free model, since the only free parameters~the

3As noted by the authors of Ref.@27#, the two-point approxima-
tion to the effective action works forgA to a lesser extent than fo
the energy and the apparent agreement with the experimental v
should be regarded as accidental, since the self-consistent cal
tion ~see, e.g., Ref.@6#! gives a smaller value.

a

e

f

FIG. 13. The axial coupling constant as a function ofR, for the
‘‘top’’ boundary conditions of set II~left panel! and set III ~right
panel!. The valence~dashed!, local mesonic~dotted!, nonlocal me-
sonic ~dot-dashed!, and total~solid! contributions are displayed.
1-12
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constituent quark massM and the regularization scale! have
been fixed in free space. Note thatM could, in principle, be
calculated dynamically, as done, e.g., in the Nambu–Jo
Lasinio model@2#; this would require the solution of a ga
equation and would probably lead to an in-medium supp
sion of M, similar to what is found forf p.4

The value we have been using forM ~350 MeV! is sug-
gested by free space phenomenology. We have also trie
test the sensitivity toM of our calculations by employing
other values found in the literature,M5500– 550 MeV
@20#. While we find results qualitatively very similar to th
M5350 MeV case, one should be aware that the two-po
approximation to the vacuum contributions works better
masses of the order of 300–400 MeV, as found in Ref.@27#.
A more careful investigation of this model for larger co
stituent quark masses might require to go beyond the t
point approximation presently used.

The same method of accounting for in-medium effects
already been applied to a number of microscopic model
the nucleon@13–23#. With respect to previous analyses, w
have for the first time consistently calculated effects ste
ming from the Dirac sea, i.e., from excitations of virtu
quark–antiquark pairs, including their dependence upon
density of the system.

Vacuum fluctuations manifest themselves in two wa
Firstly, by giving rise to a pion decay constant dependent
the distance from the center of the bag, which in turn mo
fies the pion kinetic contribution with respect to chiral mo
els where the pion is explicitly included at the classical le
@18–20,17# @see Eqs.~2.30! and~2.31!#: The contribution to
the energy from this term is however qualitatively similar
the one of previous analyses@18–20,17#. Secondly, vacuum
fluctuations generate a new nonlocal,attractivecontribution,
whose density dependence, albeit moderate, is, however
evant in order to bind the system, given the compensa
one observes with increasing density between the vale
quark and kinetic pion contributions.

Another effect that has usually been neglected in previ
calculations is the spurious center-of-mass motion: We h
found it to be important not only to give, of course, a mo
realistic estimate of the energy, but also to determine
relative position of the top and bottom ends of the qu

4By increasing the density, only virtual states of higher energy
be excited and, eventually, in a very dense system, only states
well above the typical momentum cutoff would be available: T

quark condensatêq̄q& is thus expected to decrease at finite den
ties.

TABLE II. The axial coupling constantgA in free space and in
the Wigner-Seitz approximation atR55 fm, for the ‘‘top’’ bound-
ary conditions of sets II and III.

Quark Local mesonic Nonlocal mesonic Tota

free 1.07 0.50 20.35 1.22
II 1.06 0.76 20.34 1.48
III 1.06 1.03 20.34 1.76
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energy band in the medium. These two levels correspon
specific boundary conditions and we have found the role
the boundary conditions generating the upper and lower
els to be exchanged with respect to previous calculatio
Note that the intersection of an occupied band with an em
one is often interpreted as the onset of color superconduc
ity.

We have also explored the effects stemming from diff
ent choices of boundary conditions. All the cases discus
above display a similar qualitative behavior, although th
are definitely quantitative differences, especially for the ax
coupling constant, which is, however, very much affected
the long-range behavior of the chiral field in the~massless
pion! chiral limit. Also the two regularization schemes w
have adopted turned out to give qualitatively similar resu

We have calculated a few physical quantities, such asf p

and^r 2& I 50. The pion decay constant has been found to
crease with increasing density, pointing to a partial resto
tion of chiral symmetry in the medium. The isoscalar me
square radius, on the other hand, has been found to de
heavily on the position in the energy band, leaving open
question whether an average nucleon will swell or shri
given the present uncertainties in assessing the band s
ture.

Unlike previous calculations with chiral models@18–
20,17#, we have been able to find binding, but at a dens
much lower than the standard saturation density of nuc
matter; moreover, solutions of the equations of motion d
appear roughly below the latter density. The authors of R
@20# have been able to find solutions at high densities—s
keeping realistic values for the constituent quark mass
rameter M—by incorporating in their chiral Lagrangia
terms of higher order in the pion field. In the present mo
this would correspond to dropping the two-point approxim
tion to the effective action in evaluating vacuum fluctuation
This is probably the most needed development of the pre
calculation—employing, e.g., the numerical algorithm
Ref. @26#—since only in the free case it has been explici
verified that the two-point approximation works reasona
well @27#.

The two-point approximation is not the only one th
could affect the search for binding: For instance, as alre
mentioned, the constituent quarkM is in principle density
and momentum dependent; although a constant value foM
allows for a fair description of phenomenology in free spa
it is not clear whether the same can be assumed in the
dium.

Another interesting issue in this connection is related
the absence of confining~color! forces in this~and similar!
model. The lack of confinement, while not essential in t
description of a single nucleon, where the quarks are in
case tightly bound by the soliton, can become problemati
nonzero density. In the latter case an unrealistic sharing
quarks between neighboring nucleons can become poss
It would be very interesting to implement our calculations
models with confining forces, such as the color-dielect
model @33#. However, calculations in this model are
present plagued by insurmountable difficulties when o
tries to include the vacuum effects@2# and therefore limited

n
ng

-
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to include only the valence contributions.
Another feature that is lacking at the present stage is

projection of good spin-isospin quantum numbers out of
hedgehog state. Since the momentum of inertia is, in gen
density dependent, the projection is likely to affect the po
tion of the minimum in the energy.

Finally, it is worth noticing that the binding in this~and
similar! model is the result of cancellations between lar
contributions. Small~on the scale of the total energy! varia-
tions to one of this components can possibly have sens
effects on the saturation curve. We have not included,
instance, the explicit breaking of chiral symmetry due
mpÞ0.
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APPENDIX A: THE PROPAGATOR K„q…

We derive here the expression for the propagatorK(q),
introduced in Sec. II B. As a first step we perform the ang
lar integrals in Eq.~2.18!, getting

K~q!5
1

2p4E0

`

dkk2E
0

`

dk8k82
p

EkEk8

C@~k1k8!/2#

Ek1Ek8

3E
0

`

drr 2 j 0~qr ! j 0~kr ! j 0~k8r !. ~A1!

The inner integral can be done analytically@34#, yielding

E
0

`

drr 2 j 0~qr ! j 0~kr ! j 0~k8r !

5S p

2 D 3/2 1

Aqkk8
E

0

`

drArJ1/2~qr !J1/2~kr !J1/2~k8r !

5
p

4

D~q,k,k8!

qkk8
, ~A2!

where the functionD(x,y,z) vanishes whenever it is not pos
sible to build a triangle of sidesx, y, andz, and is equal to 1
otherwise. One then obtains

K~q!5
1

8p2q
E

0

`

dk
k

Ek
E

uk2qu

k1q

dk8
k8

Ek8

C@~k1k8!/2#

Ek1Ek8

.

~A3!

APPENDIX B: A BASIS FOR FLAT FUNCTIONS

In free space (R→`) an orthonormal and complete set
states can be chosen as

Ck0klm~x!5
1

p
eik0x0Yl

m~V! j l~kr !. ~B1!
05520
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We want to build an orthonormal and complete basis insid
sphere of radiusR, having the same form of Eq.~B1!. While
in that case the momentum could take a continuum se
values, now only a discrete set of momenta will be allow

We start considering the equations for the spheri
Bessel functions, corresponding to two different mome
k15a/R andk25b/R:

d

dr F r 2
d

dr
j l S ar

R D G1F S ar

R D 2

2 l ~ l 11!G j l S ar

R D50,

d

dr F r 2
d

dr
j l S br

R D G1F S br

R D 2

2 l ~ l 11!G j l S br

R D50.

~B2!

Multiplying both expressions byj l(ar /R) and j l(br /R), re-
spectively, integrating overr between 0 andR, taking the
difference of the two equations, and, finally, integrating
parts, one gets

2E
0

R

~a22b2!
r 2

R2
j l S ar

R D j l S br

R D
5R@a j l8~a! j l~b!2b j l8~b! j l~a!#. ~B3!

The above equation states the orthonormality of the elem
of the basis, provided that the following condition is met:

a j l8~a! j l~b!2b j l8~b! j l~a!50, aÞb. ~B4!

The choice of the boundary conditions fulfilled by the e
ments of the basis will therefore be constrained by this
quirement. It is easy to convince oneself that three differ
possibilities are available:

j l~a!50, ~B5a!

j l8~a!50, ~B5b!

a j l8~a!5h j l~a!, ~B5c!

whereh will is a constant parameter. In the limith50 and
h→` the first two cases are recovered, respectively.

Notice that, in the limitR→`—where the modes form a
continuum—all these boundary conditions become equ
lent.

We then introduce the normalized functions

ra l
~r ![ka l

j l S a l r

R D ,

ka l

2 5
2

R3
„a l

2 j l8~a l !
22 j l~a l !$22a l j l8~a l !

1@ l ~ l 11!2a l
2# j l~a l !%…

21, ~B6!

such that

E
0

R

drr 2ra l
~r !rb l

~r !5da lb l
. ~B7!
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The completeness of the basis allows one to write the
lowing representation for the Dirac delta function inside t
WS cell:

(
a l

ra l
~r !ra l

~r 8!5
d~r 2r 8!

r 2
. ~B8!

It is simple to derive an expression for the Green’s funct
of the operator (h1M2) in the WS cell. It reads

G~x,x8!5(
l ,m

E
2`

` dk0

2p (
a l

Yl
m~V!Yl

m* ~V8!

3e2 ik0(x02x08)
ra l

~r !ra l
~r 8!

a l
2/R21M22k0

2
. ~B9!

The flat basis is obtained, as we said above, in the limih
→0; in this case, however, the lowest energy mode
corresponding to zero momentum forl 50—can only be ob-
tained for a strictly vanishingh @in fact, it corresponds to a
negative root of Eq.~B5c! at finite values ofh]. This means
that the strength of this mode has to be redistributed,
finite h, over all the other modes. Let us callb and b̃ the
modes such that

j l8~b!50, b̃ j l8~ b̃ !5h j l~ b̃ !. ~B10!

TABLE III. Rules for going from free space to the Wigner-Sei
cell.

Free space Wigner-Seitz boundary conditions

*0
`dkk2 → (p/2)(a l

k → a l /R
j l(kr) → ra l

(r )
cs

l.

l.

-

05520
l-

n

r

There is a one-to-one correspondence between the mod
the two bases, in such a way that for eachbÞ0 one can
defineb̃5b2eb , whereeb!1 if h!1.

Writing down the transformation from one basis to t
other, namely,

rb~r !5(
b̃

cbb̃r̃ b̃~r !, ~B11!

with some algebra one can verify that, forl 50 andb50,
one has

c0b̃52
A6

b̃2
eb , ~B12!

which indeed proves that the zero mode is now redistribu
over all the other modes, in the quasiflat basis.

Calculations in the two bases are equivalent~to orderh)
only when considering convergent quantities. Quantities t
need regularization are therefore different in the two bas
since only a finite number of modes will contribute. The fl
basis is the one we have chosen in the calculations of
paper, since it is the most convenient in order to impose
physically motivated boundary conditions discussed in
text. The zero mode, however, gives rise to divergen
when R→0 and one could in principle eliminate this prob
lem by employing a quasiflat basis infinitesimally close
the flat one. On the other hand, the very fact that for re
larized quantities only a finite number of modes is releva
allows us to keep the flat basis and simply discard the z
mode, since the error introduced in this way will be infin
tesimally small. Finally, we display in Table III a few simpl
rules that allow one to rewrite in the WS basis quantit
expressed in the free basis~B1!.
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