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Two- and three-pion interferometry for a nonchaotic source in relativistic nuclear collisions
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Two- and three-pion correlation functions are investigated for a source that is not fully chaotic. Various
models are examined to describe the source. The chaoticity and weight factor are evaluated in each model as
measures of the strength of correlations and compared to experimental results. A new measure of three-pion
correlation is also suggested.

PACS number~s!: 25.75.Gz
n
f
is
s

ul-
ai
a-

i
h
rie
r

ns
ra
re

n
n
e
r-
o
on
a
io

la
th
th
at
nt
th
th

or
c

re
h
d
i

th

is

is
wo-

eld a

u-
la-
r is
uine
ted
nd
ine
de-
rsal
ex-

s,
ns,
ri-
tro-
for

new
ed,
the
of

he

ne
nd

in
I. INTRODUCTION

Two-pion correlations obtained in relativistic heavy-io
collisions have been used to extract the size and shape o
pion-emitting source, based on the Hanbury-Brown–Tw
~HBT! effect. Correlations are not, of course, limited to tho
of two pions, but can also be of multipions. Though m
tipion correlations are unavoidably complicated, they cont
new information not available from the two-pion correl
tions. For example, when final-state interactions of the em
ted pions are neglected, the two-pion correlations for a c
otic source depend only on the magnitude of the Fou
transform of the pion-source function, but the multipion co
relations depend also on its phase@1,2#. The magnitude is an
even function of the relative momentum of the emitted pio
while the phase is an odd function. One thus hopes to ext
new information about the source from the multipion cor
lations.

In a previous paper@2#, we made a detailed investigatio
of three-pion correlations, the simplest multipion correlatio
after the two-pion correlations, over a wide range of kin
matics, to investigate the feasibility of extracting new info
mation about the source through the phase in the case
chaotic source. We find that extracting new informati
would be rather difficult in practice because the multiplic
tive factor of the phase function becomes small in the reg
where the phase varies appreciably.

In experiments, the two-pion correlations at the zero re
tive momentum is observed to be less than two. After
final-state interactions are removed, it must be two in
case of a chaotic source. The measurement suggests th
source is not completely chaotic. Recently, a measureme
the three-pion correlations has been reported, showing
the strength of the three-pion correlations are also less
expected in the case of a chaotic source.

In this paper we investigate the two- and three-pion c
relations for a source not completely chaotic. We introdu
models of the source that are various mixtures of cohe
and chaotic sources. The models also include one wit
novel structure, a mixture of multiple coherent sources an
chaotic source. These models describe different dynam
generating pion emissions, though we do not pursue
identification of dynamics corresponding to each model.

A mixture of a coherent source and a chaotic source
0556-2813/2000/61~5!/054905~10!/$15.00 61 0549
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model that has often appeared in the literature@3,4,1# under
the name ‘‘partially coherent source.’’ We find that th
popular model poorly reproduces the recent data of the t
and three-pion correlations@5#. A model consisting of mul-
ticoherent sources and one chaotic source appears to yi
good agreement.

It is both theoretical and experimental practice to calc
late the so-called weight factor from the three-pion corre
tions at the vanishing relative momenta. The weight facto
usually considered to represent the strength of the gen
three-pion correlations. When we examine more complica
models than the popular partially coherent model, we fi
that the weight factor no longer describes the genu
strength. The expression that yields the genuine strength
pends on the structure of the source, and there is no unive
expression as such. Nevertheless, we propose a modified
pression for the weight factor that has a wider validity.

In Sec. II, we define pion spectra, correlation function
and measures of two- and three-pion correlation functio
chaoticity, and weight factor, respectively. In Sec. III, va
ous nonchaotic models of the pion-emitting source are in
duced, and chaoticities and weight factors are obtained
them. Section IV presents discussions and a summary: a
expression of the weight factor is introduced and discuss
and chaoticities and weight factors are compared with
recent experimental data. Appendix A gives a derivation
correlations for multicoherent sources. In Appendix B, t
new weight factor is derived.

II. CORRELATION FUNCTIONS, CHAOTICITY,
AND WEIGHT FACTOR

For the sake of clarity in the sections to follow, we defi
correlation functions and their measures, chaoticity a
weight factor. Note that our definition is standard.

We first write the basic quantities, pion spectra,
second-quantization form, as follows:

W1~p!5^ap
†ap&, ~1!

W2~p1 ,p2!5^ap1

† ap2

† ap1
ap2

&, ~2!

W3~p1 ,p2 ,p3!5^ap1

† ap2

† ap3

† ap1
ap2

ap3
&. ~3!
©2000 The American Physical Society05-1
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Though these expressions are simple and reasonable, th
plicit definition of ^ . . . & is a complicated issue.^ . . . & rep-
resents a quantum statistical average and is formally wri
as ^cu . . . uc& in terms of the quantum state,uc&, or
Tr $r̂ . . . % in terms of the the density matrix,r̂. In this work,
we introduce models to represent various underlying dyn
ics of the pion emission. Note that the momenta above
hereafter are on-shell, e.g.,p05Ap21m2 for p.

In terms of the spectra, we define two- and three-p
correlation functions in the usual way@3#,

C2~p1 ,p2!5
^n&2

^n~n21!&

W2~p1 ,p2!

W1~p1!W1~p2!
, ~4!

C3~p1 ,p2 ,p3!5
^n&3

^n~n21!~n22!&

W3~p1 ,p2 ,p3!

W1~p1!W1~p2!W1~p3!
.

~5!

Here, the normalizations are introduced in order to take
count of multiplicity fluctuation, with the following defini-
tions:

^n&5E d3p W1~p!, ~6!

^n~n21!&5E d3p1d3p2W2~p1 ,p2!, ~7!
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^n~n21!~n22!&5E d3p1d3p2d3p3W2~p1 ,p2 ,p3!.

~8!

In the usual models, the above normalizations yieldC2 and
C3→1 as the relative momenta approach infinity. In mo
complicated models, such as those that possess the par
number fluctuation per mode, however, the normalizations
Eqs. ~4! and ~5! yield an asymptotic value different from
unity. We will discuss this point fully in Sec. III D.

When the HBT effect does not appear, correlation fun
tions are independent of relative momenta. When the H
effect occurs, however, the correlation functions are
longer constant, but are dependent on relative momenta
is well known, the size and shape of a pion-emitting sou
are extracted from the relative-momentum dependence o
correlations through the HBT effect. The methods of extra
ing the size and shape of the source has been discusse
merous times, and we will not go into the issues here.

We define the chaoticity,l(p), and the weight factor,
v(p), which are usually considered to represent measure
the strength of the two- and three-pion correlations, resp
tively @1,5#:

l~p!5C2~p,p!21, ~9!
v~p!5
C3~p1 ,p2 ,p2!212@C2~p1 ,p2!21#2@C2~p2 ,p3!21#2@C2~p3 ,p1!21#

2A@C2~p1 ,p2!21#@C2~p2 ,p3!21#@C2~p3 ,p1!21#
U

p15p25p35p

. ~10!
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Note that we define the weight factor explicitly atp15p2
5p3, but that it has been extracted from measurements o
small relative momenta@5#. The two methods show pract
cally no difference since the weight factor is expected to b
slowly varying function of the relative momenta@1,2#.

The weight factor, however, is not always the measure
the strength of the genuine three-pion correlations. Ge
ally, the three-pion correlation functions are related to
two-pion correlation functions as

C3~p1 ,p2 ,p3!511a@C2~p1 ,p2!1C2~p2 ,p3!

1C2~p3 ,p1!23#

1~genuine three-pion correlation!

1~other two-pion correlation!, ~11!

where the coefficienta is not always unity even atp15p2
5p3. Consequently, Eq.~10! does not always remove th
linear dependence ofC2’s from C3. In the cases of a chaoti
source and a partially coherent source,a is unity, but for
sources of more complicated structure, it is not. Furtherm
C3 generally depends on the two-pion correlations not o
er

a

f
r-
e

e,
y

as the linearC2’s but also in more complicated ways as
function of two momenta. We will discuss these points fu
in the following section.

The relation betweenC3 and C2 depends on dynamic
and is model dependent in practice. The extraction of
strength of the genuine three-pion correlations thus requ
explicit knowledge of the dynamics. Accordingly, in this p
per we adopt the conventional approach of using the we
factor defined as Eq.~10!, for numerical results as a conve
nient means for making comparisons among various mod

III. DIFFERENT MODELS OF THE SOURCE

A. Coherent source and chaotic source

The spectra are often written byc-number source curren
@3,6#, yielding a chaotic source and a coherent source as
two extreme cases. The chaotic source shows the HBT e
with both the chaoticity and the weight factor as unity. T
correlation functions for a coherent source are independ
of the relative momenta, and the chaoticity for it is zero.

The difference between the out-state and in-state ann
lation operators of an emitted pion defines the source cur
as
5-2
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TWO- AND THREE-PION INTERFEROMETRY FOR A . . . PHYSICAL REVIEW C61 054905
aout~p!5ain~p!1 i E d4x
1

A~2p!32p0
J~x!e2 ip•x

5ain~p!1 i
1

A~2p!32p0
J~p!, ~12!

whereJ(x) and J(p) are the source current and its Fouri
transform, respectively. The average that appears in E
~1!–~3! can be written as

^•••&5E DJ* ~p!DJ~p!P@J* ~p!,J~p!#^0inu•••u0in&,

~13!

whereu0in& is the in-state vacuum andP@J* (p),J(p)# is the
distribution functional ofJ(p), which has a statistical fluc
tuation. The pion spectra are obtained in this case from E
~1!–~3!:

W1~p!5
1

~2p!32p0
^uJ~p!u2&J , ~14!

W2~p1 ,p2!5
1

~2p!62p1
02p2

0 ^uJ~p1!u2uJ~p2!u2&J , ~15!

W3~p1 ,p2 ,p3!5
1

~2p!92p1
02p2

02p3
0

3^uJ~p1!u2uJ~p2!u2uJ~p3!u2&J , ~16!

where ^•••&J5*DJ* (p)DJ(p)P@J* (p),J(p)#•••. Hereaf-
ter, we do not explicitly show the subscriptJ of the angle
bracket. If the phase of the source current is random, we
the sourcechaotic. In this case,P@J* (p),J(p)# have a
Gaussian form@6# and higher-order moments ofJ(p) are
represented by the second-order moment such as

^J* ~p1!J* ~p2!J~q1!J~q2!&5^J* ~p1!J~q1!&^J* ~p2!J~q2!&

1^J* ~p1!J~q2!&

3^J* ~p2!J~q1!&. ~17!

For a chaotic source, the pion spectra are written as

W1~p1!5F11, ~18!

W2~p1 ,p2!5F11F221F12
2, ~19!

W3~p1 ,p2 ,p3!5F11F22F33

1 (
(a,b,c)

FaaFbc
2 12F12F23F31

3cos~F121F231F31!, ~20!
05490
s.
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where the amplitudeFab and the phaseFab are defined as
@1#

Fabexp~ iFab![
1

~2p!3A2pa
02pb

0 ^J* ~pa!J~pb!&. ~21!

( (a,b,c) implies a sum over (a,b,c)5(1,2,3), ~2,3,1!,
~3,1,2!. The correlation functions are then

C2~p1 ,p2!511
F12

2

F11F22
, ~22!

C3~p1 ,p2 ,p3!511 (
(a,b)

Fab
2

FaaFbb
12

F12F23F31

F11F22F33

3cos~F121F231F31!, ~23!

where( (a,b) is over (a,b)5(1,2),(2,3),(3,1).Fab andFab
contain the information about the size and shape of the p
emitting source, due to the HBT effect. The chaoticity a
weight factor for a chaotic source always achieve unity.

When the source current has no randomness, the sour
calledcoherent. In this case, then-pion spectra are expresse
as

Wn~p1 , . . . ,pn!5)
l 51

n

W1~pl !. ~24!

The HBT effect does not appear in this case. The correla
functions achieve unity, and the chaoticity vanishes.

B. Partially coherent source

In nuclear collisions, one may expect to involve the m
ture of a coherent source and a chaotic source, as sugg
by the observation that the chaoticities are often smaller t
unity. Here, we sketch the case of the partially coher
source, mostly following Ref.@1#.

When the pion-emitting source is a mixture of a chao
source and a coherent source, the source current is writte
a sum of both currents,J(x)5Jcha(x)1Jcoh(x) @1,3#. The
sources are not correlated with each oth
^Jcha* (p)Jcoh(q)&50. The one-pion spectrum and correlatio
functions for this source are obtained as

W1~p1!5 f 111F11, ~25!

C2~p1 ,p2!511
F12

212 f 12F12cos~F122f12!

~ f 111F11!~ f 221F22!
, ~26!
5-3
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HIROKI NAKAMURA AND RYOICHI SEKI PHYSICAL REVIEW C 61 054905
C3~p1 ,p2 ,p3!

511 (
(a,b)

Fab
212 f abFabcos~Fab2fab!

~ f aa1Faa!~ f bb1Fbb!

12
1

~ f 111F11!~ f 221F22!~ f 331F33!

3H F12F23F31cos~F121F231F31!

1 (
(a,b,c)

@ f abFbcFcacos~fab1Fbc1Fca!#J ,

~27!

where

f abexp~ ifab![
1

~2p!3A2pa
02pb

0
Jcoh* ~pa!Jcoh~pb!, ~28!

andFab andFab are the same as those for a chaotic sour
Eq. ~21!. The chaoticity and weight factor are evaluated a

l~p!5e~p!@22e~p!#, ~29!

v~p!5Ae~p!
322e~p!

@22e~p!#3/2
, ~30!

where e(p) is the fractional parameter of the cohere
source:

e~p1!5
F11

f 111F11
. ~31!

The source becomes chaotic fore(p)51, while it becomes
coherent fore(p)50. Figure 1 shows the chaoticity an
weight factor as functions ofe(p), and in Fig. 5 the weight
factor is shown as a function of chaoticity, varying ase(p).
The weight factor can vary from 0 to 1. In this case, the te
23l, in Eq. ~10!, completely removes the two-pion correl
tions.

C. Multicoherent sources

We consider the mixture of a small number of coher
sources. This model differs from the case of multiple coh

FIG. 1. Chaoticity and weight factor as functions ofe in the
partially coherent model. The solid and dashed lines stand for
chaoticity and weight factor, respectively.
05490
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ent sources that was previously examined in@3# and, to the
best of our knowledge, this is the first time that this mod
has been explicitly discussed. We assume here that the p
emitting source is made ofN coherent sources that are n
coherent with each other andappear to be obeying the Pois
son distribution.Note that the model considered in@3# is a
mixture of multiple coherent sources that are randomly d
tributed, and that the model was introduced as a descrip
of a chaotic source when the number of the coherent sou
becomes large. In a sense our model here is the oppo
limit of the small number of coherent sources in the mo
considered in@3#. In the following, we present merely th
final expressions, leaving their derivations for Appendix A

The source current can be written as

J~x!5 (
n51

N

j ~x2Xn!e2 iun, ~32!

wherej (x2Xn) is thenth coherent source current, located
Xn with the random phaseun . Each coherent source is a
sumed to be expressed by the samej (x) but to be located at
a different position. There areN coherent sources, obeyin
the Poisson distribution. Note that the distribution must
renormalized in order to exclude the no-source event tha
not observed.

The one-pion spectrum and normalized correlation fu
tions are obtained as

W~p1!5a1

a

12e2a
, ~33!

C2~p1 ,p2!511
a

a11
ur12u2, ~34!

C3~p1 ,p2 ,p3!511
a~a12!

a213a11
(

(a,b)
urabu2

1
a2

a213a11
2 Re~r12r23r31!, ~35!

wherer i j is the Fourier transform of the spatial distributio
of coherent sources, anda is a parameter of the Poisso
distribution. The mean number of coherent sources isa/@1
2exp(2a)#. In this case, the subtraction23l, in Eq. ~10!,

FIG. 2. Chaoticity and weight factor as functions of the me
number of coherent sources in the model of multicoherent sour
The solid and dashed lines stand for the chaoticity and weight
tor, respectively.

e
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TWO- AND THREE-PION INTERFEROMETRY FOR A . . . PHYSICAL REVIEW C61 054905
does not remove the two-pion correlations completely,
cause the coefficient ofur12u2 in Eq. ~34! is different from
that in Eq.~35!. The chaoticity and weight factor are derive
as

l5
a

a11
, ~36!

v5
1

2

2a212a13

a213a11
Aa11

a
. ~37!

In Fig. 2, the chaoticity and weight factor are illustrated
functions of the mean number of sources, and Fig. 5 sh
the weight factor as a function of the chaoticity. The cha
ticity varies from 0 to 1, because this source becomes co
ent ata50 and chaotic ata→`. The weight factor diverges
at a→0. The reason for this is the failure of the subtracti
05490
-

s
s

-
r-

23l, in Eq. ~10!, and the divergence is not caused by t
genuine three-pion correlation.

D. Multicoherent sources and one chaotic source

We now consider the source in which the multicohere
sources of the previous subsection are mixed with a cha
source. The multicoherent sources are not coherent with e
other, as before. The source current is written as

J~x!5 (
n51

N

j ~x2Xn!e2 iun1Jcha~x!, ~38!

wherej (x) andJcha(x) are a coherent source current and t
chaotic source current, respectively. Thenth coherent source
is located atXn and is distributed withr(Xn). The phase,
un , is randomly distributed between 0 and 2p. There areN
coherent sources, obeying the Poisson distribution, Eq.~A9!.

The pion spectra come out to be
tive
W1~p1!5ah111F11, ~39!

W2~p1 ,p2!5W1~p1!W1~p2!1ah11h221uah12e
ic121F12e

iF12u2, ~40!

W3~p1 ,p2 ,p3!5W1~p1!W1~p2!W1~p3!1~3a11!ah11h22h33

1a (
(a,b,c)

haahbbFcc1 (
(a,b,c)

W1~pa!uahbce
icbc1Fbce

iFbcu2

12 (
(a,b,c)

haa@a2uhbcu21ahbcFbccos~Fbc2cbc!#

12 Re$~ah12e
ic121F12e

iF12!~ah23e
ic231F23e

iF23!~ah31e
ic311F31e

iF31!%, ~41!

wherea is the parameter in the Poisson distribution, and

hi j e
ic i j 5

j * ~pi ! j ~pj !

~2p!3A2p1
02p2

0
r i j . ~42!

For up12p2u→`, we have

W2~p1 ,p2!

W1~p1!W1~p2!
→11

1

a
@12e~p1!#@12e~p2!#, ~43!

where the fractional parameter of the chaotic sourcee is defined as

e~p1!5
F11

ah111F11
. ~44!

The normalization factor ofC2(p1 ,p2), shown in Eq.~4!, does not yield the proper asymptotic value of unity as the rela
momentum approaches infinity. Generallye depends on the momentum, and the asymptotic value ofC2 thus depends on the
two momenta separately. If we assume thate is independent of the momentum, we find thatC2 is normalized properly by the
use of Eqs.~4! and ~5!. In this case, the correlation functions are given by

C2~p1 ,p2!511
uah12e

ic121F12e
iF12u2

W1~p1!W1~p2!F11
1

a
~12e!2G , ~45!
5-5
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C3~p1 ,p2 ,p3!511
1

11
3a11

a2
~12e!31

3

a
~12e!2e

F (
(a,b)

uahabe
icab1Fabe

iFabu2

W1~pa!W1~pb!

1
2 Re$~ah12e

ic121F12e
iF12!~ah23e

ic231F23e
iF23!~ah31e

ic311F31e
iF31!%

W1~p1!W1~p2!W1~p3!

12 (
(a,b)

H a~12e!hab
2

W1~pa!W1~pb!
1

~12e!habFabcos~Fab2cab!

W1~pa!W1~pb! J G . ~46!
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Comparison of the precedingC2 and the first term in the
square bracket inC3 shows that the two-pion correlations a
not to be removed completely, asaÞ1 in Eq. ~11! in this
case. The conventional weight factor thus no longer rep
sents the strength of the genuine three-pion correlations.
thermore, the last sum in the square bracket of the aboveC3
represents the effects of the two-pion correlation~because it
depends on a pair of the momenta!, corresponding to the
‘‘other two-pion correlation’’ in Eq.~11!.

The chaoticity and weight factor are obtained as

l5
a

a1~12e!2
, ~47!

v5
2a212a~12e!213~12e!3~122e!

2@a213a~12e!21~12e!3#
Aa1~12e!2

a
.

~48!

Figures 3 and 4 showl andv, respectively, as functions o
a at e50.120.9. In Fig. 6, the weight factor is shown as
function of the chaoticity, varyinge for various a ’s. The
divergence ofv at a50, except fore50.5, is caused by the
incomplete cancellation of theC2’s.

IV. DISCUSSIONS AND SUMMARY

We have examined various models of the source that
not completely chaotic. The chaoticity comes out to be
tween 0 and 1 in all models, but the weight factor take
wide range of the value. The value of the weight factor ev
diverges in some cases, as a consequence of the incom
removal of the two-pion correlations fromC3. For a partially

FIG. 3. Chaoticity as a function ofa in the model of multico-
herent sources and one chaotic source. The lines from down t
correspond toe varying from 0.1 to 0.9 with the step 0.1.
05490
e-
r-

re
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coherent source that is commonly examined, the remova
complete and the anomalous behavior does not appear.

There is a way to avoid such incomplete removal, at le
in all the models that we have examined here. It is do
through a new subtraction,

R3~p1 ,p2 ,p3!5C3~p1 ,p2 ,p3!21

2
^n&„2^n~n21!&2^n&2

…

^n~n21!~n22!&

^n~n21!&

^n&2

3 (
(a,b)

@C2~pa ,pb!21#, ~49!

where^n& and similar variables are defined in Eqs.~6!–~8!.
This subtraction works correctly for the multicohere
sources and also for the mixture of multicoherent sour
and one chaotic source~but at the zero relative momenta!.
We find that the terms corresponding to the ‘‘other two-pi
correlations’’ also vanish at the zero relative momenta~see
Appendix B!. Using Eq.~49!, we define a new weight facto
as

v85
^n~n21!~n22!&

^n&3

1

2
R3~p1 ,p2 ,p3!

3S ^n~n21!&

^n&2 (
(a,b)

$C2~pa ,pb!21% D 23/2

. ~50!

For the partially coherent source, the new weight factor
comes the conventional weight factor of Eq.~10!.

Though the new weight factor properly represents
strength of the genuine three-pion correlations for all mod

up FIG. 4. Weight factor as a function ofa. The model and lines
are the same as in Fig. 3.
5-6
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TWO- AND THREE-PION INTERFEROMETRY FOR A . . . PHYSICAL REVIEW C61 054905
examined in this work, the new weight factor must not ha
this property at all times. The relation betweenC2’s andC3
is generally complicated, depending on dynamics in e
case. We thus do not expect that the new weight factor h
universal application.

Figures 5 and 6 illustrate the weight factors as functio
of the chaoticities for the different models, together with t
experimental data from the CERN NA44 Collaboration@5#.
In this experiment, the chaoticity and weight factor are m
sured as 0.420.5 and 0.2060.19, respectively. Figure 5
shows that the partially coherent source and the multico
ent sources disagree with the experiment. The mixture
multicoherent sources and one chaotic source reproduce
data if we seta50.13 ande50.60. This corresponds to th
mean number of the coherent sources being 0.13 an
about 60% of the total pions emitted from the chaotic sour
The ratio of the pion number emitted from one coher
source to that from one chaotic source,h11/F11, is then
about 5. This ratio may be unrealistically large, but we n
that the experimental data are ‘‘minimum bias,’’ suggest
that our best fit may not be unrealistic since the multiplic
fluctuation can be large. Further data are needed to con
that this is indeed the case.

In summary, we investigate the two- and three-pion c
relations for various models of a source that is not co
pletely chaotic. The chaoticity and weight factor are eva
ated as measures of two- and three-pion correlations.
chaoticity always varies between 0 and 1, but the wei
factor takes the value of a wide range and sometimes e
diverges. The conventional weight factor includes the effe

FIG. 5. Weight factors as functions of chaoticities. The so
and dashed lines stand for the partially coherent source and
multicoherent sources, respectively. The plot with error bars is
experimental data from NA44.

FIG. 6. Weight factors as functions of chaoticities in the mo
of multicoherent sources and one chaotic source, varyinge from 0
to 1. The lines from down to up stand fora50.1, 0.2, 0.4, 0.6, 0.8
1.0, 1.5, 2.0, respectively. The plot with error bars is the experim
tal data from NA44.
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of the two-pion correlations in some models, yielding t
anomalous behavior. We propose, in all models conside
here, a new weight factor that has no such difficulty, but
expected to be valid universally. We find that the model
multicoherent sources and one chaotic source could re
duce the chaoticity and the weight factor observed in
recent experiment.
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APPENDIX A: MULTICOHERENT SOURCE MODEL

We assume thatN coherent sources are created during
collision and that the position of thenth source isXn . The
sources are uncorrelated with each other. A source curre
defined as

J~x!5 (
n51

N

j ~x2Xn!e2 iun, ~A1!

whereun is a unique random number varying from 0 to 2p.
The average aboutun is denoted by^•••&. The Fourier
transform of the source current is written as

J~p!5 (
n51

N

j ~p!eip•Xn2 iun, ~A2!

where j (p) is the Fourier transform ofj (x). The one-pion
spectrum is

WN~p1!5
1

~2p!3p1
0 ^uJ~p1!u2&

5
u j ~p1!u2

~2p!3p1
0 (

n,m

N

e2 ip1•(Xn2Xm)^eiun2 ium&

5a1N, ~A3!

wherep0 is on-shell and

a15
u j ~p1!u2

~2p!3p1
0

. ~A4!

The two-pion spectrum is

WN~p1 ,p2!5
1

~2p!6p1
0p2

0 ^uJ~p1!u2uJ~p2!u2&

5a1a2FN21 (
nÞm

N

e2 i (p12p2)•(Xm2Xn)G .

~A5!

he
e

l
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The location of each small sourceXn is assumed to obey
distribution r(Xn), which is normalized to be unity, o
*r(Xn)d4Xn51. Averaging the two-pion spectrum with th
distribution, we obtain

W̄N~p1 ,p2!5E r~X1!dX1•••r~XN!d4XNWN~p1 ,p2!

5a1a2@N21N~N21!ur12u2#, ~A6!

where r125*r(x) e2 i (p12p2)•xd4X. Note that ( i , jAi j
5( iAii 1( iÞ jAi j and( iÞ j15N(N21).

The three-pion spectrum is

WN~p1 ,p2 ,p3!5
1

~2p!6p1
0p2

0p3
0 ^uJ~p1!u2uJ~p2!u2uJ~p3!u2&,

~A7!

and the averaged spectrum is evaluated as

W̄N~p1 ,p2 ,p3!5a1a2a3

3@N31N2~N21!~ ur12u21ur23u21ur31u2!

1N~N21!~N22!2 Re~r12r23r31!#.

~A8!

Note that ( i , j ,kAi jk5( iAiii 1( iÞ j (Aii j 1Ai ji 1Ajii )
1( iÞ j ÞkAi jk and that( iÞ j Þk15N(N21)(N22).

We next assume that the coherent sources obey the P
son distribution. The Poisson distribution is

PN
(usual)5

aN

N!
e2a for N50;`. ~A9!

TheN50 event should be excluded because in such an e
no pions are emitted. The distribution we use is renormali
as

PN5
aN

N!

1

ea21
for N51;`. ~A10!

The expectation values change from those of the usual P
son distribution,

^N&P5
a

12e2a
, ~A11!
05490
is-

nt
d

is-

^N~N21!&P5
a2

12e2a
, ~A12!

^N~N21!•••~N2n!&P5
an11

12e2a
. ~A13!

Pion spectra averaged with the Poisson distribution,W

5(N51
` PNW̄N , are

W~p1!5a1

a

12e2a
, ~A14!

W~p1 ,p2!5
a1a2

12e2a
@a~a11!1a2ur12u2#, ~A15!

W~p1 ,p2 ,p3!5
a1a2a3

12e2a
@a~a213a11!

1a2~a12!~ ur12u21ur23u21ur31u2!

1a32 Re~r12r23r31!#. ~A16!

The correlation functions are

C2~p1 ,p2!511
a

a11
ur12u2, ~A17!

C3~p1 ,p2 ,p3!511
a~a12!

a213a11
~ ur12u21ur23u21ur31u2!

1
a2

a213a11
2 Re~r12r23r31!, ~A18!

where the correlation functions are normalized to be unity
upi2pj u→`. The chaoticity and weight factor are

l5
a

a11
, ~A19!

v5
1

2

2a212a13

a213a11
Aa11

a
. ~A20!
APPENDIX B: DERIVATION OF EQ. „50…

The two- and three-pion spectra can be written generally as

W2~p1 ,p2!5^a1
†a1&^a2

†a2&1^a1
†a2&^a2

†a1&1^^a1
†a2

†a1a2&&, ~B1!

W3~p1 ,p2 ,p3!5^a1
†a1&^a2

†a2&^a3
†a3&1 (

(a,b,c)
^aa

†aa&^ab
†ac&^ac

†ab&12 Re~^a1
†a2&^a2

†a3&^a3
†a1&!

1 (
(a,b,c)

^aa
†aa&^^ab

†ac
†abac&&12 Re (

(a,b,c)
^aa

†ab&^^ab
†ac

†aaac&&1^^a1
†a2

†a3
†a1a2a3&&, ~B2!
5-8
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whereai is an annihilation operator of momentumpi . We assume that^ai&50, and therefore we do not consider the coher
source and partially coherent source in this appendix.^^•••&& corresponds to a cumulant, or a connected Green function. I
have a generating functional,Z@z* (p),z(p)#, such as

^a1
†
•••an

†a1•••an&5
d2nZ@z* ~p!,z~p!#

dz~p1!•••dz~pn!dz* ~p1!•••dz~pn!
U

z50

, ~B3!

then the cumulant is obtained as

^^a1
†
•••an

†a1•••an&&5
d2n

„ln Z@z* ~p!,z~p!#…

dz~p1!•••dz~pn!dz* ~p1!•••dz~pn!
U

z50

. ~B4!

We introduce two assumptions. The first is

^^a1
†a2

†a1a2&&5A^a1
†a1&^a2

†a2&, ~B5!

^^a1
†a2

†a3
†a1a2a3&&5B^a1

†a1&^a2
†a2&^a3

†a3&, ~B6!

whereA andB are constant. The second assumption is that the interference terms, such as^a1
†a2&^a2

†a1&, vanish by integrating
over the momenta, for example,

E d3p1d3p2^a1
†a2&^a2

†a1&50. ~B7!

Thus we can obtain

^n~n21!&5~11A!^n&2, ~B8!

^n~n21!~n22!&5~113A1B!^n&3. ~B9!

Correlation functions at the zero relative momenta become

C2~p,p!511
1

11A
, ~B10!

C3~p,p,p!511
1

113A1B
$31216A%. ~B11!

The terms 3, 2, and 6A between the braces in the above equation correspond to( (a,b,c)^aa
†aa&^ab

†ac&^ac
†ab&,

2 Re(̂ a1
†a2&^a2

†a3&^a3
†a1&), and 2 Re( (a,b,c)^aa

†ab&^^ab
†ac

†aaac&& in Eq. ~B2!. To obtain the genuine three-pion correlatio
we should subtract the first and third terms between the braces. Thus we define the new weight factor, considering t
discussion, as

v85
1

2

~113A1B!@C3~p,p,p!21#23~112A!@C2~p,p!21#

@~11A!„C2~p,p!21…#3/2

5
1

2

^n~n21!~n22!&

^n&3
@C3~p,p,p!21#23

2^n~n21!&2^n&2

^n&2
@C2~p,p!21#

F ^n~n21!&

^n&2
„C2~p,p!21…G 3/2 . ~B12!

This equation corresponds to Eq.~50!.
The two assumptions are valid for multicoherent sources and one chaotic source with settingA5a21(12e)2 and B

5a22(12e)3. For multicoherent sources, the assumptions are not valid because of the factor@12exp(2a)#21, in Eqs.
~A14!–~A16!, due to the renormalized Poisson distribution, Eq.~A10!. In using the usual Poisson distribution instead of t
renormalized one, the factor vanishes, and the assumptions become applicable withA5a21 and B5a22. The correlation
functions are the same both in the cases of the usual and renormalized distributions. If we use the renormalized dis
and other assumptions, we can derive Eq.~B12!, but the derivation is more complicated.
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