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Two- and three-pion interferometry for a nonchaotic source in relativistic nuclear collisions
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Two- and three-pion correlation functions are investigated for a source that is not fully chaotic. Various
models are examined to describe the source. The chaoticity and weight factor are evaluated in each model as
measures of the strength of correlations and compared to experimental results. A new measure of three-pion
correlation is also suggested.

PACS numbd(s): 25.75.Gz

I. INTRODUCTION model that has often appeared in the literafig@,1] under
the name “partially coherent source.” We find that this

Two-pion correlations obtained in relativistic heavy-ion popular model poorly reproduces the recent data of the two-
collisions have been used to extract the size and shape of tfad three-pion correlatior{§]. A model consisting of mul-
pion-emitting source, based on the Hanbury-Brown—Twisdicoherent sources and one chaotic source appears to yield a
(HBT) effect. Correlations are not, of course, limited to thosegood agreement.
of two pions, but can also be of multipions. Though mul- It is both theoretical and experimental practice to calcu-
tipion correlations are unavoidably complicated, they contairlate the so-called weight factor from the three-pion correla-
new information not available from the two-pion correla- tions at the vanishing relative momenta. The weight factor is
tions. For example, when final-state interactions of the emitusually considered to represent the strength of the genuine
ted pions are neg'ected, the two_pion correlations for a ChathrEE'pion correlations. When we examine more Complicated
otic source depend only on the magnitude of the FouriefModels than the popular partially coherent model, we find
transform of the pion-source function, but the multipion cor-that the weight factor no longer describes the genuine
relations depend also on its phd4e2]. The magnitude is an Strength. The expression that yields the genuine strength de-
even function of the relative momentum of the emitted pionspends on the structure of the source, and there is no universal
while the phase is an odd function. One thus hopes to extra@xpression as such. Nevertheless, we propose a modified ex-
new information about the source from the multipion corre-Pression for the weight factor that has a wider validity.
lations. In Sec. Il, we define pion spectra, correlation functions,

In a previous papei2], we made a detailed investigation and measures of two- and three—pion correlation functions,
of three-pion correlations, the simplest multipion correlationschaoticity, and weight factor, respectively. In Sec. lll, vari-
after the two-pion correlations, over a wide range of kine-0Us nonchaotic models of the pion-emitting source are intro-
matics, to investigate the feasibility of extracting new infor- duced, and chaoticities and weight factors are obtained for
mation about the source through the phase in the case oftBem. Section IV presents discussions and a summary: a new
chaotic source. We find that extracting new information€xpression of the weight factor is introduced and discussed,
would be rather difficult in practice because the multiplica-and chaoticities and weight factors are compared with the
tive factor of the phase function becomes small in the regioiecent experimental data. Appendix A gives a derivation of
where the phase varies appreciably. correlations for multicoherent sources. In Appendix B, the

In experiments, the two-pion correlations at the zero relaew weight factor is derived.
tive momentum is observed to be less than two. After the
final-state interactions are removed, it must be two in the Il. CORRELATION FUNCTIONS, CHAOTICITY,
case of a chaotic source. The measurement suggests that the AND WEIGHT FACTOR
source is not completely chaotic. Recently, a measurement of o ) ]
the three-pion correlations has been reported, showing that For the sake of clarity in the sections to follow, we define
the strength of the three-pion correlations are also less thafPrrelation functions and their measures, chaoticity and
expected in the case of a chaotic source. weight chtor. Note that our deflnltlo_n. is standard. .

In this paper we investigate the two- and three-pion cor- We first write the basic quantities, pion spectra, in
relations for a source not completely chaotic. We introduces€cond-quantization form, as follows:
models of the source that are various mixtures of coherent

. . ; _/at
and chaotic sources. The models also include one with a Wi(p)=(ayap), ()
novel structure, a mixture of multiple coherent sources and a
chaotic source. These models describe different dynamics W2(p1,pz):<a;1a£2aplap2>, (2

generating pion emissions, though we do not pursue the
identification of dynamics corresponding to each model. Wy y=(al al a a_a, a,)
A mixture of a coherent source and a chaotic source is a 3(P1,P2,P3)=(ap Ay, 8p,8p, &p,qp,)-

()
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Though these expressions are simple and reasonable, the ex-

plicit definition of ( .. .) is a complicated issug.. . .) rep- (n(n—l)(n—2)>=f d°p1d°pod®psWa(py P2, Pa)-
resents a quantum statistical average and is formally written (8)

as (4] ...|¥) in terms of the quantum statdss), or

Tr{p ...} in terms of the the density matrig, In this work,

we introduce models to represent various underlying dynamin the usual models, the above normalizations yiejdand

ics of the pion emission. Note that the momenta above an€3;—1 as the relative momenta approach infinity. In more

hereafter are on-shell, e.q%= \/p>+m? for p. complicated models, such as those that possess the particle-
In terms of the spectra, we define two- and three-piorﬂumber fluctuation per mode, however, the normalizations of
correlation functions in the usual wég], Egs. (4) and (5) yield an asymptotic value different from
unity. We will discuss this point fully in Sec. Il D.
(n)? W, (p1,p2) When the HBT effect does not appear, correlation func-
Ca(P1.P2) = (n(n—1)) W;(p)W;(p,)’ @ tions are independent of relative momenta. When the HBT
effect occurs, however, the correlation functions are no
(n)3 W3(p1,P2,P3) longer constant, but are dependent on relative momenta. As

Cs(P1.P2,P3) = - — . is well known, the size and shape of a pion-emitting source
{n(n=1)(n=2)) Wl(pl)wl(pZ)Wl(p3)5 are extracted from the relative-momentum dependence of the
correlations through the HBT effect. The methods of extract-
Here, the normalizations are introduced in order to take acing the size and shape of the source has been discussed nu-
count of multiplicity fluctuation, with the following defini- merous times, and we will not go into the issues here.

tions: We define the chaoticity)(p), and the weight factor,
o(p), which are usually considered to represent measures of
_ 3 the strength of the two- and three-pion correlations, respec-
1)\ — 3h 43
(n(n—1)) fd P1d°poWa(P1,P2), () Mp)=Cay(p,p)—1, (9)

_ C3(P1,P2,P2) —1—[Ca(p1,p2) —1]—[Ca(p2,p3) —1]—[Ca(ps3,p1) — 1]
2\[C2(p1.,P2) — 1][Ca(p2,p3) — 11[Ca(p3,p1) — 1]

w(p) (10

P1=Po=pP3=pP

Note that we define the weight factor explicitly pf=p, as the linearC,’s but also in more complicated ways as a
=p3, but that it has been extracted from measurements ovdunction of two momenta. We will discuss these points fully
small relative moment$s]. The two methods show practi- in the following section.
cally no difference since the weight factor is expected to be a The relation betweerC; and C, depends on dynamics
slowly varying function of the relative momenta,2]. and is model dependent in practice. The extraction of the
The weight factor, however, is not always the measure obtrength of the genuine three-pion correlations thus requires
the strength of the genuine three-pion correlations. Generxplicit knowledge of the dynamics. Accordingly, in this pa-
ally, the three-pion correlation functions are related to theper we adopt the conventional approach of using the weight
two-pion correlation functions as factor defined as Eq10), for numerical results as a conve-
nient means for making comparisons among various models.
C3(p1,P2,P3)=1+a[Ca(p1,P2) +Ca(P2,P3)

+Ca(p3,p1) — 3]

+ (genuine three-pion correlatipn

I1l. DIFFERENT MODELS OF THE SOURCE
A. Coherent source and chaotic source

The spectra are often written llynumber source current

+ (other two-pion correlation (11 [3,6], yielding a chaotic source and a coherent source as the

two extreme cases. The chaotic source shows the HBT effect

where the coefficiena is not always unity even gh;=p,  with both the chaoticity and the weight factor as unity. The
=p3. Consequently, Eq(10) does not always remove the correlation functions for a coherent source are independent
linear dependence @,’s from Cs. In the cases of a chaotic of the relative momenta, and the chaoticity for it is zero.
source and a partially coherent soureeis unity, but for The difference between the out-state and in-state annihi-
sources of more complicated structure, it is not. Furthermordation operators of an emitted pion defines the source current
C; generally depends on the two-pion correlations not onlyas
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where the amplitudé,, and the phase,, are defined as

(1]

1
F i, ) =——"7——=(J* J . (21
ab€XP(i P ap) 2 2pa2pb< (Pa)I(pp)). (21)

whereJ(x) andJ(p) are the source current and its Fourier

transform, respectively. The average that appears in Eq&

(1)—(3) can be written as

<"'>=J DI*(p)DI(P)PLI* (P),I(P){Oin| - - - 01),
13

where|0;,) is the in-state vacuum ar®f J* (p),J(p)] is the

distribution functional ofJ(p), which has a statistical fluc-
tuation. The pion spectra are obtained in this case from Egs.

(1)-(3):
-_ 2
Wi(p) (277)32p0<|J(p)| )3 (19
Wa(p p)=—1 (3(PDI?I(P)]%);, (15)
2 1:M2 (zw)engng 1 2 Js

W y y =
3(P1,P2,P3) (2m)%2p22p02p]

X(13(p)3(p2)1?]3(P3)[?)5, (1)

where(- - -);=[DJ* (p)DI(p) PLI* (p),I(p)]- - -. Hereaf-
ter, we do not explicitly show the subscriptof the angle

bracket. If the phase of the source current is random, we ca}

the sourcechaotic In this case,P[J*(p),J(p)] have a
Gaussian forn{6] and higher-order moments df(p) are
represented by the second-order moment such as

(I*(P)J* (P2)I(01)I(02)) =(I* (P1)I(Q1)){I* (P2) I(d2))
+(JI*(p1)J(d2))
X(J* (P2)I(d1))- (17)

For a chaotic source, the pion spectra are written as

Wi(p1)=Fi1, (18
Wo(py,P2) = F1iF oo+ F 12, (19
W3(p1,P2,P3) =F11F25F 33
+ > FaaFpet+ 2F 10F 29F 31
(a,b,c)
Xcog P o+ PoztDgy), (20

(abc) Implies a sum over &,b,c)=(1,2,3), (2,3,),
(3,1,2. The correlation functions are then

2
F12

FuaF2’

Ca(p1,p2)=1+ (22)

F1oF23Fan
F11F2F 33

F2,
Ca(P1,P2,P3)=1+ 2, = T:
(a,b) Faabb

X O P 1o+ P yat+Dgy), (23

whereZ , ) is over @,b)=(1,2),(2,3),(3,1) Fap and®,

contain the information about the size and shape of the pion-

emitting source, due to the HBT effect. The chaoticity and

weight factor for a chaotic source always achieve unity.
When the source current has no randomness, the source is

calledcoherentIn this case, the-pion spectra are expressed

as

Wo(py, - ,pn>=|ljl Wi (p)). (24)

he HBT effect does not appear in this case. The correlation
nctions achieve unity, and the chaoticity vanishes.

B. Partially coherent source

In nuclear collisions, one may expect to involve the mix-
ture of a coherent source and a chaotic source, as suggested
by the observation that the chaoticities are often smaller than
unity. Here, we sketch the case of the partially coherent
source, mostly following Ref.1].

When the pion-emitting source is a mixture of a chaotic
source and a coherent source, the source current is written as
a sum of both currents](x)=JcndX) +Jcon(X) [1,3]. The
sources are not correlated with each other,
(J%dP)Icor(a))=0. The one-pion spectrum and correlation
functions for this source are obtained as

Wi(p1)="f11+Fq, (25

F 12+ 2f 1F 1,004 P 15— hyp)
(fritFi)(fotFyp) 7

Ca(p1,p2)=1+ (26)
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FIG. 1. Chaoticity and weight factor as functions ofin the
partially coherent model. The solid and dashed lines stand for th
chaoticity and weight factor, respectively.
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ent sources that was previously examined3hand, to the
best of our knowledge, this is the first time that this model
has been explicitly discussed. We assume here that the pion-
emitting source is made dfl coherent sources that are not
coherent with each other amgbpear to be obeying the Pois-
son distribution.Note that the model considered [i8] is a
mixture of multiple coherent sources that are randomly dis-
tributed, and that the model was introduced as a description
of a chaotic source when the number of the coherent sources
becomes large. In a sense our model here is the opposite
émit of the small number of coherent sources in the model
considered in3]. In the following, we present merely the
final expressions, leaving their derivations for Appendix A.
The source current can be written as

N
I =2 j(x=Xy)e ', (32
n=1
wherej(x— X, is thenth coherent source current, located at
X,, with the random phasé,,. Each coherent source is as-
sumed to be expressed by the sgifrd but to be located at
a different position. There ard coherent sources, obeying

the Poisson distribution. Note that the distribution must be

+ (azb:c) [fabechacoi ¢ab+ q)bc+ CDca)] )
(27)

where

1
f i =———_7J* J , (28
ab€XP(i ap) (277)3\/m cot Pa)Jcon(Pp), (28)

renormalized in order to exclude the no-source event that is
not observed.
The one-pion spectrum and normalized correlation func-

tions are obtained as

a

andF,, and®,, are the same as those for a chaotic source,

Eqg. (21). The chaoticity and weight factor are evaluated as

N(p)=e€(p)[2—€(p)], (29
B 3—2¢(p)
w(p)= Ve(p)—[z_e(p)]m, (30)

where e(p) is the fractional parameter of the coherent
source:

W(p)=a; ——, (33
l1-e

Ca(p1.p2)= 1+—|P12| (34)
a(a 2)

C3(p1,P2,p3) =1+ Pt3atl (;3) |pabl?
o2
+——2R , (35
2430t &p12p23p31), (39

wherep;; is the Fourier transform of the spatial distribution
of coherent sources, and is a parameter of the Poisson

distribution. The mean number of coherent sourcesa/[sl

Fi1
fra+tFo

€(py)= (31)

The source becomes chaotic fep) =1, while it becomes
coherent fore(p)=0. Figure 1 shows the chaoticity and
weight factor as functions of(p), and in Fig. 5 the weight
factor is shown as a function of chaoticity, varyinge&p).
The weight factor can vary from 0 to 1. In this case, the term

—3X\, in Eq.(10), completely removes the two-pion correla-
tions.

C. Multicoherent sources

—exp(—a)]. In this case, the subtraction3\, in Eq. (10),

1
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FIG. 2. Chaoticity and weight factor as functions of the mean

number of coherent sources in the model of multicoherent sources.
We consider the mixture of a small number of coherentThe solid and dashed lines stand for the chaoticity and weight fac-
sources. This model differs from the case of multiple coher+or, respectively.
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does not remove the two-pion correlations completely, be— 3\, in Eq. (10), and the divergence is not caused by the
cause the coefficient dip1,]? in Eq. (34) is different from  genuine three-pion correlation.
that in Eq.(35). The chaoticity and weight factor are derived
as D. Multicoherent sources and one chaotic source
We now consider the source in which the multicoherent
@ sources of the previous subsection are mixed with a chaotic
A= (36) source. The multicoherent sources are not coherent with each
other, as before. The source current is written as

_120%+2a+3 [a+1 3 N
“T2 rzar1 V@ o 0= 3 1-Xe i dgdx), (39

In Fig. 2, the chaoticity and weight factor are illustrated aswherej(x) andJ.,{x) are a coherent source current and the
functions of the mean number of sources, and Fig. 5 showshaotic source current, respectively. Tt coherent source
the weight factor as a function of the chaoticity. The chao-is located atX,, and is distributed withp(X,). The phase,
ticity varies from O to 1, because this source becomes cohe®,, is randomly distributed between 0 and-2There areN

ent ata=0 and chaotic atv— . The weight factor diverges coherent sources, obeying the Poisson distribution (/&8).
ata—0. The reason for this is the failure of the subtraction The pion spectra come out to be

Wi (p1)=ahy+Fqy, (39

Wa(p1,P2) = Wi (p1)Wi(p,) + ahyhopt | ahy 12+ F e %122, (40)
W3(p1,P2,P3) =Wi(p1) Wi (p2)Wi(p3) + (3a+1)ahiihyshss

+a E haahppFect z Wl(pa)|ahbcei¢fbc+Fbceid>bc|2
(a,b,c) (a,b,c)

+ Z(azbc) Naal a2| hbc|2+ ahpFpcCOS D= i) |
+2 Re{(ahy'"12+ F 1,6'%12) (ah ' 23+ F y56'P23) (arh g€ 31+ F 38/ P31)}, (41

where« is the parameter in the Poisson distribution, and

| *(p)i(py)
h.elij=— "V 2117 .
For |p;—py|—%, we have
Wa(p1,P2) 1
WilpoWalps) - ' 43
Wi (p1)Wi(p2) - a[ €(p)][1-e(py)] (43)
where the fractional parameter of the chaotic sourig defined as
I:11
€(p1)= m. 44

The normalization factor o€,(p4,p,), shown in Eq.(4), does not yield the proper asymptotic value of unity as the relative
momentum approaches infinity. Generadlglepends on the momentum, and the asymptotic valu@,ahus depends on the
two momenta separately. If we assume thé independent of the momentum, we find tlatis normalized properly by the
use of Egs(4) and(5). In this case, the correlation functions are given by

|ahye' 12+ F ! P12

Co(p1,p2)=1+ ) (45)

1
1+ —(1—¢)?
o

Wi (p1)Wi(p2)
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C3(Dlvp21p3):1+

1 |ahabei l/lab‘l‘ Fabeiq)ab|2
@b Wi(pa)Wi(pp)

3a+1

1+
o2

(1—€)3+ g(l—e)ze

+ 2 Re[(ahy 6112+ F 1/ 712) (arh o' Y23+ F 55! P23) (ahg e 31+ F 38/ P31}

W1 (p1)Wi(p2)Wi(p3)
a(l=ehZ,  (1—€)hyFapcog D p— llfab)H
T2 (WapaWalpo) T Wy(paWa(py) 48

Comparison of the precedinG, and the first term in the coherent source that is commonly examined, the removal is
square bracket i€ shows that the two-pion correlations are complete and the anomalous behavior does not appear.

not to be removed completely, as*#1 in Eq. (11) in this There is a way to avoid such incomplete removal, at least
case. The conventional weight factor thus no longer reprein all the models that we have examined here. It is done
sents the strength of the genuine three-pion correlations. Futhrough a new subtraction,

thermore, the last sum in the square bracket of the alave

represents the effects of the two-pion correlatibacause it Ra(P1,P2,P3) =Cs(P1,p2,p3)—1
depends on a pair of the momentaorresponding to the AN /2 B
“other two-pion correlation” in Eq.(11). - (m(@(n(n—1))—(m?) {n(n—1))
The chaoticity and weight factor are obtained as (n(n—=1)(n—-2)) (n)?
@ X 2 [CaPa,pyp)—1] (49)
A=—r, 4 2\MaMb J
a+(1-e)? 7 @b

5 ) 3 > where(n) and similar variables are defined in E¢8)—(8).
w:2a +2a(1-€)"+3(1-€)°(1-2¢) [a+t(1—¢) _ This subtraction works correctly for the multicoherent
2[a®+3a(1—€)?+(1—¢€)%] o sources and also for the mixture of multicoherent sources
(48)  and one chaotic sourdgut at the zero relative momenta
We find that the terms corresponding to the “other two-pion
Figures 3 and 4 show andw, respectively, as functions of correlations” also vanish at the zero relative momefse
@ ate=0.1-0.9. In Fig. 6, the weight factor is shown as a Appendix B. Using Eq.(49), we define a new weight factor
function of the chaoticity, varyinge for various a’s. The gs
divergence ofw at =0, except fore=0.5, is caused by the

incomplete cancellation of th€,'’s. . (n(n=1)(n=2)) 1
w = <n>3 §R3(p11p21p3)
IV. DISCUSSIONS AND SUMMARY o
We have examined various models of the source that are % M > {Co(Pa.pp)—1} . (50)
not completely chaotic. The chaoticity comes out to be be- (n)2  (ap)

tween 0 and 1 in all models, but the weight factor takes a
wide range of the value. The value of the weight factor everfor the partially coherent source, the new weight factor be-
diverges in some cases, as a consequence of the incomplet@mes the conventional weight factor of Ed0).
removal of the two-pion correlations fro@s. For a partially Though the new weight factor properly represents the
strength of the genuine three-pion correlations for all models
1

0.8
0.6
0.4

FIG. 3. Chaoticity as a function at in the model of multico-
herent sources and one chaotic source. The lines from down to up FIG. 4. Weight factor as a function @f. The model and lines
correspond tae varying from 0.1 to 0.9 with the step 0.1. are the same as in Fig. 3.
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2 T - ' of the two-pion correlations in some models, yielding the

h anomalous behavior. We propose, in all models considered
here, a new weight factor that has no such difficulty, but not
expected to be valid universally. We find that the model of
multicoherent sources and one chaotic source could repro-
duce the chaoticity and the weight factor observed in the
-1 . . . . recent experiment.
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examined in this work, the new weight factor must not have

this property at all times. The relation betwe€p's andC, APPENDIX A: MULTICOHERENT SOURCE MODEL
is generally complicated, depending on dynamics in each
case. We thus do not expect that the new weight factor has a
universal application.

Figures 5 and 6 illustrate the weight factors as function
of the chaoticities for the different models, together with the
experimental data from the CERN NA44 Collaborati@n.

In this experiment, the chaoticity and Weight factor. are mea- I(x)= 2 j(x=X,)e i, (A1)
sured as 0.40.5 and 0.260.19, respectively. Figure 5

shows that the partially coherent source and the multicoher-

ent sources disagree with the experiment. The mixture ofvhered, is a unique random number varying from O te2
multicoherent sources and one chaotic source reproduces tiide average abou#, is denoted by(---). The Fourier
data if we setw=0.13 ande=0.60. This corresponds to the transform of the source current is written as

mean number of the coherent sources being 0.13 and to

about 60% of the total pions emitted from the chaotic source. N . .

The ratio of the pion number emitted from one coherent J(p)=21 j(p)elPXn=ttn, (A2)
source to that from one chaotic sourde,/F,;, is then "

about 5. This _ratio may be unre“alifsti_cally 'aTge',,b“t we n.OteWherej (p) is the Fourier transform of(x). The one-pion
that the experimental data are “minimum bias, SqueSt'ngspectrum is

that our best fit may not be unrealistic since the multiplicity
fluctuation can be large. Further data are needed to confirm

We assume thaltl coherent sources are created during a
coII|S|on and that the position of theth source isX,,. The
gsources are uncorrelated with each other. A source current is
defined as

that this is indeed the case. Wy (py) = - ———(|3(p)|®
In summary, we investigate the two- and three-pion cor- (27)°%p?
relations for various models of a source that is not com-
pletely chaotic. The chaoticity and weight factor are evalu- |j(p1)|2 N by (X=X} i 6 i
ated as measures of two- and three-pion correlations. The (27)3 % e Pt m) (! n™1fm)
chaoticity always varies between 0 and 1, but the weight P1
factor takes the value of a wide range and sometimes even =a;N, (A3)

diverges. The conventional weight factor includes the effects
wherep® is on-shell and

2
Ls b li(po)?
1F :ﬁ' (A4)
s 05t (2m)°p;
0r . .
0s - i The two-pion spectrum is
1 . . s )
0 02 04 06 08 I 1 ,
A Wi(p1,p2)= Wﬂ (PDI?[3(p2)[%)
FIG. 6. Weight factors as functions of chaoticities in the model N
of multicoherent sources and one chaotic source, varyifrgm 0 ) —i(p1—pa)- (Xen—Xo)
to 1. The lines from down to up stand far=0.1, 0.2, 0.4, 0.6, 0.8, =ajap| N +n§m e LR Ame AT
1.0, 1.5, 2.0, respectively. The plot with error bars is the experimen-
tal data from NA44. (A5)
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The location of each small soureg, is assumed to obey a o2
distribution p(X,), which is normalized to be unity, or (N(N=1))p= —, (A12)
[p(X,)d*X,=1. Averaging the two-pion spectrum with the —€
distribution, we obtain
n+1
- (N(N=1)---(N=n))p= —. (A13)
WN(plva):f p(XpdX;- - p(Xn)d*XyW(P1,P2) 1
=a,a,[N2+N(N—1)|p1J?], (A6)  Pion spectra averaged with the Poisson distributig,
. =3_,P\Wy, are
where pp,=[p(x) e '(P17P)*dX.  Note that I; A N=17NTN
:EiAii+Ei¢inj and2i¢j1=-N(N—1). o
The three-pion spectrum is W(pl):all et (A14)
Wa(P1:P2:Ps) = g oo o (M POIFI(P2)FI(ps) ), 2.,
1rers (A7) W(pl-pz)zl_ —[a(a+1)+a’pi)?], (A1H)
and the averaged spectrum is evaluated as
m W )= 28 a2+ 30+ 1)
Wn(P1,P2,P3) = a1@a3 P1:P2:Ps 1_g o BT
3 2 _ 2 2 2
XINZ+N2(N—=1)(|p12“+|p2d*+ [ pzd?) + a?(a+2)(|pyd 2+ pad 2+ | padl®)
+N(N—=1)(N—2)2 Re(p17p23031) ]- + %2 Re( p1opaapar) . (A16)
(A8)
The correlation functions are
NOte that Ei,j,kAijkzziAiii+Ei#](Aiij+Aiji+Ajii)
+Ei¢j¢kAijk and tha§i¢j¢k1=N(N—1)(N—2). o 2
We next assume that the coherent sources obey the Pois- Ca(p1,p2) =1+ m|ﬂ12| - (A17)
son distribution. The Poisson distribution is
N a(a+2)
sual_ ¥~ a =0~ C P2,p3) =1+ ——— 2+ 24 2
Py NI € for N=0~os. (A9) 3(P1,P2,P3) a2+3a+1(|P12| |p2d“+[pail®)
TheN=0 event should be excluded because in such an event a?
no pions are emitted. The distribution we use is renormalized — 2 Repiprpz), (ALY
as a‘+3a+1l
N1 where the correlation functions are normalized to be unity at
psz for N=1~o0. (A10)  |pi—pj|l—. The chaoticity and weight factor are
ce'—1
The expectation values change from those of the usual Pois- A= %1, (Al19)
son distribution, @
(N) @ (ALD) 12a%+2a+3 [a+1 (A20)
= y w== .
P l-e ¢ 2 42+3a+1 @

APPENDIX B: DERIVATION OF EQ. (50)

The two- and three-pion spectra can be written generally as

W, (p1.P2)=(ajas)(aja,) +(ajay)(aja,) +((ajaja.az)), (B1)

Wa(ps 2. pa)=(afar) (ajax)(afas) + 3 (alas)(alac)(alan +2 Re(ala)(alas)(ala)

+ 3 (alad((@alaad)t2Re 3 (ala)(alalaa) + (alalalaaag), (B2
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wherea; is an annihilation operator of momentym. We assume thdg;)=0, and therefore we do not consider the coherent
source and partially coherent source in this apperdix.- )) corresponds to a cumulant, or a connected Green function. If we
have a generating functional[ z* (p),z(p)], such as

5"Z[z* (p),z
(@l -ala,.-a)= [z*(p),z(p)] ’ (B3
0z(Py) - - - 62(Pn) 02" (P1) - - - 62(Pn) |,_,,
then the cumulant is obtained as
8*"(InZ[z* (p),z(p)])
((ai---ajay---an))= - . (B4)
82(py) - -+ 82(py) 67 (py) - d2(pn) | ,_,
We introduce two assumptions. The first is
((afafajap))=A(aja;)(ala,), (BS)
((ajafaja;azas))=B(ajas)(aja,)(atas), (B6)

whereA andB are constant. The second assumption is that the interference terms, $aéh2éasa;), vanish by integrating
over the momenta, for example,

| dpdpriataaian o ®7)

Thus we can obtain
(n(n—=1))=(1+A)Xn)%, (B8)
(n(n=1)(n—2))=(1+3A+B)(n)°. (B9)

Correlation functions at the zero relative momenta become

1
Cy(p,p)=1+ 1A (B10)
1
Ca(P.P.P) =1+ T {3+2+6A}. (B1D)

The terms 3, 2, and & between the braces in the above equation correspondz(gpo,cxa;aaxagac)(alab),

2 Re((ala,)(alas)(alay)), and 2 RE . o(alap)((alalasac)) in Eq. (B2). To obtain the genuine three-pion correlation,

we should subtract the first and third terms between the braces. Thus we define the new weight factor, considering the above
discussion, as

,_ 1 (1+3A+B)[Cs(p,p,p) —1]—3(1+2A)[C,(p,p) —1]

© =3 [(1+A)(Cy(p,p)—1)]3?
—1)(n-=2 2 —1))—(n)?
D02 ) -11- 32 I -1
1 (n) )
=3 (n(n=1)) ” | o
————(Cy(p,p)—1)

(n)?

This equation corresponds to E&0).

The two assumptions are valid for multicoherent sources and one chaotic source with Aetting'(1—€)? and B
=a~?(1—€)3. For multicoherent sources, the assumptions are not valid because of the[faeterp(—a)]™?, in Egs.
(A14)—(A16), due to the renormalized Poisson distribution, EL0). In using the usual Poisson distribution instead of the
renormalized one, the factor vanishes, and the assumptions become applicable=witht andB=«a 2. The correlation
functions are the same both in the cases of the usual and renormalized distributions. If we use the renormalized distributions
and other assumptions, we can derive BJL2), but the derivation is more complicated.
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