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Both simple and sophisticated models are frequently used in an attempt to understand how real nuclei
breakup when subjected to large excitation energies, a process known as nuclear multifragmentation. Many of
these models assume equilibrium thermodynamics and produce results often interpreted as evidence of a phase
transition. This work examines one class of models and employs standard thermodynamical procedures to
explore the possible existence and nature of a phase transition. The role of various terms, e.g., Coulomb and
surface energy, is discussed.

PACS numbes): 25.70.Pq, 64.60.Ak, 24.60.Ky, 05.70.Jk

I. INTRODUCTION AND OVERVIEW the volume V. Calculations are restricted to a system which
contains 162 constituents, since this is representative of the

Many models[1-9] have been proposed to describe thesize of the system studied in R¢L6]. Contributions toF,
breakup of a large nucleus subjected to excitation energie®.d., the surface free energy, the Coulomb energy, are exam-
greater than a few MeV per nucleon, a process known aked by turning them off or altering the form of the contri-
multifragmentation. Experimentally, the signature of multi- bution in question. In this way insight can be gained as to
fragmentation is the production of a wide range of nucleahow the important features of the thermodynamics such as
reaction products, particularly intermediate mass fragmentspecific heat, isothermal compressibility, etc., depend on the
(IMFs), 3<Z=<30. On the basis of inclusive data, it was Parametrization of the free energy.
proposed[lo_la that these fragments were produced in This paper is OrganiZEd as follows. In Sec. Il the details of
analogy to a liquid-to-gas phase transition occurring in &he models are presented. Three versions of a standard sta-
nucleus. A recent experiment that permitted the total charg#stical multifragmentation model are examined as well as a
reconstruction of each event studied multifragmentation rewell-known mean field model whose results are used for
sulting from the breakup of gold nuclei as a function of thecomparison. In Sec. Ill a description of the analysis and the
excitation energy depositdd3—17. The statistical aspects results of that analysis are presented. Section IV discusses
of these data have provided strong evidence that multifragthe standard interpretations of the models and analysis. Fi-
mentation is indeed related to a phase transition occurring ifally, a brief discussion of the questions raised by this work
a finite system. Whether the production of IMFs in suchconcludes this paper. In general, the notation of Réfsand
collisions is due to a phase transition, and if so, what type, i$8] are followed.
still an issue of much debafé8].

One class of models developed to explore the fate of a
nucleus as a function of excitation energy is based on the
phenomenological description of the free eneFyy,T) of This work follows directly the efforts presented in Ref.
the breakup state, whefleis the common temperature of all [8] in which the canonical partition function was examined
nucleons and nuclei within the breakup volufde These as a function of temperature in a fixed volume system for
nuclei are considered to be at normal nuclear density andvidence of a phase transition. In that work, evidence for a
interact only via the Coulomb force. The distribution of first order phase transition was found. In the present work,
nuclear fragments prior to any secondary decay can then bibe volume(average densilyof the system is permitted to
calculated as a first step in the disassembly of the excitedary. It shall be seen that the nature of the phase transition
initial system. To compare with data, deexcitation of frag-depends on the volume of the system. The work of F&fis
ments and expansion of the system due to the Coulomb rexdso extended by examining the effects of the Coulomb force
pulsion between the fragments must be accounted for in then the system and the effects of the choice of surface energy
model. However, if the thermodynamics of the model is ofparametrizations. The units used for the nuclear models are:
interest, as is the case in this work, then only the behavior oénergy and free energy in MeV/nucleon, temperature in
thermodynamic variables need be examined, e.g., free eMeV, volume in frf, pressure in MeV/frfy and so on. A
ergy, entropy, specific heat, pressure, isothermal compresgeneral description of each system follows.
ibility. Thus, no fragment distributions need be explicitly
calculated and therefore no fragment distributions are ana-
lyzed in this work.

Here, several variations of a previously discussed model Calculations begin by considering the free energy of a
[8] are explored. A canonical ensemble approach is used touclear fragment. It is assumétl] that the free energy of a
investigate the thermodynamics of the system where the freeuclear fragment of mass and charge, for A>1 is given
energy,F, is written as a function of the temperatuig,and by

Il. DETAILS OF THE MODELS

A. V1: Full statistical description of an excited nucleus
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Faz=F3,+F¥T+Fa ,+ES . ) Raz=roAY, (8)

The terms in Eq(1) refer to the bulk, symmetry, surface, and With ro=1.17 fm. The version of the model presented above
Coulomb contributions to the free energy of a nuclear fragWill be termed V1.

ment. The forms of these terms dig From this point the intrinsic partition function of a frag-
ment of A, Z at temperaturd, and volumeV can be deter-
Faz=(—Wo—T% €A, (2)  mined[8] as follows:
FSym ’)/(A 22)2/A (3) ZA’Z:eXF(_FA’Z/T). (9

” Using a technique developed in R¢f9] and used on a
T2 T2 o3 simplified version of this mod€]8], the canonical partition
I:AZ '80 T2 J (4) function can be built via a recursion relation

1P
3 Z=— AwpZy A, 10
ERz=g€°Z%(1=(1+x) )Ry z. (5) " p Agl @ATP-A (10
starting from Z,=1. Here for calculational simplicity the
approximation has been made that for each and every frag-

=16 MeV. In Eq.(3) y=25 MeV. In Eq.(4) Bo=18 MeV  \on \iith A>1, A/Z=2.5 which represents an average
andT.=16 MeV, following Ref.[9]. The contribution from mass to charge ratio for fragments. Tiag term is

the Coulomb term is estimated via a Wigner-Seitz approxi-
mation as in Ref[1]. v
The « term is related to the volume of the system through wA:h—;(Zwm'l')?”zA?”zszz, (11

In Eqg. (2) the constants are taken #¢,=16 MeV ande,

1+ k=VIV,. (6) " .
where the terms on the left of the fragment partition function,
The simplified model presented here differs from the stanZ,z. account for the translational free energy contribution
dard Versu‘_)r{l] in that there is on|y one parameter re'a“ng F It is now Stl’alghtforwal’d to calculate the part|t|0n func-
the volume excluded by the constitueg to the total vol- ~ tion of the system for a giveii, V¢, Ao, andZ,. The free
ume of the systenV and to the free volum&;. Here the energy of the system ob particles is then determined as
free volume is the difference between the total volivend ~ usual
the sum of the volume of the fragments, assumed to be at
normal nuclear density, and is the volume available for the
translational motion of the fragment
' lns{ahle r;tandarld version (r)f%he m?)del the free volume ISWhere the last term is the usual Coulomb contribution of a
given byV;= xV,, wherey is parametrized to increase with uniformly charged sphere
fragment multiplicity such that it varies between 0.2 and 2; 3 72
the parameteic is fixed, usually atK=_2._ For simpliqity, EOC(V)_ 50?, (13
here it is assumed that= x so that specifying/; determines
the value ofx in Eq. (6). See Ref[1] for details ofx and y
in the standard version.
For this work then, the total volume of the system is given

by

F=-TIn(Z,) +EHV), (12

with R=(3V/4m)*3.

1. Comparison of V1 to the full version of the model

The model and calculations described above were com-
V=V,+V;. (7)  pared to the full, or unmodified version of the model often
cited in the literature, see for example Rdfs, 20—-23, In
Two things become obvious from E7); first, with this  Fig. 1 results from the full version of this model are shown
form of V the free energy of the system varies withsince  for the mean fragment distribution calculated at a given input
V, is a constant. Second, the loss of free volume in theexcitation energy. To generate event-by-event distributions
closest packing of spherical clusters is ignored. The issue d?Poissonian fluctuations about the mean are introduced, after
whether spherical nuclei can actually be placed in a totalhich, temperature is adjusted to ensure energy conserva-
volume V, given a free volumeV; is not addressed. Un- tion. To more fully recover the standard version of the model
doubtedly, there will be situations where it is not possible formost often used, higher order corrections were introduced
the total volume to accommodate all of the nuclear clustergust as in the full version of the model; e.gg in Eq. (2) was
The purpose here, however, is to explore the thermodynammade dependent on the fragment maAsgor light clusters,
ics and self-consistency of the model and not physical conA<4, the empirical masses and binding energies, radii and

sistency. spin degeneracy factors of the ground state were used, the
Finally R, 7 is the radius of the fragment in question and total volume was held constant a¥/@ and the free volume
is determined by was set to depend on the input excitation energy. Finally,
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E' (MeVinucleon) FIG. 2. Energy conservation in V1, overall, component by com-

FIG. 1. Comparison of the full modébpen circles before Pois- ponen_t(total, bulk_, surface, transla_tional, symmetry, and Coulomb
sonian smearing and the calculations of this pafet circles) for energies, respectlvelyand_ the caloric curves. Fu_II circles represent
the caloric curvea and the average fragment multiplicitiés). the initial state, open circles represent the final state and open

squares represent the difference between the two.
energy was explicitly conserved; an input excitation energy =~ o o
was given and a temperature was determined such that totgimplified model used in this work is given the same volume
energy was conserved. The explicit conservation of energflependence as the full model, the results of the full model
produced results that were the same as those resulting froff€ reproduced. o
the unconstrained canonical ensemble. Energy conservation is explored in Fig. 2. Here the un-

Figure Xa) shows the caloric curve from the full version Modified version of V1 was used with a system of 162 par-
of this model for a system with 100 nucleo80 neutrons ticles and energy was explicitly conserved as outlined above.
and 40 protoriscompared to the same size system used ifh order to examine the change in energy between the initial
calculations with a modified version of V1. The general and final state of each term contributing to the system'’s total
trend of the modified V1 reproduced the average behavior ofnergy, the temperature of the initial state of the system has
the full model, though there is not a perfect agreement. Thi®een calculated corresponding to the inftit The assump-
is to be expected. While this modified version of V1 is closertion that the initial nuclear state is in thermal equilibrium
to the model, there are still some differences, e.g., the charg%fior to its deexcitation to the final state has no bearing on
of A>4 fragment is treated in only an average fashion in v1.the thermodynamics of the final state and is done only for
The reproduction of the general trends indicates that V1 cag?urposes of the abovementioned calculation. The initial state
tures the essence of the full model. Figur@)lshows the used for this calculation was the system of 162 nucleons at
fragment multiplicity, before any secondary decay, fromeXxcitation energf*, at normal nuclear density,, and ata
both models. Again there is general agreement between tHgmperature that conserves energy when the total energy is

two. determined using Eq$2)—(5), (12), and

The break observed in the caloric curve shown in Fig. 1 is
well known in the full model, see, for example, Fig. 4 in Ref. E=F—T(£) _ (14)
[20] and Fig. 11 in Ref[22]. The break is due to the initial aT/y,

guess of the system’s multiplicity which is in turn used to

guess the system’s free volume. For low energies the multiThe total energy of the initial state is shown in Fig. 2 as well
plicity is chosen to be 1, 2, or BFig. 1(b) shows that the as its various components and a caloric curve. The final state
initial guess of the multiplicity is consistent with the final of the system was computed with the salfe but was held
state multiplicityl, while at higher energies the multiplicity at a third normal densitypo/3, and allowed to fragment in
depends smoothly on a function of the input excitation enthe manner outlined above. The caloric curve produced for
ergy [1]. In some systems, e.g., a system of 100 nucleonghe final state via this explicit conservation of energy calcu-
there is a jump in multiplicity at the transition from the low lation is identical to the caloric curve produced via the cal-
energy computations and the high energy computationsulations without an explicit conservation of energy. Figure
which gives rise to a jump in the final state multiplicity, Fig. 2 shows that the temperature in the final state is lower than
1(b), and a break in the caloric curve, Figial When the that in the initial state. Further inspection indicates that while
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the Coulomb energy is reduced by creating smaller charged
nuclei, the energy required to create the additional surface
area more is more than offsetting. Thus, the temperature
must decrease.

B. V2: Description of an excited charge-free nucleus

The general ideas of V1 are followed but with the Cou-
lomb energy of the system set to zero. The free energy
shown in Eq.(1) then becomes

Fa=F3+F3. (15
And the total free energy of the system is given by
F=-TIn(Z,). (16)

Every other aspect of the model is the same as in V1. This
version of the model will be termed V2.

C. V3: Description of an excited charge-free nucleus FIG. 3. Free energy surfaces as a function of temperature and
with a temperature independent surface volume for(a) V1, (b) V2, (c) V3, and(d) the van der Waals fluid.

In this version, the Coulomb force is suppressed and the L » ) . .
temperature dependent surface term in @gis made inde- general vicinity of the critical point was identified, a smaller

pendent of temperature range in [,V¢) was used for more detailed calculations. For
the van der Waals fluid the range was smaller and in terms of
Fa=BoAZ:. (170  reduced temperature and volume: 91/T,<2.0 and 0.34

<V/V.<2.0. Figure 3 shows the behavior of the free energy
The free energy of a fragment and the entire system are stifiver the ranges of temperature and volume used in the cal-
given by Eqs(15) and(16). Every other aspect of the model culations.
is the same as in V1 and V2. This version of the model will ~ After the value of the free energy was calculated, it was
be termed V3. simple to determine other thermodynamic quantities. Hold-
ing the volume fixed the entropy is given by the usual rela-

D. The van der Waals fluid tion

The free energy of the van der Waals fluid is determined JE
in the standard textbook fashion. Starting from the free en- S=— (_> ) (19
ergy[23] T Vi

FIA=—t{l V—Ab)/A]+ 1} - Aa/V 1
/ {InLno( b)/AJ+1} v, (18) In the case of this work differences were used instead of

with t=k,T, nQ=(Mt/2wh2)3’2, anda andb the usual van derivatives due to the numerical nature of the calculation,

der Waals constants. In this work, E48) is computed in thus E.(19) becomes

terms of the densityp=A/V, so that the number of constitu-

entsA is not a factor. For the van der Waals’ constamend _|AF

b, values were used for helium so tHEt~4.5x 10 * eV/ S=-aT v
nucleon. This also suggested the valuevbfn ng . Finally, f
Eq. (18) was evaluated in terms df/ T, andV/V.. The van o B

der Waals fluid model is well defined and free of internalSimilarly the specific heat at constant volume was deter-
inconsistencies. It will be used as a benchmark for the analyMined via

sis presented in this paper. Units for the van der Waals fluid

results will be in eV/nucleon for energy and free energy, eV/

nucleorx V. for pressure, and so on. CV:<T>(E>V' (21

(20

lil. DISCUSSION OF CALCULATIONS where(T) is the average value of over theAT interval.

Calculations were performed for each version of theUsing the entropy and the free energy, the total energy can
model to determineF (T,V;,Aq.Zo) for Ag=162, Ay/Z, be determined from
=2.5, and over a range in temperature, 1 MeM <14
MeV, and volume of X 10 8<(V;/Vy)<2x 1. Once the E=F+TS (22
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FIG. 4. Free energy isotherms as a function of reduced density

for (3 V1, (b) V2, () V3, and(d) the van der Waals fluid. Open FIG. 5. Isotherms of pressure as a function of reduced density

éor (@ V1, (b) V2, (c) V3, and(d) the van der Waals fluid. Open
guares show the spinodal, full circles show the coexistence curve.
he solid horizontal line is an example of a Maxwell equal area
construction to determine the coexistence region and find the criti-

_ _ _ ) cal point. Dotted curves are subcritical. Solid curves are critical.
In these calculations it was possible to hold either thepashed curves are supereritical.

temperature or the volume constant. The pressure was then

coexistence region. Dotted curves are subcritical. Solid curves ar
critical. Dashed curves are supercritical.

found by holding the temperature fixed A. Isotherms
Determination of the critical point, coexistence and spin-
AF odal curves is discussed below. The variation of the free
=— (_) . (23 energy as a function of density shows the same general fea-
AVy T tures for these systems.

Figure 4 shows the behavior of the free energy isotherms
for each system as a function of reduced density. Each plot

Taking anotherderivative then gave the isothermal com- in Fig. 4 shows three isotherms. The isotherms are subcritical

pressibility (T=0.95T.), critical (T=T.), and supercritical T
=1.05T,). Determination of the critical point is discussed
1 [AV; below. Also shown are the approximate location of the co-
KT=— m<ﬁ) , (29 existence and spinodal curves. Determination of these curves
f T is also discussed below. The behavior of the free energy for

these isotherms for all systems is more or less the same. As
the reduced density increases, the free energy increases. At

where(Vy) s the average value &y over theAVy interval. — (0 4" e o ediced density the slope of the increase
With this information it is possible to determine if there is a: ! ge ! u Ity P !

phase transition in a model such as this and, if present, th free fetnhergy changgs.fAt a greaterhreduced d(.ans%/].th.e
nature of that phase transition. The following section ag->'0pe Of Ineincrease in Iree energy changes again. “his Is
: . most clearly demonstrated by the van der Waals fluid sys-
dresses this question. . o .
tem, see Fig. @l). However, the behavior is present in all the
models. This behavior, while appearing modest in these
IV. RESULTS OF CALCULATIONS pIot;,.wiII be seen to be the cause of the critical-like behavior
exhibited by these models.
In this section, each of the axes of the standard phase The pressure was calculated from the free energy iso-
diagramT, V, andP, will in turn be held fixed. The behavior therms via Eq.(23). Figure 5 shows the results for each
of other quantities will be examined in order to understandmodel. The determination of the location of the critical point
the behavior of each system. The van der Waals fluid willand the coexistence and spinodal curves is based on the
serve as a guide for the interpretation of the analysis and algshase diagram of pressure, temperature, and reduced density.
as a benchmark to illustrate the accuracy of this analysis. By searching for inflection points along the pressure versus
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TABLE I. Critical points for the models.

System T. Pe P. C

V1 7.5750.005 MeV 0.94:-0.01X p, (3.2+0.1)x 10 % MeV/fm® 0.49+0.02
V2 6.875+0.005 MeV 0.74-0.01X pg (7.3+0.1)x 10 * MeV/fm® 0.16+0.02
V3 10.975-0.005 MeV 0.85-0.01X pg (2.4+0.1)x 10 % MeV/fm® 0.28+0.02
vdwW 1.01+0.01X T, 1.01+0.02% p., (1.7+0.1)xX 10 * eV/nucleorx V, 0.37+0.02

reduced density isotherms the spinodal curve was detethat the critical point could never be reached by finite nuclear
mined. The isotherm immediately following, as the tempera-matter as a multiplicity of spherical clusters at normal
ture of each isotherm increases, the last isotherm with twewclear density could not physically fit into the critical vol-
inflection points was labeled the critical isotherm. ume. If the constraint that the breakup volume must be large
Another method to determine the location of the criticalenough to avoid overlapping volumes of the final state
point began with the isothermal compressibility which was(spherical nuclei is added, then only first order phase tran-
calculated with Eq.(24). Isotherms ofxy versus reduced sitions are possible. Of course there are several problems
density were inspected. All subcritical isotherms showed aivith a strictly physical interpretation of models such as the
least one negative value &f-. The first isotherm, as a func- one presented here, not the least of which is the introduction
tion of increasing temperature, which showed only positiveof a volume for the system. Actual nuclei excited to high
values ofx was labeled the critical isotherm. Both proce- energies in nucleus-nucleus collisions do not exist in a box
dures yielded the same results, as they are essentially identind thus have no volume in the sense suggested here.
cal. See Table I. Item (3), the rise inT, with the vanishing of the Coulomb
The coexistence curve was determined by making a Maxforce, is, on the surface, counterintuitive. Many other models
well equal area construction for each isotherm. See Fig. 4 fosf nuclear systems show just the opposite behaj26r27).
examples of the Maxwell construction. However, those models are fundamentally different than the
On first glance at Table | several noteworthy featuresones examined in this work. Such models begin by describ-
stand out.(1) None of the values of, determined for the ing the free energy or chemical potential or some equivalent
models is the same as the value of the paranigtepecified  quantity using formulas which assume a uniform distribution
in the surface term in Eq4). (2) The critical densities for of material in much the same way that the van der Waals
each model are close to unit§®) The critical temperature of fluid assumes a uniform density. The model in this work
V1, the model which includes the Coulomb force, is largersamples a different part of the final state phase sf2k It
than the critical temperature of V2, the model with no Cou-will be seen that the calculation of the Coulomb term via Eq.
lomb force. The error of the analysis of the van der Waalg5) gives rise to the counterintuitive rise in the critical tem-
fluid was on the order of a few perceﬁﬁdw¢ 1. This illus-  perature when the Coulomb force is suppressed in the model.
trates the error inherent with this type of analysis. To begin to understand the effect of the Coulomb energy
It is not surprising that the critical temperature found by on the critical point the same isotherm for models V1 and V2
the analysis of thermodynamical quantities is different tharwas examined. Figures(@ and &b) show the isotherm of
the parameter . used to parametrize the surface free energyl =7.2 MeV for V1 and V2. When the coexistence curve is
of infinite nuclear matter. If one considers the critical pointshown for both systems, it is obvious that for V1 the iso-
to be that temperature at which the surface free energy vartherm is subcritical while for V2 the isotherm is supercriti-
ishes, then this can only be at (16 MeV in this casg  cal. Figures €) and 6d) begin to shed light on the cause of
However, the form of the surface term given by Hd), this counterintuitive occurrence.
approximately the form of the macroscopic surface free en- For the sake of illustration, the Maxwell constructed
ergy of a fluid near its critical point, is not an appropriate line of constant slope through the coexistence region, which
description of the microscopic surface of a droplg#].  then leads to a constant value of the pressure through the
Moreover, Eq.(4) leads to a specific heat which approachescoexistence region that will give “equal areas” on a
negative infinity ast approached .. In a more fundamental pressure-volume plot, see Figah path of the free energy
model the critical temperature would be an output of thethrough the coexistence region is shown as a dashed line,
model rather than an input. Of the phenomenological modelbarely visible just below the isotherm in the coexistence re-
studied here, only the van der Waals model is known to b@ion, in Fig. &a). The Maxwell constructed free energy is a
self-consistent. straight line through the coexistence region. The constant
The high densities found at the critical point for V1, V2, slope of the Maxwell constructed free energy leads to a con-
and V3 cannot be realized if one is constrained to placingtant pressure for the system in the coexistence region. Be-
spherical nuclei without overlaps inside of the total volume.cause the path of Maxwell constructed free energy is very
Again this issue is mentioned but not dealt with since the aintlose to the path of the free energy of V1, it is difficult to see
of this paper is to explore only the thermodynamical predic-the difference in a plot such as shown in Figa)6 A plot of
tions of the above models. the difference in the calculated free energy of V1 and the
Were this sort of model interpreted physically, the highMaxwell constructed free energy shows what gives rise to
value of the critical density determined here would suggesthe van der Waals loops in Fig(&, see Fig. €&). There are
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FIG. 6. Free energy isotherms as a function of reduced density FIG. 7. Components of the free energy isotherifis 7.2 MeV)
for (8 V1 and (b) V2. For both systems the isotherm is fér  for V1 (left) and V2(right). From top to bottom the components are
=7.2 MeV. Open squares show the spinodal, full circles show théor translation, bulk or Fermi, surface, symmetry, total Coulomb,
coexistence curve. Thlaxwell constructedree energy is shown uniform background Coulomb contribution, and the clusterization
as a dashed line through the coexistence region. The difference @oulomb contribution.
the computed free energy and thkaxwell constructed free energy
shows the presence of inflection points(@ V1 at the coexistence
boundary for this subcritical isotherm and none fdy V2 for this
supercritical isotherm.

Coulomb force in V1 and its absence in V2.

The behavior of the Coulomb contribution to the free en-
ergy of this isotherm is now discussed. The first, and sim-
two inflection points in the curve of the calculated free en-plest, additional term in the free energy due to the Coulomb
ergy of V1, these are shown more clearly as the points iforce is the asymmetry term. The change is in the asymmetry
Fig. 6(c) where the curve shows an ordinate value of zeroerm is smooth as a function of increasing density and will
These plots for a canonical system’s free energy are in thgot introduce the inflection points in the free energy curve
same spirit as plots for a microcanonical system's entropyja¢ will change a supercritical isotherm to a subcritical iso-
[28]. It is clear from Figs. ) and &d) that there are no harm.
similar inflection points in the free energy curve for V2. In this model the total Coulomb contribution to the free
Therefore the isotherm af=7.2 MeV in V2 is supercritical energy comes from two sources. One which represents the

while the very same isotherm is subcritical for V1. : o
It is possible to understand what gives rise to the inflec—baCk(‘J]round energy due to a uniform distribution of charges,

tion points introduced when going from V2 to V1 by looking Eq. (13), and the other due to the energy from the clusteriza-

at the contributions to the total free energy of each systenfo" Of fr?gments, Eq(5) [1]. The background energfs,
along the isothernT=7.2 MeV, see Fig. 7. Plotted in this 9°0€S a9 and therefore varies smoothly with volume. The
figure for both systems are the components of the overall fre€lusterization free energly , shown in Fig. 7 has a differ-
energy for the isotherm in question: translational, bulk, surent behavior. It decreases as the reduced density increases,
face, symmetry, total Coulomb, background Coulomb, andhe rate of decrease is at first nearly constant, then slows and
clusterization Coulomb free energies. Figure 7 shows that théhen increases rapidly over some small interval in reduced
translational and bulk free energies of each system are nearfiensity. The combination of these two Coulomb terms intro-
identical. An inspection of Eq$11) and(2) shows that these duces sufficient changes in the overall free energy of the
quantities are relatively insensitive to small changes in theystem from V2 to V1 that inflection points arise and thus
fragment distribution. On the other hand, the surface fredhe critical temperature increases when the Coulomb force is
energy shows an obvious difference in behavior between sy@dded to the system. A smooth or constant version of the
tems. In V1 the initial decrease in surface free energy as &oulomb free energy added to version V2 should not cause
function of reduced density is slower than in V2. An inspec-this sort of behavior. It is the variation iEgZ that intro-

tion of Eq. (4) shows that theA?® term introduces more duced the inflection points and increases the critical tempera-
sensitivity to the fragment distribution than the previouslyture. In the end, it is the behavior of the free energy curve
discussed terms. The cause of this difference, and all ththat served to determine the location of the critical point and
differences between these two systems, is the presence of ttigat behavior is, at times, counterintuitive.
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T FIG. 9. A three-dimensional plot of the free energy isochores for

the van der Waals fluid. Full circles show the boundary of the

FIG. 8. Free energy isochores f@ V1, (b) V2, (c) V3, and(d)  coexistence region. Dotted curves are subcritical. Solid curves are
the van der Waals fluid. Full circles show the boundary of thecyitical. Dashed curves are supercritical.

coexistence region. Dotted curves are subcritical. Solid curves are

critical. Dashed curves are supercritical. . . . S
P times larger than the system used in this work, the kink is

more evident and this procedure may be possible.
Knowledge of the location of the coexistence curve al-

AV lows for the identification of subcritical, critical, and super-

: (25 critical isochores. For the projections shown in Fig. 8 all the

versions of the nuclear model have a subcritical isochore that

The textbook value fo€; for the van der Waals gas is re- CTOSS€S the coexistence region. The critical isochore travels
covered to within error bars. According to the law of corre-2/0ng the high value edge of the coexistence curve passing
sponding states, the value &f should be universal. For through the critical point. Supercritical isochores do not

fluid systems this is the case at@;)~0.292[29]. For v1 ~ cOme into contact with the coexistence curve nor do they
and V2 no such universal behavior is observed to withinffaverse the coexistence region. The behavior of the van der

error bars, while V3 shows some degree of universality. Waals fluid is somewhat different from the behavior of the
nuclear models. Figure(® shows that for a van der Waals

fluid in this projection of the phase diagram all isochores are
in the coexistence region for low temperatures and cross the

The volume of the system is held constant and the behawoexistence curve at higher temperatures. This apparent be-
ior of various quantities with respect to the system’s tem-havior results from projection of the three dimensional phase
perature is explored. diagram onto a two-dimensional plot. In a three-dimensional

Beginning again with the primary quantity calculated, figure, the supercritical isochore is seen to travel outside the
Fig. 8 shows the free energy for each system as a function afoexistence region, the critical isochore is observed to inter-
the system’s temperature. For models V1, V2, and V3 thesect with the critical point and the subcritical isochore is seen
isochores are fop=py/3, p=p., andp=0.999%,. For the to traverse the coexistence region, see Fig. 9.
van der Waals fluid, the isochores shown are for The pressure isochores were obtained by following the
=1.2%., p=pc, and p=0.7%p.. See Table | for critical procedure outlined in Eq23) and using(p), the average
density values. Also shown are the values of the free energgiensity, and T), the average temperature over th€ inter-
of the systems along their respective coexistence curves. val, see Fig. 10. In the limit of vanishinyT this procedure

In Ref.[8] the authors show results of a model similar tois valid. Figure 10 shows the same three isochores discussed
V2, for an isochore of approximately=py/3. In that work  above as well as the location of the coexistence curve, seen
there was &ink in the free energy curve which was inter- edge on in this projection of the phase diagram. All the fig-
preted as evidence for a first order phase transition. For theres for the nuclear model show similar behaviors for the
small system used in this work tHénk is smoothed out critical and supercritical isochore. All supercritical isochores
negating the efficacy in using the kink as evidence toward$ollow a trajectory above the coexistence curve. The critical
determining the order of a phase transition if one is presenisochore for all versions of the model approaches the coex-
In larger systems, systems in R¢8] were more than 15 istence curve, follows it, and leaves at the termination or

Also listed in Table | is the compressibility factor:

f TC

B. Isochores
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FIG. 10. Isochores of pressure versus temperatur&forl, (b) FIG. 11. Isochores of the entropy versus temperaturéziov'l,
V2, (c) V3, and(d) the van der Waals fluid. Full circles show the (b) V2, (c) V3, and(d) the van der Waals fluid. Full circles show

boundary of the coexistence region. Dotted curves are subcriticafn® boundary of the coexistence region. Dotted curves are subcriti-
Solid curves are critical. Dashed curves are supercritical. cal. Solid curves are critical. Dashed curves are supercritical.

. : L Th ific h nstant vol for h m
critical point. The subcritical isochores for V2 and V3 pass;c o, Oewsnpienc Ficg i;t e:gzi(;]of;t?h; soalrtlzethcjregazgocsr? (?rtgs All
through the coexistence curve as the temperature is increasggrveS show a.peallk that could be due to a smoothed out

and the system makes a first order transn!on _from a liquid t%iscontinuity(ﬁrst order phase transitipnthe remnants of a
gaseous state. For version V1 the behavior is more compli-

o . ) wer law divergence at the critical poifdontinuous phase
cated. The subcritical isochore begins on the gaseous side EP g poif P

the coexistence curve, crosses the coexistence curve into the

liquid region before crossing back over the coexistence curve> *°F
into the gaseous region at higher temperature. Flepro- N
jection of the van der Waals fluid looks as expected, see Fig

<
£
%) 10

35

a function of temperature. All three isochores for the nuclear 93 | | |

3 -

10(d). 25 E_ 6 .
Following the analysis procedure outlined in the previous 2F ]
section, the entropy was determined via E2f), see Fig. 11. 15F 4 B
The same three isochores are plotted showing the entropy & 15 2 .

N N N B

o B ITTI IRTRANRRY FEAWA IRTRY (R INTR1 FRATIRUANANY.

N]S L1

models show a smooth rise as a function of temperature witt 4 6 8 10 2 4 6 8 10
some region of increased slope. This behavior is consisten

with a continuous phase transition, if a phase transition were .. (T 2ET T T
present. Along an isochore, a first order transition would be” : % ] © 19t (@ 3
indicated by a sudden change the behavior of the entropy a 3 E 18 3
a function of temperature at one edge of the coexistence 2 E i;: E
region. However, due to the small size of the system sucl E S 1
sharp behavior is smoothed making it impossible to come to 14E 3
a conclusion about the order of a phase transition from plots E 135 3
such as those shown in Fig. 11. As before, knowing the ER E
location of the coexistence curves makes identification sub- M T
critical, critical, and supercritical isochores a trivial matter. ;z o8 o9 111 1.zT

The subcritical isochore traverses the coexistence region, the

critical isochore passes through the critical point and the su- FiG, 12. The specific heat at constant volume versus tempera-
percritical isochore avoids the coexistence region. As beforgyre for(a) V1, (b) V2, (c) V3, and(d) the van der Waals fluid. Full
the van der Waals system shows a different behavior, and @rcles show the boundary of the coexistence region. Dotted curves

dimension to the plot in Fig. Xd@l) must be added to under- are subcritical. Solid curves are critical. Dashed curves are super-
stand the behavior of the various isochores. critical.
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FIG. 13. Isochoric caloric curves f¢a) V1, (b) V2, (c) V3, and FIG. 14. Free energy isobars as a function of the temperature for

(d) the van der Waals fluid. Full circles show the boundary of the(g) v1, (b) V2, (c) V3, and(d) the van der Waals fluid. Full circles

coexistence region. Dotted curves are subcritical. Solid curves arghow the boundary of the coexistence region. Dotted curves are

critical. Dashed curves are supercritical. subcritical. Solid curves are critical. Dashed curves are supercriti-
cal.

transition or a specific heat anomalisupercritical behav-
ior). As with the free energy and entropy it is impossible to
come to a definite conclusion regarding the presence and The pressure of the system is held constant and the be-
nature of a phase transition from this plot. Of particular im-havior of various quantities with respect to the system’s tem-
portance is the specific heat for the van der Waals fluidoerature is explored. Here some care should be taken with
which is seen to be nearly constant and equal to 3/2 as the interpretation of the results. The analysis outlined above
Shou|d[30] There is a small S|ope for the Speciﬁc heat OveriS still followed. However, since the pressure is an extensive
the temperature range in question: = T./2 Cy,=1.507 quantity, plots such as free energy versus temperature are
and for T=2T, C,=1.502. This illustrates the technique NOW plots of(F) versusT. Where(F) is the mid point in the
employed here, following Eqg20) and (21), yields results AF range over which a difference such as E2p) is taken.

that are no better than 0.25% for the quantities determined iff! the limit of vanishing interval size, this approximation is
this paper. accurate. Also because the pressure is an extensive variable,
Finally, Fig. 13 shows the constant volume caloric curvesIt was necessary to allow some small vane}tprPnr'n order
: . to make a plot such a¥) againstT. The variation inP was
of T as a function ok for each system at the same isochores

discussed above. Also shown are the values of the tem eru_sually less than one percent, i.&,P/P=0.01. Small
Iscu j P ghanges in the amount of variation Bfhad little effect on
ture and energy of the systefa=F + TS, along the bound-

; ) . , the analysis presented here. Large changes in the variation in
ary of the coexistence region. Just as with the behavior of thg, wash out the behavior observed below.

entropy isochores, the behavior of the caloric curves for each The isobaric free energy as a function of temperature is
isochore shows behavior that is consistent with either a firs¢own for all systems in Fig. 14 as well as the values of the
order or continuous phase transition in a small system. Eacyoparic free energy along the boundaries of the coexistence
isochore shows similar behavior, a steep rise followed by gegion. In all systems there is a back bend in the free energy
region of shallower incline followed by a portion which ap- curve for subcritical isobars. The subcritical isobar also
proachesE/A=3T. The lack of a flat region, or back bend, traverses the coexistence region. It would be possible to per-
in the caloric curve is not due to the small size of the systemform the Maxwell construction procedure and deduce the
but rather due to the system being held at a constant volumeritical point from these plots. The van der Waals fluid sys-
Only for isobarswill flat regions or back bends be observed tem shows that the critical point determined in the construc-
in the canonical nuclear modésee the following section  tion of the P-V coexistence curves agrees with consider-
Again the van der Waals system shows very different behavations of isobarid=, see Fig. 14d). The critical isobar shows

ior, a steady rise in the temperature as a function of energya vertical slope tangent to the coexistence curve and no back
And again a three dimensional plot is needed to clearly unbend. The supercritical isobar does not traverse the coexist-
derstand the nature of each isochore. ence region and shows no back bend.

C. Isobars
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FIG. 15. Isobars of temperature versus reduced densityafor FIG. 16. Isobars of the entropy versus temperature(di1,

V1, (b) V2, (c) V3, and(d) the van der Waals fluid. Open squares (b) V2, (c) V3, and(d) the van der Waals fluid. Full circles show
show the spinodal. Full circles show the boundary of the coexistthe boundary of the coexistence region. Dotted curves are subcriti-
ence region. Dotted curves are subcritical. Solid curves are criticakal. Solid curves are critical. Dashed curves are supercritical.
Dashed curves are supercritical.
. . ) . taking as input the isobars shown in Fig. 17. The results for

Figure 15 shows the isobaric temperature as a function of | 4f these canonical calculations are similar to the behavior
reduced density. Temperature is plotted as a function of réggported in microcanonical models for various systems
duced density in the spirit of the Guggenheim pl8L] 558 35 33 The subcritical isobars show the remnants of
which shows the universal behavior of several fluids neag s with Cp<0 values in between. The critical isobar
their critical point. On the scales shown here no universal, < the remnants of a divergence, and the supercritical
behavior is observed. It may be that very near the criticalgypar shows some peaking behavior. The lack of poles and
point, the coexistence curves for each system are identicaly e gences is not due to the finite size of the systems V1,
TheT-p isobars for all systems show the expected behaviors\:/z, and V3, but rather due to the computational nature of
a subcritical back bending curve that traverses the coeXiSthege calculations. The calculations for the van der Waals
ence region giving way to the critical isobar, a critical curveg,iq are, in effect, for a truly thermodynamic system and the
with a flat section which intercepts the coexistence region alan der Waals critical isobar @, still shows no true diver-
the critical point and finally a supercritical isobar which gence. The critical isobar op for V2 shows a negative

avoids the co'eX|stence. region altogether. . value which is due to the computational nature of the calcu-
The behavior of the isobaric entropy as a function of teM-ation and the manner in whicB. was calculated fronE
perature is also just as expected, see Fig. 16. Figure ndT values P

shows the isobaric caloric curves for each system. As the

energy is constructed from the free energy and entropy of the

system the back bending observed in the subcritical isobars D. Isonothing: Variable (P,V,T)

is expected. Also shown is the value of temperature and €n- Tha nuclear model presented here assumes a system en-
ergy along the boundary of the coexistence region. Note thgjoseq in some volume. An actual excited nucleus is not
difference between the isochoric caloric curves shown in Figepci0sed in a volume. This has the effect of forcing a path
13 and the |sqbar|c caloric curves shown in Flg_. 17. Wher{hrough the thermodynamic phase space which is consider-
the pressure is held constant all of the canonical systemgy gitferent from any of the paths investigated thus far. To
discussed here, including the van der Waals fluid, show sulijqqe the gap between reality and tractable calculations, an
critical caloric curves with a back bend. No back bending ISenergy dependent free volume is assumed in models such as

present when the volume is held constant. o the ones presented in this wdik]. At low energies the free
Finally Fig. 18 shows the constant pressure specific heay,o|yme of the system is assumed to be nearly constant and
Cp, as calculated from vanishingly small. At a given energy the system is allowed to
AE expand and the free volume increases from near zero. This
Cp= (—) (26) has the effect of tracing a path through the thermodynamic
AT P phase space of the system off any of the trivial paths along
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EIT = (F +TS)T, FIG. 19. Solid circles show the path of an expanding nuclear

system V1 through thermodynamic phase space. Neither volume
FIG. 17. Isobaric caloric curves fda) V1, (b) V2, (c) V3, and  nor pressure is held fixed. Points show the calculations of the free
(d) the van der Waals fluid. Full circles show the boundary of theenergy surface as shown in Fig. 3.
coexistence region. Dotted curves are subcritical. Solid curves are
critical. Dashed curves are supercritical.

) ) ) ) _in Vs as a function oE. As V; changes values &f, S, andE
one of the axes investigated above. It is possible to examing, . picked from the appropriate isochore. For example, in-

the e_ffects of such a parameterization of the free volume as &ead of traveling along a path parallel to one of the axes in
function of energy with the calculations made here. Calculas

tions in this section were performed only for V1. Fig. 2a), e.g., an isochore, isotherm, or isobar, an energy-

Following the same ideas presented in the discussion Ogegleré(éetrr]]trofreﬁ tng%n;?j \év:ri'c(:h?]sazg ssoact:?)tn tz;]ioi)t/rs'te;?
isobars, the values @f, S, andT are determined along a path Vo ught ynamic p pace Wi
trajectory, see Fig. 19. In Fig. ® small points show a

& 00— 7 1000 /ATLES MR I small sample of the set of calculations f6(T,V). Larger
4000 317 sof @ = points show the values &¥(V,T) selected for a/;(E) tra-
2 1 b 1 jectory described above. Figures(hPand 19c) show the
H00p 1wk 2 same forS(T,V) andE(T,V).
200F E o ] For the purposes of the present analysis, valueX ©fV)
oo 1 7 were used from different isochores. s changed values of
c ] ot 3 S(T,V) were selected from the appropriate isochore. If the
Us 7 200F 3 change from isochore to isochore is smalV;~0, then the
Y T ST AR RPN ST B E 3 procedure is a good approximation. The intervals/infor
4 2 0 2 8 6 - the calculation of (T,V) for this analysis were on the order
E=F+TS E=F+TS
of two percent of the free volume of the system; e.g., when
e R I R e I T L e AR AR R V=500 fn?, AV;~10 fm?, and whenV;=5 fm3, AV
s00F (€ - @ 1 ~0.1fnf.
sk 3 g ] Figure 2@a) shows three different paths through thermo-
r ] - - dynamic phase space: one which travels very near to the
400} ] B ] critical point and into the coexistence regi¢solid curve,
s00f- B F ] and two others which avoid the coexistence region all to-
r ] a 7] gether(dotted and dashed curyeg\s mentioned previously
s - ] £ ; = for the full version of this mode[1] the free volume is
poob e 1] AT T nearly zero for the lower end of the energy range. At some
A . =3(F+73":S§)/T energy, 2 MeV/nucleon for the solid curve in Fig. 20, the

system is allowed to expand and the free volume increases as
FIG. 18. Specific heat at a constant pressure versus energy f@ function of energy. The functional form &f¢(E) is not

(@ V1, (b) V2, (c) V3, and (d) the van der Waals fluid. Dotted identical to other modelEl] but close enough to show the

curves are subcritical. Solid curves are critical. Dashed curves areame behavior observed in the full version of the mdd¢!

supercritical. Also shown in Fig. 20a) are the values of the free volume
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in the course of back bending exits the coexistence region.
The solid curveP-T trajectory is equally interesting. As
the system increases in temperature with a fixed free volume,
the pressure increases. When the system reaches a tempera-
ture between 8 and 8.5 MeV the expansion sets in and the
pressure and temperature both drop so that the trajectory
moves towards the critical point. At a temperature between 7
and 7.5 MeV, the system reverses the trend and both pressure
and temperature increase, see Figd20Again the other two
trajectories show similar behavior, but to a lesser extent as
the V;(E) trajectory becomes smoother.
As back bending has already been observed for other
V;(E) trajectories, it is no surprise that the caloric curve for
E this changing volume system also shows a back bend, see
¢ Fig. 2Qe). The solid caloric curve shown here is reminiscent
E of other back bending caloric curves already published in
2
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Refs.[1,20-23, where variable free volume constrained ca-
nonical and constrained grand canonical calculations are
made, but not those published in R€f2,28], where a con-
stant volume micro canonical calculation is made. Also
shown in Fig. 20e) are the values of the temperature and
FIG. 20. The path of an expanding nuclear system V1 througtenergy along the coexistence curve. Again the trajectory of
thermodynamic phase spade) the free volume as a function of the solid curve variable free volume enters the coexistence
energy,(b) free volume as function of temperatufe) free volume  region near the critical point and exits the coexistence region
as a function of pressuréd) pressure as function of temperature, at T<Tc andE>E.. The dotted caloric curve also shows
(e) the resulting caloric curve(f) a specific heat based on the de- pack bending, albeit to a more limited extent and the dashed
rivative of the caloric curve, anfh) a specific heat along the phase caloric curves shows no major back bend.
space trajectory. Full circles show the boundary for the coexistence Next the specific heat of the system was calculated via
region. Different line types show differenP(V,T) trajectories. See Eq. (26), see Fig. 2(f). The application of Eq(26) to this
text for details. trajectory through thermodynamic phase space is problem-
atic. From Fig. 2Qd) it is clear that pressure is not a constant
and energy along the boundary of the coexistence regiorand thus Eq(26) should not be used. However, it has be-
Note that for the solid curve th¥;(E) trajectory enters the come commonplace to follow this sort of proced{26,22,
coexistence region near the critical point and leaves the caeven though it is in contradiction with definition @p or
existence region at a higher energy and free volume. Th€,,. When Eq.(26) is applied to the solid and dotted curves
other two trajectories shown in Fig. 20 have the same generah Fig. 20e), the resulting specific heat shows negative val-
behavior: increasing free volume with increasing energy, buties and the remnants of a divergence.
the precise paths differ. Finally the specific heat of the system was determined in
In a plot of free volume against temperature back bendinghe same manner that the entropy of the system was deter-
is observed for two of the trajectories presented here, see Fighined. The specific heat at a constant volume was calculated
20(b). The solid curve trajectory oV{(T) begins with a along an isochore, then the values@j were selected from
small free volume that is constant until a temperature of justhe paths through thermodynamic phase space o¥tKE)
over 8 MeV, then the system expands and cools. This israjectory, see Fig. 20). For the solid line path, the value of
shown by the back bend. The solid curVg(T) trajectory  C,, shows a steady rise until an energy of 2 MeV/nucleon
then enters the coexistence region near the critical point. At and then a sharp rise as the system expands. As the system
temperature between 7 and 7.5 MeV the slope of the freeontinues to expand and the energy increases the valdg of
volume nearly diverges and then changes in sign. After thiseaches a maximum and then shows a gradual decline. No
point, further expansion in the free volume is accompaniedC,,<0 is observed in this plot. The other two paths show
by an increase in the temperature of the system. \T{&) smoother behavior.
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curve then leaves the coexistence regionTatT, and V The question that now arises is what, if any, insight into
>V,.. The other trajectories show similar, but less extremehe nature of the phase transition can be obtained from
behavior. curves such as those in Figs.(80and 2@f). Were there no

Other projections of the phase diagram for this modelother knowledge of the system, the back bends observed in
with the solid curveV;(E) trajectory show back bends as the solid and dotted caloric curves would suggest that the
well, see Figs. 2@) and 2@d). The V;-P projections shows system had gone through a first order phase transition. Nega-
the system’s pressure increases nearly an order of magnitutigee values and a peak in the specific heat would seem to
over the constant free volume section. When the system isonfirm this. While for the dashed curve, the lack of back
allowed to expand, the pressure drops. The trajectory passeending in the caloric curve and the lack of a negative spe-
near the critical point as it enters the coexistence region andific heat would argue either for a continuous phase transi-
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tion or no phase transition. However, from the analysis of the > 5
previous sections, the location of the critical point and the
shape and location of the coexistence curve are known. The
addition of this knowledge makes it clear that the naive ;-
analysis of Figs. 2@) and 2@f) can provide misleading re- E
sults. While the solid caloric curve shows a back bend, the  2f
trajectory of the systems goes through the critical point, into
the coexistence region and exits along a subcritical path. Car 1
one conclude that the system has undergone a continuou ., .. 1., .|, ., 1.,.] S I
phase transition, or has it undergone a first order phase tran ¢ ©2 © 0%, 0 04020
sition because the trajectory traverses the coexistence re o
gion? The answer to the first question is yes, since the sys<>
tem does reach the critical temperature and density
simultaneously. The answer to the second question also ap
pears to be “yes” since the specific heat found from E2§)

is less than zeréfor the solid curve Furthermore, the solid
curve intersects the coexistence curve & kess thanT,.

Note, however, that without knowledge of the location of the
coexistence curve, the above questions cannot be unambigu [ ; 1
ously answered. A naive inspection of the dotted caloric _0’4‘ - (r) R ‘0‘4 1l (\) s
curve may lead one to conclude that the back bending is ‘ (T-T VT, o (T-T /T,
indicative of a first order phase transition. Such is not the

case, Fig. 2@®) shows that the dashed line never traverses FIG. 21. Determination of the critical exponesmtfrom the spe-
the coexistence region. It is clear that drawing conclusionsific heat at a constant density= p,; for (a) V1, (b) V2, (c) V3, and
based on caloric curves is difficult unless one has knowledgé) the van der Waals fluid. Solid lines show a sample fit.

of the complete thermodynamics of the system.
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of (T—T.)/T.. To some degree this is to be expected. Near
E. Critical exponents from thermodynamic quantities the critical point the finite size effects, which manifest them-
elves first in the smoothing of the kink of subcritical free
nergy isochores, diminish a diverging specific heat into a

uzgﬁ[%;l;%vit?] s?i?]ntrllgrogeshap\ziﬁhgtarr‘feg??hesz(r)igilcdal e):)?:]lil eaking specific heat. Far from the critical point, the analytic
q 9 ’ POINLerms in the expression for the specific heat become domi-

:;e gﬁ;ﬁ:éb?rdhggepgx:f:;:zzs C‘)’\r’:g;]é Zﬂgﬁ'ﬁ;iﬁe‘c‘e\;’g{l i:;téivaLant and the power law behavior is overwhelmed. In some
P ’ P y idrange region, neither too far from nor too near to the

ﬁcﬁl'gg I;lali\\//vsranlﬂ mz|;1y, or m_?y tnhOtE f?::j"}ti\? onr?tiof fhi es:lati)q- ritical point behavior consistent with E(27) was observed.
shed universality classes. 10 that end, TIve critical Exponeny, , ;. s fits were tried on both sides of the critical point, but

values are determined and four scaling laws are checked for

. o ) . only those which gave a matching value ferwere consid-
these models using the critical point,P.,p.) determined _ered. Figures 28), 21(b), and 21c) show the results of one

previously and other thermodynamic quantities. Note that "Such fit. Table I lists the average results for many such fits.

tmhﬁ ddit:rrnr?c;nf;;?:bgscgrgilsiﬁpggelri](:ﬁl prisentierz]dtagr;,(ttrgit- The van der Waals fluid shows much different behavior
nodynamig . picitly, €.9., I that do the nuclear models. The constant valu€pf 3/2 in
tion of y it is the isothermal compressibility that is used, and

not moments of the fragment distribution the van der Waals _ﬂuid leads to the result_oofzo as ex-

' pected for a mean field model. Based on this result it would
seem that the nuclear models are not mean field models.
They show a peaking in the specific heat that is inconsistent

The exponentr is determined by the behavior of the spe- with the behavior of a van der Waals fluid type of mean field
cific heat along the critical isochore, see Fig. 12. ThgT)  model or the behavior of the Landau model which shows a
curve was fit with the functional form discontinuity in the specific heat.

The exponentB is determined using theP(V;) points

Any model that attempts to describe a system capable og

1. Power law results

T-Tc wi_ along the coexistence curve, shown in Fig. 15, which should
T, be described by
CV(T):Ht a +Gi (27)
| N | T-T|#
on both sides of the critical poift= T [34]. The fit param- [ . (28
C

etersH., a-, andG. were allowed to vary to minimize
the x? of the fit. Figure 21 shows the results for each system
and Table Il lists the extracted exponents. Fitting p;— pg versus T—T.)/T to a simple power law for
The functional form in Eq.27) did not fit the curves the positive slope portion of Figs. @, 22(b), and 22c)
shown in Figs. 2@), 21(b), and 21c) over the entire range gives the exponens, see Table Il for results. The van der
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TABLE II. Critical exponents for the models.

System o B y Sy o, T

V1 0.6+0.2 0.5-0.2 1.0£0.2 1.2£0.3 1.4-0.3 2.49-0.03
V2 0.9+0.2 0.6:0.1 1.0:0.4 2.8:0.1 2.70.2 2.16:0.02
V3 1.0+0.2 0.8£0.1 1.2+0.2 2.5:0.2 3.2:0.2 2.22:0.02
vdw 0.0 0.5-0.1 0.98-0.02 2.70.2 3.1+x0.3 2.33£0.02

Waals fluid recovers the mean field value @&1/2. The by some factor. See the dashed line and open squares in Fig.

model V1 gives the least impressive fit results. 23(a). Similar arguments apply to the results for V2 and V3,
Near the critical point the isothermal compressibility, see Figs. 2(b) and 21c¢).
is given by The van der Waals fluid shows the expected behavior and
recovers the value ofy=1 to within error bars, see Fig.
T-T,7= 23(d) and Table Il for results. Th€< T behavior ofxt also
rr=I"+ T (29 shows the expected power law behavior with the appropriate

exponent value.
Examining the shape of the critical isotherm leads to an

For T<T, fitting «1 versus|(T—T.)/T.| along the coexist- estimation of the exponerd from

ence curve gives/_ while y, is determined by fittinger
versus|(T—T.)/T.| for T>T. at p=p.. Due to the impre-
cise nature of the data along the coexistence curveTfor
< T, fits were made only fof >T.. Fits were made over the |P—P|~
entire region off (T—T.)/T,| of T>T,. The results for the

extraction of the exponent are shown in Fig. 23.

For V1 two different power law regions appear to be . . . .
present, one close to the critical point and one further fromi € critical isotherm was examined independently for
the critical point, see Fig. 28. The error bars on thes  —Pc. Whichgivess_, andp>p., which givess, . As with
value in Table Il account for this behavior. The fit to the tN€ exponentsy and y, a system with a continuous phase
entire |(T—T,)/T| region is used because the resultingtrans't'on the values of.. should be the same on both sides

power law shows some agreement with the behaviok-of

p—pe|’*

(30

for T<T. when the coefficient of the power law is increased & I L
10* 10° Mo ®) <
o T o F TR E E E LS § 7
= = b) . ] E L ]
& (@) fo| & ( \ ] r .o vﬁﬁ i
o 10 = 1 4 \\\
107 J g v 3 1 F E
C ] C Y] 103E = F 3
s F E - :
10 & b= 3 L i
F 1E J 10 E
10'6;_ %i_; T BT B T R . |
£ LE 10 10" 107 10"
Ll L s fl Ll L ||§||: l(T-Tc)/Tcl l(T-Tc)/Tcl
2 -1 2 -1 5
10 10 10 10 1 ;2.10 F ey T T T g ¥i~ T LU L)) e e
(T,-T)T, (T,-TIT, F ‘°“? (c) 3 2\ (d) |
o L1 B A 7 R MR P~ T T T T T L 38 i 105:_ -
< & 10 E : E
1071 4 & g 1 1
] 104 E
10°: 3 » 3
-5 F 3 ]
10 E = £ 3] L o
F el .‘.....\1._ cd il
r 107 10 10 10 10
P § o [(T-T_)T) I(T-T )T}
10 MY T BT 0.3 1 L Ll
10* 107 1 107 107 o . .
(T-T)T, (T-TT, FIG. 23. Determination of the critical exponeptfrom the iso-

thermal compressibilitye; for (a) V1, (b) V2, (c) V3, and(d) the
FIG. 22. Determination of the critical exponegt from the  van der Waals fluid. Solid circles show the behaviorxgffor T

liquid-gas density difference along the coexistence curvéaiov'l, >T. and atp=p.. Solid lines show a sample fit. Open squares
(b) V2, (c) V3, and(d) the van der Waals fluid. Solid lines show a show the behavior ok; along one edge of the coexistence bound-
sample fit. ary. Dashed lines show the fit f@r>T. multiplied by a constant.
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= ET™ P S A TABLE 1. Scaling law results.
T @ T10°E B ] J
—10 E - F &
0L N System  Rushbrooke  Griffiths Widom Fisher
a3 0L i v 26+04 1805  09:02 -05:02
10-5;, o g V2 3.2+0.5 3.2:04 —-0.1x0.2 0.5-0.3
2 0E 3 V3 3.7+0.3 3.90.6 —0.2+0.3 0.4-0.1
10 ¢ 07k . vdw 2.0+0.1 2.0:0.4 —0.0+0.2 0.0:0.1
10'7:4' lo'si‘?. .1///. Cenl ......E
10> 107 10" 107 107" 1
Ip-p.lip, lp-p VP, 2. Scaling laws
P S R A 7 (BN s A A With five critical exponents determined it is possible to
" 10 (o) T (d) ; ; ;
S S / perform a consistency check using the well known scaling
10 e 10 F E relations. For example, the Rushbrooke inequality shows that
10 107k .
s o 3 a+2B+y=2 (32
10 3 10 E E
10 F 10’F 3 (here shown as an equality in keeping with the scaling hy-
0k 02 E pothesis and renormalizati¢B7]), and the Griffiths equality
T 107 107 10 1(;'2 107 1 atp(l+6)=2, (33
lo-p.Vp, I-p.Vp,

and the Widom equality
FIG. 24. Determination of the critical exponefifrom the criti-
cal isotherm for(@) V1, (b) V2, (c) V3, and(d) the van der Waals B(6—1)—y=0. (34
fluid. Open circles show the critical isotherm fer p.. Solid lines
show a sample fit. Open squares show the critical isothernp for Finally from Fisher’s droplet model
<p.. Dashed lines show a sample fit.
B T2 0

;_3—7_

(35
of the critical density. This fact is again used as guide in

searching for fitting regions to extract the exponéntsee Using the average values determined dor, 8, y, andr

Fig. 24 and Table II. N _ the results for these scaling laws are compiled in Table Il
For V1 only the regions closest to the critical point gaveonly the van der Waals fluid results consistently satisfy the
matchingé values. The error bars on tiéevalues in Table Il apove scaling laws to within error bars. The nuclear models
reflect the changes iA. when different fit regions are ex- generally fail to satisfy three of the four scaling laws. This
amined. In V2 there are regions on both sides of the criticafailure is inconsistent with the behavior of the phase dia-
point which yield a matching set of. values. No such gram, shown for example in Fig. 5, which appears show a
region could be found for V3, even very close to the criticalcritical point, thus indicating the presence of a continuous
point. The van der Waals fluid shows some regions on botlphase transition. While moderately good fits are observed for
sides of the critical point wheré. match, to within error  the specific heat, théquid-gas density difference, the iso-
bars, and agree with the expected valueSef3. thermal c;ompressibility and the critical isotherm. for each of
Finally, the topological exponent from Fisher's droplet the versions of the nuclear model, the meaning of these
model[35] can be recovered based on considerations of thBOWer laws and critical exponents remains an open question

compressibility factoC; via the relationshif36] in light of the failure to adhere to well-known scaling laws.
V. SUMMARY
Cf:ﬂ_ (31) It has been shown that the type of nuclear model dis-
{(7—1) cussed here exhibits many features commonly associated

with a system in which critical phenomena are present, e.g.,

a coexistence curve, power laws, critical exponents. By re-
The Riemanry functions of Eq(31) were summed from 1to  moving both the Coulomb and temperature-dependent free
1000000 000. When a value of-7/3 was input for the van  energy terms, it was found that the appearance of a critical
der Waals fluid, Eq(31) yielded a value of 0.393 indicating point in these models is due to the interplay between the
that terminating the summation at 1000000000 yields &urface, volume, and translational free energy terms. How-
value of C; that is approximately 5% too high; for the van ever, these types of models are not without inconsistencies.
der Waals fluidC;=23/8. This supposition is supported by One striking inconsistency is the fact that the temperature-
decreasing the upper summation limit and observing and independent surface free energy gives rise to a infinite negative
crease in the value o . This error was accounted for in  specific heat at the critical temperature used by the model.
the estimation of the value af. See Table Il for results. Furthermore, no version of the model showed a critical tem-
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perature that agreed with the one explicitly input into thenucleus leads to several inconsistencies regarding both tem-
surface free energy term. Additionally, when the surfaceperature and density. It was pointed out that the parameter-
term was rendered temperature independent the critical poization of the surface free energy leads to a negative and
remained, thus suggesting that the appearance of a criticdivergent contribution to the specific heat Bsapproaches
point in these models is not dependent on the temperatuithe value of the parametér, in Eq. (4). Furthermore, all
dependence of the surface term but rather is a result of thealues of the critical temperature found from examination of
interplay between the surface and volume free energy termsotherms in theP-p plane are much below this parameter
The critical temperature and density have been detervalue. Thus, while use of such a model may well lead to an
mined by examining isotherms in the-p plane. In the excellent description of multifragmentation data, the lack of
neighborhood of this critical point, singular behavior charac-internal consistency noted here makes the interpretation of
terized by power laws was observed. However, these criticadata in terms of the model problematic. Such agreement may
exponents do not obey well-known scaling relations. This igest more on the phase space sampling and variable free vol-
a particularly troublesome occurrence as any model with trueime inherent in the model than on the finer details examined
critical behavior, even the simple van der Waals fluid, doesiere. Finally, it has been shown that the variable volume
have exponents which obey these scaling relations. It is posrersion of this phenomenological model of multifragmenta-
sible that an examination of this model for larger systemstion exhibits caloric curves which can be misinterpreted in
with smaller steps in temperature and volume in the calculathe absence of detailed knowledge of the complete thermo-

tion of the free energy, will yield a consistent set of critical dynamic phase diagram.

exponents.

It is important to note that the critical densities found here
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