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Standard thermodynamic quantities as determined via models of nuclear multifragmentation
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Both simple and sophisticated models are frequently used in an attempt to understand how real nuclei
breakup when subjected to large excitation energies, a process known as nuclear multifragmentation. Many of
these models assume equilibrium thermodynamics and produce results often interpreted as evidence of a phase
transition. This work examines one class of models and employs standard thermodynamical procedures to
explore the possible existence and nature of a phase transition. The role of various terms, e.g., Coulomb and
surface energy, is discussed.

PACS number~s!: 25.70.Pq, 64.60.Ak, 24.60.Ky, 05.70.Jk
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I. INTRODUCTION AND OVERVIEW

Many models@1–9# have been proposed to describe t
breakup of a large nucleus subjected to excitation ener
greater than a few MeV per nucleon, a process known
multifragmentation. Experimentally, the signature of mu
fragmentation is the production of a wide range of nucl
reaction products, particularly intermediate mass fragme
~IMFs!, 3<Z<30. On the basis of inclusive data, it wa
proposed@10–12# that these fragments were produced
analogy to a liquid-to-gas phase transition occurring in
nucleus. A recent experiment that permitted the total cha
reconstruction of each event studied multifragmentation
sulting from the breakup of gold nuclei as a function of t
excitation energy deposited@13–17#. The statistical aspect
of these data have provided strong evidence that multifr
mentation is indeed related to a phase transition occurrin
a finite system. Whether the production of IMFs in su
collisions is due to a phase transition, and if so, what type
still an issue of much debate@18#.

One class of models developed to explore the fate o
nucleus as a function of excitation energy is based on
phenomenological description of the free energyF(V,T) of
the breakup state, whereT is the common temperature of a
nucleons and nuclei within the breakup volumeV. These
nuclei are considered to be at normal nuclear density
interact only via the Coulomb force. The distribution
nuclear fragments prior to any secondary decay can the
calculated as a first step in the disassembly of the exc
initial system. To compare with data, deexcitation of fra
ments and expansion of the system due to the Coulomb
pulsion between the fragments must be accounted for in
model. However, if the thermodynamics of the model is
interest, as is the case in this work, then only the behavio
thermodynamic variables need be examined, e.g., free
ergy, entropy, specific heat, pressure, isothermal compr
ibility. Thus, no fragment distributions need be explicit
calculated and therefore no fragment distributions are a
lyzed in this work.

Here, several variations of a previously discussed mo
@8# are explored. A canonical ensemble approach is use
investigate the thermodynamics of the system where the
energy,F, is written as a function of the temperature,T, and
0556-2813/2000/61~5!/054605~17!/$15.00 61 0546
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the volume,V. Calculations are restricted to a system whi
contains 162 constituents, since this is representative of
size of the system studied in Ref.@16#. Contributions toF,
e.g., the surface free energy, the Coulomb energy, are ex
ined by turning them off or altering the form of the contr
bution in question. In this way insight can be gained as
how the important features of the thermodynamics such
specific heat, isothermal compressibility, etc., depend on
parametrization of the free energy.

This paper is organized as follows. In Sec. II the details
the models are presented. Three versions of a standard
tistical multifragmentation model are examined as well a
well-known mean field model whose results are used
comparison. In Sec. III a description of the analysis and
results of that analysis are presented. Section IV discu
the standard interpretations of the models and analysis.
nally, a brief discussion of the questions raised by this w
concludes this paper. In general, the notation of Refs.@1# and
@8# are followed.

II. DETAILS OF THE MODELS

This work follows directly the efforts presented in Re
@8# in which the canonical partition function was examin
as a function of temperature in a fixed volume system
evidence of a phase transition. In that work, evidence fo
first order phase transition was found. In the present wo
the volume~average density! of the system is permitted to
vary. It shall be seen that the nature of the phase transi
depends on the volume of the system. The work of Ref.@8# is
also extended by examining the effects of the Coulomb fo
on the system and the effects of the choice of surface en
parametrizations. The units used for the nuclear models
energy and free energy in MeV/nucleon, temperature
MeV, volume in fm3, pressure in MeV/fm3, and so on. A
general description of each system follows.

A. V1: Full statistical description of an excited nucleus

Calculations begin by considering the free energy o
nuclear fragment. It is assumed@1# that the free energy of a
nuclear fragment of massA and chargeZ, for A.1 is given
by
©2000 The American Physical Society05-1
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FA,Z5FA,Z
B 1FA,Z

sym1FA,Z
S 1EA,Z

C . ~1!

The terms in Eq.~1! refer to the bulk, symmetry, surface, an
Coulomb contributions to the free energy of a nuclear fr
ment. The forms of these terms are@1#

FA,Z
B 5~2W02T2/e0!A, ~2!

FA,Z
sym5g~A22Z!2/A, ~3!

FA,Z
S 5b0S Tc

22T2

Tc
21T2D 5/4

A2/3, ~4!

EA,Z
C 5

3

5
e2Z2~12~11k!21/3!/RA,Z . ~5!

In Eq. ~2! the constants are taken asW0516 MeV ande0
516 MeV. In Eq.~3! g525 MeV. In Eq.~4! b0518 MeV
andTc516 MeV, following Ref.@9#. The contribution from
the Coulomb term is estimated via a Wigner-Seitz appro
mation as in Ref.@1#.

Thek term is related to the volume of the system throu

11k5V/V0 . ~6!

The simplified model presented here differs from the st
dard version@1# in that there is only one parameter relatin
the volume excluded by the constituentsV0 to the total vol-
ume of the systemV and to the free volumeVf . Here the
free volume is the difference between the total volumeV and
the sum of the volume of the fragments, assumed to b
normal nuclear density, and is the volume available for
translational motion of the fragments.

In the standard version of the model the free volume
given byVf5xV0, wherex is parametrized to increase wit
fragment multiplicity such that it varies between 0.2 and
the parameterk is fixed, usually atk52. For simplicity,
here it is assumed thatk5x so that specifyingVf determines
the value ofk in Eq. ~6!. See Ref.@1# for details ofk andx
in the standard version.

For this work then, the total volume of the system is giv
by

V5V01Vf . ~7!

Two things become obvious from Eq.~7!; first, with this
form of V the free energy of the system varies withVf since
V0 is a constant. Second, the loss of free volume in
closest packing of spherical clusters is ignored. The issu
whether spherical nuclei can actually be placed in a to
volume V0 given a free volumeVf is not addressed. Un
doubtedly, there will be situations where it is not possible
the total volume to accommodate all of the nuclear clust
The purpose here, however, is to explore the thermodyn
ics and self-consistency of the model and not physical c
sistency.

Finally RA,Z is the radius of the fragment in question a
is determined by
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RA,Z5r 0A1/3, ~8!

with r 051.17 fm. The version of the model presented abo
will be termed V1.

From this point the intrinsic partition function of a frag
ment ofA, Z at temperatureT, and volumeV can be deter-
mined @8# as follows:

zA,Z5exp~2FA,Z /T!. ~9!

Using a technique developed in Ref.@19# and used on a
simplified version of this model@8#, the canonical partition
function can be built via a recursion relation

Zp5
1

p (
A51

p

AvAZp2A , ~10!

starting fromZ051. Here for calculational simplicity the
approximation has been made that for each and every f
ment with A.1, A/Z52.5 which represents an averag
mass to charge ratio for fragments. ThevA term is

vA5
Vf

h3
~2pmT!3/2A3/2zA,Z , ~11!

where the terms on the left of the fragment partition functio
zA,Z , account for the translational free energy contributi
F tr. It is now straightforward to calculate the partition fun
tion of the system for a givenT, Vf , A0, andZ0. The free
energy of the system ofp particles is then determined a
usual

F52T ln~Zp!1E0
c~V!, ~12!

where the last term is the usual Coulomb contribution o
uniformly charged sphere

E0
C~V!5

3

5

Z0
2e2

R
, ~13!

with R5(3V/4p)1/3.

1. Comparison of V1 to the full version of the model

The model and calculations described above were c
pared to the full, or unmodified version of the model oft
cited in the literature, see for example Refs.@1, 20–22#, In
Fig. 1 results from the full version of this model are show
for the mean fragment distribution calculated at a given in
excitation energy. To generate event-by-event distributi
Poissonian fluctuations about the mean are introduced, a
which, temperature is adjusted to ensure energy conse
tion. To more fully recover the standard version of the mo
most often used, higher order corrections were introdu
just as in the full version of the model; e.g.,e0 in Eq. ~2! was
made dependent on the fragment massA, for light clusters,
A<4, the empirical masses and binding energies, radii
spin degeneracy factors of the ground state were used
total volume was held constant at 3V0, and the free volume
was set to depend on the input excitation energy. Fina
5-2
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STANDARD THERMODYNAMIC QUANTITIES AS . . . PHYSICAL REVIEW C 61 054605
energy was explicitly conserved; an input excitation ene
was given and a temperature was determined such that
energy was conserved. The explicit conservation of ene
produced results that were the same as those resulting
the unconstrained canonical ensemble.

Figure 1~a! shows the caloric curve from the full versio
of this model for a system with 100 nucleons~60 neutrons
and 40 protons! compared to the same size system used
calculations with a modified version of V1. The gene
trend of the modified V1 reproduced the average behavio
the full model, though there is not a perfect agreement. T
is to be expected. While this modified version of V1 is clos
to the model, there are still some differences, e.g., the ch
of A.4 fragment is treated in only an average fashion in V
The reproduction of the general trends indicates that V1 c
tures the essence of the full model. Figure 1~b! shows the
fragment multiplicity, before any secondary decay, fro
both models. Again there is general agreement between
two.

The break observed in the caloric curve shown in Fig. 1
well known in the full model, see, for example, Fig. 4 in Re
@20# and Fig. 11 in Ref.@22#. The break is due to the initia
guess of the system’s multiplicity which is in turn used
guess the system’s free volume. For low energies the m
plicity is chosen to be 1, 2, or 3@Fig. 1~b! shows that the
initial guess of the multiplicity is consistent with the fin
state multiplicity#, while at higher energies the multiplicit
depends smoothly on a function of the input excitation
ergy @1#. In some systems, e.g., a system of 100 nucleo
there is a jump in multiplicity at the transition from the lo
energy computations and the high energy computati
which gives rise to a jump in the final state multiplicity, Fi
1~b!, and a break in the caloric curve, Fig. 1~a!. When the

FIG. 1. Comparison of the full model~open circles! before Pois-
sonian smearing and the calculations of this paper~full circles! for
the caloric curve~a! and the average fragment multiplicities~b!.
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simplified model used in this work is given the same volum
dependence as the full model, the results of the full mo
are reproduced.

Energy conservation is explored in Fig. 2. Here the u
modified version of V1 was used with a system of 162 p
ticles and energy was explicitly conserved as outlined abo
In order to examine the change in energy between the in
and final state of each term contributing to the system’s to
energy, the temperature of the initial state of the system
been calculated corresponding to the inputE* . The assump-
tion that the initial nuclear state is in thermal equilibriu
prior to its deexcitation to the final state has no bearing
the thermodynamics of the final state and is done only
purposes of the abovementioned calculation. The initial s
used for this calculation was the system of 162 nucleon
excitation energyE* , at normal nuclear densityr0, and at a
temperature that conserves energy when the total energ
determined using Eqs.~2!–~5!, ~12!, and

E5F2TS ]F

]TD
V

. ~14!

The total energy of the initial state is shown in Fig. 2 as w
as its various components and a caloric curve. The final s
of the system was computed with the sameE* but was held
at a third normal density,r0/3, and allowed to fragment in
the manner outlined above. The caloric curve produced
the final state via this explicit conservation of energy calc
lation is identical to the caloric curve produced via the c
culations without an explicit conservation of energy. Figu
2 shows that the temperature in the final state is lower t
that in the initial state. Further inspection indicates that wh

FIG. 2. Energy conservation in V1, overall, component by co
ponent~total, bulk, surface, translational, symmetry, and Coulom
energies, respectively! and the caloric curves. Full circles represe
the initial state, open circles represent the final state and o
squares represent the difference between the two.
5-3
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J. B. ELLIOTT AND A. S. HIRSCH PHYSICAL REVIEW C61 054605
the Coulomb energy is reduced by creating smaller char
nuclei, the energy required to create the additional surf
area more is more than offsetting. Thus, the tempera
must decrease.

B. V2: Description of an excited charge-free nucleus

The general ideas of V1 are followed but with the Co
lomb energy of the system set to zero. The free ene
shown in Eq.~1! then becomes

FA5FA
B1FA

S . ~15!

And the total free energy of the system is given by

F52T ln~Zp!. ~16!

Every other aspect of the model is the same as in V1. T
version of the model will be termed V2.

C. V3: Description of an excited charge-free nucleus
with a temperature independent surface

In this version, the Coulomb force is suppressed and
temperature dependent surface term in Eq.~4! is made inde-
pendent of temperature

FA
S5b0A2/3. ~17!

The free energy of a fragment and the entire system are
given by Eqs.~15! and~16!. Every other aspect of the mode
is the same as in V1 and V2. This version of the model w
be termed V3.

D. The van der Waals fluid

The free energy of the van der Waals fluid is determin
in the standard textbook fashion. Starting from the free
ergy @23#

F/A52t$ ln@nQ~V2Ab!/A#11%2Aa/V, ~18!

with t5kbT, nQ5(Mt/2p\2)3/2, anda andb the usual van
der Waals constants. In this work, Eq.~18! is computed in
terms of the density,r5A/V, so that the number of constitu
entsA is not a factor. For the van der Waals’ constantsa and
b, values were used for helium so thatTc;4.531024 eV/
nucleon. This also suggested the value ofM in nQ . Finally,
Eq. ~18! was evaluated in terms ofT/Tc andV/Vc . The van
der Waals fluid model is well defined and free of intern
inconsistencies. It will be used as a benchmark for the an
sis presented in this paper. Units for the van der Waals fl
results will be in eV/nucleon for energy and free energy, e
nucleon3Vc for pressure, and so on.

III. DISCUSSION OF CALCULATIONS

Calculations were performed for each version of t
model to determineF(T,Vf ,A0 ,Z0) for A05162, A0 /Z0
52.5, and over a range in temperature, 1 MeV<T<14
MeV, and volume of 231028<(Vf /V0)<23108. Once the
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general vicinity of the critical point was identified, a small
range in (T,Vf) was used for more detailed calculations. F
the van der Waals fluid the range was smaller and in term
reduced temperature and volume: 0.1<T/Tc<2.0 and 0.34
<V/Vc<2.0. Figure 3 shows the behavior of the free ene
over the ranges of temperature and volume used in the
culations.

After the value of the free energy was calculated, it w
simple to determine other thermodynamic quantities. Ho
ing the volume fixed the entropy is given by the usual re
tion

S52S ]F

]TD
Vf

. ~19!

In the case of this work differences were used instead
derivatives due to the numerical nature of the calculati
thus Eq.~19! becomes

S52S DF

DTD
Vf

. ~20!

Similarly the specific heat at constant volume was de
mined via

CV5^T&S DS

DTD
V

, ~21!

where ^T& is the average value ofT over theDT interval.
Using the entropy and the free energy, the total energy
be determined from

E5F1TS. ~22!

FIG. 3. Free energy surfaces as a function of temperature
volume for~a! V1, ~b! V2, ~c! V3, and~d! the van der Waals fluid.
5-4



th
th

-

a
t
d

a
r
n
i

al
.

in-
ree
fea-

rms
plot
tical

d
o-

rves
for

. As
s. At
ase
the

is is
ys-
e

ese
ior

iso-
h

int
the

nsity.
sus

s

th
a

sity

rve.
ea
riti-
al.

STANDARD THERMODYNAMIC QUANTITIES AS . . . PHYSICAL REVIEW C 61 054605
In these calculations it was possible to hold either
temperature or the volume constant. The pressure was
found by holding the temperature fixed

P52S DF

DVf
D

T

. ~23!

Taking anotherderivative then gave the isothermal com
pressibility

kT52
1

^Vf&
S DVf

DP D
T

, ~24!

where^Vf& is the average value ofVf over theDVf interval.
With this information it is possible to determine if there is
phase transition in a model such as this and, if present,
nature of that phase transition. The following section a
dresses this question.

IV. RESULTS OF CALCULATIONS

In this section, each of the axes of the standard ph
diagramT, V, andP, will in turn be held fixed. The behavio
of other quantities will be examined in order to understa
the behavior of each system. The van der Waals fluid w
serve as a guide for the interpretation of the analysis and
as a benchmark to illustrate the accuracy of this analysis

FIG. 4. Free energy isotherms as a function of reduced den
for ~a! V1, ~b! V2, ~c! V3, and ~d! the van der Waals fluid. Open
squares show the spinodal, full circles show the boundary of
coexistence region. Dotted curves are subcritical. Solid curves
critical. Dashed curves are supercritical.
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A. Isotherms

Determination of the critical point, coexistence and sp
odal curves is discussed below. The variation of the f
energy as a function of density shows the same general
tures for these systems.

Figure 4 shows the behavior of the free energy isothe
for each system as a function of reduced density. Each
in Fig. 4 shows three isotherms. The isotherms are subcri
(T50.95Tc), critical (T5Tc), and supercritical (T
51.05Tc). Determination of the critical point is discusse
below. Also shown are the approximate location of the c
existence and spinodal curves. Determination of these cu
is also discussed below. The behavior of the free energy
these isotherms for all systems is more or less the same
the reduced density increases, the free energy increase
some mid range in reduced density the slope of the incre
in free energy changes. At a greater reduced density
slope of the increase in free energy changes again. Th
most clearly demonstrated by the van der Waals fluid s
tem, see Fig. 4~d!. However, the behavior is present in all th
models. This behavior, while appearing modest in th
plots, will be seen to be the cause of the critical-like behav
exhibited by these models.

The pressure was calculated from the free energy
therms via Eq.~23!. Figure 5 shows the results for eac
model. The determination of the location of the critical po
and the coexistence and spinodal curves is based on
phase diagram of pressure, temperature, and reduced de
By searching for inflection points along the pressure ver

ity

e
re

FIG. 5. Isotherms of pressure as a function of reduced den
for ~a! V1, ~b! V2, ~c! V3, and ~d! the van der Waals fluid. Open
squares show the spinodal, full circles show the coexistence cu
The solid horizontal line is an example of a Maxwell equal ar
construction to determine the coexistence region and find the c
cal point. Dotted curves are subcritical. Solid curves are critic
Dashed curves are supercritical.
5-5
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TABLE I. Critical points for the models.

System Tc rc Pc Cf

V1 7.57560.005 MeV 0.9460.013r0 (3.260.1)31023 MeV/fm3 0.4960.02
V2 6.87560.005 MeV 0.7460.013r0 (7.360.1)31024 MeV/fm3 0.1660.02
V3 10.97560.005 MeV 0.8560.013r0 (2.460.1)31023 MeV/fm3 0.2860.02
vdW 1.0160.013Tc 1.0160.013rc (1.760.1)31024 eV/nucleon3Vc 0.3760.02
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to
reduced density isotherms the spinodal curve was de
mined. The isotherm immediately following, as the tempe
ture of each isotherm increases, the last isotherm with
inflection points was labeled the critical isotherm.

Another method to determine the location of the critic
point began with the isothermal compressibility which w
calculated with Eq.~24!. Isotherms ofkT versus reduced
density were inspected. All subcritical isotherms showed
least one negative value ofkT . The first isotherm, as a func
tion of increasing temperature, which showed only posit
values ofkT was labeled the critical isotherm. Both proc
dures yielded the same results, as they are essentially id
cal. See Table I.

The coexistence curve was determined by making a M
well equal area construction for each isotherm. See Fig. 4
examples of the Maxwell construction.

On first glance at Table I several noteworthy featu
stand out.~1! None of the values ofTc determined for the
models is the same as the value of the parameterTc specified
in the surface term in Eq.~4!. ~2! The critical densities for
each model are close to unity.~3! The critical temperature o
V1, the model which includes the Coulomb force, is larg
than the critical temperature of V2, the model with no Co
lomb force. The error of the analysis of the van der Wa
fluid was on the order of a few percent;Tc

vdWÞ1. This illus-
trates the error inherent with this type of analysis.

It is not surprising that the critical temperature found
the analysis of thermodynamical quantities is different th
the parameterTc used to parametrize the surface free ene
of infinite nuclear matter. If one considers the critical po
to be that temperature at which the surface free energy
ishes, then this can only be atTc ~16 MeV in this case!.
However, the form of the surface term given by Eq.~4!,
approximately the form of the macroscopic surface free
ergy of a fluid near its critical point, is not an appropria
description of the microscopic surface of a droplet@24#.
Moreover, Eq.~4! leads to a specific heat which approach
negative infinity asT approachesTc . In a more fundamenta
model the critical temperature would be an output of
model rather than an input. Of the phenomenological mod
studied here, only the van der Waals model is known to
self-consistent.

The high densities found at the critical point for V1, V
and V3 cannot be realized if one is constrained to plac
spherical nuclei without overlaps inside of the total volum
Again this issue is mentioned but not dealt with since the a
of this paper is to explore only the thermodynamical pred
tions of the above models.

Were this sort of model interpreted physically, the hi
value of the critical density determined here would sugg
05460
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that the critical point could never be reached by finite nucl
matter as a multiplicity of spherical clusters at norm
nuclear density could not physically fit into the critical vo
ume. If the constraint that the breakup volume must be la
enough to avoid overlapping volumes of the final sta
~spherical! nuclei is added, then only first order phase tra
sitions are possible. Of course there are several probl
with a strictly physical interpretation of models such as t
one presented here, not the least of which is the introduc
of a volume for the system. Actual nuclei excited to hig
energies in nucleus-nucleus collisions do not exist in a b
and thus have no volume in the sense suggested here.

Item ~3!, the rise inTc with the vanishing of the Coulomb
force, is, on the surface, counterintuitive. Many other mod
of nuclear systems show just the opposite behavior@26,27#.
However, those models are fundamentally different than
ones examined in this work. Such models begin by desc
ing the free energy or chemical potential or some equiva
quantity using formulas which assume a uniform distributi
of material in much the same way that the van der Wa
fluid assumes a uniform density. The model in this wo
samples a different part of the final state phase space@25#. It
will be seen that the calculation of the Coulomb term via E
~5! gives rise to the counterintuitive rise in the critical tem
perature when the Coulomb force is suppressed in the mo

To begin to understand the effect of the Coulomb ene
on the critical point the same isotherm for models V1 and
was examined. Figures 6~a! and 6~b! show the isotherm of
T57.2 MeV for V1 and V2. When the coexistence curve
shown for both systems, it is obvious that for V1 the is
therm is subcritical while for V2 the isotherm is supercri
cal. Figures 6~c! and 6~d! begin to shed light on the cause o
this counterintuitive occurrence.

For the sake of illustration, the Maxwell constructed@a
line of constant slope through the coexistence region, wh
then leads to a constant value of the pressure through
coexistence region that will give ‘‘equal areas’’ on
pressure-volume plot, see Fig. 5~a!# path of the free energy
through the coexistence region is shown as a dashed
barely visible just below the isotherm in the coexistence
gion, in Fig. 6~a!. The Maxwell constructed free energy is
straight line through the coexistence region. The cons
slope of the Maxwell constructed free energy leads to a c
stant pressure for the system in the coexistence region.
cause the path of Maxwell constructed free energy is v
close to the path of the free energy of V1, it is difficult to s
the difference in a plot such as shown in Fig. 6~a!. A plot of
the difference in the calculated free energy of V1 and
Maxwell constructed free energy shows what gives rise
the van der Waals loops in Fig. 5~a!, see Fig. 6~c!. There are
5-6
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two inflection points in the curve of the calculated free e
ergy of V1, these are shown more clearly as the points
Fig. 6~c! where the curve shows an ordinate value of ze
These plots for a canonical system’s free energy are in
same spirit as plots for a microcanonical system’s entr
@28#. It is clear from Figs. 6~b! and 6~d! that there are no
similar inflection points in the free energy curve for V
Therefore the isotherm ofT57.2 MeV in V2 is supercritical
while the very same isotherm is subcritical for V1.

It is possible to understand what gives rise to the infl
tion points introduced when going from V2 to V1 by lookin
at the contributions to the total free energy of each sys
along the isothermT57.2 MeV, see Fig. 7. Plotted in thi
figure for both systems are the components of the overall
energy for the isotherm in question: translational, bulk, s
face, symmetry, total Coulomb, background Coulomb, a
clusterization Coulomb free energies. Figure 7 shows that
translational and bulk free energies of each system are ne
identical. An inspection of Eqs.~11! and~2! shows that these
quantities are relatively insensitive to small changes in
fragment distribution. On the other hand, the surface f
energy shows an obvious difference in behavior between
tems. In V1 the initial decrease in surface free energy a
function of reduced density is slower than in V2. An inspe
tion of Eq. ~4! shows that theA2/3 term introduces more
sensitivity to the fragment distribution than the previous
discussed terms. The cause of this difference, and all
differences between these two systems, is the presence o

FIG. 6. Free energy isotherms as a function of reduced den
for ~a! V1 and ~b! V2. For both systems the isotherm is forT
57.2 MeV. Open squares show the spinodal, full circles show
coexistence curve. TheMaxwell constructedfree energy is shown
as a dashed line through the coexistence region. The differenc
the computed free energy and theMaxwell constructed free energ
shows the presence of inflection points in~c! V1 at the coexistence
boundary for this subcritical isotherm and none for~d! V2 for this
supercritical isotherm.
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Coulomb force in V1 and its absence in V2.
The behavior of the Coulomb contribution to the free e

ergy of this isotherm is now discussed. The first, and s
plest, additional term in the free energy due to the Coulo
force is the asymmetry term. The change is in the asymm
term is smooth as a function of increasing density and w
not introduce the inflection points in the free energy cur
that will change a supercritical isotherm to a subcritical is
therm.

In this model the total Coulomb contribution to the fre
energy comes from two sources. One which represents
background energy due to a uniform distribution of charg
Eq. ~13!, and the other due to the energy from the clusteri
tion of fragments, Eq.~5! @1#. The background energy,E0

c ,
goes asr1/3 and therefore varies smoothly with volume. Th
clusterization free energyEA,Z

C shown in Fig. 7 has a differ-
ent behavior. It decreases as the reduced density incre
the rate of decrease is at first nearly constant, then slows
then increases rapidly over some small interval in redu
density. The combination of these two Coulomb terms int
duces sufficient changes in the overall free energy of
system from V2 to V1 that inflection points arise and th
the critical temperature increases when the Coulomb forc
added to the system. A smooth or constant version of
Coulomb free energy added to version V2 should not ca
this sort of behavior. It is the variation inEA,Z

C that intro-
duced the inflection points and increases the critical temp
ture. In the end, it is the behavior of the free energy cu
that served to determine the location of the critical point a
that behavior is, at times, counterintuitive.

ity

e

of

FIG. 7. Components of the free energy isotherms (T57.2 MeV!
for V1 ~left! and V2~right!. From top to bottom the components a
for translation, bulk or Fermi, surface, symmetry, total Coulom
uniform background Coulomb contribution, and the clusterizat
Coulomb contribution.
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Also listed in Table I is the compressibility factor:

Cf5
PcVc

Tc
. ~25!

The textbook value forCf for the van der Waals gas is re
covered to within error bars. According to the law of corr
sponding states, the value ofCf should be universal. Fo
fluid systems this is the case and^Cf&;0.292@29#. For V1
and V2 no such universal behavior is observed to wit
error bars, while V3 shows some degree of universality.

B. Isochores

The volume of the system is held constant and the beh
ior of various quantities with respect to the system’s te
perature is explored.

Beginning again with the primary quantity calculate
Fig. 8 shows the free energy for each system as a functio
the system’s temperature. For models V1, V2, and V3
isochores are forr5r0 /3, r5rc , andr50.9995r0. For the
van der Waals fluid, the isochores shown are forr
51.25rc , r5rc , and r50.75rc . See Table I for critical
density values. Also shown are the values of the free ene
of the systems along their respective coexistence curves

In Ref. @8# the authors show results of a model similar
V2, for an isochore of approximatelyr5r0 /3. In that work
there was akink in the free energy curve which was inte
preted as evidence for a first order phase transition. For
small system used in this work thekink is smoothed out
negating the efficacy in using the kink as evidence towa
determining the order of a phase transition if one is pres
In larger systems, systems in Ref.@8# were more than 15

FIG. 8. Free energy isochores for~a! V1, ~b! V2, ~c! V3, and~d!
the van der Waals fluid. Full circles show the boundary of
coexistence region. Dotted curves are subcritical. Solid curves
critical. Dashed curves are supercritical.
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times larger than the system used in this work, the kink
more evident and this procedure may be possible.

Knowledge of the location of the coexistence curve
lows for the identification of subcritical, critical, and supe
critical isochores. For the projections shown in Fig. 8 all t
versions of the nuclear model have a subcritical isochore
crosses the coexistence region. The critical isochore tra
along the high value edge of the coexistence curve pas
through the critical point. Supercritical isochores do n
come into contact with the coexistence curve nor do th
traverse the coexistence region. The behavior of the van
Waals fluid is somewhat different from the behavior of t
nuclear models. Figure 8~d! shows that for a van der Waal
fluid in this projection of the phase diagram all isochores
in the coexistence region for low temperatures and cross
coexistence curve at higher temperatures. This apparen
havior results from projection of the three dimensional ph
diagram onto a two-dimensional plot. In a three-dimensio
figure, the supercritical isochore is seen to travel outside
coexistence region, the critical isochore is observed to in
sect with the critical point and the subcritical isochore is se
to traverse the coexistence region, see Fig. 9.

The pressure isochores were obtained by following
procedure outlined in Eq.~23! and using^r&, the average
density, and̂ T&, the average temperature over theDT inter-
val, see Fig. 10. In the limit of vanishingDT this procedure
is valid. Figure 10 shows the same three isochores discu
above as well as the location of the coexistence curve, s
edge on in this projection of the phase diagram. All the fi
ures for the nuclear model show similar behaviors for
critical and supercritical isochore. All supercritical isochor
follow a trajectory above the coexistence curve. The criti
isochore for all versions of the model approaches the co
istence curve, follows it, and leaves at the termination

re

FIG. 9. A three-dimensional plot of the free energy isochores
the van der Waals fluid. Full circles show the boundary of t
coexistence region. Dotted curves are subcritical. Solid curves
critical. Dashed curves are supercritical.
5-8
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STANDARD THERMODYNAMIC QUANTITIES AS . . . PHYSICAL REVIEW C 61 054605
critical point. The subcritical isochores for V2 and V3 pa
through the coexistence curve as the temperature is incre
and the system makes a first order transition from a liquid
gaseous state. For version V1 the behavior is more com
cated. The subcritical isochore begins on the gaseous sid
the coexistence curve, crosses the coexistence curve int
liquid region before crossing back over the coexistence cu
into the gaseous region at higher temperature. TheP-T pro-
jection of the van der Waals fluid looks as expected, see
10~d!.

Following the analysis procedure outlined in the previo
section, the entropy was determined via Eq.~20!, see Fig. 11.
The same three isochores are plotted showing the entrop
a function of temperature. All three isochores for the nucl
models show a smooth rise as a function of temperature
some region of increased slope. This behavior is consis
with a continuous phase transition, if a phase transition w
present. Along an isochore, a first order transition would
indicated by a sudden change the behavior of the entrop
a function of temperature at one edge of the coexiste
region. However, due to the small size of the system s
sharp behavior is smoothed making it impossible to come
a conclusion about the order of a phase transition from p
such as those shown in Fig. 11. As before, knowing
location of the coexistence curves makes identification s
critical, critical, and supercritical isochores a trivial matte
The subcritical isochore traverses the coexistence region
critical isochore passes through the critical point and the
percritical isochore avoids the coexistence region. As be
the van der Waals system shows a different behavior, an
dimension to the plot in Fig. 11~d! must be added to under
stand the behavior of the various isochores.

FIG. 10. Isochores of pressure versus temperature for~a! V1, ~b!
V2, ~c! V3, and~d! the van der Waals fluid. Full circles show th
boundary of the coexistence region. Dotted curves are subcrit
Solid curves are critical. Dashed curves are supercritical.
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The specific heat at a constant volumeCV for each system
is shown in Fig. 12, again for the same three isochores.
curves show a peak that could be due to a smoothed
discontinuity~first order phase transition!, the remnants of a
power law divergence at the critical point~continuous phase

al.

FIG. 11. Isochores of the entropy versus temperature for~a! V1,
~b! V2, ~c! V3, and ~d! the van der Waals fluid. Full circles show
the boundary of the coexistence region. Dotted curves are sub
cal. Solid curves are critical. Dashed curves are supercritical.

FIG. 12. The specific heat at constant volume versus temp
ture for ~a! V1, ~b! V2, ~c! V3, and~d! the van der Waals fluid. Full
circles show the boundary of the coexistence region. Dotted cu
are subcritical. Solid curves are critical. Dashed curves are su
critical.
5-9
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J. B. ELLIOTT AND A. S. HIRSCH PHYSICAL REVIEW C61 054605
transition! or a specific heat anomaly~supercritical behav-
ior!. As with the free energy and entropy it is impossible
come to a definite conclusion regarding the presence
nature of a phase transition from this plot. Of particular i
portance is the specific heat for the van der Waals fl
which is seen to be nearly constant and equal to 3/2 a
should@30#. There is a small slope for the specific heat ov
the temperature range in question: forT5Tc /2 CV51.507
and for T52Tc CV51.502. This illustrates the techniqu
employed here, following Eqs.~20! and ~21!, yields results
that are no better than 0.25% for the quantities determine
this paper.

Finally, Fig. 13 shows the constant volume caloric curv
of T as a function ofE for each system at the same isocho
discussed above. Also shown are the values of the temp
ture and energy of the system,E5F1TS, along the bound-
ary of the coexistence region. Just as with the behavior of
entropy isochores, the behavior of the caloric curves for e
isochore shows behavior that is consistent with either a
order or continuous phase transition in a small system. E
isochore shows similar behavior, a steep rise followed b
region of shallower incline followed by a portion which a
proachesE/A5 3

2 T. The lack of a flat region, or back bend
in the caloric curve is not due to the small size of the syst
but rather due to the system being held at a constant volu
Only for isobarswill flat regions or back bends be observe
in the canonical nuclear model~see the following section!.
Again the van der Waals system shows very different beh
ior, a steady rise in the temperature as a function of ene
And again a three dimensional plot is needed to clearly
derstand the nature of each isochore.

FIG. 13. Isochoric caloric curves for~a! V1, ~b! V2, ~c! V3, and
~d! the van der Waals fluid. Full circles show the boundary of
coexistence region. Dotted curves are subcritical. Solid curves
critical. Dashed curves are supercritical.
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C. Isobars

The pressure of the system is held constant and the
havior of various quantities with respect to the system’s te
perature is explored. Here some care should be taken
the interpretation of the results. The analysis outlined ab
is still followed. However, since the pressure is an extens
quantity, plots such as free energy versus temperature
now plots of^F& versusT. Where^F& is the mid point in the
DF range over which a difference such as Eq.~23! is taken.
In the limit of vanishing interval size, this approximation
accurate. Also because the pressure is an extensive vari
it was necessary to allow some small variation inP in order
to make a plot such aŝF& againstT. The variation inP was
usually less than one percent; i.e.,DP/P<0.01. Small
changes in the amount of variation ofP had little effect on
the analysis presented here. Large changes in the variatio
P wash out the behavior observed below.

The isobaric free energy as a function of temperature
shown for all systems in Fig. 14 as well as the values of
isobaric free energy along the boundaries of the coexiste
region. In all systems there is a back bend in the free ene
curve for subcritical isobars. The subcritical isobar a
traverses the coexistence region. It would be possible to
form the Maxwell construction procedure and deduce
critical point from these plots. The van der Waals fluid sy
tem shows that the critical point determined in the constr
tion of the P-V coexistence curves agrees with consid
ations of isobaricF, see Fig. 14~d!. The critical isobar shows
a vertical slope tangent to the coexistence curve and no b
bend. The supercritical isobar does not traverse the coe
ence region and shows no back bend.

re

FIG. 14. Free energy isobars as a function of the temperature
~a! V1, ~b! V2, ~c! V3, and~d! the van der Waals fluid. Full circles
show the boundary of the coexistence region. Dotted curves
subcritical. Solid curves are critical. Dashed curves are superc
cal.
5-10



n
r

ea
sa
ca
ic
or
xis
ve

h

m

th
th

ba
e
th
ig
e

em
u
i

ea

for
ior

ms
of
r

tical
and
V1,
of
als
he

cu-

en-
not
ath
der-
To
, an
h as

and
to

This
mic
ong

es
is
ica

criti-
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Figure 15 shows the isobaric temperature as a functio
reduced density. Temperature is plotted as a function of
duced density in the spirit of the Guggenheim plot@31#
which shows the universal behavior of several fluids n
their critical point. On the scales shown here no univer
behavior is observed. It may be that very near the criti
point, the coexistence curves for each system are ident
TheT-r isobars for all systems show the expected behavi
a subcritical back bending curve that traverses the coe
ence region giving way to the critical isobar, a critical cur
with a flat section which intercepts the coexistence region
the critical point and finally a supercritical isobar whic
avoids the coexistence region altogether.

The behavior of the isobaric entropy as a function of te
perature is also just as expected, see Fig. 16. Figure
shows the isobaric caloric curves for each system. As
energy is constructed from the free energy and entropy of
system the back bending observed in the subcritical iso
is expected. Also shown is the value of temperature and
ergy along the boundary of the coexistence region. Note
difference between the isochoric caloric curves shown in F
13 and the isobaric caloric curves shown in Fig. 17. Wh
the pressure is held constant all of the canonical syst
discussed here, including the van der Waals fluid, show s
critical caloric curves with a back bend. No back bending
present when the volume is held constant.

Finally Fig. 18 shows the constant pressure specific h
CP , as calculated from

CP5S DE

DTD
P

~26!

FIG. 15. Isobars of temperature versus reduced density for~a!
V1, ~b! V2, ~c! V3, and~d! the van der Waals fluid. Open squar
show the spinodal. Full circles show the boundary of the coex
ence region. Dotted curves are subcritical. Solid curves are crit
Dashed curves are supercritical.
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taking as input the isobars shown in Fig. 17. The results
CP of these canonical calculations are similar to the behav
reported in microcanonical models for various syste
@2,28,32,33#. The subcritical isobars show the remnants
poles with CP,0 values in between. The critical isoba
shows the remnants of a divergence, and the supercri
isobar shows some peaking behavior. The lack of poles
divergences is not due to the finite size of the systems
V2, and V3, but rather due to the computational nature
these calculations. The calculations for the van der Wa
fluid are, in effect, for a truly thermodynamic system and t
van der Waals critical isobar ofCP still shows no true diver-
gence. The critical isobar ofCP for V2 shows a negative
value which is due to the computational nature of the cal
lation and the manner in whichCP was calculated fromE
andT values.

D. Isonothing: Variable „P,V,T…

The nuclear model presented here assumes a system
closed in some volume. An actual excited nucleus is
enclosed in a volume. This has the effect of forcing a p
through the thermodynamic phase space which is consi
ably different from any of the paths investigated thus far.
bridge the gap between reality and tractable calculations
energy dependent free volume is assumed in models suc
the ones presented in this work@1#. At low energies the free
volume of the system is assumed to be nearly constant
vanishingly small. At a given energy the system is allowed
expand and the free volume increases from near zero.
has the effect of tracing a path through the thermodyna
phase space of the system off any of the trivial paths al

t-
l.

FIG. 16. Isobars of the entropy versus temperature for~a! V1,
~b! V2, ~c! V3, and ~d! the van der Waals fluid. Full circles show
the boundary of the coexistence region. Dotted curves are sub
cal. Solid curves are critical. Dashed curves are supercritical.
5-11
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J. B. ELLIOTT AND A. S. HIRSCH PHYSICAL REVIEW C61 054605
one of the axes investigated above. It is possible to exam
the effects of such a parameterization of the free volume
function of energy with the calculations made here. Calcu
tions in this section were performed only for V1.

Following the same ideas presented in the discussio
isobars, the values ofF, S, andT are determined along a pat

FIG. 17. Isobaric caloric curves for~a! V1, ~b! V2, ~c! V3, and
~d! the van der Waals fluid. Full circles show the boundary of
coexistence region. Dotted curves are subcritical. Solid curves
critical. Dashed curves are supercritical.

FIG. 18. Specific heat at a constant pressure versus energ
~a! V1, ~b! V2, ~c! V3, and ~d! the van der Waals fluid. Dotted
curves are subcritical. Solid curves are critical. Dashed curves
supercritical.
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in Vf as a function ofE. As Vf changes values ofF, S, andE
are picked from the appropriate isochore. For example,
stead of traveling along a path parallel to one of the axe
Fig. 2~a!, e.g., an isochore, isotherm, or isobar, an ener
dependent free volume was chosen so that the sys
evolved through thermodynamic phase space on a nontr
trajectory, see Fig. 19. In Fig. 19~a! small points show a
small sample of the set of calculations forF(T,V). Larger
points show the values ofF(V,T) selected for aVf(E) tra-
jectory described above. Figures 19~b! and 19~c! show the
same forS(T,V) andE(T,V).

For the purposes of the present analysis, values ofS(T,V)
were used from different isochores. AsVf changed values o
S(T,V) were selected from the appropriate isochore. If t
change from isochore to isochore is small,DVf;0, then the
procedure is a good approximation. The intervals inVf for
the calculation ofF(T,V) for this analysis were on the orde
of two percent of the free volume of the system; e.g., wh
VF5500 fm3, DVf;10 fm3, and whenVf55 fm3, DVf
;0.1 fm3.

Figure 20~a! shows three different paths through therm
dynamic phase space: one which travels very near to
critical point and into the coexistence region~solid curve!,
and two others which avoid the coexistence region all
gether~dotted and dashed curves!. As mentioned previously
for the full version of this model@1# the free volume is
nearly zero for the lower end of the energy range. At so
energy, 2 MeV/nucleon for the solid curve in Fig. 20, th
system is allowed to expand and the free volume increase
a function of energy. The functional form ofVf(E) is not
identical to other models@1# but close enough to show th
same behavior observed in the full version of the model@1#.
Also shown in Fig. 20~a! are the values of the free volum

re

for

re

FIG. 19. Solid circles show the path of an expanding nucl
system V1 through thermodynamic phase space. Neither vol
nor pressure is held fixed. Points show the calculations of the
energy surface as shown in Fig. 3.
5-12



io

c
Th
e
bu

in
F

jus

At
fre
th
ie

m

de
s

itu

ss
an

n.

me,
pera-
the
tory
n 7
sure

t as

ther
or
see
nt
in

a-
are

so
nd

of
nce
ion
s
hed

via

em-
nt
e-

s
al-

in
eter-
ated

f
on
stem
f

. No
w

to
om

d in
the
ega-

to
ck
pe-
nsi-

ug
f

e,
e-
e
n

STANDARD THERMODYNAMIC QUANTITIES AS . . . PHYSICAL REVIEW C 61 054605
and energy along the boundary of the coexistence reg
Note that for the solid curve theVf(E) trajectory enters the
coexistence region near the critical point and leaves the
existence region at a higher energy and free volume.
other two trajectories shown in Fig. 20 have the same gen
behavior: increasing free volume with increasing energy,
the precise paths differ.

In a plot of free volume against temperature back bend
is observed for two of the trajectories presented here, see
20~b!. The solid curve trajectory ofVf(T) begins with a
small free volume that is constant until a temperature of
over 8 MeV, then the system expands and cools. This
shown by the back bend. The solid curveVf(T) trajectory
then enters the coexistence region near the critical point.
temperature between 7 and 7.5 MeV the slope of the
volume nearly diverges and then changes in sign. After
point, further expansion in the free volume is accompan
by an increase in the temperature of the system. TheVf(T)
curve then leaves the coexistence region atT,Tc and V
.Vc . The other trajectories show similar, but less extre
behavior.

Other projections of the phase diagram for this mo
with the solid curveVf(E) trajectory show back bends a
well, see Figs. 20~c! and 20~d!. TheVf-P projections shows
the system’s pressure increases nearly an order of magn
over the constant free volume section. When the system
allowed to expand, the pressure drops. The trajectory pa
near the critical point as it enters the coexistence region

FIG. 20. The path of an expanding nuclear system V1 thro
thermodynamic phase space:~a! the free volume as a function o
energy,~b! free volume as function of temperature,~c! free volume
as a function of pressure,~d! pressure as function of temperatur
~e! the resulting caloric curve,~f! a specific heat based on the d
rivative of the caloric curve, and~g! a specific heat along the phas
space trajectory. Full circles show the boundary for the coexiste
region. Different line types show different (P,V,T) trajectories. See
text for details.
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in the course of back bending exits the coexistence regio
The solid curveP-T trajectory is equally interesting. As

the system increases in temperature with a fixed free volu
the pressure increases. When the system reaches a tem
ture between 8 and 8.5 MeV the expansion sets in and
pressure and temperature both drop so that the trajec
moves towards the critical point. At a temperature betwee
and 7.5 MeV, the system reverses the trend and both pres
and temperature increase, see Fig. 20~d!. Again the other two
trajectories show similar behavior, but to a lesser exten
the Vf(E) trajectory becomes smoother.

As back bending has already been observed for o
Vf(E) trajectories, it is no surprise that the caloric curve f
this changing volume system also shows a back bend,
Fig. 20~e!. The solid caloric curve shown here is reminisce
of other back bending caloric curves already published
Refs.@1,20–22#, where variable free volume constrained c
nonical and constrained grand canonical calculations
made, but not those published in Refs.@2,28#, where a con-
stant volume micro canonical calculation is made. Al
shown in Fig. 20~e! are the values of the temperature a
energy along the coexistence curve. Again the trajectory
the solid curve variable free volume enters the coexiste
region near the critical point and exits the coexistence reg
at T,TC and E.Ec . The dotted caloric curve also show
back bending, albeit to a more limited extent and the das
caloric curves shows no major back bend.

Next the specific heat of the system was calculated
Eq. ~26!, see Fig. 20~f!. The application of Eq.~26! to this
trajectory through thermodynamic phase space is probl
atic. From Fig. 20~d! it is clear that pressure is not a consta
and thus Eq.~26! should not be used. However, it has b
come commonplace to follow this sort of procedure@20,22#,
even though it is in contradiction with definition ofCP or
CV . When Eq.~26! is applied to the solid and dotted curve
in Fig. 20~e!, the resulting specific heat shows negative v
ues and the remnants of a divergence.

Finally the specific heat of the system was determined
the same manner that the entropy of the system was d
mined. The specific heat at a constant volume was calcul
along an isochore, then the values ofCV were selected from
the paths through thermodynamic phase space of theVf(E)
trajectory, see Fig. 20~g!. For the solid line path, the value o
CV shows a steady rise until an energy of 2 MeV/nucle
and then a sharp rise as the system expands. As the sy
continues to expand and the energy increases the value oCV
reaches a maximum and then shows a gradual decline
CV,0 is observed in this plot. The other two paths sho
smoother behavior.

The question that now arises is what, if any, insight in
the nature of the phase transition can be obtained fr
curves such as those in Figs. 20~e! and 20~f!. Were there no
other knowledge of the system, the back bends observe
the solid and dotted caloric curves would suggest that
system had gone through a first order phase transition. N
tive values and a peak in the specific heat would seem
confirm this. While for the dashed curve, the lack of ba
bending in the caloric curve and the lack of a negative s
cific heat would argue either for a continuous phase tra
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tion or no phase transition. However, from the analysis of
previous sections, the location of the critical point and
shape and location of the coexistence curve are known.
addition of this knowledge makes it clear that the na
analysis of Figs. 20~e! and 20~f! can provide misleading re
sults. While the solid caloric curve shows a back bend,
trajectory of the systems goes through the critical point, i
the coexistence region and exits along a subcritical path.
one conclude that the system has undergone a contin
phase transition, or has it undergone a first order phase
sition because the trajectory traverses the coexistence
gion? The answer to the first question is yes, since the
tem does reach the critical temperature and den
simultaneously. The answer to the second question also
pears to be ‘‘yes’’ since the specific heat found from Eq.~26!
is less than zero~for the solid curve!. Furthermore, the solid
curve intersects the coexistence curve at aT less thanTc .
Note, however, that without knowledge of the location of t
coexistence curve, the above questions cannot be unam
ously answered. A naive inspection of the dotted calo
curve may lead one to conclude that the back bending
indicative of a first order phase transition. Such is not
case, Fig. 20~e! shows that the dashed line never traver
the coexistence region. It is clear that drawing conclusi
based on caloric curves is difficult unless one has knowle
of the complete thermodynamics of the system.

E. Critical exponents from thermodynamic quantities

Any model that attempts to describe a system capabl
undergoing a continuous phase transition should exh
quantities with singular behavior that, near the critical po
are described by power laws with a consistent set of crit
exponents. These critical exponents should obey well kno
scaling laws and may, or may not, fall into one of the est
lished universality classes. To that end, five critical expon
values are determined and four scaling laws are checked
these models using the critical point (Tc ,Pc ,rc) determined
previously and other thermodynamic quantities. Note tha
the determination of critical exponents presented here, t
modynamic variables are used explicitly, e.g., in the extr
tion of g it is the isothermal compressibility that is used, a
not moments of the fragment distribution.

1. Power law results

The exponenta is determined by the behavior of the sp
cific heat along the critical isochore, see Fig. 12. TheCV(T)
curve was fit with the functional form

CV~T!5H6
S UT2Tc

Tc
U2a6

21

a6

D 1G6 ~27!

on both sides of the critical pointT .
, Tc @34#. The fit param-

etersH6 , a6 , andG6 were allowed to vary to minimize
thex2 of the fit. Figure 21 shows the results for each syst
and Table II lists the extracted exponents.

The functional form in Eq.~27! did not fit the curves
shown in Figs. 21~a!, 21~b!, and 21~c! over the entire range
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of (T2Tc)/Tc . To some degree this is to be expected. N
the critical point the finite size effects, which manifest the
selves first in the smoothing of the kink of subcritical fre
energy isochores, diminish a diverging specific heat int
peaking specific heat. Far from the critical point, the analy
terms in the expression for the specific heat become do
nant and the power law behavior is overwhelmed. In so
midrange region, neither too far from nor too near to t
critical point behavior consistent with Eq.~27! was observed.
Various fits were tried on both sides of the critical point, b
only those which gave a matching value fora were consid-
ered. Figures 21~a!, 21~b!, and 21~c! show the results of one
such fit. Table II lists the average results for many such fi

The van der Waals fluid shows much different behav
that do the nuclear models. The constant value ofCV53/2 in
the van der Waals fluid leads to the result ofa50 as ex-
pected for a mean field model. Based on this result it wo
seem that the nuclear models are not mean field mod
They show a peaking in the specific heat that is inconsis
with the behavior of a van der Waals fluid type of mean fie
model or the behavior of the Landau model which show
discontinuity in the specific heat.

The exponentb is determined using the (P,Vf) points
along the coexistence curve, shown in Fig. 15, which sho
be described by

r l2rg;S Tc2T

Tc
D b

. ~28!

Fitting r l2rg versus (T2Tc)/Tc to a simple power law for
the positive slope portion of Figs. 22~a!, 22~b!, and 22~c!
gives the exponentb, see Table II for results. The van de

FIG. 21. Determination of the critical exponenta from the spe-
cific heat at a constant densityr5rc for ~a! V1, ~b! V2, ~c! V3, and
~d! the van der Waals fluid. Solid lines show a sample fit.
5-14
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TABLE II. Critical exponents for the models.

System a6 b g d1 d1 t

V1 0.660.2 0.560.2 1.060.2 1.260.3 1.460.3 2.4960.03
V2 0.960.2 0.660.1 1.060.4 2.860.1 2.760.2 2.1060.02
V3 1.060.2 0.860.1 1.260.2 2.560.2 3.260.2 2.2260.02
vdW 0.0 0.560.1 0.9860.02 2.760.2 3.160.3 2.3360.02
r
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Waals fluid recovers the mean field value ofb51/2. The
model V1 gives the least impressive fit results.

Near the critical point the isothermal compressibilitykT ,
is given by

kT5G6UT2Tc

Tc
Ug6

. ~29!

For T,Tc fitting kT versusu(T2Tc)/Tcu along the coexist-
ence curve givesg2 while g1 is determined by fittingkT
versusu(T2Tc)/Tcu for T.Tc at r5rc . Due to the impre-
cise nature of the data along the coexistence curve foT
,Tc fits were made only forT.Tc . Fits were made over the
entire region ofu(T2Tc)/Tcu of T.Tc . The results for the
extraction of the exponentg are shown in Fig. 23.

For V1 two different power law regions appear to
present, one close to the critical point and one further fr
the critical point, see Fig. 23~a!. The error bars on theg
value in Table II account for this behavior. The fit to th
entire u(T2Tc)/Tcu region is used because the resulti
power law shows some agreement with the behavior ofkT
for T,Tc when the coefficient of the power law is increas

FIG. 22. Determination of the critical exponentb from the
liquid-gas density difference along the coexistence curve for~a! V1,
~b! V2, ~c! V3, and~d! the van der Waals fluid. Solid lines show
sample fit.
05460
by some factor. See the dashed line and open squares in
23~a!. Similar arguments apply to the results for V2 and V
see Figs. 21~b! and 21~c!.

The van der Waals fluid shows the expected behavior
recovers the value ofg51 to within error bars, see Fig
23~d! and Table II for results. TheT,Tc behavior ofkT also
shows the expected power law behavior with the appropr
exponent value.

Examining the shape of the critical isotherm leads to
estimation of the exponentd from

uP2Pcu;Ur2rc

rc
Ud6

. ~30!

The critical isotherm was examined independently forr
,rc , which givesd2 , andr.rc , which givesd1 . As with
the exponentsa and g, a system with a continuous phas
transition the values ofd6 should be the same on both sid

FIG. 23. Determination of the critical exponentg from the iso-
thermal compressibilitykT for ~a! V1, ~b! V2, ~c! V3, and~d! the
van der Waals fluid. Solid circles show the behavior ofkT for T
.Tc and atr5rc . Solid lines show a sample fit. Open squar
show the behavior ofkT along one edge of the coexistence boun
ary. Dashed lines show the fit forT.Tc multiplied by a constant.
5-15
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of the critical density. This fact is again used as guide
searching for fitting regions to extract the exponentd, see
Fig. 24 and Table II.

For V1 only the regions closest to the critical point ga
matchingd values. The error bars on thed values in Table II
reflect the changes ind6 when different fit regions are ex
amined. In V2 there are regions on both sides of the crit
point which yield a matching set ofd6 values. No such
region could be found for V3, even very close to the critic
point. The van der Waals fluid shows some regions on b
sides of the critical point whered6 match, to within error
bars, and agree with the expected value ofd53.

Finally, the topological exponentt from Fisher’s droplet
model @35# can be recovered based on considerations of
compressibility factorCf via the relationship@36#

Cf5
z~t!

z~t21!
. ~31!

The Riemannz functions of Eq.~31! were summed from 1 to
1 000 000 000. When a value oft57/3 was input for the van
der Waals fluid, Eq.~31! yielded a value of 0.393 indicating
that terminating the summation at 1000 000 000 yields
value of Cf that is approximately 5% too high; for the va
der Waals fluidCf53/8. This supposition is supported b
decreasing the upper summation limit and observing and
crease in the value ofCf . This error was accounted for in
the estimation of the value oft. See Table II for results.

FIG. 24. Determination of the critical exponentd from the criti-
cal isotherm for~a! V1, ~b! V2, ~c! V3, and~d! the van der Waals
fluid. Open circles show the critical isotherm forr.rc. Solid lines
show a sample fit. Open squares show the critical isotherm for
,rc . Dashed lines show a sample fit.
05460
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2. Scaling laws

With five critical exponents determined it is possible
perform a consistency check using the well known scal
relations. For example, the Rushbrooke inequality shows

a12b1g52 ~32!

~here shown as an equality in keeping with the scaling
pothesis and renormalization@37#!, and the Griffiths equality

a1b~11d!52, ~33!

and the Widom equality

b~d21!2g50. ~34!

Finally from Fisher’s droplet model

b

g
2

t22

32t
50. ~35!

Using the average values determined fora, b, d, g, andt
the results for these scaling laws are compiled in Table
Only the van der Waals fluid results consistently satisfy
above scaling laws to within error bars. The nuclear mod
generally fail to satisfy three of the four scaling laws. Th
failure is inconsistent with the behavior of the phase d
gram, shown for example in Fig. 5, which appears show
critical point, thus indicating the presence of a continuo
phase transition. While moderately good fits are observed
the specific heat, theliquid-gas density difference, the iso
thermal compressibility and the critical isotherm for each
the versions of the nuclear model, the meaning of th
power laws and critical exponents remains an open ques
in light of the failure to adhere to well-known scaling law

V. SUMMARY

It has been shown that the type of nuclear model d
cussed here exhibits many features commonly associ
with a system in which critical phenomena are present, e
a coexistence curve, power laws, critical exponents. By
moving both the Coulomb and temperature-dependent
energy terms, it was found that the appearance of a crit
point in these models is due to the interplay between
surface, volume, and translational free energy terms. H
ever, these types of models are not without inconsistenc
One striking inconsistency is the fact that the temperatu
dependent surface free energy gives rise to a infinite nega
specific heat at the critical temperature used by the mo
Furthermore, no version of the model showed a critical te

TABLE III. Scaling law results.

System Rushbrooke Griffiths Widom Fisher

V1 2.660.4 1.860.5 0.960.2 20.560.2
V2 3.260.5 3.260.4 20.160.2 0.560.3
V3 3.760.3 3.960.6 20.260.3 0.460.1
vdW 2.060.1 2.060.4 20.060.2 0.060.1
5-16
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perature that agreed with the one explicitly input into t
surface free energy term. Additionally, when the surfa
term was rendered temperature independent the critical p
remained, thus suggesting that the appearance of a cr
point in these models is not dependent on the tempera
dependence of the surface term but rather is a result of
interplay between the surface and volume free energy te

The critical temperature and density have been de
mined by examining isotherms in theP-r plane. In the
neighborhood of this critical point, singular behavior chara
terized by power laws was observed. However, these crit
exponents do not obey well-known scaling relations. This
a particularly troublesome occurrence as any model with
critical behavior, even the simple van der Waals fluid, do
have exponents which obey these scaling relations. It is p
sible that an examination of this model for larger system
with smaller steps in temperature and volume in the calc
tion of the free energy, will yield a consistent set of critic
exponents.

It is important to note that the critical densities found he
are much higher than could be realized with a closest pa
ing of normal density nuclei. Additionally, these critical de
sities are significantly higher than those typically used
compare model predictions@1,2# to data.

A major conclusion of this work is that the particula
phenomenological description of the free energy of a
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nucleus leads to several inconsistencies regarding both
perature and density. It was pointed out that the parame
ization of the surface free energy leads to a negative
divergent contribution to the specific heat asT approaches
the value of the parameterTc in Eq. ~4!. Furthermore, all
values of the critical temperature found from examination
isotherms in theP-r plane are much below this paramet
value. Thus, while use of such a model may well lead to
excellent description of multifragmentation data, the lack
internal consistency noted here makes the interpretation
data in terms of the model problematic. Such agreement m
rest more on the phase space sampling and variable free
ume inherent in the model than on the finer details exami
here. Finally, it has been shown that the variable volu
version of this phenomenological model of multifragmen
tion exhibits caloric curves which can be misinterpreted
the absence of detailed knowledge of the complete ther
dynamic phase diagram.
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