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Decay rates of spherical and deformed proton emitters
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Using Green’s function techniques, we derive expressions for the width of a proton decaying state in
spherical and deformed nuclei. We show that the proton decay widths calculated by the “exact” expressions
of Maglioneet al. are equivalent to the distorted wave expressions of Bugtal, and that of Abergt al.in
the spherical case.

PACS numbeps): 23.50+z, 21.10.Tg, 24.10.Eq

I. INTRODUCTION Here V(r) is the Coulomb plus nuclear interaction between

With the discovery of a number of new ground-state pro—the pmtof‘ a_nd the daugh_ter nucl_eus, Mﬁo{r) is the asso-
ciated pointlike Coulomb interaction.

ton emitters, both spherical and defornidc], the interpre- The second method is often believed to be approximate

tation of proton radioactivity data has become of theoretical dit i . ferred t the distorted B
interest. Several authors have presented expressions for tAEY 1S s?metl)rr\;\;eg Are _le_rhr_e 10 "?‘SI g. |sb0r e W"’!;"; om
proton decay width of spherical nuclg8—5] and deformed approximation( )- This is misleading because it does

nuclei [3,6,7. These quasibound states are extremely nar°t mak_e use of the Born approximati@®A). It does make_
row, having observable widths which do not exceedyse of distorted waves, namely, the Coulomb wave functions

1071° eV. In the calculations described in this paper, thedetermmed by the pointlike Coulomb interaction. We shall

decaying states are treated as stationary states. The decayt%?refore refer to this method as the distorted web@)

o . : thod.
h isim lying an ing wave Green'¥'€ : .
;uﬁcs';;[grt'letso zolvgczciidsbc%igﬁggr gqiat?oul;[go g wave Gree In this paper, we demonstrate that the distorted wave

- method, Eq(3), is actually an exact method which gives the
Two apparently different methods have been used to cal me result as the direct method, ), provided that both

culate the decay width. In both cases one first determines the? thod based th ¢ functi f th
wave function for the relative motion of the proton and theMethods are based on thé same exact wave function or the

iludesonance state. This is discussed in Sec. Il for a spherical
proton emitter. In Sec. Il we show how this can be general-

trate how the two methods differ for a spherical proton emit-! ;
ter. The deformed case will be discussed in Sec. IlI ized to the case of a deformed nucleus. In Sec. IV we give a

In the first method 3], which we call the direct method few numerical examples, and Sec. V contains our conclu-

(dir), the radial part of the wave functiory;(r)/r, is sions.
matched to an outgoing Coulomb wave:
dir dir _ IIl. SPHERICAL NUCLEI
u (1) =Nj7 O (kr) =N [Gy(kr)+iF(kr)] at r=R,
(1) We consider proton emission from a systemAofiucle-

ons, leaving a residual daughter nuclefsl. The wave
whereR is a large distance outside the range of the nucleafunction of the system at large distances will be a product of
field. HereF,(kr) and G(kr) are the regular and irregular the daughter nucleus wave function and the proton-daughter
Coulomb wave functions, respectively, calculated for therelative motion wave functio®’ (r), wherer is the relative
asymptotic relative kinetic energyik)?/(2u) of the proton  coordinate between the proton and the daughter nucleus. In
and the daughter nucleug, being the reduced mass. By the spherical case we consider only the decay to the ground
calculating the radial probability flux through a sphere, usingstate of the daughter nucleus, and treat the residual nucleus
the radial wave function on the right-hand side of ED), as an inert core. In this study we do not consider spectro-
one can then express the decay iate(or the mean lifetime  scopic factors.

7) in terms of the matching amplitucmﬂir as in Ref[3], To calculate the outgoing proton wave function we use
the exact Gell-Mann—Goldberger transformation and the dis-
g B AR torted wave Green'’s functio®(*)(r,r’) with outgoing Cou-
Ifi"=—=—|Nf"2. 2) o .
e lomb wave boundary conditior[8]. For the spherical case

we generalize the asymptotic Green’s functiome., for r
In the second methof#4,5], which is based on a Gell- —) by coupling in the proton spin:
Mann-Goldberger transformation as we shall explain, one
uses the following expression to calculate the decay width of ,
a spherical proton emitter: G (rr')=— 21 5 Oulkn) ||jm><|jm|F'(kr )_
A%k fim T r’

2

f:ﬁ(kr)[v(r)—Vg(r)]u“—(r)dr . (3

pw_ 4

N

The wave functiorjljm) is shorthand for
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_ L - cause the two wave functions have the same energy. The
||Jm>:n% (Imyzmgjm)Y, (1) x(m). (4)  contribution from the radial kinetic energy operator can be
1"s H
written as

The outgoing wave function is

1(>d dU| i (r) dF| (kr)
NP?’=——f —[F, (kr) —2E— —uy (1) —2——|dr
2u O|(k|’) _ p'p kJo dr P dr plp dr

v ()=— — ljm
'oloMp A%k fm T tim) 1 duy 5 (1) dF, |
F (kr)————u; (1) ——
X<<|Jm‘Fl(kr,) v > P dr PJP dr
’ Ipipmg [ - . . .. .
r PP The contribution from the lower limitr =0, vanishes be-
cause both radial wave functions are regular at the origin.

The initial S'[<'=1'fe|‘I’|pjpmp> is a shell model state of a single The contribution from the upper limit,=, is the Wronsk-
particle plus inert core; in what follows we have omitted theian of the two radial wave functions, and inserting the

0

Kk
V(r')—Vv(r’)

core wave function since it acts only as a spectator: asymptotic form of the exact solution, Ed.), we obtain the
desired resuItNﬁ)‘j’"’f Nﬁ')’jp. The same is true if the
u(r) asymptotic wave function is purely real, i.&N{" G, (kr),
¥, jom )= ||pmep>- . plp P
plpMp r' as used in Refl5].
Performing the angular integral in the matrix element yields Ill. DEFORMED NUCLEI
Oy 0ii Omm., SO . .
HpZiipZmm, We consider a deformed odd-nucleus, consisting of a
single particle strongly coupled to an axially symmetric
2p O1,(kn) ” even-even core. In analogy to the spherical case, the total
WD (1) == ]l m>f Fi(kr)[V(r) : | 1 anaegy o e SPeTe !
Tl pmp A2k T L P outgoing wave function at large distances is
=Ve(r')Juyj (r')dr’. (5)

2 O,(kr
W&T&<r>=—h—2‘|‘(”ER %)|<IJR>IM>
Comparing the radial part of Eq5) with Eqg. (1), we

obtain the normalization amplitude for the outgoing Cou- _ Fi(kr")
lomb wave X\ { (IRIM | ———| V(r") = Ve(r')| Wiy | -
2u (= (8
DW_ _ =7 —\0 .
e~ 7)o KDLV = Ve Juyj (r)dr, (6)

HereV(r') is the total deformed potential acting between the

. ) i proton and the core nucleus. The angular momentum part of
and thus the distorted wave expressi@ for the partial the Green’s function now includes the rotational states
decay width follows directly from Eq(2). IRMg) (R=0,2,...) of thecore and the single-particle

As mentioned in the introduction, E€3) is identical to  state|ljm), which are coupled to the total spitM):
the expression obtained by Bugrev al, [4], who adapted

their a-decay formalism to proton decay, and also to that ) ] )
used by Aberget al. [5]. Since this expression has been |(|JR)|M>:% (imRMg/IM)[Iljm)|RMg).  (9)
derived using the exact Gell-Mann-Goldberger transforma- R

tion, it must give exactly the same numerical result as thet js noted that the total spifiM) is preserved, as we shall
direct method, Eq(2). This can, in fact, be demonstrated see explicitly later on.

explicitly by replacing the interactions in the radial matrix  The total wave function of the initial state is of the form
element of Eq.(6) by the associated single-particle Hamil- [9]

tonian minus the radial kinetic energy operators
)
Wyim = \/—16W2[D'MK<w')¢K+<—1)'+KD'M,K(w')¢g],

0 e dr w2 &
V(r)—Ve(r)—|H+ Ho+
right (10)

2 dr? ©" 2u gr2 | '
eft

(7) . _

wherel=21+1 and allD functions, here and below, are

The subscripts “right” and “left” indicate that the operators functions of the orientation of the nucleus in the laboratory
must act to the right and to the left, respectively, when in-frame. The single-particle wave functiaby is describedas
serted in the radial matrix element of E§). in the Nilsson modelin terms of the intrinsiqbody-fixed

Making the substitution(7) in Eq. (6), the contributions coordinates of the daughter nucleus. It can be expanded in
from the two single-particle Hamiltonians must cancel be-spherical components
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Fy (kr') o

r—,[V(f')—Vc(f')] bx
0

where the sum is ovgr=|K| and the subscript “0” denotes (16)

a state in the intrinsic frame. is evaluated in the intrinsic frame. It is noted that the matrix

To spem_fy the final state, we note that the rotational Stateelement(lS) is independent of thé-quantum number.
wave function of the daughter is

r— (OFEYAYIT .
é(r') % iy (11K o, 11) Mlpij:<|pJDK

2 B. Partial decay width

R
|IRMg)= FDK;IRO((‘),)' (12 Having determined the matrix element we can now write
. the outgoing wave function8) for a specific channel
We pick out a particular outgoing channel, in which the pro-(lplpRlK) as
ton carries off angular momentulyj,,, with projectionm,, O, (kr)
leaving the daughter nucleus with angular momenRiemd \Pf;lR’KlM(r) = N&Y‘;RM%KI ol pRIM),

projectionMg. For the evaluation of the matrix element in
Eqg. (8), the final state|(lpij)IM> must be expressed in \ynere
terms of the single-particle wave function in the intrinsic

system oW 2u 2R
| N|pij|K:_ﬁ T(JpKRO||K>M|pij 17)
oMy => D (0")[1,j K Yo. (13)
| ol Me? o MK | plpK "o and/\/l|pjp,< is given in Eq.(16). As in the spherical case we

Inserting Eqs(12) and (13) into Eq. (9) we obtain obtain the decay width from the outgoing flux, E@), as

- 4 2R
R TPV o= ———(j KRO[IK)?| M, ; (|2
[(oipRIM) =\ o 3 (jamRMglIM)D (@) R 2 1T Plpt
T K 'm,M

_ . Apart from a pairing term, this expression is identical to that
XD:T']’K,(w’)Hpij’)O obtained by Kadmensky and Bugrd®,7]. This can be
P shown in detail by inserting the expansitii) of the initial
) state into the matrix elemeiii6) and using the forni{4) of

= F the single-particle states. Since the interaction does not
a

change the proton spin, the single-particle matrix element
will be diagonal inmg. It is also diagonal irK. Thus one

X 2 (JpK'RO[IK YDy (0)|lpjpK ), Obtains
K!
(14 Mlpij:”Em <|pmlp%ms|jpK><|ml%ms|jK>
where we have used a well-known relation involving a sum F, (kr")
i ~
of D functions[10]. % < Y|m|p(r,) P V(r')
P r’

A. Evaluation of the matrix element

We can now calculate the matrix element found in Eq. VO
(8). The integration over the orientation of the daughter ¢
nucleusw’ produces an expression that is diagonal in the
qguantum numbers IMK. This is evident from the first part of This expression has been simplified by noting thrr,agz m,

Eq. (10). The second term will select the valueK fromthe =K —mj, thus eliminating sums over those variables. The
sum(14) over final stat&k’ values. In fact one can show that Yg(;/) term in the deformed potential(r’) apparently al-

the two terms are of equal magnitude, so we obtain lows for an angular momentum exchange at the nuclear sur-
face between the outgoing proton and the daughter nucleus,
. leading to nondiagonal terms in the matrix element.
<<(IpJpR)IM ‘I’K|M> 9 g
_ C. Direct method
— A /%_RU KRO|[IK) M, ; « (15) We can also use the direct method to determine the decay
P plpt width of a deformed proton emitter. To do this we expand

the wave functiori¥,,(r) of the initial state on the com-
where plete set of angular momentum basis states

¢.‘P<r')v{“'<F'>>.

Fi(kr')
r/

V(r')—Vva(r’)
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TABLE I. Comparison of the proton half-lives of three spherical 52 dr ¢|(i)‘ (N]
proton radioactivities calculated with the dirddir) and distorted M, k= _( F, (kr)¢
wave (DW) methods. et 2u P dr
Nucleus Ep(keV) j, I, 9o o o (r)]d F|p(kr))

_ 0 .
1679 10646) i* 0 357687 ms 35.7671ms P ar /i
W rmm 11195 3+ 2 171.332us  171.327us 2
167ym 12387) - 5 1.99360 s 1.99352 s __hk A
2u " olp’

where we again have used the asymptotic for8) of
‘PKuM(r)ZIE [(TR)IM)((TR)IM[W ). #{) (r). Inserting this into the distorted wave amplitude
: (l%pwe see that it becomes identical to the direct amplitude,
Using Egs.(15) and (16) with F,p(kr)/r[V(r)—VOC(r)] re- Egq.(19.
placed by 1 we can immediately write the overlap matrix

element as IV. NUMERICAL CALCULATIONS
(IR)IM[W ) IZQ('KRO|IK>(I'K|¢ > A. Normalization
: K ) ) : w For the calculation of the decay widths for spherical and

deformed nuclei, normalized wave functions are needed. In

Inserting the expansiofl1) for the outgoing channéjj, we  addition, the direct method includes a determination of the
obtain quantity N;; . We will consider both of these normalization

O|p(kr) questions separately for the spherical and deformed cases.

(IpipKl ) ={} (N—A j —F—,  for r—e,
(18

1. Spherical normalization

_ S ~ Since the wave function;;(r) decreases rapidly with ra-
assuming that the |ntr|n5|c states are _matched 'Fo outgoingius outside the nucleus, typically by 10 orders of magni-
Coulomb waves as in Eq1). The outgoing wave is there- tude, it can be normalized by requiring that

fore R
_ 0O, (kr) fo[uu(f)]zdf:l,
‘I’l(:ji,R,Km(r):NF;EpR|K+|(|pjpR)|M>:
whereR<R,, the classical external turning point. In prac-
where tice, integrating out td&R=25 fm is adequate for the known
_ SR spherical proton emitters. Onag (r) is suitably normalized,
NI k= \/ (i KRO[IK)A, . (19  thenN;; can be determined from E¢l):
Ip]pRIK T p ijp-
Ny = iR (20
This gives the decay width, according to Ef), as " G|(kR) +iF(kR)
i 7%k 2R ) ) We note that, strictly speaking, the matching conditibn
I RiK= u T_<] pKRO[TK)?A, ;| requires a complex energy and a complex wave fundjn

However, since the imaginary part of the resonance energy
This expression is consistent with the result given in @y. (-6 the decay widthis usually extremely small, one could
of Ref. [3]. In addition, it allows the calculation of partial &S Well use energies and wave functions that are[fgaln
decay widths to excited states of the daughter nucleus. that case, one would replace Hg0) by

It can also be demonstrated explicitly that the distorted u;j(R)

wave method and the direct method give identical results for i G,(kR)
the decay width of a deformed proton emitter. The proof is
analogous to that presented in the spherical ¢ase Eq. This condition will be quite close to Eq20) because it is
(7)], but requires the use of the full three-dimensional kineticysually possible to find a value fdR such thatG,(kR)
energy operator-#°V?/2u. Thus the matrix elemertlé)  >F (kR).
can be expressed as

2 F, (kr) 2. Deformed normalization
M k= Z< lpipK pT(Vﬁght_Vlzeft) ¢K>- In the deformed case we make the substitution
. y . . . U|' (r)
Using Green’s theorem and inserting the expansidi) for ¢|(j')(f)=C|j(,32) j

r ’

the initial state one obtains
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where 3, is the quadrupole deformation parameter and the TABLE Il. Comparison of the proton half-lives of deformed
function u;;(r) is normalized as described for the sphericalproton radioactivities calculated with the dirgdir) and distorted
case. TheC;; coefficients can be calculated, for example, wave (DW) methods.

using the procedure described by Andersen, Back, and Ban

H di DW
[11]. With this substitution, the asymptotic amplitudsg; ucleus Ep(keV) jp lp B2 Gt t12p
defined in Eq(18) is given by By 9377) 3¢ 2 0.3 —0.208 27.92ms 24.09 ms
ugi(R) BlEy  9377) 3* 2 0.3 —0.0999 176.2ms 214.8 ms
A|j=C|j(ﬁz)m, 14409 11698) 4~ 3 0.3 0.240 4.087 ms 3.266 ms
|

" @A.A. Sonzogni, private communicatigid999.
where R<R,. Under these conditions the deformed and gni. p aas99

spherical widths are related by a simple numerical factor the direct method. The comparison of the results of the two
methods is therefore a test of how close the truncated solu-
dir 2R 5 A tion comes to being correct. Further investigation in this area
(FIjRIK)def:T<JKRO|IK> 1Cyi (B2 (T sph- is needed. Perhaps a coupled-channels approach, such as that
developed by Ref.13], will offer closer agreement between

the direct and distorted wave methods.
B. Comparison of half-life calculations

It is of interest to compare the numerical results for the C. Conclusions

half-lives [ty,=7 In(2)I'] obtained with the direct method  \ye have shown that the distorted wave method and the
(2) and the distorted wave methd@) for spherical nuclei. girect method of calculating the width of spherical and de-
We show in Table | the calculated half-lives for three spheri-tomed proton emitter are equivalent. In the spherical case
cal decaying states having orbital angular momenten®,  ymerical agreement is demonstrated to better than 0.005%,
2, and 5, respectively. The radial wave functiangr) were  \yhjle for the deformed case the agreement is only within
calculated by integrating the radial Sctlilger equation, us-  ahout 20%. Improved methods of calculating the wave func-
ing for the proton-daughter nucleus potential the real part ofjons should reduce this discrepancy. We recommend using
the Becchetti-Greenlees optical model potenf]. The  gijther of these methods in place of the WKB method, which
potential depth was adjusted to match the energy eigenvalygss certain problems related to the frequency faee Ref.

to thg proton decay) value. It is seen that the calculated [5] for a discussion of this point For the cases where the
half-lives agree to better than 0.005% between the two meth gial wave function is known over the<r <25 fm range,
ods. Since the two methods should give identical results, thgye direct method is preferred for its calculational simplicity.
difference must reflect the accuracy of the numerical techyygywever, if the radial wave function is known reliably only

niques that have been used. _ in the region of the nuclear surface, the distorted wave
For the deformed case we show in Table Il the calculategnethod is to be preferred.

half-lives for three decaying state8{=0.3) and total angu-
lar momentumj=3/2", 5/2", and 7/2, respectively. Here
the calculated half-lives only agree to within 20% between
the two methods. The discrepancy is probably due to the The authors wish to thank A. A. Sonzogni for providing
truncation in the eigenfunction space, such that only thehe results of his calculations for deformed nuclei using the
nearest spherical states were included. The initial state idistorted wave method, and D. Kurath for comments on the
therefore not the exact or complete solution to the deformedhanuscript. This work was supported by the U.S. Depart-
Hamiltonian, and the Gell-Mann-Goldberger transformationment of Energy, Nuclear Physics Division, under Contract
method will therefore not provide exactly the same result asNo. W-31-109-ENG-38.
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