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Decay rates of spherical and deformed proton emitters

Cary N. Davids and Henning Esbensen
Physics Division, Argonne National Laboratory, Argonne, Illinois 60439

~Received 18 October 1999; published 3 April 2000!

Using Green’s function techniques, we derive expressions for the width of a proton decaying state in
spherical and deformed nuclei. We show that the proton decay widths calculated by the ‘‘exact’’ expressions
of Maglioneet al.are equivalent to the distorted wave expressions of Bugrovet al., and that of Åberget al. in
the spherical case.

PACS number~s!: 23.50.1z, 21.10.Tg, 24.10.Eq
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I. INTRODUCTION

With the discovery of a number of new ground-state p
ton emitters, both spherical and deformed@1,2#, the interpre-
tation of proton radioactivity data has become of theoret
interest. Several authors have presented expressions fo
proton decay width of spherical nuclei@3–5# and deformed
nuclei @3,6,7#. These quasibound states are extremely n
row, having observable widths which do not exce
10210 eV. In the calculations described in this paper, t
decaying states are treated as stationary states. The dec
the states is imposed by applying an outgoing wave Gre
function to solve the Schro¨dinger equation.

Two apparently different methods have been used to
culate the decay width. In both cases one first determines
wave function for the relative motion of the proton and t
daughter nucleus in the resonant state. We shall here i
trate how the two methods differ for a spherical proton em
ter. The deformed case will be discussed in Sec. III.

In the first method@3#, which we call the direct method
~dir!, the radial part of the wave function,ul j (r )/r , is
matched to an outgoing Coulomb wave:

ul j ~r !5Nl j
dirOl~kr !5Nl j

dir@Gl~kr !1 iF l~kr !# at r 5R,
~1!

whereR is a large distance outside the range of the nuc
field. HereFl(kr) and Gl(kr) are the regular and irregula
Coulomb wave functions, respectively, calculated for
asymptotic relative kinetic energy (\k)2/(2m) of the proton
and the daughter nucleus,m being the reduced mass. B
calculating the radial probability flux through a sphere, us
the radial wave function on the right-hand side of Eq.~1!,
one can then express the decay rateG l j ~or the mean lifetime
t) in terms of the matching amplitudeNl j

dir as in Ref.@3#,

G l j
dir5

\

t
5

\2k

m
uNl j

diru2. ~2!

In the second method@4,5#, which is based on a Gell
Mann-Goldberger transformation as we shall explain, o
uses the following expression to calculate the decay width
a spherical proton emitter:

G l j
DW5

4m

\2k
U E

0

`

Fl~kr !@V~r !2VC
0 ~r !#ul j ~r !drU2

. ~3!
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HereV(r ) is the Coulomb plus nuclear interaction betwe
the proton and the daughter nucleus, andVC

0 (r ) is the asso-
ciated pointlike Coulomb interaction.

The second method is often believed to be approxim
and it is sometimes referred to as the distorted wave B
approximation~DWBA!. This is misleading because it doe
not make use of the Born approximation~BA!. It does make
use of distorted waves, namely, the Coulomb wave functi
determined by the pointlike Coulomb interaction. We sh
therefore refer to this method as the distorted wave~DW!
method.

In this paper, we demonstrate that the distorted wa
method, Eq.~3!, is actually an exact method which gives th
same result as the direct method, Eq.~2!, provided that both
methods are based on the same exact wave function o
resonance state. This is discussed in Sec. II for a sphe
proton emitter. In Sec. III we show how this can be gener
ized to the case of a deformed nucleus. In Sec. IV we giv
few numerical examples, and Sec. V contains our conc
sions.

II. SPHERICAL NUCLEI

We consider proton emission from a system ofA nucle-
ons, leaving a residual daughter nucleusA-1. The wave
function of the system at large distances will be a produc
the daughter nucleus wave function and the proton-daug
relative motion wave functionC(r ), wherer is the relative
coordinate between the proton and the daughter nucleu
the spherical case we consider only the decay to the gro
state of the daughter nucleus, and treat the residual nuc
as an inert core. In this study we do not consider spec
scopic factors.

To calculate the outgoing proton wave function we u
the exact Gell-Mann–Goldberger transformation and the
torted wave Green’s functionG(1)(r ,r 8) with outgoing Cou-
lomb wave boundary conditions@8#. For the spherical case
we generalize the asymptotic Green’s function~i.e., for r
→`) by coupling in the proton spin:

G(1)~r ,r 8!52
2m

\2k
(
l jm

Ol~kr !

r
u l jm&^ l jmu

Fl~kr8!

r 8
.

The wave functionu l jm& is shorthand for
©2000 The American Physical Society02-1
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u l jm&5 (
mlms

^ lml
1
2 msu jm&Yl

ml~ r̂ !x~ms!. ~4!

The outgoing wave function is

C l pj pmp

(1) ~r !52
2m

\2k
(
l jm

Ol~kr !

r
u l jm&

3K K l jmUFl~kr8!

r 8
UV~r 8!2VC

0 ~r 8!UC l pj pmpL .

The initial stateuC l pj pmp
& is a shell model state of a singl

particle plus inert core; in what follows we have omitted t
core wave function since it acts only as a spectator:

uC l pj pmp
&5

ul pj p
~r 8!

r 8
u l pj pmp&.

Performing the angular integral in the matrix element yie
d l l p

d j j p
dmmp

, so

C l pj pmp

(1) ~r !52
2m

\2k

Ol p
~kr !

r
u l pj pmp&E

0

`

Fl p
~kr8!@V~r 8!

2VC
0 ~r 8!#ul pj p

~r 8!dr8. ~5!

Comparing the radial part of Eq.~5! with Eq. ~1!, we
obtain the normalization amplitude for the outgoing Co
lomb wave

Nl pj p

DW52
2m

\2k
E

0

`

Fl p
~kr !@V~r !2VC

0 ~r !#ul pj p
~r !dr, ~6!

and thus the distorted wave expression~3! for the partial
decay width follows directly from Eq.~2!.

As mentioned in the introduction, Eq.~3! is identical to
the expression obtained by Bugrovet al., @4#, who adapted
their a-decay formalism to proton decay, and also to th
used by Åberget al. @5#. Since this expression has bee
derived using the exact Gell-Mann-Goldberger transform
tion, it must give exactly the same numerical result as
direct method, Eq.~2!. This can, in fact, be demonstrate
explicitly by replacing the interactions in the radial matr
element of Eq.~6! by the associated single-particle Ham
tonian minus the radial kinetic energy operators

V~r !2VC
0 ~r !→FH1

\2

2m

d2

dr2G
right

2FH01
\2

2m

d2

dr2G
left

.

~7!

The subscripts ‘‘right’’ and ‘‘left’’ indicate that the operator
must act to the right and to the left, respectively, when
serted in the radial matrix element of Eq.~6!.

Making the substitution~7! in Eq. ~6!, the contributions
from the two single-particle Hamiltonians must cancel b
05430
s

-

t

-
e

-

-

cause the two wave functions have the same energy.
contribution from the radial kinetic energy operator can
written as

Nl pj p

DW52
1

kE0

` d

dr
FFl p

~kr !
dul pj p

~r !

dr
2ul pj p

~r !
dFl p

~kr !

dr
Gdr

52
1

k
FFl p

~kr !
dul pj p

~r !

dr
2ul pj p

~r !
dFl p

dr
G

0

`

.

The contribution from the lower limit,r 50, vanishes be-
cause both radial wave functions are regular at the orig
The contribution from the upper limit,r 5`, is the Wronsk-
ian of the two radial wave functions, and inserting t
asymptotic form of the exact solution, Eq.~1!, we obtain the
desired result Nl pj p

DW5Nl pj p

dir . The same is true if the

asymptotic wave function is purely real, i.e.,Nl pj p

dir Gl p
(kr),

as used in Ref.@5#.

III. DEFORMED NUCLEI

We consider a deformed odd-A nucleus, consisting of a
single particle strongly coupled to an axially symmet
even-even core. In analogy to the spherical case, the
outgoing wave function at large distances is

CKIM
(1) ~r !52

2m

\2k
(
l jR

Ol~kr !

r
u~ l jR !IM &

3K K ~ l jR !IMUFl~kr8!

r 8
UV~r 8!2VC

0 ~r 8!UCKIM L .

~8!

HereV(r 8) is the total deformed potential acting between t
proton and the core nucleus. The angular momentum pa
the Green’s function now includes the rotational sta
uRMR& (R50,2, . . . ) of thecore and the single-particle
stateu l jm&, which are coupled to the total spin~IM !:

u~ l jR !IM &5 (
mMR

^ jmRMRuIM &u l jm&uRMR&. ~9!

It is noted that the total spin~IM ! is preserved, as we sha
see explicitly later on.

The total wave function of the initial state is of the for
@9#

CKIM 5A Î

16p2
@DMK

I ~v8!fK1~21! I 1KDM2K
I ~v8!f K̄#,

~10!

where Î 52I 11 and all D functions, here and below, ar
functions of the orientation of the nucleus in the laborato
frame. The single-particle wave functionfK is described~as
in the Nilsson model! in terms of the intrinsic~body-fixed!
coordinates of the daughter nucleus. It can be expande
spherical components
2-2
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fK~r 8!5(
l j

f l j
( i )~r 8!u l jK &0 , ~11!

where the sum is overj >uKu and the subscript ‘‘0’’ denotes
a state in the intrinsic frame.

To specify the final state, we note that the rotational st
wave function of the daughter is

uRMR&5A R̂

8p2
DMR0

R ~v8!. ~12!

We pick out a particular outgoing channel, in which the p
ton carries off angular momentuml pj p , with projectionmp ,
leaving the daughter nucleus with angular momentumR and
projectionMR . For the evaluation of the matrix element
Eq. ~8!, the final stateu( l pj pR)IM & must be expressed i
terms of the single-particle wave function in the intrins
system

u l pj pmp&5(
K8

D
mpK8

j p ~v8!u l pj pK8&0 . ~13!

Inserting Eqs.~12! and ~13! into Eq. ~9! we obtain

u~ l pj pR!IM &5A R̂

8p2 (
K8mpMR

^ j pmpRMRuIM &DMR0
R ~v8!

3D
mpK8

j p ~v8!u l pj pK8&0

5A R̂

8p2

3(
K8

^ j pK8R0uIK 8&DMK8
I

~v8!u l pj pK8&0 ,

~14!

where we have used a well-known relation involving a s
of D functions@10#.

A. Evaluation of the matrix element

We can now calculate the matrix element found in E
~8!. The integration over the orientation of the daugh
nucleusv8 produces an expression that is diagonal in
quantum numbers IMK. This is evident from the first part
Eq. ~10!. The second term will select the value2K from the
sum~14! over final stateK8 values. In fact one can show tha
the two terms are of equal magnitude, so we obtain

K K ~ l pj pR!IMUFl p
~kr8!

r 8
UV~r 8!2VC

0 ~r 8!UCKIM L
5A2R̂

Î
^ j pKR0uIK &Ml pj pK , ~15!

where
05430
te

-

.
r
e
f

Ml pj pK5K l pj pKU Fl p
~kr8!

r 8
@V~r 8!2VC

0 ~r 8!#UfKL
0

~16!

is evaluated in the intrinsic frame. It is noted that the mat
element~15! is independent of theM-quantum number.

B. Partial decay width

Having determined the matrix element we can now wr
the outgoing wave function~8! for a specific channe
( l pj pRIK) as

C l pj pR,KIM
(1) ~r !5Nl pj pRIK

DW
Ol p

~kr !

r
u~ l pj pR!IM &,

where

Nl pj pRIK
DW 52

2m

\2k
A2R̂

Î
^ j pKR0uIK &Ml pj pK ~17!

andMl pj pK is given in Eq.~16!. As in the spherical case w
obtain the decay width from the outgoing flux, Eq.~2!, as

G l pj pRIK
DW 5

4m

\2k

2R̂

Î
^ j pKR0uIK &2uMl pj pKu2.

Apart from a pairing term, this expression is identical to th
obtained by Kadmensky and Bugrov@6,7#. This can be
shown in detail by inserting the expansion~11! of the initial
state into the matrix element~16! and using the form~4! of
the single-particle states. Since the interaction does
change the proton spin, the single-particle matrix elem
will be diagonal inms . It is also diagonal inK. Thus one
obtains

Ml pj pK5(
l jms

^ l pml p

1
2 msu j pK&^ lml

1
2 msu jK &

3K Y
l p

ml p~ r̂ 8!
Fl p

~kr8!

r 8
UV~r 8!

2VC
0 ~r 8!Uf l j

( i )~r 8!Yl
ml~ r̂ 8!L .

This expression has been simplified by noting thatml p
5ml

5K2ms , thus eliminating sums over those variables. T
Y2

0( r̂ 8) term in the deformed potentialV(r 8) apparently al-
lows for an angular momentum exchange at the nuclear
face between the outgoing proton and the daughter nucl
leading to nondiagonal terms in the matrix element.

C. Direct method

We can also use the direct method to determine the de
width of a deformed proton emitter. To do this we expa
the wave functionCKIM (r ) of the initial state on the com
plete set of angular momentum basis states
2-3
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CKIM ~r !5(
l jR

u~ l jR !IM &^~ l jR !IM uCKIM &.

Using Eqs.~15! and ~16! with Fl p
(kr)/r @V(r )2VC

0 (r )# re-

placed by 1 we can immediately write the overlap mat
element as

^~ l jR !IM uCKIM &5A2R̂

Î
^ jKR0uIK &^ l jK ufK&.

Inserting the expansion~11! for the outgoing channell pj p we
obtain

^ l pj pKufK&5f l pj p

( i ) ~r !→Al pj p

Ol p
~kr !

r
, for r→`,

~18!

assuming that the intrinsic states are matched to outg
Coulomb waves as in Eq.~1!. The outgoing wave is there
fore

C l pj pR,KIM
(1) ~r !5Nl pj pRIK

dir
Ol p

~kr !

r
u~ l pj pR!IM &,

where

Nl pj pRIK
dir 5A2R̂

Î
^ j pKR0uIK &Al pj p

. ~19!

This gives the decay width, according to Eq.~2!, as

G l pj pRIK
dir 5

\2k

m

2R̂

Î
^ j pKR0uIK &2uAl pj p

u2.

This expression is consistent with the result given in Eq.~8!
of Ref. @3#. In addition, it allows the calculation of partia
decay widths to excited states of the daughter nucleus.

It can also be demonstrated explicitly that the distor
wave method and the direct method give identical results
the decay width of a deformed proton emitter. The proo
analogous to that presented in the spherical case@see Eq.
~7!#, but requires the use of the full three-dimensional kine
energy operator2\2¹2/2m. Thus the matrix element~16!
can be expressed as

Ml pj pK5
\2

2m K l pj pKU Fl p
~kr !

r
~¹ right

2 2¹ left
2 !UfKL .

Using Green’s theorem and inserting the expansion~11! for
the initial state one obtains

TABLE I. Comparison of the proton half-lives of three spheric
proton radioactivities calculated with the direct~dir! and distorted
wave ~DW! methods.

Nucleus Ep(keV) j p l p t1/2,p
dir t1/2,p

DW

167Irg 1064~6! 1
2

1 0 35.7687 ms 35.7671 ms
147Tmm 1119~5! 3

2
1 2 171.332ms 171.327ms

167Irm 1238~7! 11
2

2 5 1.99360 s 1.99352 s
05430
g
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c

Ml pj pK5
\2

2m
S Fl p

~kr !
d@rf l pj p

( i ) ~r !#

dr

2@rf l pj p

( i ) ~r !#
dFl p

~kr !

dr
D

r→`

52
\2k

2m
Al pj p

,

where we again have used the asymptotic form~18! of
f l pj p

( i ) (r ). Inserting this into the distorted wave amplitud

~17! we see that it becomes identical to the direct amplitu
Eq. ~19!.

IV. NUMERICAL CALCULATIONS

A. Normalization

For the calculation of the decay widths for spherical a
deformed nuclei, normalized wave functions are needed
addition, the direct method includes a determination of
quantity Nl j . We will consider both of these normalizatio
questions separately for the spherical and deformed cas

1. Spherical normalization

Since the wave functionul j (r ) decreases rapidly with ra
dius outside the nucleus, typically by 10 orders of mag
tude, it can be normalized by requiring that

E
0

R

@ul j ~r !#2dr51,

whereR,Ro , the classical external turning point. In pra
tice, integrating out toR525 fm is adequate for the know
spherical proton emitters. Onceul j (r ) is suitably normalized,
thenNl j can be determined from Eq.~1!:

Nl j 5
ul j ~R!

Gl~kR!1 iF l~kR!
. ~20!

We note that, strictly speaking, the matching condition~1!
requires a complex energy and a complex wave function@3#.
However, since the imaginary part of the resonance ene
~i.e., the decay width! is usually extremely small, one coul
as well use energies and wave functions that are real@5#. In
that case, one would replace Eq.~20! by

Nl j 5
ul j ~R!

Gl~kR!
.

This condition will be quite close to Eq.~20! because it is
usually possible to find a value forR such thatGl(kR)
@Fl(kR).

2. Deformed normalization

In the deformed case we make the substitution

f l j
( i )~r !5Cl j ~b2!

ul j ~r !

r
,

2-4



th
a

le
a

nd

he
d

ri

t o

al
d
et
th
ch

te

e
th
th
e
e

io
a

wo
lu-
ea
s that

the
e-
se

5%,
in
c-
ing
ch

y.
y
ve

g
he
he
rt-
ct
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whereb2 is the quadrupole deformation parameter and
function ul j (r ) is normalized as described for the spheric
case. TheCl j coefficients can be calculated, for examp
using the procedure described by Andersen, Back, and B
@11#. With this substitution, the asymptotic amplitudeAl j
defined in Eq.~18! is given by

Al j 5Cl j ~b2!
ul j ~R!

Gl~kR!
,

where R,Ro . Under these conditions the deformed a
spherical widths are related by a simple numerical factor

~G l jRIK
dir !def5

2R̂

Î
^ jKR0uIK &2uCl j ~b2!u2~G l j

dir!sph.

B. Comparison of half-life calculations

It is of interest to compare the numerical results for t
half-lives @ t1/25\ ln(2)/G# obtained with the direct metho
~2! and the distorted wave method~3! for spherical nuclei.
We show in Table I the calculated half-lives for three sphe
cal decaying states having orbital angular momentuml 50,
2, and 5, respectively. The radial wave functionsul j (r ) were
calculated by integrating the radial Schro¨dinger equation, us-
ing for the proton-daughter nucleus potential the real par
the Becchetti-Greenlees optical model potential@12#. The
potential depth was adjusted to match the energy eigenv
to the proton decayQ value. It is seen that the calculate
half-lives agree to better than 0.005% between the two m
ods. Since the two methods should give identical results,
difference must reflect the accuracy of the numerical te
niques that have been used.

For the deformed case we show in Table II the calcula
half-lives for three decaying states (b250.3) and total angu-
lar momentumj 53/21, 5/21, and 7/22, respectively. Here
the calculated half-lives only agree to within 20% betwe
the two methods. The discrepancy is probably due to
truncation in the eigenfunction space, such that only
nearest spherical states were included. The initial stat
therefore not the exact or complete solution to the deform
Hamiltonian, and the Gell-Mann-Goldberger transformat
method will therefore not provide exactly the same result
05430
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the direct method. The comparison of the results of the t
methods is therefore a test of how close the truncated so
tion comes to being correct. Further investigation in this ar
is needed. Perhaps a coupled-channels approach, such a
developed by Ref.@13#, will offer closer agreement between
the direct and distorted wave methods.

C. Conclusions

We have shown that the distorted wave method and
direct method of calculating the width of spherical and d
formed proton emitter are equivalent. In the spherical ca
numerical agreement is demonstrated to better than 0.00
while for the deformed case the agreement is only with
about 20%. Improved methods of calculating the wave fun
tions should reduce this discrepancy. We recommend us
either of these methods in place of the WKB method, whi
has certain problems related to the frequency factor~see Ref.
@5# for a discussion of this point!. For the cases where the
radial wave function is known over the 0,r ,25 fm range,
the direct method is preferred for its calculational simplicit
However, if the radial wave function is known reliably onl
in the region of the nuclear surface, the distorted wa
method is to be preferred.
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TABLE II. Comparison of the proton half-lives of deformed
proton radioactivities calculated with the direct~dir! and distorted
wave ~DW! methods.

Nucleus Ep(keV) j p l p b2 Cl j
a t1/2,p

dir t1/2,p
DW

131Eu 932~7! 3
2

1 2 0.3 20.208 27.92 ms 24.09 ms
131Eu 932~7! 5

2
1 2 0.3 20.0999 176.2 ms 214.8 ms

141Hog 1169~8! 7
2

2 3 0.3 0.240 4.087 ms 3.266 ms
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