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Limitations of the number self-consistent random phase approximation
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The quasiparticle random phase approximati@RPA) equations are solved taking into account the Pauli
principle at the expectation value level, and allowing changes in the mean field occupation numbers to mini-
mize the energy while having the correct number of particles in the correlated vacuum. The study gbfrermi
excitations in’%Ge using a realistic Hilbert space shows that the pairing energy gaps in the modified mean field
are diminished up to one half of the experimental value when strong proton-neutron correlations are present.
Additionally, the Ikeda sum rule for Fermi transitions is violated due to the lack of scattering terms in the
phonon operators. These results call for a critical revision of the dg@iblecay half-lives estimated using the
QRPA extensions when standard QRPA calculations collapse.

PACS numbegs): 21.60.Jz, 23.46-s, 27.50+¢

|. INTRODUCTION with a renormalized RPA where at the same time the mean

N . . field is changed by minimizing the energy and fixing the
The random phase approximatidRPA) and its quasipar- number of particles in the correlated ground state. While

ticle generalizationQRPA have beer_1 W'de'Y_“Sed in the particle number fluctuations are smaller than in the previous
last decades to study electromagnetic transitions @rte-  4qe5, they still exhibit a clear increase after the point of
cays in medium and heavy nucldi,2]. The proton-neutron  ¢qjjapse. More remarkably, the pairing gap is strongly re-
quasiparticle random phase approximatigm-QRPA has  guced in comparison with its experimental value, and the
been extensively employed in the description of single anqkeda sum rule is violated. Both results cast serious doubts
double g decays in vibrational nuclei. However the RPA about the doubleB decay half-lives estimated using the
develops a collapse, i.e., it presents imaginary eigenvalue9RPA extensions, in particular for those nuclei where stan-
for strengths beyond a critical value of the fof&=-6]. dard QRPA calculations collapg®,10,13. Together with

A whole family of extensions of the QRPA, called renor- the conclusions obtained in Refsl7,18, we get a clear
malized QRPARQRPA) are known that do not develop any picture of the limitations associated with the QRPA exten-
collapse by implementing the Pauli principle in a consistentsions, which at the end are the same common sense ask for:
way, beyond the simplest quasiboson approximaftieril3.  you cannot allow the residual proton-neutron interaction to
However, in its simplest versions there is a violation of thedictate the composition of the ground state wave function
nonenergy weighted Ikeda sum riifi4]. Calculations to de- without missing contact with actual nuclei, even if the for-
termine the amount of the violation and some improvementgnalism allows you to overcome the collapse.
to the RQRPA, in order to restore the sum rule, have been In Sec. Il the renormalized gap and number equations are
presented[15]. It has been shown that treating simulta- introduced, whose relationship with the RQRPA equations is
neously BCS and QRPA equations one can fulfil the Ikedsshown in Sec. Ill. Some relevant expectation values and the
sum rule for the Fermi case when a schematic model is uselteda sum rule are discussed in Sec. 1V, results’f@e are
[16]. presented in Sec. V and the conclusions in Sec. VI.

In recent articles we studied the expectation values of the
particle and quasiparticle numbers, the particle number fluc- Il. RENORMALIZED GAP AND NUMBER EQUATIONS
tuations and the number of particle pairs witk-0, T=1
andJ=1, T=0 in the ground state of’Ge as a function of
the residual proton-neutron interaction, using realistic Hilber
spaceq17,18. We found an important amount of particle
number fluctuations in the RQRPA ground state beyond the H=H +H +H 1)
QRPA collapse, pointing out a source of uncertainty in the L
RQRPA results. The analysis of the number of pairs showedhe first two terms refer to the proton and neutron Hamilto-
that the isoscalar-isovector phase transition found in exagiians
calculations is causing the QRPA collapse and is missed in
the RQRPA formalism. 1

In the present work we go a step further, studyifiGe Ht:Z (et—)\)afaﬁi 125 (utz|Vitsty)al ag,a au,,

2
*Fellow of the CONICET, Argentina. On leave of absence fromwhere the single particle energies are denotedehythe

Departamento de Bica, Facultad de Ciencias Exactas, Universidadchemical potential by, and the last term corresponds to the
Nacional de La Plata, C. C. 67, 1900 La Plata, Argentina. proton-neutron interaction

In this section the gap and number equations are obtained
{minimizing the Hamiltonian expectation valy®|H|0) in
the correlated vacuun®). The Hamiltonian is
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Hon= X (p.nVIp'.n")alala,a,. (3)

p.p’,n,n’

The subscriptg(t) stand forp(p) (protons or n(n) (neu-
trons, beingt=t,m,, with t={n,l,j;} andm=m;.
Through the Bogoliubov transformation
af=ua! —va, (4

with ay=(—1)""Ma, _,, we get[19]

H=U+2 2Q,e,M+ 2 20,0,
p n

+Hoo+ Hygt Hosat Higt Hag, 5)
being
o Lol (2j+1)
II’E—/_’ MEM:V' QIET'

and whereJ and the quasiparticle energiesare defined as

-3

20wi(e—N)

+2 \/QterUtzvtsz(tt,t,t’,O)_QtutUtAt:|, (6)
t’

Q.
e— N+ \/ﬁtvf,F(tt,t’t’,O)
t’ t

X(vE—ud)+2Auw, (7)

€=

being

Oy
A=—1/2 \/Etut,vt,G(tt,t’t’,O), (8)
t’ t

the “gap” and F, G the usual particle-hole RH) and
particle-particle PP) coupled two-particle matrix elements.
The termsH,,,, in Eq. (5) destroym quasiparticles and cre-
atesn quasiparticles, respectively.

To obtain the quasiparticle mean field occupationshe
ground state energ§0|H|0) is minimized, i.e., it is asked
that[1,2]

Jd
25 (OlHI0)=0, ©
subject to the constrictions
(0INjo)=N, (0|Z|0)=Z, (10

and the normalization?+v?=1, beingN andZ the neutron
and proton particle number operators, respectively.
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J=0 channel, are included. In this case the ground state
energy is justU as defined in Eq(6) and|0) is the BCS
ground state. The residual interactions, either between like
particles or protons and neutrons, represented by the terms
Hnm in Eqg. (5), are usually included in a second step, most
commonly using the QRPAL,2].

One of the drawbacks of this procedure is that @) is
only enforced for the BCS vacuum. When residual interac-
tions are present the expectation values of the particle num-
ber operators do not coincide with the actual number. The
SCRPA[20,11,2] is designed to overcome this difficulty by
solving Egs.(9) and(10) using the RPA vacuum.

Full self-consistency requires to consider the proton-
neutron interaction contribution in the minimization, but the
system of equations which describes this problem is nonlin-
ear and rather complicated, and has only been implemented
in schematic modelgl1,22,23. In order to perform calcula-
tions in realistic Hilbert spaces we will include in this first
step only the like particles part of the Hamiltonian, while the
ground statd0) will be sensitive to proton-neutron interac-
tion through the RPA equations, following a philosophy
close to Ref[24]. From here on we will refer to this approxi-
mation as SRQRPA. We are absolutely aware that our treat-
ment is not fully self-consistent. We are just meeting the
requirements of Eq10) for the RPA vacuum, and including
the modifications in the mean field duepo correlations at
the lowest level. However, as is shown below, even these
mild modifications have very important effects in the observ-
ables of the system.

Following [21], but including only the modifications of
the gap equations due to use of the RPA vacuum instead of
the BCS vacuum, i.e., not taking into account the proton-
neutron residual interaction explicitly, we arrive to the modi-
fied gap equation

2(e— N — (W2—v?)A,=0, (11)

_ Oy
e=et>, \/?ttvtz,F(tt,t’t’,O) (12
t/

is the single particle energy corrected by the self-energy and

where

- O .
A=—1/12 g UrvrG(ttt't,0)(1-2(044]0)),
t’ t
(13

the “renormalized” gap. Notice that the pairing interaction
appears in the gap equation renormalized by the presence of
proton-neutron residual interactions, which introduce a finite
number of quasiparticles in the RPA vaculity]. For the
sake of simplicity we have dropped some higher order terms
in Eq. (11) which come from the interaction between like
particles connecting the many quasiparticle components of
the correlated ground state. The definition of the renormal-

The standard BCS procedure treats protons and neutrof&ed gap(13) is unique at this level of approximatid21].

separately and in Hamiltoniaf®) only pairing interactions,

This is an important definition to be kept in mind, because

refering in general to like particles interacting through thethe factor (1 2(0|\4/|0)) will play a definite role in sup-
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pressing the gap when proton-neutron residual interactiongationsv; depend on the RPA amplitude§ Y, on which
are large. What remains is to couple the renormalized gadepend als0), through the renormalized gap equatidd)

problem with the RQRPA equations.
Ill. RQRPA
The nuclear excited states are constructefdakd)

NIMY=QT(AIM)|0), (14)

QTNIM) =2 [Xpn(ANDAL(IM) =Y 50 (N A (IM)],
pn
(15)
where

Al (IM)=[alaf]VD, 12, Dpnz(1—<0|Np+Nn|0(>1>é)

and number equationd.0).

IV. EXPECTATION VALUES
IN THE CORRELATED RPA VACUUM

Using the quasiboson approximation
[Apn(IM),AL (3" M)]=(O0|[Apn(IM), AL, (3"M")]|0)
:5ppr 5nn’5JJ’6MM’ y (22)

the RPA ground state defined by EG8) can be written as

|0)=Noe9BCS), (23

with the BCS vacuum defined by the property

are the renormalized two-quasiparticle proton-neutron cre- a|BCS=0 (24)

ation operators, which satisfy

(Ol[Apn(IM),AL, (3" M")]|0) = Bpps S B3 Sra -
17

Here|0) is the RPA correlated ground state, defined by the

condition
Q(NIM)|0)=0. (18

Each amplitudeX,,(AJ) and Y,,(\J), is associated with
the excitation energw, ; of the Ath state with angular mo-

and

AS:

N| =

> J2IFDC)pnpn [ALDAL L (D],
pnp'n’J

C(J)pnp’n’:; Y(J);n,)\x(‘]):,;’ln’ : (29

The quasiparticle occupatior(@|/§ft|0> evaluated using
the QRPA vacuung23) have the explicit forn] 18]

mentumJ. They are the eigenvectors and eigenvalues, re-

spectively, of the RPA equation4,2]

AJ)  B(J) (X()\J) X(\J) .
B*(J) A*(I)/\Y(NY)] "M -y (19
where
Apn'p/n/(\]):(fp"‘ fn) 5pp/ 5nn/+ Dé/nZUfnvp,n/(J)Dél/zn/ ’
Bpnpn () =DXUS . (D2, (20
with
U;Cn'plnr(J):G(pnrp’n,aJM)(upunup’un’+UpUnUp’Un')

+F(pn,p'n’,JM)
X(upvnup/vn/+vpunvp/un,),
B Pt
Upn’p,n,(J)z—G(pn,p n’,IJM)(UpUnv v
vl Un)+F(pn,p’'n’,JM)

X (VpUnUp v+ Ul U prUpy). (21

. (2J+1)
<0|Np|o>:“2/ Z—%Dpn’|Y(J)pn/,)\|2’
n

. (23+1)
(OI710)= 2 — 5Dyl Y@Dpnal® (20
Ap’ n

The mean particle numbers of protons and neutrons are
[25]

(2)=(01210) =23 Qpi+23 Qpup=vp)(0l450),

<N>E<o|ﬁ/]o>:2; Qi+ 2§n: Qn(uz—v)(0[V5[0).
(27)

When the BCS vacuum is used, the second term in each of
these expressions vanishes and one is left with the usual
number equation. When the residual interaction is present
these terms have a relevant contribution to the particle num-
ber [17]. They are included in the present work in a self-
consistent way by modifying the mean field occupations
vp,U, to obtain the correct number of particles in the corre-

The RPA equationgl9) depend explicitly on the mean lated RPA vacuum.

field occupation®; through theA andB matrices defined in

The Fermi transition operators are written in terms of the

Egs.(20) and(21). At the same time, the quasiparticle occu- pair creation and annihilation operators[84]
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FIG. 1. LowestJ™=0" excitation energies if®As, calculated
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FIG. 2. Fermi sum rul&_—S, , normalized to the lkeda value
N—2Z, as function ofs with the same line conventions used in Fig.
1.

from the "5Ge ground state, for the QRPA, RQRPA, and SRQRPA

approximations, as function of the residual interaction paranseter

T = % [v pun[a;al]o% upvn[apan]oo], r={r},

(28)

which arenotthe exact expressions because they are missin

the scattering terms which create a protoeutron quasi-
particle and annihilates a neutr@proton quasiparticle.

The total strengthS.. associated with these transition op-
erators are

si=; [(\J=0|77|0)|2. (29)

The Ikeda sum rule states that, when the exact operators
are used, and when the set of statesis a complete one,

<0|Nn—/§/p|0>=0 for each level. In the present case, when a
realistic Hilbert space is employed and the sum over differ-
ent J's is included in Eq.(26), those occupations are not
equal and the Ikeda sum rule is violated. It is worth to men-
tion that, while in general the quasiparticle occupations for
§1rotons and neutrons are different, the expectation value of
e total number of quasiparticlédl,,)==(0|\;|0) is the

same, as can be easily seen making the sum in(Zg).

V. RESULTS

In the present work we studied Ferm8i excitations in
"8Ge. We adopted @-type residual interaction used previ-
ously[17], and our Hilbert space has six single particle en-
ergy levels, including all the single-particle orbitals from os-
cillator shells 3w plus 1gq, and 1g;, from the 4w

including all the states in the odd-odd nuclei which can bePScillator shell. They were obtained using a Coulomb-

connected with the ground std@) of the even-even nuclei
through the transition operators, then

S —S,=N-Z. (30)

corrected Woods-Saxon potential. Their numerical values for
"®Ge are tabulated in Table 1 of RéR6]. We includeJ™
=0%,...,3" in the sums in Eq(26).

In order to describe the dependence of the various observ-
ables on the proton-neutron residual interaction we use the

However, in the present case the Fermi transition operatorsarameter
are truncated, and the strengths difference has a more com-

plicated form[25]

s_—s+=<o||§|—2|o>—% (U3—v2)(0| A, — A/ 0).
(31)

The first term is equivalent tbl—Z due to the constrictions

pp
_ YUpn

= -
ppair

which is the ratio between the coupling constant in the
proton-neutron)=0 particle-particle channel and the pairing

force constanbP'= (vha"+ vP2")/2. We compare results ob-

(10). The second term gives rise to the violation of the Ikedatained within the usual QRPA with those coming from the
sum rule(30). When the BCS vacuum is employed, this term RQRPA (no mean field modification and the SRQRPA.

has no contribution. For this reason the standandQRPA

In Fig. 1 we show the lowesti”=0" excitation energies

fulfils the Ikeda sum rule. There are some special cases im (in MeV) in "®As, calculated from th€Ge ground state,
which the proton and neutron quasiparticle occupations ifior the QRPA (dotted liney, RQRPA (dashed linegs and
the ground state are equal, and this term also vanishes, asSRQRPA (full lines) approximations, as a function of the

was found in the SG) model[16] and in the single mode
model of the RQRPA15]. Only when the sum in Eq26) is
restricted ta)=0, forcingj,=j, andQ,=Q,, itis true that

residual interaction parameter It can be clearly seen that
the excitation energy goes to zero, and collapses arsund
=2.5 for the QRPA, while in the RQRPA and SRQRPA
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FIG. 3. Total quasiparticle numbéequal for protons and neu-
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FIG. 5. Single particle occupation numb@rﬁ(thick lineg, and
vﬁ (thin lines as a smoothed function of the single particle energies
e, for the valuess=0.0, 2.5, and 3.1 of the residual interaction
parameter.

trons evolution as function of. The result for the QRPA case
when the sums in Eq26) are restricted td"=0" is also shown.

formalisms the collapse is avoided, although the excitation
energies predicted after the collapse in these two approaches
differ by a factor of 2.

In Fig. 2 the sum rulé&s_—S, , normalized to the Ikeda
valueN—2Z, is presented as a function efwith the same
convention of Fig. 1. While in the QRPA the Ikeda sum rule
is always fulfilled, in the other cases it is violated. Notice
that, having the correct number of protons and neutrons in
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FIG. 4. Proton(a) and neutror(b) number fluctuations obtained
using the BCS, QRPA with only"=0" and all the’s in Eq. (26), FIG. 6. Evolution of the pairing energy gap as a functiors fufr

RQRPA and SRQRPA descriptions.
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the correlated ground state, the SRQRPA depagsfrom  increases, down to one half of the original value. This is not
N—Z than the RQRPA, but the departure is anyway noticea curiosity: the pairing energy gap is observable, and any
able. It is important to point out that in the present calcula-attempt to properly describe the decay using the QRPA
tions, even whers=0 the other proton-neutron residual in- extensions must keep the descriptive power of the simplest
teraction channels fod#0 are present and have a finite formalism, the QRPA, where the pairing constants are ad-
value. For this reason there is a violation of the lkeda sunjusted to reproduce the observed gap.
rule ats=0.

To describe in more detail the above mentioned point we
present in Fig. 3 the total number of quasiparticles as a func-

tion of s. When onlyJ=0 states are included in the sum in A study of the8 decay of °Ge using the SRQRPA was
Eq. (26) the number of quasiparticles goes to zero whé®  presented. The mean field gap and number equations were
zero. In the oth_er three cases _the re5|dua_\l interaction in th@troduced and solved together with the RQRPA equations,
other channels is present and increase this number. but the self-consistency was only included to guarantee the
The fluctuations in the particle numberAN  good number of particles in the correlated ground state.
= V(0|(N—N)?|0) represent a warning about the region of ~The lkeda sum rule was studied in some detail. It is
applicability of the different QRPA mode|d7,18. They are  known to be fulfilled in standargppn-QRPA calculations
shown in Fig. 4a) (for protons and Fig. 4b) (for neutrony  [3,4], violated in RQRPA one$14], and recovered when
as a function ok. It is interesting to note that the pure BCS self-consistent RQRPA calculations are performed in simple
quctuationsAN=Zw/Ethufvf diminish when thepn re-  models[15,16. In the present work it was shown that the
sidual interaction increases, due to the sharpening in the patkeda sum rule is violated when a realistic Hilbert space is
ticle distribution when the mean field is varied to keep theused in spite of using the number self-consistent QRPA ap-
number of particles in their right value. In the SRQRPA proach.
these fluctuations diminish slightly at first, dominated by this The most remarkable phenomenon found in the calcula-
mean field effect, to increase in a noticeable way after thdion was the strong reduction of the pairing gap. In the pres-
QRPA collapse. The QRPA results for the total quasiparticleence of the proton-neutron residual interaction the mean field
number and the particle number fluctuations explodesfor changes needed to have the correct number of particles gen-
~2.5 when only the)”=0" contribution is included in Eq. €rate sharper distributions for the occupations of single par-
(26). When all the angular momentum contributions areficle states, visible when plotting® as a function of the
taken into account thd”=1" component collapses around single patrticle energies for different valuessofit the same
s=2.3, and these expectation values diverge. time, it strongly reduces the energy gap, which can be as
The single particle occupation number§, v’ are pre- small as a half of the observed value. _
sented in Fig. 5 as a function of the single particle energies. Having in mind the various merits of the renormalized
While only six levels are in use, the curves represent theidnd self-consistent extensions of the quasiparticle random
smoothed values. It can be seen that both protons and ne@h@se approximation, we conclude that it must be used with
trons have their distributions sharpened, i.e., the lasgbe extreme caution in the region where the standard QRPA col-
more they resemble a step distribution, although this effect j§PSe. Not only the particle number fluctuations have a clear
more evident for protons. increase, but observable quantities depart from their mea-
The behavior of the pairing energy gap as a functios of Sured values.
is shown in Fig. 6a (for protong and Fig. &b) (for neu-
trons. As advanced in the previous section, the pairing gaps,
while different for the different single particle levels, all be-
have the same way. They show a strong reduction when  This work was supported in part by Conacyt, N®.

VI. CONCLUSIONS
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