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Pion-nucleon interaction in a covariant hadron-exchange model
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We develop a relativistic covariant and unitary description of the pion-nucleon interaction in a hadron-
exchange model. The model is based on the solution of a dimensionally reduced~quasipotential! Bethe-
Salpeter equation for the partial-wave off-shellpN scattering amplitudes with the potential consisting of the
field-theoreticals- andu-channel nucleon, Roper, Delta,D13, S11 exchanges, and thet-channelr ands meson
exchanges. The contributions of the spin-3/2 Delta andD13 resonances are treated within the Rarita-Schwinger
formalism and different forms of thepND vertex are investigated. The free parameters of the model are fitted
to thepN phase-shift data of the KH80 and SM95 partial-wave analyses in the region up to 600 MeV pion
kinetic energy. The resulting on-shell solution provides a good description of thepN scattering lengths, as well
as the energy behavior of theS, P, and D partial waves. The sensitivity of the phase shifts on various
model-dependent effects is examined.

PACS number~s!: 13.75.Gx, 21.45.1v, 12.39.Pn, 11.10.St
s
a-

nt
d
n

n
ic
an

in

e-
s
t

ity
rin
e

p
re

ct
d
th
-
s

de
s
r-
ch

tri-
sig-
to

he
in
ry
is

n
vior
els

ut

ur-
g-
ms.

ne
tial
ay
a

tur-

eci-
the

in
he-
ure
S

n be
he
we
nd,
ual

is
e-
r to
ne
I. INTRODUCTION

The pN interaction received much attention in the pa
both theoretically and experimentally in view of its fund
mental nature~early literature can be found in Refs.@1,2#!.
Current theoretical interest is triggered by the experime
programs being carried out at NIKHEF, MAMI, TJNAF, an
other intermediate-energy facilities with the purpose of u
derstanding the structure of hadrons and their interactio
the confinement region of QCD. To extract most phys
from the new high-precision measurements a reliable
accurate knowledge ofpN and NN interaction is required.
Highly successful attempts have been made in describ
these interactions in terms ofhadronic degrees of freedom
over a wide energy region. In particular, therelativistic one-
boson-exchange modelswere successfully applied to the d
scription of NN interaction, and especially during the pa
decade this theoretical framework has been extended to
pN system@3–10#. Such an extension gives one a capabil
to study a broad class of reactions, including pion scatte
and production on light nuclei in a self-consistent fram
work. In this paper we report on a relativistic covariantpN
model using the quasipotential approach and based on
effective interaction characterized by a hadron-exchange
tential ~some of our results have already been briefly
ported@10,11#!.

Although the underlying dynamics of thepN interaction
is nowadays believed to be governed by QCD, it is pra
cally impossible to resolve it fully in terms of quarks an
gluons because of the confinement problem. Much of
present understanding of thepN physics at low and interme
diate energies remains to be based on dispersion relation@2#
and effective chiral Lagrangians@12,13# in terms of the had-
ron degrees of freedom.

The chiral pion-nucleon Lagrangians are usually exten
in two ways: first, by including higher-mass states, such ar
meson,D isobar, etc.; secondly, by including the highe
derivative terms. Both ways are necessary to extend su
0556-2813/2000/61~5!/054003~20!/$15.00 61 0540
t

al

-
in
s
d

g

t
he

g
-

an
o-
-

i-

e

d

a

phenomenological description to higher energies. The con
butions due to higher-mass states have a clear physical
nificance, while the higher-derivative terms are needed
examine the effect of unknown short-range physics. T
higher-derivative terms play, for instance, a crucial role
the renormalization program of chiral perturbation theo
~ChPT!. In the hadron-exchange models, a similar role
played by the ‘‘strong form factors’’ which are included i
the effective Lagrangian to model the short distance beha
of the potential. Both ChPT and hadron-exchange mod
thus begin from a similar ‘‘extended’’ chiral Lagrangian b
the approach to calculating thepN scattering amplitude is
somewhat different. In ChPT one usually performs a pert
bative field-theoretic calculation maintaining crossin
symmetry and exact agreement with the soft-pion theore
~For the development of ChPT in application to thepN scat-
tering see Ref.@14#.! In the hadron-exchange approach o
uses the effective Lagrangian to construct the poten
which then is resumed via a scattering equation. In this w
crossing symmetry is given up in favor of exact unitarity in
given channel space, and possibility of studying nonper
bative phenomena such as dynamical resonances.

In defining a hadron-exchange model one usually sp
fies three ingredients: effective Lagrangian, potential, and
scattering equation. These ingredients are interrelated
quantum field theory, where one must solve the Bet
Salpeter~BS! equation and has a well-determined proced
for computing its kernel from a given Lagrangian. The B
kernel consists of all the irreducible graphs and hence ca
computed only perturbatively. In this work we shall take t
potential to be given by the tree-level graphs, although
cannot justify any perturbative expansion. On the other ha
the resulting approximation transparently relates to the us
quantum-mechanical picture where the scattering problem
given by a Lippmann-Schwinger type of equation for on
particle exchange potentials. Therefore, one might prefe
view this approach as relativistic quantum-mechanical o
rather than some ‘‘nonsystematic’’ truncation of QFT.
©2000 The American Physical Society03-1
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The four-dimensional BS equation for thepN system
~with a one-particle-exchange potential! has been solved by
Nieland and Tjon@15#, and recently by Lahiff and Afnan@9#
in a more realistic setup. Models@3,5,7,10# exploit instead
various quasipotential~QP! equations, which can be ob
tained by a three-dimensional reduction of the BS equat
The use of QP equations provides a technical simplifica
of the problem, without destroying the Lorentz invariance
the theory. It should be remarked, however, that some of
QP equations can violate charge conjugation symmetry,
because this symmetry is crucial for renormalizing t
positive- and negative-energy baryon poles in an equiva
way, the equations which violate it are less preferable.
will employ the equal-time~ET! equationwhich preserves
the full Lorentz covariance, including charge conjugatio
This equation will be specified in the next section.

Apart from the technical simplifications, the QP approa
can sometimes be motivated by physical arguments. Fo
stance, while the four-dimensional BS equation fort-channel
~meson-exchange! potential, i.e., theladderBS equation, has
a wrong one-body limit, a number of QP equations with t
proper limit can be devised@16–19#. In thepN situation the
potential may, in addition to thet-channel meson exchange
contain theu-channel baryon exchanges, which spoil t
standard one-body limit arguments@20#. The ordinary ET
equation is shown to provide an optimal choice in the c
when both t- and u-channel exchanges are present in
force corresponding to thepN situation@20#.

As for the effective Lagrangian, we use the pseudovec
pNN coupling, and includes, r mesons, and all the rel
evant~for the considered energy region! nucleon resonance
as explicit degrees of freedom. The precise form of the
grangian and the potential is discussed in Sec. IV. An in
esting aspect, which comes in with the nonperturbative m
eling, is that for a sufficiently attractive potential the nucle
resonances can be generated dynamically, as quasib
states of thepN system. In models@15,21# and quantum
hadrodynamics@22# the D(1232) is described in this way
Lahiff and Afnan @9# include theD explicitly, but suggest
that the Roper resonance can be of dynamical origin. G
and Surya@5# include theD and the Roper poles, but treat th
S11 resonance dynamically. In this paper we consid
P33D(1232), P11N* (1450), D13N* (1520), and
S11N* (1535) resonances. Within our model, these re
nances are all of nondynamical origin, i.e., are included
plicitly via an effective Lagrangian description. Of cours
the dynamical effects will anyhow contribute to the gene
tion of the resonances seen in the phase shifts. Thus
admixture of both ‘‘elementary’’ and ‘‘composite’’ compo
nent constitutes the full result. Since the ‘‘elementary’’ fiel
corresponding to the resonances are included with
masses, the dynamical contributions are fully responsible
generating the width. Our model maintains the elasticpN
unitarity and therefore only the one-pion decay width of t
resonances is generated.

As we have to deal with the spin-3/2 fields of resonanc
such as that of theD isobar, we shall address here some
the problems of consistent formulation for relativistic highe
spin fields. Consistent formulations for thefreespin-3/2 field
05400
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have of course been known for a long time. The Rari
Schwinger formalism@23# based on the vector-spinor fiel
representation became the most popular one. The form o
free spin-3/2 action is uniquely~up to trivial field redefini-
tions! constrained by requirements of Poincare´ invariance
and consistent degrees-of-freedom counting. The latter
quirement essentially means that the action must h
enough symmetries to kill off the unphysical lower-sp
components, and maintain only the physical 2s11 degrees
of freedom of the theory. An arbitrarily constructed intera
tion may violate this consistency and activate the unphys
degrees of freedom. This necessarily leads to a numbe
pathologies, such as acausal propagations@24,25#, inadmis-
sible quantization@26,27#, violation of Poincare´ invariance.

The conventionalpND coupling@28,29,2# is an example
of such pathological interactions. The contribution of the u
physical spin-1/2 components appear in the scattering am
tudes via the dependence on the so-called ‘‘off-shell para
eter’’ and ‘‘spin-1/2 backgrounds.’’ On the other hand,
class of consistentpND and gND couplings has recently
been established@30,31#. Those are essentially all possib
couplings that maintain thegauge symmetryof the free mass-
less Rarita-Schwinger action. In the present model we s
use the leading ‘‘gauge-invariant’’pND coupling, which
has the same nonrelativistic limit as the conventional one
Sec. V we study the differences between the conventio
and the gauge-invariantpND coupling at the tree-leve
D-exchange contributions. The largest differences are s
first of all in the spin-1/2 partial waves, where the conve
tional coupling gives the background contributions verse
contribution from the consistent couplings.

The parameters of the effective Lagrangian, including
form factor masses, form the set of model parameters. S
of them, such as thepNN coupling constant, the nucleon
and the meson masses, are very well-determined elsew
and therefore are kept fixed during the fits. The others
fitted to give the best agreement with thepN partial-wave
analyses@32–34#. The complete model provides an accura
description of the S- and P-wave scattering lengths
(x2/data point.1.4), as well as the energy behavior of th
S-, P-, and some of theD-wave phase-shifts up to 600 MeV
pion lab kinetic energy.

In the next section we describe the covariant quasipo
tial equation for the off-shellpN amplitudes, and its partial
wave decomposition. This will specify the equation solved
the model. In Sec. III we briefly discuss the effective L
grangian used to read off the tree-level potential—the d
ing force of the equation. The renormalization procedure
treat thes-channel poles is described in Sec. IV. In Sec.
we analyze the effects of the different exchange contri
tions in the low-energypN data, and then present the resu
of the complete model emphasizing the effect of the res
tering contributions. Some discussion and concluding
marks are given in Sec. VI. Finally, various appendices c
tain some technical details of the analysis. In Appendix A
summarize the conventions. Appendix B shows some de
of the partial-wave and isospin decomposition of the o
shell pN amplitudes. Appendix C provides explicit expre
3-2
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PION-NUCLEON INTERACTION IN A COVARIANT . . . PHYSICAL REVIEW C 61 054003
sions for various hadron-exchange contributions to the
shell pN potential. Amplitudes for higher-spin baryo
exchange are discussed in Appendix D.

II. QUASIPOTENTIAL APPROACH

The fully off-shell relativisticpN scattering amplitude in
the space of the nucleon helicity spinors is described by
scalar amplitudes: one for each combination of the helic
and r spin of the initial and final nucleon. Parity conserv
tion reduces the number of independent scalar amplitude
eight. As a suitable covariant representation which expre
the off-shell amplitude in terms of eight invariants we choo
the following:

Tl8l
r8r

~p8,k8;p,k!5ūl8
r8~pW 8!~1,p” 8!F S A11 A12

A21 A22
D

1P” S B11 B12

B21 B22
D G S 1

p” D ul
r~pW !, ~1!

whereAi j andBi j are the eight scalar functions of invarian
formed by the momenta, i.e.,p2, p•p8, etc. The four-
momenta of the initial~final! nucleon and pion are given b
p andk (p8 andk8), respectively, whileP is the conserved
total four-momentum of the system:

P5p1k5p81k8.

Due to the momentum conservation only three of the ex
nal momenta are independent, below we usually work w
p, p8, and P. Furthermore,ul

r are the nucleon helicity
spinors, wherel56 1

2 andr561 (l8 andr8) are the ini-
tial ~final! helicity andr spin of the nucleon, respectively.

For the on-shell situation (p25p825mN
2 , k25k825mp

2 )
the amplitude reduces to the standard form@35#:

Tl8l~p8,p;P!5ūl8
(1)

~pW 8!@Â~s,t !1 1
2 g•~k81k!B̂~s,t !#

3ul
(1)~pW ! ~2!

@here s5P2,t5(p2p8)2,u5(p2k8)2 are the Mandelstam
invariants#. We find from Eqs.~1! and ~2!

B̂5B111mN~B121B21!1mN
2 B22, ~3!

Â5mNB̂1A111mN~A121A21!1mN
2 A22. ~4!

Our starting point for thepN amplitude is the Bethe
Salpeter~BS! equation, schematically shown in Fig. 1,

FIG. 1. Diagrammatic form of a relativisticpN scattering equa-
tion.
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T~p8,p!5V~p8,p!1 i E d4q

4p3
V~p8,q!G~q!T~q,p!, ~5!

whereV is the potential,G is thepN propagator; the depen
dence on the total momentumP is omitted. Ifq is the relative
four-momentum of the intermediatepN state, thepN propa-
gator takes the following form:

G~q!5
1

~bP2q!22mp
2 1 i«

~aP1q!•g1mN

~aP1q!22mN
2 1 i«

, ~6!

where

a[a~s!5p•P/s5~s1mN
2 2mp

2 !/2s, ~7!

b[b~s!5k•P/s5~s2mN
2 1mp

2 !/2s. ~8!

In approximating the BS equation one often simplifies t
singularity structure of the kernelVG, such that the tempora
integration can easily be done. This procedure is ca
three-dimensional (3D) reductionwhile the resulting equa-
tion is a quasipotential (QP) equation. For instance, in the
reduction to thespectator equation@16,5# all the poles ofV
and the negative-energy pole ofG in the q0 plane are ne-
glected.

As we have recently emphasized@10,11#, the danger of
doing a 3D reduction via approximating the pole structure
that thecharge conjugation symmetrycan be destroyed. In
particular, in our naive interpretation of the spectator eq
tion this symmetry is violated, essentially because of
asymmetric treatment of the positive- and negative-ene
states. Gross has recently presented an interpretation o
spectator prescription which is consistent with the cha
conjugation symmetry@36#.

The equal-time~ET! reductions~see, e.g.,@37#!, such as
Salpeter’s instantaneous approximation@38#, preserve
charge conjugation symmetry. In these reductions one ef
tively removes theq0 poles from the potential while treatin
exactly the poles of the two-particle propagatorG. To re-
move the potential poles one fixes the relative-energy v
ableq0 in some way. Most frequently the constraintq050,
or its covariantized form:P•q50, is used.

We will be using the ET type of approach. To impleme
the constraintP•q50, we may impose the condition that th
interaction is insensitive to the off-shellness along the dir
tion defined by an unit four-vectornm . For the two-body
case this means thatV andT entering the scattering equatio
depend on the projections of the relative four-vectors ont
3D hyperplane orthogonal tonm . Defining the projection
operator,

Omn5gmn2nmnn , ~9!

we write the corresponding equation as follows:

T~ l̃ 8, l̃ !5V~ l̃ 8, l̃ !1 i E d4q

4p3
V~ l̃ 8,q̃!G~q!T~ q̃, l̃ !, ~10!
3-3
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V. PASCALUTSA AND J. A. TJON PHYSICAL REVIEW C61 054003
wherel , l 8, q are therelativemomenta of the initial, final,
and intermediatepN state, respectively;l̃ m5Omnl n, and
similarly for l̃ 8, q̃.

Equation~10! is manifestly covariant. On the other han
it can easily be reduced to the 3D form. For instance, we
choose the frame wheren5(1,0,0,0), and thereforeV andT
are independent of the 0th component of relative mome
~since any scalar product will depend only on the spa
components, e.g.,q̃•g52qW •gW ). The integration overq0 in
Eq. ~10! can now be readily done leading to the 3D equati
To prevent the dependence of theS matrix on n, one may
choosen along some physical four-momentum, for instan
along the total momentum:nm5Pm /AP2. Then the reduc-
tion is possible in the center-of-mass system~c.m.s.! where
P5(P0,0,0,0).

In the ET approach, the two-particle propagator is som
times modified to include approximately the crossed gra
@18,39#, thus providing the correct one-body limit of th
equation in the case oft-channel type of potential. We how
ever do not apply such modifications here, because they
tually worsen the predictions for thepN case where the
u-channel exchanges are present@20#.

Because of rotational invariance and parity conservatio
is convenient to partial-wave decompose Eqs.~5! and ~10!
~see Appendix B!. Let

Tl8l
r8r

~p8,p!

5(
J

~J1 1
2 !Dl8l

J
~Vp8p!Tl8l

Jr8r
~p08 ,p8,p0 ,p;P0!, ~11!

whereVp8p is the solid angle betweenpW 8 and pW . Further-
more, in the c.m.s., using Eq.~1! and the Dirac equation

~p”2rmN!ul
r~pW !5~p02rEp!g0ul

r~pW !, ~12!

the off-shell amplitudes can be written as

Tl8l
r8r

~p8,p;P0!5ūl8
r8~pW 8!@g1T1

r8r~p8,p;P!

1g2T2
r8r~p8,p;P0!#ul

r~pW !, ~13!

whereg65 1
2 (I 6g0), and T6

r8r are eight scalar amplitude
with definite parity6.

In doing so we in particular find for the case of the E
equations, that the parity-conserving amplitudesTr

J satisfy

Tr
Jr8r5Vr

Jr8r1
1

pE0

`

dqq2(
r9

GET
(r9)Vr

Jr8r9Tr
Jr9r , ~14!

where

GET
(r)~ uqW u;P0!52i E

2`

` dq0

2p
G(r)~q,q0 ;P0!

52r$vq~2rP01Eq1vq2 i e!%21.

~15!
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In this work we will be focusing on solving this equation fo
a one-particle-exchangepN potential, see Fig. 2, where th
potential is regulated by form factors. In the next section
describe thepN interaction used in this study.

III. EFFECTIVE LAGRANGIAN AND THE pN
POTENTIAL

In the following we specify the interaction Lagrangian
p, r, s, N, and isobar fields, used to construct the hadr
exchange force depicted in Fig. 2 and written out in Appe
dix C. The field representation and the corresponding f
Lagrangian is chosen according to the spin and isospin of
particle. Thus, the pion is described by scalar isovector m
tiplet pa5(p1,p0,p2), the sigma meson is a scalar isosc
lar field s, the D(1232) is represented by a vector-spin
isoquadrupletDm5(Dm

11 ,Dm
1 ,Dm

0 ,Dm
2), and so on.

A. Nucleon and meson exchanges

The pNN interaction Lagrangian is taken in accordan
with the chirally-symmetrics models@12,13#. In Weinberg’s
nonlinear realization thepN scattering amplitude to the lead
ing order is given by the nucleon Born term with th
pseudovector coupling plus the Weinberg-Tomozawa con
term @41,42#. The pseudovector coupling reads

L pNN
(PV) 5

f pNN

mp
N̄gmg5taN]mpa, ~16!

wheref pNN is the pseudovectorpNN coupling constant@the
pseudoscalar coupling constant:gpNN52 f pNN(mN /mp) will
also be used below#. The Weinberg-Tomozawa contact ter
can be represented as ar-meson exchange with the follow
ing interaction:

LrNN5grNNN̄
ta

2 S gmra
m1

ikr

2mN
smn]mra

nDN, ~17!

Lrpp5grpp«abcra
mpb]mpc , ~18!

provided ther coupling, gr
25grNNgrpp , is fixed by the

KSRF relation@43#: gr5mr /(A2 f p), where f p.93 MeV.
There is also the second form of the KSRF relation@28#:
gr5A2mr f pNN /(mpgA), gA.1.26, obtained from the firs
one by using the Goldberger-Triemann relation forf p . It
should be remarked that the Weinberg-Tomozawa con
term is equivalent to ther exchange only at threshold an
provided gr is fixed by KSRF relation whilekr50. The
energy dependence is different, but not significantly in
considered energy region.

Since we use the pseudovectorpNN coupling, thes
meson is in principle not needed from the standpoint of c
ral symmetry. Nevertheless, as exchange can be used t

FIG. 2. The tree-levelpN potential.
3-4
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PION-NUCLEON INTERACTION IN A COVARIANT . . . PHYSICAL REVIEW C 61 054003
model the isoscalar contribution of the correlated two-p
exchange. In order to keep the agreement with the soft-p
theorem, a derivative coupling to the pion is used, i.e.,

LsNN5gsNNsN̄N, ~19!

Lspp52
gspp

2mp
s]mp i]

mp i , ~20!

where the sign of thespp coupling is chosen in accordanc
with the correlated two-pion exchange analysis@6#, and is
different from the one used in@3#. This interaction leads to
the following on-shell potential:

Vs5
gsNNgspp

8pmp

t22mp
2

ms
22t

. ~21!

To control the effect of thes exchange on the scatterin
length we introduce a free parametercs in the following
way:

Vs5
gsNNgspp

8pmp

t22~12cs!mp
2

ms
22t

. ~22!

For cs51 the s contribution to theS-wave scattering
lengths vanishes. Note that this modification amounts to a
ing the following term to the Lagrangian:

Lspp8 5
gspp

2
csmpsp i

2 . ~23!

B. D-isobar exchange and higher resonances

The coupling of the spin-3/2D field to the pion and the
nucleon is conventionally described by the following L
grangian~see, e.g., Ref.@2#!:

LpND5
f pND

mp
D̄m@gmn2~z1 1

2 !gmgn#TaN]npa1H.c.,

~24!

where z is the off-shell parameter,Ta is the isospin-12 → 3
2

transition operator.
As remarked in the Introduction, this coupling involve

the spin-1/2 sector of the Rarita-Schwinger field, and gi
rise to an unphysical spin-1/2 background. The latter eff
can, in principle, be removed by inserting the spin-3/2 p
jection operator ‘‘by hand’’ in either the vertex or the prop
gator. For instance, Gross and Surya@5# have chosen this
option. However, because of the nonlocal nature of the p
jection operators their use is problematic: unphysical sin
larities occur ats50 and u50 for the s- and u-channel
contribution, respectively. In Ref.@5# this problem is actually
not met because thes50 point is well below the threshold
while the u graph vanishes in the approximation of th
model. If theu-channelD exchange is present, one usua
prefers to keep the background and fit the off-shell param
@3,9,10,44,45#.

We shall also study the followingpND coupling@30,31#:
05400
n
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Lp ND
(GI) 5

f pND

mpmD
«mnab~]mD̄n!g5gaTaN]bpa1H.c.,

~25!

referred to asgauge-invariant (GI)pND coupling. Being
invariant under the Rarita-Schwinger gauge transformatio

Dm~x!→Dm~x!1]me~x!,

wheree(x) is a spinor field, this coupling does not involv
the spin-1/2 components of theD field. As a consequence
the spin-1/2 backgrounds are totally absent from the co
spondingD-exchange amplitudes.

We include also thes- and u-channel graphs ofP11
~Roper!, S11, andD13 resonances. At low energies the co
tribution of these resonances is marginal,1 but they are im-
portant for the proper description at higher energies. The
two particles are treated same as the nucleon but with dif
ent masses, coupling parameters, and, in the case ofS11,
parity. TheD13 is treated in the same way as theD ~the same
propagator and interaction vertex!, but with different isospin,
parity and mass. Exchanges of even higher spin resona
can in principle be easily included in our model via the a
plitude obtained in Appendix D.

C. Cutoff form factors

The high-energy behavior of the hadron-exchange fie
theoretic potential is usually regulated using theoff-shell
form factorsintroduced in the vertices. We have introduc
them for each of the particle in the vertex. For the pion
use the monopole form factor:

f p~k2!5
Lp

2 2mp
2

Lp
2 2k2

. ~26!

For the s- and r-meson we use the one-boson-exchan
form factor:

f s,r~ t !5
Ls,r

2

Ls,r
2 2t

. ~27!

For the baryons we use the form factor of Ref.@3#:

f B~p2!5S nLB
4

nLB
41~p22mB

2 !2D n

, ~28!

with n52.
In addition, for each pion we introduce the following cu

off:

f Regge~q,s!5
Lp

4

Lp
4 1sqW 2

. ~29!

1This is generally not true for a spin-3/2 resonance if the conv
tional coupling is used, since the spin-1/2 background can be la
even far away from the mass position.
3-5
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V. PASCALUTSA AND J. A. TJON PHYSICAL REVIEW C61 054003
This function is motivated by considering the effect of t
higher-mass states on the high-energy behavior of thepN
propagatorG. If we were to include not only the pion and th
nucleon but all the states lying on the infinitely rising Reg
trajectories, at very high energies their effect factorizes in
form of a function like Eq.~29! @46#. The energy dependenc
and the absence of singularities distinguish this cutoff fr
the usual ones, such as the monopole form. We take the s
value Lp for the f p and f Regge cutoff masses. These tw
form factors do not affect the on-shell potential, because
pion exchanges appear in the Born graphs.

It is important to realize that the final results depend
the off-shell form factors, even after the renormalization
applied. The physical meaning of such form factors is u
ally given in analogy with that of the electromagnetic for
factors. They thus reflect the extension of the hadrons, an
principle should be calculated from the underlying theory

Our fit to the pN-scattering phases will determine th
values of the cutoff masses. They are given in Table V
gether with the rest of the model parameters. Using th
values, in Fig. 3 we have plotted the form factors whi
affect the loop contributions. Their dependence on the lo
momentum is shown, while the 0th component is fixed
the equal-time constraint and the energy is fixed at thresh

The actual cutoff of the model is given by the solid line
the figure. As one can see, it is rather soft: it starts off a
monopole with the mass about 0.8 GeV, and is even so
aboveq250.5 GeV2. At higher energy it becomes softer a
well, becausef Reggeis energy dependent. However, the lat
effect is small as can be seen from Fig. 4, where the ene
dependence off Reggeis shown over the region of ourpN fit.
The energy dependence off N(s) and f D(s) is shown there as
well.

IV. RENORMALIZATION

Since there ares-channel singularities in the considere
potential, we have to carry out a renormalization procedu
We adopt the scheme in which the Lagrangian is expres
in terms of the physical parameters and no ‘‘bare’’ para
eters appear. Then, in principle, the counter-terms shoul
subtracted and fixed by the renormalization conditions.
perform such a renormalization procedure it is convenien

FIG. 3. Cutoff form factors as a function of the off-shell thre
momentum squared.
05400
e

me

o

n
s
-

in

-
se

p
y
ld.

a
er

r
gy

e.
ed
-
be
o
o

work with the one-particle-irreducible Green functions. O
can separate the potential into two termsV5Vs1Vu , where

Vs~p8,p!5(
B

GB~p8!SB~P!GB~p! ~30!

represents thes-channel baryon exchanges~pole terms!,
while Vu contains the rest of the graphs~nonpole terms!.
Since VsG is a separable kernel, we can explicitly resu
these contributions, and find that the resulting amplitude
equivalently be written as

T~p8,p!5(
BB8

GB8
* ~p8!SBB8

* ~P!GB* ~p!1Tu~p8,p!,

~31!

where

GB* ~p!5GB~p!1 i E d4q

4p3
GB~q!G~q!Tu~q,p!, ~32!

~SBB8
* !215~SB* !21dBB82SBB8 , ~33!

SBB85 i E d4q

4p3
GB~k!G~k!GB8

* ~q!, ~34!

andTu satisfies the following integral equation:

Tu~p8,p!5Vu~p8,p!1 i E d4q

4p3
Vu~p8,q!G~q!Tu~q,p!.

~35!

The full amplitude is thus written in terms of the irreducib
Green functions:S* , G* , andTu . The diagrammatic form
of this representation is given in Fig. 5.

A. Baryon mixing

Note that the dressed baryon propagator, Eq.~33!, is in
general nondiagonal. In other words, the baryons can m
Of course this mixing happens only among the baryons w
the same ‘‘good’’ quantum numbers, such as spin and is
pin. Parity is also conserved, nevertheless the mixing

FIG. 4. Cutoff form factors as the function of the pion kinet
energy in the lab.
3-6
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PION-NUCLEON INTERACTION IN A COVARIANT . . . PHYSICAL REVIEW C 61 054003
baryons with the same spin, isospin, and opposite parity m
occur due to the negative-energy state propagation.

To perform the renormalization we need first to diagon
ize the propagator. Since it is a complex symmetric mat
we diagonalize it using a complex orthogonal transformat
O(OOT5OTO51). The full solution can obviously be writ
ten in the diagonal form as follows:

T5(
B

~G* O!B~OTS* O!B~OTG* !B1Tu . ~36!

In our model we include only two baryons with the sam
spin and isospin~nucleon andN* ). For this case the propa
gator is diagonalized by a 232 complex orthogonal matrix
which can be parametrized as usual by one complex varia

O5S cosx sinx

2sinx cosx
D , ~37!

where in this way we introduce theNN* mixing anglex.
Furthermore, since we use the same Feynman rules fo

nucleon andN* , their dressed vertices are equal up to t
coupling constants. Therefore for theNN* self-energy ma-
trix one can write

S SNN~P! SNN* ~P!

SNN* ~P! SN* N* ~P!
D

5S gpNN
2 gpNNgpNN*

gpNNgpNN* gpNN*
2 D S~P!, ~38!

while for the vertex

S GN*

GN*
* D 5S gpNN

gpNN*
DG* . ~39!

FIG. 5. Rewriting the equation for the case when the poten
can be presented as the sum of separable and nonseparable
tials.
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The propagator is then diagonalized by the orthogonal tra
formation ~37! with

x~P!5
1

2
arctanH 2S gpNN

gpNN*
2

gpNN*
gpNN

2
mN* 2mN

gpNNgpNN* S~P!
D 21J . ~40!

The corresponding eigenvalues are clearly

SN~P!5@P” 2mN2SN~P!2 i e#21, ~41!

SN* ~P!5@P” 2mN* 2SN* ~P!2 i e#21, ~42!

where

SN5~gpNNcosx1gpNN* sinx!2S1~mN* 2mN!sin2x,

SN* 5~gpNN* cosx2gpNNsinx!2S2~mN* 2mN!sin2x.
~43!

The vertices are rotated according to

GN* 5~gpNNcosx1gpNN* sinx!G* ,

GN*
* 5~gpNN* cosx2gpNNsinx!G* . ~44!

B. Self-energy

Let us consider the mass renormalization using
counter-term method. The counter terms can be read off
rectly from the free Lagrangian. For the spin-1/2 case,
instance, they are given byZ2(m02m)1(12Z2)(P” 2m),
wherem0 is the bare mass, andZ2 is the field renormaliza-
tion constant. The renormalized spin-1/2 baryon propaga
is defined as

S~P” !5@P” 2m2S ren~P” !2 i«#21, ~45!

whereS ren(P” )5S(P” )2Z2(m02m)2(12Z2)(P” 2m).
In the c.m.s. frame,P5(P0 ,0W ), the self-energy can be

written as

S ren~P0!5S1
ren~P0!g11S2

ren~P0!g2 , ~46!

and a similar decomposition holds for the propagator,

S~P0!5S(1)~P0!g11S(2)~P0!g2 , ~47!

whereg65(I 6g0), and

S(1)~P0!5@P02m2S1
ren~P0!2 i«#21,

S(2)~P0!52@P01m1S2
ren~P0!1 i«#21. ~48!

Obviously,g1 and g2 act as the projection operators on
the positive and negative energy-states, henceS(1) corre-
sponds to the positive andS(2) to the negative energy-stat
propagations.

l
ten-
3-7
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The renormalization condition at the pole position
given by

~P02m!S(1)~P0!uP05m51,

~P01m!S(2)~P0!uP052m51. ~49!

ExpandingS1(P0) near P05m, and S2(P0) near P05
2m, we find that the renormalization condition requires

Z2~m02m!5S1~m!5S2~2m!,

12Z25
]S1~P0!

]P0
U

P05m

52
]S2~P0!

]P0
U

P052m

.

As emphasized earlier@10#, the above described proce
dure breaks down if the self-energy is computed usin
quasipotential formulation which violates charge conjugat
symmetry, since in that caseS1(P0)ÞS2(2P0). The self-
energy of the spin-3/2 baryons can be renormalized s
larly, since the spin-3/2 baryon contribution to the spin-3
partial-waves can always be factorized into vertices an
spin-1/2 propagator, see Eq.~D7!.

C. The renormalized vertex and the amplitudes

In the adopted renormalization scheme we require~i! the
~real part of! renormalized baryon self-energyS6

ren(P0) and
its first derivative vanish at the pole positionP056m; ~ii !
the ~real part of! renormalized vertexpN→ baryon vertex is
equal to the undressed vertex at the renormalization scam
defined as the point where all three particles are on the m
shell,m: k25mp

2 , p25mN
2 , P25m2.

For the vertex we use the multiplicative renormalizati
since it maintains unitarity in a simple way. The renorm
ized vertex is thus defined as

G~p;P!5Z1G* ~p;P!, ~50!

where Z1 is the coupling constant renormalization fact
which is readily determined from condition~ii !:

Z15G~m!/G* ~m!. ~51!

In the case of theNN* mixing we renormalize the~scalar!
function S in Eq. ~38! at the point associated with th
nucleon. This procedure clearly yields the proper phys
nucleon mass pole in the corresponding baryon propaga
Adopting this subtraction procedure theN* mass and cou-
pling constant at the nucleon mass position can then be
tracted. In the various tables the values of these parame
found in the fits are quoted.

After the partial-wave decomposition, the renormaliz
solution of the ET equation for a given isospinI and total
spin J and parityr reads as follows~for brevity the external
momenta are omitted!:

Tr
Jr8r5(

p
Gr

r8S(rhB)Gr
rdJBJd I BI1Tu,r

Jr8r , ~52!
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Tu,r
Jr8r5Vu,r

Jr8r1
1

pE0

`

dqq2(
r9

Vu,r
Jr8r9~q!GET

(r9)~q!Tu,r
Jr9r~q!,

~53!

Gr
r5Z1S G r

r1
1

pE0

`

dqq2(
r8

G r
r8~q!GET

(r8)~q!Tu,r
Jr8r~q!D ,

~54!

S r5Z1

1

pE0

`

dqq2(
r

G r
r~q!GET

(r)~q!Gr
r~q!, ~55!

where JB , I B , and hB are the baryon spin, isospin, an
parity, respectively. The renormalized propagator is

S(6)~P0!5@6P02m2S6
ren~P0!1 i«#21, ~56!

where the renormalized self-energy is given in terms ofS of
Eq. ~55! @with Eq. ~43! in the case ofNN* mixing# as fol-
lows:

S6
ren~P0!5S6~P0!2S6~6m!

2~P07m!
]S6~P0!

]P0
U

P056m

. ~57!

V. RESULTS

Having described the equation for the off-shellpN am-
plitudes, its renormalization, and the driving force, we no
turn to discussing the outcome of such modeling. For this
us first give an explicit relation between the on-shell amp
tudesTr

J11 and the phase parameters.
We introduce the standard on-shellpN amplitudesf l 6 ,

wherel 5J2 1
2 r is the angular momentum andr is the parity

of the state. In the normalization according to

f l 65
h l 6e2id l 621

2i
, ~58!

whered l 6 is the phase shift andh l 6 is the inelasticity, we
can identify

f l 65q̂
s1mN

2 2mp
2

2s
Tr

J11~Ê,q̂,Ê,q̂;P0!, ~59!

where

q̂5A@s2~mN2mp!2#@s2~mN1mp!2#/4s, ~60!

and Ê5AmN
2 1q̂2 is the energy of the nucleon in the c.m.

At very low energies the partial-wave amplitudes a
dominated by the threshold behavior:q̂2l 11, and their real
and imaginary parts are related by elastic unitarity. The
fore, it is sometimes more useful to study@40#

MlJ~ q̂2!5S mp

q̂
D 2l 11

Ref l 6 , ~61!
3-8
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PION-NUCLEON INTERACTION IN A COVARIANT . . . PHYSICAL REVIEW C 61 054003
instead of f l 6 itself or the phase shifts. Note that, atq̂2

50, MlJ is equal to the correspondingscattering length
defined as2

alJ[ lim
q̂→0

@ q̂22l 21f l 6~ q̂!#. ~62!

The pN effective-range parameters blJ can also be deter
mined in terms ofM:

blJ5
]

]q̂2
MlJ~ q̂2!u q̂50 . ~63!

Instead of using this formula, we will be presenting the p
of M as a function ofq̂2. The slope of these ‘‘effective
range plots’’ at smallq̂ indicates the values for the effective
range parameters. In the partial waves that support a r
nance~e.g.,P11, P33! it is more appropriate to study anoth
effective-range expansion:

q̂2l 11cotd l 65
1

alJ
1

1

2
r lJq̂21•••, ~64!

2We shall commonly refer to this quantity as to scattering leng
even though forP and higher waves it is properly called scatteri
volumebecause of the dimension.

FIG. 6. Effective range plots for the nucleon andr-meson ex-
change contribution. Dashed lines:kr50 ~Weinberg-Tomozawa
contact term!. Solid lines:kr53.7 ~vector-meson dominance!. The
data points are extracted from the KH80~stars! and SM95~dots!
partial-wave analyses.
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nonetheless, we only will address threshold parametersa and
b for all partial waves.

A. The K-matrix approximation

In this subsection we focus on theK-matrix approxima-
tion to the full scattering problem. Results of the full mod
are discussed in the next subsection. In theK-matrix approxi-
mationpN amplitude is given by the lowest orderK-matrix
expression:

f l 65
Kl 6

12 iK l 6
, ~65!

whereKl 65q̂a(s)V6
J , l 5J7 1

2 , andVr
J is the partial-wave

potential@obtained from the potential by means of Eqs.~13!
and ~B12!#. Equation~65! clearly satisfies elastic unitarity
but the principal value of the loop integrals is neglected.

This approximation is considered to be good, at leas
low energy, and has been frequently used, see, e.g.,@44,45#
for most recent applications to thepN scattering. At low
energies, indeed, the soft-pion theorems dictate that the B
graphs dominate, implying for the potential modeling th
the rescattering effects should be relatively small. When
latter is true, considering theK-matrix approximation may
allow us to make a preliminary adjustment of some mo
parameters without going to the full calculations. We in p

,

FIG. 7. Effective range plots for the sum of theN, D, and r
exchanges withgpNN

2 /4p513.6, gr
2/4p53, kr53.7, f pND

2 /4p
50.36. Dashed lines: Peccei choice; dashed-dotted lines: N
choice; solid lines: gauge-invariantpND coupling. Results forS11,
S31, and P33 waves are shown in bold lines. Data points are t
same as in Fig. 6.
3-9
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TABLE I. The S- andP-wavepN scattering lengths in different models are compared to the partial-wave analyses. Thex2 represent the
chisquare value per point with respect to the SM95 analysis~the analysis error is taken to be the same for all points and is equal to 0.!.
Parameters corresponding to different calculations are given in Table II.

l 2I2J Nr ~WT! Nr ~VMD ! Peccei NEK NrD ~WT! NrD ~VMD ! KH80 @33# KA86 @34# SM95 @32#

S11 0.171 0.171 0.144 0.171 0.171 0.171 0.173 0.175 0.172
S31 20.100 20.100 20.150 20.100 20.100 20.100 –0.101 –0.100 –0.097
P11 20.185 20.145 20.077 20.076 20.127 20.092 –0.081 –0.078 –0.068
P31 20.059 20.079 20.064 20.085 20.043 20.066 –0.045 –0.043 –0.040
P13 20.047 20.064 20.049 20.069 20.032 20.050 –0.030 –0.030 –0.021
P33 0.101 0.109 0.194 0.197 0.224 0.222 0.214 0.215 0.209
x2 177 129 35 31 26 15 2.1 1.6 3
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ticular would like to examine the effect of using differe
pND couplings in theD exchange contribution.

As is well known, theS-wave scattering lengths are we
reproduced by the Born-level nucleon andr-meson ex-
changes alone@41,42#. Taking gpNN

2 /4p513.6 andgr
2/4p

53.0, we plot in Fig. 6 the contribution of these three grap
(s- plus u-channel nucleon exchange plust-channelr ex-
change! to MlJ for all theS andP partial waves. The figure
shows that theS-wave scattering lengths are indeed rep
duced. However, the energy dependence of theS waves is
not well described. In fact, the slopes of the effective-ran
plots have a wrong sign. Furthermore, theP waves are not
reproduced at all. Similar picture occurs if the contact term
used instead of ther exchange.

Looking at the ratio of theS-wave lengths it is certainly
plausible that they should be dominated by some isove
contribution,3 such as ther-meson exchange. Therefore,
would be interesting to find a simple mechanism which
counts for both theP waves and the energy behavior of theS
waves, and, at the same time, does not affect theS-wave
scattering length. SinceP33 has the largest discrepancy, w
study first the effect of theD-isobar exchange.

In Fig. 7 we show the calculations performed with the tw
different choices of the off-shell parameter:

z52 1
4 ~Peccei choice@28#!,

z5 1
2 ~NEK choice@29#!,

and f pND
2 /4p50.36. The nucleon andr coupling constants

are kept the same as in the previous calculation, withkr

53.7.
One can see that, as far asP33 is concerned, theD con-

tribution is very plausible for both choices ofz. The large
difference between the choices clearly shows up in the s
1/2 partial waves, where theD exchange produces a signifi
cant background contribution controlled by the off-shell p
rameter.

In particular, Peccei’s choice affects substantially theS
waves, and hence spoils the scenario where those are d

3Experimentally the ratioaS11/aS31'21.75, which is close to the
ratio of the isospin factors for an isovector meson contribution.
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nated by ther exchange. TheP waves look much better
which could be due to the remarkable fact that, for this p
ticular choice, thes-channelD-exchange graph gives only
tiny contribution to the spin-1/2P waves. The NEK choice
in contrast, does not affect theSwaves at threshold and give
a large effect in theP waves.

Clearly, Peccei’s choice could be favorable phenome
logically as long as the missing strength in theS waves is
somehow explained; for instance, by an isoscalar meson
change. We believe such a scenario is realized in most of
models which use coupling~24! and describe the scatterin
lengths correctly. However, apparently it is not possible
describe simultaneously theS- andP-wave scattering lengths
in the tree-level model with only ther, N, andD exchanges.

The GI pND coupling ~25!, in combination with the
usual Rarita-Schwinger propagator, leads to theD-exchange
amplitude with only spin-3/2 contributions~omitting the
isospin-dependent factor!:

VD,s-exch5
f pND

2

4pmp
2 S s

mD
2 D P” 1mD

s2mD
2
P ab

3/2~P!k8akb, ~66!

VD,u-exch5
f pND

2

4pmp
2 S u

mD
2 D p” u1mD

u2mD
2

P ab
3/2~pu!kak8b, ~67!

wherepu5P2k2k8, and

P ab
3/25gab2 1

3 gagb2
1

3p2
~p”gapb1pagbp” !

is the spin-3/2 projection operator.
A calculation using this amplitude is shown in Fig. 7,

comparison with analogous calculations using the conv
tional coupling with Peccei and NEK choices of the off-sh
parameter. First of all we remark that theD contribution to
the spin-1/2 partial-waves comes from theu graph only, and
not from the spin-1/2 components. From the figure we c
see that the GI and NEK coupling produce similar contrib
tions to theSwaves, but largely different results in the spi
1/2 P-waves. The resonantP33 wave comes out very much
alike for both GI and conventional couplings, the main d
ference being (s/mD

2 ) factor in front of the GI amplitude.
Hence, at threshold the GI result is factor of (mN
3-10
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TABLE II. Parameters corresponding to calculations of Table I. Values in bold were varied to give a
fit of the scattering lengths.

Parameters Nr ~WT! Nr ~VMD ! Peccei NEK NrD ~WT! NrD ~VMD !

gpNN
2 /4p 13.8 13.8 13.8 13.8 13.8 13.8

grNNgrpp/4p 3.15 3.15 3.4 3.15 3.15 3.15
kr 0.0 3.7 3.7 0.0 0.0 3.7
f pND

2 /4p 3 3 0.31 0.36 0.6 0.55
zD 3 3 20.25 0.5 3 3
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2.0.76 smaller than the conventional resu

~modulo small contributions from theu-channel graph,
which for instance are responsible for the difference betw
the Peccei and NEK choice in theP33 wave!. Despite that,
after a readjustment of parameters the GI invariant coup
usually gives a better description of the scattering leng
see calculations presented by Tables I and II~note that here
the NEK choice has been used withkr50, as is suggested in
the original paper@29# and indeed gives a better fit than wi
kr53.7). The problem with the wrong energy behavior
the S waves, however, applies to all these calculations.
correct for this a scalars-meson exchange is needed in t
pN force.

Inclusion of thes exchange allows us to fit the scatterin
lengths to practically arbitrary accuracy, independently
whether we use the conventional~model A! or the GI cou-
pling ~model B!, see Tables III and IV. Since we have fixe
cs51, and thus do not allow thes to affect theSwaves, the
best fit of the off-shell parameter give the NEK value whi
also has vanishingS-wave contribution. TheS-wave lengths
are therefore explained in both models A and B in exac
the same way: byr and nucleon exchanges alone. The sm
difference between the NEK and GI coupling inP33 ~see Fig.
7! is apparently compensated by the difference inf pND . The
large differences in the other three partial-waves has mo
been removed by taking a different value forkr . This ex-
ample shows that if the potential is general enough, the s
1/2 backgrounds of theD can possibly be reshuffled int
other contributions.

B. Full calculations

We solve the ET equation, Eq.~14!, by Pade´ approxi-
mants following the procedure described in Refs.@15,47#.
Writing the equation as

TABLE III. Scattering lengths resulting from the sum ofN, D,
r, ands tree-level exchanges. Parameters corresponding to di
ent models are given in Table IV.

l 2I2J NrDs ~A! NrDs ~B! SM95 @32#

S11 0.170 0.170 0.172
S31 20.100 20.100 20.097
P11 20.068 20.069 20.068
P31 20.039 20.039 20.040
P13 20.024 20.023 20.021
P33 0.209 0.209 0.209
x2 0.16 0.13 3
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T5V1VGT, ~68!

we begin by performing several iterations of the potent
and hence find the first few terms in the expansion of
amplitude:

T5 (
n50

`

T(n)5V1 (
n51

`

V~GV!n. ~69!

The solution is then sought in the form of the Pade´ approx-
imant. For the equal-time equation with the model poten
the solution accurately converges by performing just six
erations.

We have fitted the on-shell solution to the KH80@33# and
SM95 @32# pN scattering partial-wave analyses, in the r
gion from the threshold up to 600 MeV pion kinetic ener
in the lab. The resulting fit is shown by the solid lines in F
8. The determined coupling constants and masses are g
in Table V.

The dashed line in theS11 phase-shift of Fig. 8 indicates
the calculation without thes-channelS11 resonance graph
This graph contributes also to theP11 wave but calculation
with or without it produce practically identical results. Th
S11 resonance pole is thus relevant only for theS11 wave
above 400 MeV.

Up to 350 MeV the agreement of the model with th
partial-wave data is very good as can be seen in Fig. 9
energies exceeding 350 MeV inelastic channels become
portant. Since we have not considered any inelastic mec
nisms, some discrepancies seen in Fig. 8 at higher ene
are not surprising.

r-

TABLE IV. Parameters corresponding to the calculation
Table III. Values in bold were established by the fit. Model A us
the conventionalpND coupling, while model B uses the ‘‘gauge
invariant’’ coupling.

Parameters NrDs ~A! NrDs ~B!

gpNN
2 /4p 13.8 13.8

grNNgrpp/4p 3.15 3.15
kr 0.0 4.6
f pND

2 /4p 0.28 0.30
zD 0.5 3

gsNNgsppmN /(8pmp) 2.1 2.0
cs 1.0 1.0
3-11
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In fitting we have paid careful attention to the low-ener
behavior, particularly to the correct shape of the ‘‘effectiv
range plot,’’ Ml 6(q̂2), defined in Eq.~61!. The model de-
scription of these plots is shown in Fig. 10. The scatter
lengths can be read off these plots atq̂50. The x-square

FIG. 8. The description of theS-, P- and D-wave pN phase
shifts up to 600 MeV. Data points are from the SM95~triangles!
and KH80 ~stars! partial-wave analysis. Solid lines represent t
model solution. Dotted lines represent the calculation where
principal value part of the rescattering integrals is switched off~i.e.,
the K-matrix approximation with the same set of paramete!.
Dashed line for theS11 shows the calculation when the pole cont
bution of theS11 resonance is switched off.

TABLE V. The model parameters. The values given in bo
were varied during the fit.

Field
Coupling
constants

Masses
@GeV#

N
gpNN

2

4p
513.8 ~ f pNN

2 50.0757! mN50.9383,LN51.8

p mp50.139,Lp51.16

N*
gpNN*

2

4p
52.7 mN* 51.438, LN* 5LN

D
fpND
2

4p
50.43 mD51.252, LD51.5

D13
fpND
2

4p
50.6 mD51.525, LD51.7

r
grNNgrpp

4p
52.85, kr51.8 mr50.77,Lr51.9

s
gsNNgspp

4p

mN

2mp
51.0, cs50.75 ms50.55,Ls51.1

S11
fpNS11

2

4p
50.6 mS11

51.555, LS11
52.0
05400
-

g

value for the scattering lengths with respect to the SM
analysis is 1.4.

To give a feeling about the size of the rescatterings in
model, the dashed lines in the figures indicate the result
the calculation where the principal part of the rescatter
integrals is neglected, i.e., theK-matrix approximation. Un-
like in theK-matrix calculations of the previous section, he
the form factors are included, and the same set of parame
is used as in the full calculation.

e

FIG. 9. The description ofpN phase shifts up to 350 MeV pion
lab kinetic energy. Solid lines represent the full model calculati
Legend for the data points is the same as in Fig. 8.

FIG. 10. Description of the effective range plots for theS- and
P-waves. Solid lines represent model calculation. Dotted lines
the K-matrix approximation with the same set parameters. Dash
dotted lines represent the full calculation withkr53.7.
3-12
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The large difference between the full and theK-matrix
calculation in the waves where the baryon pole contributi
are present indicates, therefore, that the ‘‘dressing’’ a
renormalization of the pole contributions has a signific
effect. The effect of the rescatterings in the nonreson
waves, such asS31, P31, etc., which have contribution only
from theTu term, is smaller. We also observed that the ‘‘a
tractive waves’’~which have positive scattering length! re-
ceive comparably large and positive rescattering contri
tions at threshold.

For the resonant waves theTu contribution may lead to
significant shifts of the resonance position. For instance,
D pole in theP33 is located atAs5mD51.252 GeV, while
inclusion of Tu leads to the physicalP33 wave which reso-
nates atAs51.232 GeV. In theK-matrix approximation the
resonance always occurs at the pole position. To desc
P33 in this approximation one is to usemD51.232 GeV.

FIG. 11. Fit of theK-matrix approximated model topN phase
shifts up to 350 MeV pion lab kinetic energy.

TABLE VI. The parameters of theK-matrix calculation; see
Fig. 11.

Field
Coupling
constants

Masses
@GeV#

N
gpNN

2

4p
513.8 ~ f pNN

2 50.0757! mN50.9383,LN52.2

p mp50.139

N*
gpNN*

2

4p
52.6 mN* 51.47, LN* 5LN

D
fpND
2

4p
50.36 mD51.232, LD52.6

D13
fpND
2

4p
50.8 mD51.525, LD51.7

r
grNNgrpp

4p
53.1, kr52.7 mr50.77,Lr51.3

s
gsNNgspp

4p

mN

2mp
51.3, cs51.0 ms50.55,Ls51.9
05400
s
d
t
nt

-

e

be

By readjusting the parameters we are able to reprod
the phase shifts in theK-matrix approximation up to 350
MeV, see Fig. 11. The values of the parameters are give
Table VI. Note, however, that using the full model we cou
achieve the fit of a better quality and up to higher energi

The ~s channel! baryon pole terms are modified by th
vertex and self-energy corrections. As has been seen f
comparing the full andK-matrix calculation, such a ‘‘dress
ing’’ may have appreciable effects, especially in the re
nanceP11 and P33 waves. In Fig. 12 we plot the real an
imaginary part of the nucleon and theD isobar self-energies
From the figure we can see that the energy dependenc
indeed significant. The same is observed for theNN* mixing
angle plotted in Fig. 13. The renormalization of the po
terms produces the values of the renormalization const
given in Table VII.

The vertex corrections are studied using the dynam
form factor defined as follows:

Fr~q2,s!5Gr~q2,s!/Gr~q2,s!, ~70!

where Gr is the undressed off-shell vertex, andGr is the
renormalized off-shell vertex, see Eq.~54!. Note that the
coupling constants and the cutoff form factors are cancel
out in the expression~70!, since they are the same for both
the vertices. The dynamical form factors are thus equa
unity at the renormalization point.

The model prediction forpNN, pND, andpND13 form
factors is given in Fig. 14 as a function of the off-she
3-momentumqW 2 for As5mN1mp , and in Fig. 15 as the
function of energy for the on-shell situation,uqW u5q̂. Accord-

FIG. 12. The real and imaginary parts of the self-energies.

FIG. 13. The energy dependence of theNN* mixing angle. The
numbers near the curve stand for the corresponding value of
pion lab kinetic energy in GeV.
3-13
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ing to these figures the rescatterings have much larger e
on the energy dependence then on the off-shell behavio
the pN state.

Recently, thepNN form factor has been studied by Sai
and Afnan@48#, and by Schu¨ltz, Haidenbauer, and Holind
@49# in a similar modeling. In the latter work thepND form
factor has been studied as well. To compare with the res
presented in@49#, we need to multiply our dynamical form
factor by the off-shell form factor given in Fig. 3~solid line!.
We then can see that the resultingpNN form factor of our
model agrees in the main features with that of model@49#. It
is therefore less soft than the form factor found in Ref.@48#.
This allows the rescattering contributions to play a bigg
role.

VI. DISCUSSION AND CONCLUSION

Throughout the calculation we have been fixing thepNN
coupling constant to the value advised by the Nijmeg
group @50#: f pNN

2 /4p50.0757. Our fits were not very sens
tive to the increase of the coupling towards more traditio
value of 0.078.

The value ofgr comes out close to the one inferred by t
r-meson decay width:gr

2/4p.2.8. It is also consistent with
the KSFR relation~Sec. IV A!, which gives 2.78 in its first
form, and 2.94 in the second form. The small value ofkr has
been mainly dictated by the simultaneous fit toS31 and P31
waves at the higher energy scale. At low energies the cha
in kr affects mostly theP11 channel, as can be seen fro
Fig. 10 where the dash-dotted line represents the calcula
with the vector meson dominance value:kr53.7.

Comparing Tables V and VI we see that, depending
whether the rescattering contributions are included or n
very different values of theD-isobar masses and couplin
strengths are needed to obtain correct phase shifts. Thi
dicates how the dynamical component due topN loops may
play a significant role in the generation of the observ
D(1232) resonance. That is in addition to the ‘‘elementar
component due to the formation of the three-quark state

In comparing with other relativistic models we can com
ment that our major difference with the model of Pearce a
Jennings@3# resides in theD-isobar ands-meson contribu-
tions. For theD, they use the conventional coupling, and f
the spp coupling they use Eq.~20! with the opposite sign
and without the additionalcs term ~23!. Thes contribution
is thus attractive in their case and can account for the
crepancy in theS waves which appears due to theD back-

TABLE VII. The renormalization constants obtained in th
model.

Field Z1 Z2 m0 @GeV#

N 0.63 0.72 1.090
N* 0.63 0.95 0.960
D 0.68 1.01 1.390
D13 0.93 1.03 1.512
S11 0.97 1.09 1.555
05400
ct
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ground. Although it probably gives rise to problems at high
energies, which is indicated by the very soft cutoff for
factor for thes, with cutoff massLs50.5 GeV, used in@3#.

Gross and Surya@5# made a static approximation of all th
t- andu- channel graphs. Their approximation leads to se
rability of the potential and hence the complexity of solvin
the integral equation numerically is avoided. It also simp
fies considerably the subsequent photoproduction analy
since the meson- and isobar-exchange currents have a
of contact terms. On the other hand, the spin-3/2~and higher!
waves, such asP33 andD13, receive contributions only from
thes-channel exchanges of corresponding resonances, w
in particular leads to overestimates of the resonance coup
parameters. Also, the static~zero-range! approximation of
theu-exchange potential can be justified only at low ener
because in principle the range of such a potential rap
increases from 1/A2mmp ~wherem is the exchanged particle
mass! at threshold till 1/mp at high energy. We observed tha
already at 100 MeV pion kinetic energy the solution of t
integral equation for the static or exactu-exchange potentia
differ significantly. In contrast, the range of thet-exchange
potential is determined only by the exchange mass, an
that mass is heavy enough the static approximation may
applicable. Another difference comes from the fact th
Gross and Surya use the admixture of pseudoscalar
pseudovector coupling for thepNN vertex. Consequent dif-
ferences, motivated by the consistency with the soft-p
limit, appear in the form of ther ands couplings.

Lahiff and Afnan @9# do not include resonances beyon
the D(1232) but apart from that they use an interactio
which is very similar to ours. They have as well compar

FIG. 14. The dynamicalpNN, pND, andpND13 form factors,
as a function of the off-shell 3-momentum squared of thepN state.
The energy of the baryon is fixed at thepN threshold.

FIG. 15. The dynamical half-off-shell form factors for the ca
when the pion and nucleon are on-shell, as a function of the p
lab kinetic energy.
3-14
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PION-NUCLEON INTERACTION IN A COVARIANT . . . PHYSICAL REVIEW C 61 054003
the conventional versus gauge-invariantpND coupling.
However, in contrast to us, they preferred the former o
particularly because the spin-1/2 background adds a sig
cant attraction in theP11 channel, which helps to simulat
partially the Roper-resonance behavior. We include t
resonance explicitly and hence the spin-1/2 backgroun
not necessary for fittingP11 phase shift.

Including theD andD13 resonance in the Lagrangian v
the relativistic spin-3/2 fields, we have used couplings wh
do not involve the spin-1/2 sector of the Rarita-Schwing
theory, and therefore no ‘‘spin-1/2 backgrounds’’ associa
with these particles appear in theS matrix. We do not need
these backgrounds to obtain a proper description of the d
On a simple example~see Tables III and IV! we have seen
that, even when these backgrounds may sometimes seem
evant for the description, their role can be taken by ot
mechanisms, hopefully with more sensible physical interp
tation.

Although the presented model improves in some asp
previous relativistic analyses based on the potential
proach, the difficulty of controlling the chiral symmetry co
straint is present here as well. We do begin with a Lagra
ian, and thus the driving force, consistent with chi
symmetry, but this consistency can in principle be spoiled
rescatterings, particularly because of the loss of cross
symmetry. However, numerical checks~see, e.g., Ref.@3#!
indicate that the amount of violation of the soft-pion the
rems is usually negligible in the potential modeling. Esp
cially if to take into account that the prime objection of su
models is to describe thepN physics at intermediate ene
gies where unitarity aspects take the leading role. It wou
of course, be anyhow important to build the chiral constra
more precisely into the nonperturbativepN models.

In conclusion, we have obtained a description of thepN
force in a relativistic dynamical model based on the cova
ant equal-time ~quasipotential! equation for a hadron
exchange potential. The good quality of our fits in the reg
up to 600 MeV pion kinetic energy suggests the used fo
and the relativistic approach may be considered reasona
even though this model still lacks inelastic mechanis
which can become important inS11 andP11 channels above
400 MeV. It is clearly of interest to study the model pred
tions in other processes, such as pion photoproduction
Compton scattering in thepN system.
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APPENDIX A: CONVENTIONS

Metric gmn5diag(11,21,21,21); Levy-Cevita sym-
bols: «012351, «0i jk5« i jk .

Pauli spinors: in the directionu,w are given by
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xl~u,w!5 (
l8521/2

1/2

dll8
1/2

~u!ei (l2l8)wxl8~0!,

wherex1/2
† (0)5(1,0), x21/2

† (0)5(0,1), anddll8
J (u) are the

Wigner d functions.
Positive- and negative-energy helicity spinors:

ul
(1)~pW !5F N1

2lN2
G ^ xl~u,w!,

ul
(2)~pW !5F22lN2

N1
G ^ xl~u,w!,

whereN65A(Ep6m)/2Ep, Ep5Am21p2, andp, u, w are
the spherical coordinates ofpW . The helicity spinors satisfy
the following orthogonality and completeness conditions:

ul
r†~pW !ul8

r8~pW !5drr8dll8 ,

(
r56

(
l

ul
r~pW !ul

r†~pW !51.

APPENDIX B: PARTIAL-WAVE OFF-SHELL pN
AMPLITUDES

The partial-wave reduction is done in the c.m.s., wh
the total four-momentumP5(P0 ,0W ). Using the orthonor-
mality and completeness of the nucleon helicity spinors~see
Appendix A!, we write the BS equation for thehelicity am-
plitudes:

Tl8l
r8r

~p8,p!5Vl8l
r8r

~p8,p!1 i (
r9l9

E d4q

4p3
Vl8l9

r8r9 ~p8,q!

3G(r9)~q!Tl9l
r9r

~q,p!, ~B1!

where we have assumed that thepN propagator is diagona
in the helicity basis, i.e.,

ūl8
r8~qW !g0G~q!g0ul9

r9~qW !5dl8l9dr8r9G
(r9)~q!, ~B2!

which is true in the c.m.s. Equation~B1! yields ~omitting the
momenta!

Tl8l
Jr8r

5Vl8l
Jr8r

1
i

p2E2`

`

dq0E
0

`

dqq2 (
r9l9

G(r9)Vl8l9
Jr8r9Tl9l

Jr9r ,

~B3!

where

Xl8l
r8r

~p8,p;P0!5 (
J51/2

`

~J1 1
2 !Xl8l

Jr8r

3~p08 ,p8,p0 ,p;P0!dl8l
J

~u!, ~B4!
3-15
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Xl8l
Jr8r

~p08 ,p8,p0 ,p;P0!

5E
21

1

d~cosu!Xl8l
r8r

~p8,p;P0!dl8l
J

~u!, ~B5!

with X5V or T. We have chosen the 3-vectorspW andpW 8 to
lie in the XZ plane~hencew5w850), andu is the center-
of-mass scattering angle.

Parity conservationinfers the following symmetry for the
partial-wave helicity amplitudes:

Tl8l
Jr8r

~p08 ,p8,p0 ,p;P0!5r8rT2l8,2l
Jr8r

~p08 ,p8,p0 ,p;P0!.
~B6!

These relations reduce the number of independent am
tudes from 16 to eight.Time-reversal invarianceimplies

Tl8l
Jr8r

~p08 ,p8,p0 ,p;P0!54l8lTll8
Jr8r

~p08 ,p8,p0 ,p;P0!,
~B7!

which obviously does not give any new relations.
It is convenient to introduce the partial-wave state w

definite parity r in terms of the partial-wave helicity stat
@51,52#:

uJ,r ,r&5
uJ,r,l&1rruJ,r,2l&

A2
. ~B8!

The BS equation for the parity-conserving amplitudes ta
the form

Tr
Jr8r5Vr

Jr8r1
i

p2E2`

`

dq0E
0

`

dqq2(
r9

G(r9)Vr
Jr8r9Tr

Jr9r ,

~B9!

wherer denotes parity. Note the simplification: Eq.~B9! has
two less coupled channels than Eq.~B3!. The partial-wave
decomposition of the ET equation~10! proceeds in the sam
way. In addition we use in this case the fact that in the c.m
V and T are independent ofq0. The resulting equations ar
given by Eq.~14!.

The amplitudes~13! are related in a simple way to th
parity-conserving partial-wave amplitudes of Jacob a
Wick @51#. Starting from representation~13!, we first reduce
the spinor algebra to the subspace of Pauli spinorsxl(u) and
use

xl8
†

~u8!xl~u!5dl8l
1/2

~u82u!. ~B10!

With the aid of Eqs.~B5!, ~B8!, and the identity

dl8l
1/2

~u!dl8l
J

~u!5
1

2
„PJ21/2~cosu!14ll8PJ11/2~cosu!…,

~B11!
05400
li-

s

s.

d

we find the sought expression for the partial-wave amplitu

Tr
Jr8r with definite parityr in terms ofT6 :

Tr
Jr8r5

1

2E21

1

d~cosu!@Tr
r8r~u!PJ21/2~cosu!Rr

r8r

1T2r
r8r~u!PJ11/2~cosu!R2r

r8r#, ~B12!

where the dependence on external momenta is omitted
brevity and only the dependence on the scattering angl
exhibited. The factors

Rr
r8r5H rr8NrNr8

8 , r 51,

2N2rN2r8
8 , r 52,

~B13!

N65
Ep6mN

2Ep
, N68 5

Ep86mN

2Ep8

, ~B14!

arise from the helicity spinors.
Now we can write down the relations due to thecharge

conjugation symmetry. It relates the amplitudes of positiv
energy with those of negative energy and opposite parity

Tr
J(r8,r)~p08 ,p8,p0 ,p;P0!

5T2r
J(2r8,2r)~2p08 ,p8,2p0 ,p;2P0!. ~B15!

Needless to say, these relations will only hold in the qua
potential formulations which satisfy the charge conjugat
symmetry.

The isospin decompositionof thepN amplitude is carried
out as follows. If we denotexN andfp

a as the isospin state
of the nucleon and pion, respectively, then

T5f8p
a xN8 @dabT

(1)1 i«abctcT
(2)#xNfp

b

5f8p
a xN8 @ 1

3 tatbT1/21~dab2 1
3 tatb!T3/2#xNfp

b ,

~B16!

whereta (a51,2,3) are the isospin Pauli matrices, satis
ing 1

2 @ta ,tb#5 i«abctc . Evidently,

T(1)5 1
3 ~T1/212T3/2!, T(2)5 1

3 ~T1/22T3/2!. ~B17!

APPENDIX C: THE OFF-SHELL pN POTENTIAL

According to Eq.~1! the off-shellpN amplitude can com-
pletely be specified by the scalar 232 matricesA and B.
Here we give the expressions for these matrices corresp
ing to the tree-diagram potential in Fig. 2. Also the isosp
factors,F(I ), are given.

1. Baryon-exchange graphs

For the isospin-1/2 baryon:F( 1
2 )521, F( 3

2 )52.

For the isospin-3/2 baryon:F( 1
2 )52, F( 3

2 )5 1
2 .

~a! Theu-channel exchange of a baryon with spin1
2 , mass

m, and parityh, using the~pseudo!scalar vs~pseudo!vector
3-16
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admixture coupling, cf. Ref.@5#, specified by parameterl @l50 corresponds to pure~pseudo!vector and is used in the text#:

AI5
gpNB

2

4p

1

u2m2 FlS m h

h 0 D 1
l~12l!

2m S 22hu1h~p21p82! 2m

2m 2h D 1
~12l!2

4m2 S m~u2p22p82! h~p21p82!

h~p21p82! 2m D GF~ I !,

~C1!

BI5
gpNB

2

4p

1

u2m2 FlS 2h 0

0 0D 1
l~12l!

2m S 2m 2h

2h 0 D 1
~12l!2

4m2 S 2hu m

m 1 D GF~ I !. ~C2!

~b! The D exchange using the conventional coupling, Eq.~24!:

AI5
f pND

2

4pmp

1

u2m2 H AP(3/2)1
2

3m2 Fa2S 0 p8•pu2 P̄222p82

p•pu2 P̄222p2 0
D

22azmS P̄222~p82p1p2p8!•pu /u 0

0 12~p1p8!•pu /u
D 1m~ 1

2 22az!

3S ~p82k1p2k8!•pu /u2~k1k8!•pu22P22 0

0 ~k1k8!•pu /uD 1a~11a!S 0 k8•pu12P22

k•pu12P22 0 D
2~11a!2P22S 0 1

1 0D 2m~112az!P22S 1 0

0 0D G J F~ I !, ~C3!

BI5
f pND

2

4pmp

1

u2m2 H BP(3/2)1
2

3m2 Fa2S P̄22 0

0 1
D 22azmS 0 p8•pu /u

p•pu /u 0 D 1m~ 1
2 22az!S 0 2k•pu /u

k8•pu /u 0 D
2a~11a!S ~k81k!•pu12P22 0

0 0D 1~11a!2P22S 1 0

0 0D G J F~ I !, ~C4!

where

a52z2 1
2 ,

P225~k8•pu!~k•pu!/u, P̄225~p8•pu!~p•pu!/u,

pu5p2k85p82k, u5pu
2 ,

andAP(3/2) , BP(3/2) are the contributions of the spin-3/2 projection operator.
For the half-integer spin the contributions of the spin-j projection operator read

AP j5
~21! j 21/2~ j 2 1

2 !!

~2 j !!!
~ k̃2k̃82!( j 21/2)/2F S m 1

1 0D Pj 11/28 ~xu!

1S m@ P̄222~p82p1p2p8!•pu /u# p8•pu2 P̄222p82

p•pu2 P̄222p2 0
D Pj 21/28 ~xu!G ,

BP j5
~21! j 21/2~ j 2 1

2 !!

~2 j !!!
~ k̃2k̃82!( j 21/2)/2F2S 1 0

0 0D Pj 11/28 ~xu!1S P̄22 mp8•pu /u

mp•pu /u 1
D Pj 21/28 ~xu!G ,

wherePl8(x) is the first derivative of the Legendre polynomial, and

k̃5k2
~k•pu!

u
pu , k̃85k82

~k8•pu!

u
pu , xu52

k̃• k̃8

~ k̃2k̃82!1/2
. ~C5!

~c! The D exchange using the gauge-invariant coupling~25!, according to Eq.~66! gives
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AI5
f pND

2

4pmpm

u

u2m2
AP(3/2)F~ I !, ~C6!

BI5
f pND

2

4pmpm

u

u2m2
BP(3/2)F~ I !. ~C7!

2. Meson-exchange graphs

For the isoscalar meson:F( 1
2 )5F( 3

2 )52.

For the isovector meson:F( 1
2 )52, F( 3

2 )521.
~a! r-meson exchange:

AI5
grppgrNN

4p

1

mr
22t S kr

2mN
~k21k8222s! 21

21 2
kr

mN

D F~ I !, ~C8!

BI5
grppgrNN

4p

1

mr
22t S 2

kr

mN

kr

mN
0
D F~ I !. ~C9!

~b! s-meson exchange:

AI5
gsppgsNN

8pmp
F cs

mp
2

ms
2

2

1
2 ~k21k82!

ms
22t

G S 1 0

0 0DF~ I !, ~C10!

BI50. ~C11!

APPENDIX D: pN AMPLITUDES FOR HIGHER-SPIN BARYON EXCHANGE

The use of GI couplings of higher-spin baryons@31# allows us to treat exchanges of baryons with any spin in a strai
forward way. Taking the point of view that consistentpNNj* couplings ~where byNj* we denote the spin-j baryon, j
>3/2) are those invariant under the appropriate gauge transformations of theNj* field, we can write down the following ansat
for the pN scattering amplitude through a spin-j baryon tree-level exchange:

M ~k8,k;P!5~21! l
l !

~2l 11!!!

g2

p”2m
3@Pl 118 ~2 k̂• k̂8!1k”̂ 8k”̂Pl8~2 k̂• k̂8!#~P2Ak̃2k̃82! l , ~D1!

wherel 5 j 2 1
2 , Pl8(x) is the first derivative of the Legendre polynomial,P is the momentum of the exchanged baryon, a

k̃m5km2
k•P

P2
Pm , k̂m5 k̃m /Ak̃2. ~D2!

This amplitude is actually just the spin-j projection operator contracted with the external pion momenta and multiplie
g2p2l(p”2m)21. Because of the projection operator, the amplitude contains only the spin-j contributions, as we will now
demonstrate.

In the c.m.s.P5(W,0W ), hencek̃5(0,kW )5(0,2pW ). Thes-channel helicity amplitude is then written as

Ml8l
r8r

5ūl8
r8~pW 8!M ~k8,k;p!ul

r~pW !5Cjūl8
r8~p8!

Wg01m

s2m2
@Pl 118 ~xs!1~pp8!21~gW pW 8!~gW pW !Pl8~xs!#~pp8s! lul

r~pW !, ~D3!

wherexs5cosu, u is the c.m. scattering angle,s5W2, and the constant factors are absorbed inCj . Using the Dirac equation
(gW pW )ul

r(p)5(rEpg02mN)ul
r(p), we obtain
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Ml8l
r8r

5Cjūl8
r8~p8!FWg01m

s2m2
Pl 118 ~xs!1

2Wg01m

s2m2

r8Ep8g02mN

p8

rEpg02mN

p
Pl8~xs!G ~pp8s! lul

r~p!. ~D4!

The contribution of this amplitude to the partial wave with total spinJ is given by the corresponding partial-wave amplitud
The latter can be obtained by the procedure of Appendix B, for that we only need to know the following angular inte

1

2E21

1

dxPl8~x!PL~x!5H 1, L5 l 22n21,

0, otherwise,
~D5!

wheren should be an integer between 0 and (l 21)/2. The resulting parity-conserving partial-wave amplitude is then foun
be

Mr
r8rJ5Cj~pp8s! l3H S(1r )Rr

r8r , J5 j ,

S(2r )~R2r
r8r1N2r8 N2rRr

r8r!, J5 j 2122n,

S(1r )~Rr
r8r1Nr8N rR2r

r8r!, J5 j 2222n,

~D6!

whereN65(rEp6mN)/p, S(6)5(6W2m)21, and factorsR are defined in Eq.~B13!. Using the explicit form ofR, we can
see that the lower partial-wave contributions vanish exactly. Thus, amplitude~D1! has only the highest-spin contribution:

Mr
r8rJ5d jJCj~pp8s! lS(r )Rr

r8r . ~D7!
,
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