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We develop a relativistic covariant and unitary description of the pion-nucleon interaction in a hadron-
exchange model. The model is based on the solution of a dimensionally redyeasipotential Bethe-
Salpeter equation for the partial-wave off-shelN scattering amplitudes with the potential consisting of the
field-theoreticak- andu-channel nucleon, Roper, Delta, 3, S;; exchanges, and thechannelp ando meson
exchanges. The contributions of the spin-3/2 Delta pgresonances are treated within the Rarita-Schwinger
formalism and different forms of theNA vertex are investigated. The free parameters of the model are fitted
to the wN phase-shift data of the KH80 and SM95 partial-wave analyses in the region up to 600 MeV pion
kinetic energy. The resulting on-shell solution provides a good description effthecattering lengths, as well
as the energy behavior of th® P, and D partial waves. The sensitivity of the phase shifts on various
model-dependent effects is examined.

PACS numbgs): 13.75.Gx, 21.45tv, 12.39.Pn, 11.10.St

[. INTRODUCTION phenomenological description to higher energies. The contri-
butions due to higher-mass states have a clear physical sig-
The 7N interaction received much attention in the pastnificance, while the higher-derivative terms are needed to
both theoretically and experimentally in view of its funda- examine the effect of unknown short-range physics. The
mental naturgearly literature can be found in Refdl,2]).  higher-derivative terms play, for instance, a crucial role in
Current theoretical interest is triggered by the experimentaihe renormalization program of chiral perturbation theory
programs being carried out at NIKHEF, MAMI, TINAF, and (ChPT). In the hadron-exchange models, a similar role is
other intermediate-energy facilities with the purpose of unplayed by the “strong form factors” which are included in
derstanding the structure of hadrons and their interaction ithe effective Lagrangian to model the short distance behavior
the confinement region of QCD. To extract most physicsof the potential. Both ChPT and hadron-exchange models
from the new high-precision measurements a reliable anthus begin from a similar “extended” chiral Lagrangian but
accurate knowledge ofN and NN interaction is required. the approach to calculating theN scattering amplitude is
Highly successful attempts have been made in describingomewhat different. In ChPT one usually performs a pertur-
these interactions in terms dfadronic degrees of freedom bative field-theoretic calculation maintaining crossing-
over a wide energy region. In particular, thedativistic one-  symmetry and exact agreement with the soft-pion theorems.
boson-exchange modelgere successfully applied to the de- (For the development of ChPT in application to thll scat-
scription of NN interaction, and especially during the pasttering see Ref[14].) In the hadron-exchange approach one
decade this theoretical framework has been extended to the&ses the effective Lagrangian to construct the potential
7N system[3-10]. Such an extension gives one a capabilitywhich then is resumed via a scattering equation. In this way
to study a broad class of reactions, including pion scatteringrossing symmetry is given up in favor of exact unitarity in a
and production on light nuclei in a self-consistent frame-given channel space, and possibility of studying nonpertur-
work. In this paper we report on a relativistic covariaritl bative phenomena such as dynamical resonances.
model using the quasipotential approach and based on an In defining a hadron-exchange model one usually speci-
effective interaction characterized by a hadron-exchange pdies three ingredients: effective Lagrangian, potential, and the
tential (some of our results have already been briefly re-scattering equation. These ingredients are interrelated in
ported[10,11]). quantum field theory, where one must solve the Bethe-
Although the underlying dynamics of theN interaction  Salpeter(BS) equation and has a well-determined procedure
is nowadays believed to be governed by QCD, it is practifor computing its kernel from a given Lagrangian. The BS
cally impossible to resolve it fully in terms of quarks and kernel consists of all the irreducible graphs and hence can be
gluons because of the confinement problem. Much of the&omputed only perturbatively. In this work we shall take the
present understanding of theN physics at low and interme- potential to be given by the tree-level graphs, although we
diate energies remains to be based on dispersion relddns cannot justify any perturbative expansion. On the other hand,
and effective chiral Lagrangia42,13 in terms of the had- the resulting approximation transparently relates to the usual
ron degrees of freedom. guantum-mechanical picture where the scattering problem is
The chiral pion-nucleon Lagrangians are usually extendediven by a Lippmann-Schwinger type of equation for one-
in two ways: first, by including higher-mass states, such as particle exchange potentials. Therefore, one might prefer to
meson, A isobar, etc.; secondly, by including the higher- view this approach as relativistic quantum-mechanical one
derivative terms. Both ways are necessary to extend suchrather than some “nonsystematic” truncation of QFT.
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The four-dimensional BS equation for theN system have of course been known for a long time. The Rarita-
(with a one-particle-exchange potentiAlas been solved by Schwinger formalisn{23] based on the vector-spinor field
Nieland and Tjor{ 15], and recently by Lahiff and AfnajB] representation became the most popular one. The form of the
in a more realistic setup. Mode[8,5,7,10 exploit instead free spin-3/2 action is uniquelfup to trivial field redefini-
various quasipotential (QP) equations, which can be ob- tions) constrained by requirements of Poincanwariance
tained by a three-dimensional reduction of the BS equatiorand consistent degrees-of-freedom counting. The latter re-
The use of QP equations provides a technical simplificatioguirement essentially means that the action must have
of the problem, without destroying the Lorentz invariance ofenough symmetries to kill off the unphysical lower-spin
the theory. It should be remarked, however, that some of theOmponentS, and maintain 0n|y the phys|ca|+2_ degrees
QP equations can violate charge conjugation symmetry, ang freedom of the theory. An arbitrarily constructed interac-
because this symmetry is crucial for renormalizing thegon may violate this consistency and activate the unphysical
positive- and negative-energy baryon poles in an equivalenjgqrees of freedom. This necessarily leads to a number of
way, the equations wh_ich violate it are Ies; preferable. W%athologies, such as acausal propagat{@4s25, inadmis-
will employ the equal-t'|me(E'I.') equgtlonwhlch Preseves e quantizatio26,27), violation of Poincarenvariance.
the_ full Lo_rentz_covananc_e_, mpludlng charge_conjugatlon. The conventionatrNA coupling[28,29.4 is an example
This equation will be specified in the next section. S . oo

hof such pathological interactions. The contribution of the un-

Apart from the technical simplifications, the QP approac hvsical spin-1/2 i in th tteri i
can sometimes be motivated by physical arguments. For if2hysical spin-1/2 components appear in ef,ca ering ampli-
tudes via the dependence on the so-called “off-shell param-

stance, while the four-dimensional BS equationttchannel - - ’
(meson-exchangeotential, i.e., thdadder BS equation, has ©€t€r” and “spin-1/2 backgrounds.” On the other hand, a
a wrong one-body limit, a number of QP equations with theclass of consistentrNA and yNA couplings has recently
proper limit can be devised6-19. In the 7N situation the ~ Peen establlshe{B_0,3_1]. Those are essentially all possible
potential may, in addition to thechannel meson exchanges, couplings that maintain thgauge symmetrgf the free mass-
contain theu-channel baryon exchanges, which spoil theless Rarita-Schwinger action. In the present model we shall
standard one-body limit argumeni20]. The ordinary ET use the leading “gauge-invariant7#NA coupling, which
equation is shown to provide an optimal choice in the casdias the same nonrelativistic limit as the conventional one. In
when botht- and u-channel exchanges are present in theSec. V we study the differences between the conventional
force corresponding to theN situation[20]. and the gauge-invariantrNA coupling at the tree-level
As for the effective Lagrangian, we use the pseudovectop-exchange contributions. The largest differences are seen
7NN coupling, and includer, p mesons, and all the rel- first of all in the spin-1/2 partial waves, where the conven-
evant(for the considered energy regjonucleon resonances tional coupling gives the background contributions verse no
as explicit degrees of freedom. The precise form of the Lacontribution from the consistent couplings.
grangian and the potential is discussed in Sec. IV. An inter- The parameters of the effective Lagrangian, including the
esting aspect, which comes in with the nonperturbative modform factor masses, form the set of model parameters. Some
eling, is that for a sufficiently attractive potential the nucleonof them, such as therNN coupling constant, the nucleon,
resonances can be generated dynamically, as quasibouagld the meson masses, are very well-determined elsewhere
states of therN system. In model§15,21] and quantum and therefore are kept fixed during the fits. The others are
hadrodynamicg22] the A(1232) is described in this way. fitted to give the best agreement with thd\ partial-wave
Lahiff and Afnan[9] include theA explicitly, but suggest analyse§32—34. The complete model provides an accurate
that the Roper resonance can be of dynamical origin. Grossdescription of the S and P-wave scattering lengths
and Suryd5] include theA and the Roper poles, but treat the (y?/data point=1.4), as well as the energy behavior of the
S;1 resonance dynamically. In this paper we considerS, P-, and some of th®-wave phase-shifts up to 600 MeV
P33A(1232), P,4N* (1450), D3N* (1520), and pion lab kinetic energy.
S;1N*(1535) resonances. Within our model, these reso- In the next section we describe the covariant quasipoten-
nances are all of nondynamical origin, i.e., are included exiial equation for the off-shellrN amplitudes, and its partial-
plicitly via an effective Lagrangian description. Of course, wave decomposition. This will specify the equation solved in
the dynamical effects will anyhow contribute to the generathe model. In Sec. Ill we briefly discuss the effective La-
tion of the resonances seen in the phase shifts. Thus, arangian used to read off the tree-level potential—the driv-
admixture of both “elementary” and “composite” compo- ing force of the equation. The renormalization procedure to
nent constitutes the full result. Since the “elementary” fieldstreat thes-channel poles is described in Sec. IV. In Sec. V
corresponding to the resonances are included with realke analyze the effects of the different exchange contribu-
masses, the dynamical contributions are fully responsible fotions in the low-energyrN data, and then present the results
generating the width. Our model maintains the elastd  of the complete model emphasizing the effect of the rescat-
unitarity and therefore only the one-pion decay width of thetering contributions. Some discussion and concluding re-
resonances is generated. marks are given in Sec. VI. Finally, various appendices con-
As we have to deal with the spin-3/2 fields of resonancestain some technical details of the analysis. In Appendix A we
such as that of tha isobar, we shall address here some ofsummarize the conventions. Appendix B shows some details
the problems of consistent formulation for relativistic higher-of the partial-wave and isospin decomposition of the off-
spin fields. Consistent formulations for tfree spin-3/2 field  shell #N amplitudes. Appendix C provides explicit expres-
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Ne) NE) whereV is the potentialG is the #N propagator; the depen-

FIG. 1. Diagrammatic form of a relativistieN scattering equa- dence on the total momentuiis omitted. Ifq is the relative
tion. four-momentum of the intermediateN state, therN propa-
gator takes the following form:

sions for various hadron-exchange contributions to the off-

shell #N potential. Amplitudes for higher-spin baryon B 1 (aP+q)-y+my
exchange are discussed in Appendix D. Gla)= (BP—q)2—mi+ie (aP+q)2—mi+ie . (6)
II. QUASIPOTENTIAL APPROACH where
The fully off-shell relativisticrN scattering amplitude in a=a(s)=p- Pls=(s+m2—m2)/2s @)
= - M - N~ e '

the space of the nucleon helicity spinors is described by 16
scalar amplitudes: one for each combination of the helicity ) )
and p spin of the initial and final nucleon. Parity conserva- B=p(s)=k-Pls=(s—my+m7)/2s. 8
tion reduces the number of independent scalar amplitudes to o . S

eight. As a suitable covariant representation which expresses !N approximating the BS equation one often simplifies the
the off-shell amplitude in terms of eight invariants we chooseSingularity structure of the kern®lG, such that the temporal

the following: integration can easily be done. This procedure is called
three-dimensional (3D) reductiowhile the resulting equa-
, ., A Agp tion is aquasipotential (QP) equatiorFor instance, in the
APk ;p.k)=ul,(p")(1p") Aot A reduction to thespectator equatiof16,5] all the poles ofV
21 22

and the negative-energy pole & in the qo plane are ne-

By, Bp)\]/1 ) glected.
+P u(p), (1 As we have recently emphasiz§¢tio,11], the danger of
Bar Bzo/ [\ P doing a 3D reduction via approximating the pole structure is
that thecharge conjugation symmetigan be destroyed. In
whereA;; andB;; are the eight scalar functions of invariants g g y e y

; h oo , he f particular, in our naive interpretation of the spectator equa-
ormed by the momenta, i.ep”, p-p’, etc. The four- oy this symmetry is violated, essentially because of an

momenta of the initialfinal) nucleon and pion are given by 5y mmetric treatment of the positive- and negative-energy
p andk (p” andk’), respectively, whileP is the conserved  giates Gross has recently presented an interpretation of the
total four-momentum of the system: spectator prescription which is consistent with the charge
conjugation symmetry36].

The equal-time(ET) reductions(see, e.g.[37]), such as
. Salpeter’s instantaneous approximation38], preserve
Due to the momentum conservation only three of the eXt?réharge conjugation symmetry. In these reductions one effec-
nal momenta are independent, below we usually work with e\ removes they, poles from the potential while treating
p, p’, and P. Furtrlermore,uﬁ are the nucleon helicity gyactly the poles of the two-particle propaga®r To re-
spinors, where\=*3 andp=+1 (A" andp’) are the ini-  moye the potential poles one fixes the relative-energy vari-
tial (final) helicity andp spin of the nucleon, respectively. ableq, in some way. Most frequently the constraigi=0,

For the on-shell situationp?=p'>=my, k’=k'?>=m2) o its covariantized formP-q=0, is used.

P=p+k=p’'+k'.

the amplitude reduces to the standard f¢8%]: We will be using the ET type of approach. To implement
L R the constrainP-q=0, we may impose the condition that the
Tan (PP P)=u((p)[A(s,) + 3 y- (K +K)B(s,1)] interaction is insensitive to the off-shellness along the direc-
. tion defined by an unit four-vectan,. For the two-body
X U§+)(p) 2 case this means th&tandT entering the scattering equation

depend on the projections of the relative four-vectors onto a
[here s=P?t=(p—p’)%,u=(p—k’)? are the Mandelstam 3D hyperplane orthogonal ta, . Defining the projection

invarianty. We find from Egs(1) and(2) operator,
B=By,+mMy(B1o+Byy) + MiBoy, 3) Ouy=0uy—NuN,, 9
A=myB+ Ayt my(Appt A21)+mﬁA22. @) we write the corresponding equation as follows:
Our starting poi_nt for therrN_ amplitude is_ tht_a Bethe- T(T’,T)=V(T’,~I)+ifﬂV(T’,a)G(q)T(a,T), (10)
SalpetenBS) equation, schematically shown in Fig. 1, 473
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FIG. 2. The tree-levelrN potential.

wherel, |’, g are therelative momenta of the initial, final,
and intermediaterN state, respectiverTM=OWIV, and
similarly forT’, q.

Equation(10) is manifestly covariant. On the other hand,
it can easily be reduced to the 3D form. For instance, we can
choose the frame where=(1,0,0,0), and thereford andT  In this work we will be focusing on solving this equation for
are independent of the Oth component of relative momenta one-particle-exchangeN potential, see Fig. 2, where the
(since any scalar product will depend only on the spatiaPotential is regulated by form factors. In the next section we
components, e.gq- y= _a. ;/)_ The integration oveq in describe therN interaction used in this study.
Eqg. (10) can now be readily done leading to the 3D equation.

lll. EFFECTIVE LAGRANGIAN AND THE &N

To prevent the dependence of tBanatrix onn, one may

choosen along some physical four-momentum, for instance

along the total momenturm, =P, /\/P?. Then the reduc-
tion is possible in the center-of-mass syst@mm.s) where
P=(Py,0,0,0).

In the ET approach, the two-particle propagator is some
times modified to include approximately the crossed graph

[18,39, thus providing the correct one-body limit of the

tually worsen the predictions for theN case where the
u-channel exchanges are presgzf].

POTENTIAL

In the following we specify the interaction Lagrangian of

, p, o, N, and isobar fields, used to construct the hadron-
exchange force depicted in Fig. 2 and written out in Appen-
dix C. The field representation and the corresponding free
iagrangian is chosen according to the spin and isospin of the
particle. Thus, the pion is described by scalar isovector mul-
tiplet 7= (7*,#% "), the sigma meson is a scalar isosca-
tar field o, the A(1232) is represented by a vector-spinor
isoquadruplets ,= (A7, A ¥ A% A7), and so on.

Because of rotational invariance and parity conservation it

is convenient to partial-wave decompose E@8.and (10)
(see Appendix B Let
s

(p".p)
=§<J+%)Di“mp,p)Ti’:k(pa,p',po,p;Po>, (11)

where Q,, is the solid angle betweep’ and p. Further-
more, in the c.m.s., using E(l) and the Dirac equation

(b= pmyUL(P)=(Po—pEp) Yo (p), (12
the off-shell amplitudes can be written as
2P piPo) =L (B[ 7+ T (p' .piP)
+y T2, p;Po)Jul(p), (13

where y. =3(1+ y,), and T’i" are eight scalar amplitudes
with definite parity=.

In doing so we in particular find for the case of the ET
equations, that the parity-conserving amplitudéssatisfy

ron

’ ! 1 * " ”
T [CaadS GV TH, (14
p//

where

= dgo

GE)(dl;Po)=2i fﬁwze‘m(q,qo:Po)

= —p{wq(—pP0+ Eqt wq—ie)}fl.
(15

A. Nucleon and meson exchanges

The #NN interaction Lagrangian is taken in accordance
with the chirally-symmetrier models[12,13. In Weinberg's
nonlinear realization theN scattering amplitude to the lead-
ing order is given by the nucleon Born term with the
pseudovector coupling plus the Weinberg-Tomozawa contact
term[41,42. The pseudovector coupling reads

f7TNN_

(PV) _
= m N)/My57'aNo7Mﬂ'a,

7NN

L

(16)

wheref _yy is the pseudovectarNN coupling constanfthe
pseudoscalar coupling constagtyn=2f ;nn(My/m,;) will
also be used belojvThe Weinberg-Tomozawa contact term
can be represented aspaneson exchange with the follow-
ing interaction:

_Ta

i
Lonn=gponnN > ( YuPat+

i(r *pr|IN 17
2mN ur? Pa '

Ep'ﬁﬂ': gpfrrwsabd)gwbayﬂ-c ’ (18)
provided thep coupling, gi=g NNDprrs IS fixed by the
KSRF relation[43]: g,=m,/(y2f,), wheref =93 MeV.
There is also the second form of the KSRF relatj@s]:
9,=v2m,f.un/(M,ga), ga=1.26, obtained from the first
one by using the Goldberger-Triemann relation fgr. It
should be remarked that the Weinberg-Tomozawa contact
term is equivalent to the exchange only at threshold and
providedg, is fixed by KSRF relation whilex,=0. The
energy dependence is different, but not significantly in the
considered energy region.

Since we use the pseudovecteNN coupling, the o
meson is in principle not needed from the standpoint of chi-
ral symmetry. Nevertheless, @ exchange can be used to
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model the isoscalar contribution of the correlated two-pion
exchange. In order to keep the agreement with the soft-pion

theorem, a derivative coupling to the pion is used, i.e.,

Lonn=9onno NN, (19
omT WU&MWi& i, ( )

w

where the sign of the-7r7r coupling is chosen in accordance
with the correlated two-pion exchange analyi®$, and is
different from the one used if8]. This interaction leads to
the following on-shell potential:

2
_ IoNNY o t— 2m7r

8’7me mg._t .

(21)

o

To control the effect of ther exchange on the scattering
length we introduce a free parametey in the following
way:

IonNDomm t— 2(1_ CU')mir

8mm,_ 22

o

2
m, —t

For c,=1 the o contribution to theSwave scattering

lengths vanishes. Note that this modification amounts to add-

ing the following term to the Lagrangian:

’ _g(T‘IT‘IT

2

2

C,m om . (23

omTmT
B. A-isobar exchange and higher resonances

The coupling of the spin-3/2A field to the pion and the
nucleon is conventionally described by the following La-
grangian(see, e.g., Ref.2]):

foMA R g, — (24 1)y, y TaNG 7o+ H
mw gMV (Z 2 F)’,u,)’v] a s tdl}

(29)

£7TNA:

where z is the off-shell parametefT, is the isospins— 3
transition operator.
As remarked in the Introduction, this coupling involves

the spin-1/2 sector of the Rarita-Schwinger field, and gives
rise to an unphysical spin-1/2 background. The latter effect

PHYSICAL REVIEW C 61 054003

f’JTN

L0 = mome mAA e""(9,A,) 5 Yo TaNdgm+H.C.,
ko

(29

referred to asgauge-invariant (Gl)mNA coupling Being
invariant under the Rarita-Schwinger gauge transformation:

A,(X)—A LX) +d,€(X),

where e(x) is a spinor field, this coupling does not involve
the spin-1/2 components of thke field. As a consequence,
the spin-1/2 backgrounds are totally absent from the corre-
spondingA-exchange amplitudes.

We include also thes- and u-channel graphs ofP;
(Ropel, S;;, andD ;5 resonances. At low energies the con-
tribution of these resonances is margih&lyt they are im-
portant for the proper description at higher energies. The first
two particles are treated same as the nucleon but with differ-
ent masses, coupling parameters, and, in the cas® of
parity. TheD 3 is treated in the same way as thgthe same
propagator and interaction verjebut with different isospin,
parity and mass. Exchanges of even higher spin resonances
can in principle be easily included in our model via the am-
plitude obtained in Appendix D.

C. Cutoff form factors

The high-energy behavior of the hadron-exchange field-
theoretic potential is usually regulated using tbi-shell
form factorsintroduced in the vertices. We have introduced
them for each of the particle in the vertex. For the pion we
use the monopole form factor:

2

m

A2_k2 :

ko

2
™

fa(k?)= (26)

For the o- and p-meson we use the one-boson-exchange
form factor:

2

f, o (1)=—22. 2
A= 377 (27)
For the baryons we use the form factor of R&X]:
nAg 3
fa(p?)= ) : (28
NAg+(p?—m3)?

can, in principle, be removed by inserting the spin-3/2 pro-

jection operator “by hand” in either the vertex or the propa-
gator. For instance, Gross and Sufyid have chosen this

with n=2.
In addition, for each pion we introduce the following cut-

option. However, because of the nonlocal nature of the proeff:
jection operators their use is problematic: unphysical singu-

larities occur ats=0 andu=0 for the s- and u-channel
contribution, respectively. In Reff5] this problem is actually
not met because the=0 point is well below the threshold,

while the u graph vanishes in the approximation of that

model. If theu-channelA exchange is present, one usually

A4
f 8)=—"—. 29
Reggéq ) A4+sq2 ( )

w

prefers to keep the background and fit the off-shell parameterThis is generally not true for a spin-3/2 resonance if the conven-

[3,9,10,44,4%
We shall also study the followingNA coupling[30,31]:

tional coupling is used, since the spin-1/2 background can be large
even far away from the mass position.
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FIG. 3. Cutoff form factors as a function of the off-shell three-  FIG. 4. Cutoff form factors as the function of the pion kinetic
momentum squared. energy in the lab.

This function is motivated by considering the effect of the Work with the one-partic_le—?rreducible Green functions. One
higher-mass states on the high-energy behavior ofsthe  €an separate the potential into two tervfys V¢ +V,,, where
propagatolG. If we were to include not only the pion and the

nupleon.but all the states Iying' on thg infinitely rising Regge Ve(p',p)=2 Ta(p’)Ss(P)Ts(p) (30)
trajectories, at very high energies their effect factorizes in the B

form of a function like Eq(29) [46]. The energy dependence

and the absence of singularities distinguish this cutoff fronf€Presents thes-channel baryon exchangegole terms,

the usual ones, such as the monopole form. We take the sanidlile Vy contains the rest of the graplisonpole termps
value A for the f.. and freqqe CUtOff Masses. These two Since V(G is a separable kernel, we can explicitly resum

form factors do not affect the on-shell potential, because néhese contributions, and find that the resulting amplitude can

pion exchanges appear in the Born graphs. equivalently be written as

It is important to realize that the final results depend on
the pff—shell form factors, even after the renormaliza'tion is T(p',p)zz F;,(p’)s’gs,(P)F’g(p)+Tu(p’,p),
applied. The physical meaning of such form factors is usu- BB’
ally given in analogy with that of the electromagnetic form (32)
factors. They thus reflect the extension of the hadrons, and in
principle should be calculated from the underlying theory. Where

Our fit to the wN-scattering phases will determine the d%q
values of the cutoff masses. They are given in Table V to- *(0) — f -1
gether with the rest of the model parameters. Using these Fa(P)=Ts(p) 4W3FB(q)G(q)Tu(q,p), (32
values, in Fig. 3 we have plotted the form factors which
affect the loop contributions. Their dependence on the loop (S{B‘B/)*lz(sg)*lgBB,_zBB, , (33
momentum is shown, while the Oth component is fixed by
the equal-time constraint and the energy is fixed at threshold. d*q

The actual cutoff of the model is given by the solid line in Spe =i f —FB(k)G(k)F’g,(q), (34)
the figure. As one can see, it is rather soft: it starts off as a 47?
monopole with the mass about 0.8 GeV, and is even softer o o .
aboveq?=0.5 Ge\?. At higher energy it becomes softer as and T, satisfies the following integral equation:
well, becausé g qqeis €nergy dependent. However, the latter
effect is small as can be seen from Fig. 4, where the energy , , [ d'q ,
dependence dfzeqqeis Shown over the region of ourN fit. Tu(p’.p)=Vu(p ’lefﬁV“(p A G(A)Tu(G,P).
The energy dependencefyf(s) andf ,(s) is shown there as (35)
well.
The full amplitude is thus written in terms of the irreducible
Green functionsS*, I'*, andT,. The diagrammatic form

V. RENORMALIZATION of this representation is given in Fig. 5.

Since there ars-channel singularities in the considered
potential, we have to carry out a renormalization procedure.
We adopt the scheme in which the Lagrangian is expressed Note that the dressed baryon propagator, B8), is in
in terms of the physical parameters and no “bare” param-general nondiagonal. In other words, the baryons can mix.
eters appear. Then, in principle, the counter-terms should b®f course this mixing happens only among the baryons with
subtracted and fixed by the renormalization conditions. Tdhe same “good” quantum numbers, such as spin and isos-
perform such a renormalization procedure it is convenient t@in. Parity is also conserved, nevertheless the mixing of

A. Baryon mixing
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o o E A P o T The propagator is then diagonalized by the orthogonal trans-
14 = ; . + V. formation (37) with
4 /‘:\B (37)
1 - ANNF
_——— - s J -- - X(P)ziarctar{z(m_ggﬂ
T =y /.m(\ + T, Ganne SN
? B Myx —M -t
_ %) ] _ (40)
-- - - -- -- ---- -- 9aNNg i > (P)
T, = V. + V.| G | T L
The corresponding eigenvalues are clearly
\ 3 T Su(P)=[P—my~Zy(P)—ie] 2, (42)
SN*(P):[P_mN*_EN*(P)_lé] s (42)
1 4 R where
3= (GNNCOSY + O SINX) ZE + (M« — My SiPy,
FIG. 5. Rewriting the equation for the case when the potential _ B . P B .
can be presented as the sum of separable and nonseparable poterg’\‘* = (Gmnn COSX — GrnnSINY) ™% — (M mN)SInz)((‘.ls)
tials.
. o . . . The vertices are rotated according to
baryons with the same spin, isospin, and opposite parity may
occur due to the negative—gner_gy state prop.agation_. T% = (0.,NNCOSX + nne SINY) T,
To perform the renormalization we need first to diagonal-
ize the propagator. Since it is a complex symmetric matrix, %, = (Gnne COSY— GmunSin ) T* (44)

we diagonalize it using a complex orthogonal transformation
O(00"™=0T0=1). The full solution can obviously be writ-
ten in the diagonal form as follows: B. Self-energy

Let us consider the mass renormalization using the
T:E (T*0)g(0TS*0)g(OT*)g+T,. (36) counter-term method. The counter terms can be read off di-
B rectly from the free Lagrangian. For the spin-1/2 case, for
_ ) instance, they are given b¥,(myg—m)+(1—2Z,)(P—m),
In our model we include only two baryons with the sameyyherem, is the bare mass, ard, is the field renormaliza-

spin and isospirtnucleon andN*). For this case the propa- (jon constant. The renormalized spin-1/2 baryon propagator
gator is diagonalized by a>22 complex orthogonal matrix s defined as

which can be parametrized as usual by one complex variable,
S(P)=[P—-m—3"*"(P)—is] 1, (45)

(37 whereX™®Y(P)=3(P)—Z,(mg—m) —(1—Z,)(P—m).
In the c.m.s. framePz(PO,ﬁ), the self-energy can be
where in this way we introduce tHéN* mixing angley. written as
Furthermore, since we use the same Feynman rules for the ren  wren ren
nucleon and\*, their dressed vertices are equal up to the ST(Po) =2 (Po) v+ +2E(Po) y— (46)
coupling constants. Therefore for theN* self-energy ma-
trix one can write

cosy Siny
| —siny cosy/’

and a similar decomposition holds for the propagator,

( Saun(P) S (P) ) S(Po)=S(+)(P0)7++S(7)(PO)y,, (47)
S+ (P) Snsnx(P) wherey. =(l*vg), and
:( 97N gWNSQWNN*)E(P), @8 SN (Po)=[Po—m—3"8"(Py)—ie]
9NN mNN* 9 NN*

S(Pg)=—[Po+m+3"(Po)+ie] L. (49
while for the vertex
Obviously, ¥y, and y_ act as the projection operators onto
Iy gonn the positive and negative energy-states, hefice corre-
( )—( T )r* (39 sponds to the positive ar ) to the negative energy-state
propagations.

*
FN* S PNING
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The renormalization condition at the pole position is 1 (= .
; Jp'p_\pp'p 2 Jp'p’ (") Jp"p
given by T =Vin | dad Vil (@) G ()T (@),
P

(Po=m)S(Po)|py-m=1, (53

(Po+ m)S(_)(P0)|PO:—m:1- (49 =z,

1 * ’ ! !
re+— fo dqe?, 7 <q>G‘E”T><q>Tﬂﬂ”<q>),
P

Expanding3 . (Po) near Po=m, and 3 _(P,) near Py= (54)
—m, we find that the renormalization condition requires

e ()
Zz(mo—m)=2+(m)=E_(—m), 2r_Zl,n_f0 dqq ; I‘f(q)GEpT(Q)Ff(Q), (55)

_(92+(P0) B % _(Py) where Jg, lg, and ng are the baryon spin, isospin, and

1-27,= O Po |, 7_m- parity, respectively. The renormalized propagator is

0 0

. . . SHN(Py)=[£Po—m—3XE"(Pg) +ie] (56)
As emphasized earlidrl0], the above described proce-

dure breaks down if the self-energy is computed using gvhere the renormalized self-energy is given in term¥ aff

quasipotential formulation which violates charge conjugationgq. (55) [with Eq. (43) in the case oNN* mixing] as fol-
symmetry, since in that case, (Pg)#2 _(—Pg). The self-  |ows:
energy of the spin-3/2 baryons can be renormalized simi-

larly, since the spin-3/2 baryon contribution to the spin-3/2 TPy =2.(Pg)—2.(xm)
partial-waves can always be factorized into vertices and a S .(Po)
spin-1/2 propagator, see E@7). _ 92=(Pg

p propag ®7) G (57)

0 Po=*m
C. The renormalized vertex and the amplitudes
In the adopted renormalization scheme we req(ir¢he V. RESULTS

(real part of renormalized baryon self-ener@/"(P,) and _ _ _
its first derivative vanish at the pole positi®ty==m; (ii) Having described the equation for the off-shelN am-

the (real part of renormalized vertexrN— baryon vertex is  Plitudes, its renormalization, and the driving force, we now
equal to the undressed vertex at the renormalization scale turn to discussing the outcome of such modeling. For this let

defined as the point where all three particles are on the mas¥S firstJ%iXe an explicit relation between the on-shell ampli-
shell, u: k2=m2, p?=m3, P?=m? tudesT; " and the phase parameters.

! . .
For the vertex we use the multiplicative renormalization Ve introduce the standard on-sheiN amplitudesf,. ,

— 3 Lri :
since it maintains unitarity in a simple way. The renormal-Wherel=J—3r is the angular momentum amds the parity

ized vertex is thus defined as of the state. In the normalization according to
T(p;P)=Z,T"* (p;P), (50) _maefi=—1

fI:_T, (58)
where Z, is the coupling constant renormalization factor
which is readily determined from conditid(i): where &, . is the phase shift ang,.. is the inelasticity, we

can identify
Z;=T(u)IT* (). (51
SSEMR=MZ_

In the case of thé&dN* mixing we renormalize théscalay f|:=q2—STr (E,q,E,q;Po), (59

function % in Eqg. (38) at the point associated with the

nucleon. This procedure clearly yields the proper physicalyhere

nucleon mass pole in the corresponding baryon propagator.

Adopting this subtraction procedure tie mass and cou- q=[s— (my—m_)2][s— (my+m_)2]/4s (60)
pling constant at the nucleon mass position can then be ex- T T ’
g)alljcr:gdihIphéhﬁts\l?al:glasug?gliés the values of these parametefs, ;¢ _ m is the energy of the nucleon in the c.m.s.

After the partial-wave decomposition, the renormalized At_ very low energies the partlfil-v:/?\l/e amplltgdes are
solution of the ET equation for a given isosirand total dominated by the threshold behavigi® **, and their real

spinJ and parityr reads as followsfor brevity the external and imaginary parts are related by elastic unitarity. There-
momenta are omitted fore, it is sometimes more useful to stug40]

21+1
Ref,. (61)

ks

’ ’ ’ ~ m
T P=2 TP STy 56+ T, (52 M.J(qz)z(?
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FIG. 6. Effective range plots for the nucleon apdneson ex- FIG. 7. Eff_ecti\z/e range plots fcz)r the sum of the A'z andp
change contribution. Dashed lines,=0 (Weinberg-Tomozawa €xchanges withgzy/47=13.6, g,/4m=3, «,=3.7, foya/4m
contact term Solid lines:«,= 3.7 (vector-meson dominangeThe ~ =0.36. Dashed lines: Peccei choice; dashed-dotted lines: NEK
data points are extracted from the KH8&ar$ and SM95(dotg  choice; solid lines: gauge-invariamtNA coupling. Results fos,,,
partial-wave analyses. Sz1, and P33 waves are shown in bold lines. Data points are the

same as in Fig. 6.

instead off,. itself or the phase shifts. Note that, gt _
=0, M,; is equal to the correspondinscattering length nonethelessj we only will address threshold parametarsl
defined a% b for all partial waves.

a;= lim [q-2,.(q)]. (62 A. The K-matrix approximation
a0 In this subsection we focus on thématrix approxima-

The =N effective_range parameterstcan also be deter- tion to the full Scattering problem. Results of the full model

mined in terms of\M: are discussed in the next subsection. InKhmatrix approxi-
mation wN amplitude is given by the lowest ord&rmatrix
P A expression:
by =—M3(0%)|5=0- (63
13 pre 13(0%) [5=0 o K. N
|+ 1— | K|t ’ ( )

Instead of using this formula, we will be presenting the plot
of M as a function ofg?. The slope of these “effective-

range plots” at smalfj indicates the values for the effective-
range parameters. In the partial waves that support a res
nance(e.g.,P;, P33 it is more appropriate to study another

whereK . =qa(s)VL, 1=JF3, andV; is the partial-wave
otential[obtained from the potential by means of E(k3)
nd (B12)]. Equation(65) clearly satisfies elastic unitarity,

effective-range expansion: but the principal value of the loop integrals is neglected.
: This approximation is considered to be good, at least at
1 1 low energy, and has been frequently used, see, [@4,45
a2l+1cot5|i=a_+ erE]ZJr . (64)  for most recent applications to theN scattering. At low
1J

energies, indeed, the soft-pion theorems dictate that the Born
graphs dominate, implying for the potential modeling that
the rescattering effects should be relatively small. When the
2We shall commonly refer to this quantity as to scattering length Jatter is true, considering thi-matrix approximation may
even though foP and higher waves it is properly called scattering allow us to make a preliminary adjustment of some model
volumebecause of the dimension. parameters without going to the full calculations. We in par-
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TABLE I. The S andP-wave N scattering lengths in different models are compared to the partial-wave analyseg: fEpeesent the
chisquare value per point with respect to the SM95 analyisés analysis error is taken to be the same for all points and is equal t0)0.005
Parameters corresponding to different calculations are given in Table II.

lszs  Np (WT) Np (VMD)  Peccei NEK  NpA (WT) NpA (VWMD) KH80[33] KA86([34] SM95[32]
Si 0.171 0.171 0.144 0.171 0.171 0.171 0.173 0.175 0.172
Sy —0.100 -0.100 —0.150 -0.100  —0.100 ~0.100 -0.101 ~0.100 —0.097
= ~0.185 -0.145  -0077 -0.076  —0.127 ~0.092 —0.081 ~0.078 —0.068
Pa —0.059 -0079  -0064 —0085  —0.043 ~0.066 —0.045 ~0.043 —0.040
Pis -0.047 —~0.064  —0049 —0.069  —0.032 ~0.050 —0.030 ~0.030 -0.021
Pas 0.101 0.109 0.194 0.197 0.224 0.222 0.214 0.215 0.209
P 177 129 35 31 26 15 2.1 1.6 X

ticular would like to examine the effect of using different nated by thep exchange. Thé® waves look much better,
7NA couplings in theA exchange contribution. which could be due to the remarkable fact that, for this par-
As is well known, theSwave scattering lengths are well tjcylar choice, thes-channelA-exchange graph gives only a
reproduced by the Born-level nucleon apdmeson ex- tiny contribution to the spin-1/® waves. The NEK choice,
changes alon¢41,42. Taking g2yw/4m=13.6 andg/4m  in contrast, does not affect tiSavaves at threshold and gives
=3.0, we plot in Fig. 6 the contribution of these three graphsa large effect in thé® waves.
(s- plus u-channel nucleon exchange pltshannelp ex- Clearly, Peccei’s choice could be favorable phenomeno-
change to M, for all the SandP partial waves. The figure |ogically as long as the missing strength in tBevaves is
shows that theSwave scattering lengths are indeed repro-somehow explained; for instance, by an isoscalar meson ex-
duced. However, the energy dependence ofSheaves is  change. We believe such a scenario is realized in most of the
not well described. In fact, the slopes of the effective-rangenodels which use couplin{24) and describe the scattering
plots have a wrong sign. Furthermore, tRevaves are not |engths correctly. However, apparently it is not possible to
reproduced at all. Similar picture occurs if the contact term isjescribe simultaneously tt& andP-wave scattering lengths
used instead of the exchange. in the tree-level model with only the, N, andA exchanges.
Looking at the ratio of theswave lengths it is certainly The GI #NA coupling (25), in combination with the
plausible that they should be dominated by some isovectalisual Rarita-Schwinger propagator, leads tohexchange
contribution? such as thep-meson exchange. Therefore, it amplitude with only spin-3/2 contributiongomitting the
would be interesting to find a simple mechanism which acisospin-dependent factor
counts for both thé waves and the energy behavior of the
waves, and, at the same time, does not affectSheave fous [ S |P+my oo
scattering length. SincB; has the largest discrepancy, we V4 s-exch= 7| 2 SPas(P)K “KkP,  (66)
study first the effect of the-isobar exchange. 4amz \my/ S—mjy
In Fig. 7 we show the calculations performed with the two

2
different choices of the off-shell parameter: fana [ U ) Putmy i
P Va vexe= (—2)“—2Pi’§<pu>k k'é, (67)
1 ; . 4mm_\ my) u—mjy
z= — ;(Peccei choic§28]),
wherep,=P—k—k’, and
z=3(NEK choice[29)),
1
3/2_
and f2,,,/47=0.36. The nucleon and coupling constants Pap=92p~ 3 VaVp~ 3_p2(lb7’ap5+pa7ﬁlb)
are kept the same as in the previous calculation, with
=3.7. _ is the spin-3/2 projection operator.
One can see that, as far Bg; is concerned, tha con- A calculation using this amplitude is shown in Fig. 7, in

tribution is very plausible for both choices af The large  comparison with analogous calculations using the conven-
difference between the choices clearly shows up in the spinjonal coupling with Peccei and NEK choices of the off-shell
1/2 partial waves, where the exchange produces a signifi- parameter. First of all we remark that thecontribution to
cant background contribution controlled by the off-shell pa-iye spin-1/2 partial-waves comes from thgraph only, and
rameter. _ _ _ not from the spin-1/2 components. From the figure we can
In particular, Peccei’s choice affects substantially 81¢ see that the GI and NEK coupling produce similar contribu-
waves, and hence spoils the scenario where those are dongjgns to theSwaves, but largely different results in the spin-
1/2 P-waves. The resonam;; wave comes out very much
alike for both GI and conventional couplings, the main dif-
SExperimentally the ratiag,;/as;,~ — 1.75, which is close to the ~ ference being ¢/m3) factor in front of the GI amplitude.
ratio of the isospin factors for an isovector meson contribution. Hence, at threshold the Gl result is factor ofny
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TABLE II. Parameters corresponding to calculations of Table I. Values in bold were varied to give a best
fit of the scattering lengths.

Parameters Np (WT) Np (VMD) Peccei NEK NpA (WT) NpA (VMD)
g2 nlam 13.8 13.8 13.8 13.8 13.8 13.8
UoNNDp AT 3.15 3.15 3.4 3.15 3.15 3.15
K, 0.0 3.7 3.7 0.0 0.0 3.7
f2ul4 X X 0.31 0.36 0.6 0.55
Zy X X —-0.25 0.5 X X
+mw)2/mzzo.76 smaller than the conventional result T=V+VGT, (68)

(modulo small contributions from ther-channel graph,

which for instance are responsible for the difference betweemle begin by performing several iterations of the potential

the Peccei and NEK choice in tf; wave. Despite that, and hence find the first few terms in the expansion of the
after a readjustment of parameters the Gl invariant COUp“n%mplitude'

usually gives a better description of the scattering lengths;
see calculations presented by Tables | anthdlte that here
the NEK choice has been used with=0, as is suggested in ” - |
the original papef29] and indeed gives a better fit than with T= 20 TW=V+ 21 V(GV)" (69)
k,=3.7). The problem with the wrong energy behavior of " "
the S waves, however, applies to all these calculations. To o )
correct for this a scalar-meson exchange is needed in the The solution is then sought in the form of the Pagiprox- _
N force. imant. For the equal-time equation with the model potential
Inclusion of theo exchange allows us to fit the scattering (e solution accurately converges by performing just six it-
lengths to practically arbitrary accuracy, independently oferations. _
whether we use the conventionahodel A or the Gl cou- We have fitted the on-shell solution to the KHEBB| and
pling (model B, see Tables Il and IV. Since we have fixed SM95 [32] 7N scattering partial-wave analyses, in the re-
c,=1, and thus do not allow the to affect theSwaves, the ~9ion from the threshold up to 600 MeV pion kinetic energy
best fit of the off-shell parameter give the NEK value whichn the lab. The.resultlng fl_t is shown by the solid lines in F|g.
also has vanishingwave contribution. Th&wave lengths 8- The determined coupling constants and masses are given
are therefore explained in both models A and B in exactlyn Table V. o _ L
the same way: by and nucleon exchanges alone. The small  1he dashed line in th&,, phase-shift of Fig. 8 indicates
difference between the NEK and Gl couplingfa; (see Fig. the_ calculation V\_/lthout thes-channelS,;; resonance grqph.
7) is apparently compensated by the differencé jg, . The ThIS grap_h cont_rlbutes also to t_rien wave put calculation
large differences in the other three partial-waves has mostly/ith or without it produce practically identical results. The
been removed by taking a different value feg. This ex- i1 fésonance pole is thus relevant only for g wave
ample shows that if the potential is general enough, the spir@Pove 400 MeV.

1/2 backgrounds of thé can possibly be reshuffled into  UP 10 350 MeV the agreement of the model with the
other contributions. partial-wave data is very good as can be seen in Fig. 9. At

energies exceeding 350 MeV inelastic channels become im-
B. Full calculations portant. Since we have not considered any inelastic mecha-
nisms, some discrepancies seen in Fig. 8 at higher energies
are not surprising.

oo

We solve the ET equation, E¢14), by Padeapproxi-
mants following the procedure described in RdfE5,47.

Writing th ion . I
ting the equation as TABLE IV. Parameters corresponding to the calculation in

TABLE lll. Scattering lengths resulting from the sum Nf A, Table Ill. Values in bold were established by the fit. Model A uses
p, ando tree-level exchanges. Parameters corresponding to differthe conventionalrNA coupling, while model B uses the “gauge-

ent models are given in Table IV. invariant” coupling.

I5123 NpAo (A) NpAo (B) SM95[32] Parameters NpAo (A) NpAo (B)
Si 0.170 0.170 0.172 924 13.8 13.8
S —0.100 —0.100 —0.097 9,NNDp i 3.15 3.15
P11 —0.068 —0.069 —0.068 K, 0.0 4.6
Pay —0.039 —0.039 —0.040 f2\uld 0.28 0.30
Pi3 —0.024 —0.023 —0.021 Z) 0.5 X

Pas 0.209 0.209 0.209 GonnTomrMy/(87m,) 2.1 2.0
X2 0.16 0.13 X C, 1.0 1.0
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_15'..u.um...’ﬂ.i"rw».—» 1) | S e ¥ L . .
0 100 200 300 400 500 600 0 100 200 300 400 500 600 FIG. 9. The description ofrN phase shifts up to 350 MeV pion
Tlab [MeV] lab kinetic energy. Solid lines represent the full model calculation.

o Legend for the data points is the same as in Fig. 8.
FIG. 8. The description of th&, P- and D-wave 7N phase

shifts up to 600 MeV. Data points are from the SM@Bangles  \5jye for the scattering lengths with respect to the SM95

and KH80 (starg partial-wave analysis. Solid lines represent the analysis is 1.4

model solution. Dotted lines represent the calculation where the To give a.fe.eling about the size of the rescatterings in the

principal vqlue part O.f the_ resca_ttering integrals is switchedidf, model, the dashed lines in the figures indicate the results of

the K-mgtnx approximation with the same set of parameter§ the calculation where the principal part of the rescattering

Dashed line for thé&,;; shows the calculation when the pole contri- . . . . . .

bution of theS;; resonance is switched off. '.ntegrals IS neglepted, |.e.,- tematrix appTOXImatloln. Un-
like in the K-matrix calculations of the previous section, here

- . . the form factors are included, and the same set of parameters
In fitting we have paid careful attention to the low-energy; \;sed as in the full calculation

behavior, particularly to the correct shape of the “effective-

range plot,” M,.(g?), defined in Eq.(61). The model de- . . ‘
scription of these plots is shown in Fig. 10. The scattering 02 st

lengths can be read off these plotsf:ato. The y-square

TABLE V. The model parameters. The values given in bold

were varied during the fit. P11
Coupling Masses g” 0.2 = = ;
Field constants [GeV] E P31
N 2 007 . o
N Z:‘TN:13.8 (f2,y=0.0755 mMy=0.9383,A=1.8 T
(0]
T m,=0.139,A ,=1.16 £
2 _
N Iotine 5 5 My =1.438 Ayx=Ay 2
A g
2, i
A ™A _0.43 my=1.252 A,=15
4ar
2
D3 f”NDZO,G mp=1.525 Ap=1.7
4
p IGorr _ g, xk,=18 m,=0.77,A,=19
41
2
o W%ﬂzl_q ¢,=0.75 m,=0.55,A,=1.1 (g/m)
0 FIG. 10. Description of the effective range plots for tBeand
Sy szﬂzo 5 ms =1.555 Ag =2.0 P-waves. Solid lines represent model calculation. Dotted lines are

A ) the K-matrix approximation with the same set parameters. Dashed-
dotted lines represent the full calculation with=3.7.
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FIG. 12. The real and imaginary parts of the self-energies.

P13

00 200 om0 P0 Tt 20 o0 By readjusting the parameters we are able to reproduce
Tlab [MeV] the phase shifts in th&-matrix approximation up to 350
MeV, see Fig. 11. The values of the parameters are given in
Table VI. Note, however, that using the full model we could
achieve the fit of a better quality and up to higher energies.
The (s channel baryon pole terms are modified by the

The large difference between the full and tkematrix .
9 . . vyertex and self-energy corrections. As has been seen from
calculation in the waves where the baryon pole contributions

are present indicates, therefore, that the “dressing” anqcnoTprﬁgnghg]\?engl apedéi;ngfletn;ﬁ%a(t:léuIaetéoré,c}s;”chi? tﬁéefé:o-
renormalization of the pole contributions has a significant 9 y pp €SP y

effect. The effect of the rescatterings in the nonresonanf2ncePu1 and P waves. In Fig. 12 we plot the realland
waves, such aSs;, Pa;, etc., which have contribution only Imaginary part of the nucleon and theisobar self-energies.

from the T, term, is smaller. We also observed that the wat. F1OM the figure we can see that the energy dependence is

: o o ; indeed significant. The same is observed forki¢* mixing
tractive waves’ (which have positive scattering lengtre angle plotted in Fig. 13. The renormalization of the pole

ceve comparably large and positive rescattering Contrlbu'Eerms produces the values of the renormalization constants
tions at threshold. ; .
I given in Table VII.
For the resonant waves thg, contribution may lead to . . . .

L . " ; The vertex corrections are studied using the dynamical
significant shifts of the resonance position. For instance, th?orm factor defined as follows:
A pole in theP; is located atys=m,=1.252 GeV, while '

inclusion of T,, leads to the physicdP;; wave which reso-
nates atys=1.232 GeV. In theK-matrix approximation the
resonance always occurs at the pole position. To describehereI'? is the undressed off-shell vertex, alt! is the
P23 in this approximation one is to usa,=1.232 GeV. renormalized off-shell vertex, see E¢p4). Note that the
coupling constants and the cutoff form factors are cancelling
out in the expressiofv0), since they are the same for both of

FIG. 11. Fit of theK-matrix approximated model taN phase
shifts up to 350 MeV pion lab kinetic energy.

Fr(9?,5)=I"(g%s)/T?(d?%s), (70)

TABLE VI. The parameters of th&-matrix calculation; see

Fig. 11. the vertices. The dynamical form factors are thus equal to
unity at the renormalization point.
_ Coupling Masses The model prediction forrNN, 7wNA, and 7N D, form
Field constants [GeV] factors is given in Fig. 14 as a function of the off-shell
2 3-m0mentumc]2 for Js=my+m,, and in Fig. 15 as the
N ImN_ 12 (12 _00757 My=0.9383,Ay=2.2 : T
2, 138 (f7yy=0.0757 M=% ANT 4 function of energy for the on-shell situatidie = q. Accord-
T m,=0.139 2
gz T T T
* NN — = i
N “am 20 My =147, Ape=Ay s ]
f2 go L
A ™A _ 536 my=1.232 A,=2.6 £ 10 .
A7 = |
f2 g 5t 1
D13 7ND =0.8 mD=1525 AD=17 |
4ar
0 ' T
g NNg T _ _ -30 -20 =10 0 10
p %:3_1' Kk, =2.7 m,=0.77,A,=1.3 Rey [degrees]
o gtrNNg(rﬂ"n-m:l-s, c,=1.0 m,=055A,=19 FIG. 13. The energy dependence of Nk* mixing_ angle. The
47 2m, numbers near the curve stand for the corresponding value of the

pion lab kinetic energy in GeV.
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TABLE VII. The renormalization constants obtained in the 1.2 T T T T
model. 10 Ve :
. Y A 1
Field Z; Z, my [GeV] o e-- T
N 0.63 0.72 1.090 0af ~°° ;~§jj ]
N* 0.63 0.95 0.960 02 b e o ]
A 0.68 1.01 1.390 00 . . . .
D13 0.93 1.03 1.512 00 05 21[3 i 15 20
Sy, 0.97 1.09 1.555 e

FIG. 14. The dynamicairNN, wNA, and7ND,5 form factors,
as a function of the off-shell 3-momentum squared of i state.
ing to these figures the rescatterings have much larger effe@he energy of the baryon is fixed at theN threshold.
on the energy dependence then on the off-shell behavior of
the 7N state. ground. Although it probably gives rise to problems at higher
Recently, therNN form factor has been studied by Saito energies, which is indicated by the very soft cutoff form
and Afnan[48], and by Schitz, Haidenbauer, and Holinde factor for thes, with cutoff massA ,= 0.5 GeV, used if3].
[49] in a similar modeling. In the latter work theNA form Gross and Surygs] made a static approximation of all the
factor has been studied as well. To compare with the results andu- channel graphs. Their approximation leads to sepa-
presented irf49], we need to multiply our dynamical form rability of the potential and hence the complexity of solving
factor by the off-shell form factor given in Fig.(3olid line).  the integral equation numerically is avoided. It also simpli-
We then can see that the resultindN form factor of our  fies considerably the subsequent photoproduction analysis,
model agrees in the main features with that of mddél. It since the meson- and isobar-exchange currents have a form
is therefore less soft than the form factor found in Ré8].  of contact terms. On the other hand, the spin{&f& higher
This allows the rescattering contributions to play a biggefwaves, such aBs; andD 3, receive contributions only from
role. the s-channel exchanges of corresponding resonances, which
in particular leads to overestimates of the resonance coupling
parameters. Also, the statizero-rangg approximation of
the u-exchange potential can be justified only at low energy,
Throughout the calculation we have been fixing #%¢N  because in principle the range of such a potential rapidly
coupling constant to the value advised by the Nijmegerincreases from 4/2mm, (wheremis the exchanged particle
group[50]: ffTNN/477=0,0757, Our fits were not very sensi- mass at threshold till v, at high energy. We observed that
tive to the increase of the coupling towards more traditionaglready at 100 MeV pion kinetic energy the solution of the
value of 0.078. integral equation for the static or exaeexchange potential
The value ofg, comes out close to the one inferred by the differ significantly. In contrast, the range of thexchange
p-meson decay widthg®/4w=2.8. It is also consistent with Potential is determined only by the exchange mass, and if
the KSFR relation(Sec. IV A), which gives 2.78 in its first that mass is heavy enough the static approximation may be
form, and 2.94 in the second form. The small valuaphas ~ applicable. Another difference comes from the fact that
been mainly dictated by the simultaneous fitSg andP5,  CGross and Surya use the admixture of pseudoscalar and
waves at the higher energy scale. At low energies the changiseudovector coupling for theNN vertex. Consequent dif-
in «, affects mostly theP,; channel, as can be seen from erences, mqtlvated by the consistency Wlth the soft-pion
Fig. 10 where the dash-dotted line represents the calculatiofMit, appear in the form of the and o couplings.
with the vector meson dominance valug;=3.7. Lahiff and Afnan[9] do not include resonances beyond
Comparing Tables V and VI we see that, depending orfhe A(1232) but apart from that they use an interaction,
whether the rescattering contributions are included or notvhich is very similar to ours. They have as well compared
very different values of the\-isobar masses and coupling
strengths are needed to obtain correct phase shifts. This in- 15
dicates how the dynamical component duerld loops may
play a significant role in the generation of the observed
A(1232) resonance. That is in addition to the “elementary” = ]
component due to the formation of the three-quark state. i ST - ]
In comparing with other relativistic models we can com- O e
ment that our major difference with the model of Pearce and Ip— F, ]
Jenningd 3] resides in theA-isobar ando-meson contribu- 0.0 Levt : :
tions. For theA, they use the conventional coupling, and for 0 100 200 300 400 500 600
! . A Tlab [MeV]
the o7 coupling they use Eq.20) with the opposite sign
and without the additionat,, term (23). The o contribution FIG. 15. The dynamical half-off-shell form factors for the case
is thus attractive in their case and can account for the diswhen the pion and nucleon are on-shell, as a function of the pion
crepancy in theS waves which appears due to theback-  lab kinetic energy.

VI. DISCUSSION AND CONCLUSION

E . ]
10 F T — .
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the conventional versus gauge-invarianrNA coupling. 12 » _ ,
However, in contrast to us, they preferred the former one, X \(0,¢)= E dM,(e)e'(“” )¢%x(0),
particularly because the spin-1/2 background adds a signifi- N=-12

cant attraction in thé®;; channel, which helps to simulate
partially the Roper-resonance behavior. We include thi
resonance explicitly and hence the spin-1/2 background
not necessary for fitting?1, phase shift.

Including theA andD 3 resonance in the Lagrangian via

Wherex],(0)=(1,0), x" 1,(0)=(0,1), andd}, ,(6) are the
iWvignerd functions.
Positive- and negative-energy helicity spinors:

the relativistic spin-3/2 fields, we have used couplings which )9y = * P NE
) . . : uy’(p) n(0,0),
do not involve the spin-1/2 sector of the Rarita-Schwinger 2NN
theory, and therefore no “spin-1/2 backgrounds” associated
with these particles appear in tisematrix. We do not need ()|~ -
these backgrounds to obtain a proper description of the data. uy '(p)= N, @x\(6,9),

On a simple examplésee Tables Il and IYwe have seen
that, even when these backgrounds may sometimes seem r@lhereN , = «/(Epi m)/2E,, E,= Jm?+p?, andp, 6, ¢ are

evant fqr the description! their role can be tak_en k_)y Othe'Ehe spherical coordinates qﬁ‘ The helicity spinors satisfy
mechanisms, hopefully with more sensible physical interprege ¢gi0wing orthogonality and completeness conditions:
tation.

Although the presented model improves in some aspects otz p! o
previous relativistic analyses based on the potential ap- U (P)UX (P)=8,pr 1
proach, the difficulty of controlling the chiral symmetry con-
straint is present here as well. We do begin with a Lagrang-
ian, and thus the driving force, consistent with chiral
symmetry, but this consistency can in principle be spoiled by
rescatterings, particularly because of the loss of crossing
symmetry. However, numerical checksee, e.g., Refl3]) APPENDIX B: PARTIAL-WAVE OFF-SHELL  @N
indicate that the amount of violation of the soft-pion theo- AMPLITUDES

rems is usually negligible in the potential modeling. Espe-  The partial-wave reduction is done in the c.m.s., where
cially if to take into account that the prime objection of suchthe total four-momentunP=(P,0). Using the orthonor-

models is to describe theN physics at intermediate ener- mality and completeness of the nucleon helicity spirees

gies where unitarity aspects take the leading role. It would, . ; . ) .
of course, be anyhow important to build the chiral constrainf&ﬁﬂzgglx A, we write the BS equation for thieelicity am

more precisely into the nonperturbatiwvé\ models.
In conclusion, we have obtained a description of #¢

; u(p)uf(p)=1.

p==

1 n7i 1 1 1 ’ ’ d4q rn
force in a relativistic dynamical model based on the covari-  1o'p(nr oy _\/P'P(n7 o) +i — ey
ant equal-time (quasipotential equation for a hadron- A (PLPI=ViA(PTP) p%" 473 wr(P70)
exchange potential. The good quality of our fits in the region , .
up to 600 MeV pion kinetic energy suggests the used force x G )(q)T’;,,’;(q,p), (B1)

and the relativistic approach may be considered reasonable,
even though this model still lacks inelastic mechanismsyhere we have assumed that thdl propagator is diagonal
which can become important 8,; andP4; channels above in the helicity basis, i.e.,
400 MeV. It is clearly of interest to study the model predic-
tions in other processes, such as pion photoproduction and 'z Pl (")

. . Uy, G Uy =016, #G y B2
Compton scattering in theaN system. v (@)70G(@) YoUh (@)= s Gy, (@, (B2)

which is true in the c.m.s. EquatidB1) yields (omitting the

momenta
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where

APPENDIX A: CONVENTIONS , i L3y

XPP(p' piPo)= > (I+5)X

Metric g,,=diag(+1,—1,—1,—1); Levy-Cevita sym- wa(P'.PiPo) le/z( 2%
bols; £0123="1, glilk= giik

’ ’ . J
Pauli spinors: in the direction, ¢ are given by X(Po,P",Po.P;Po)d}\(6), (B4
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"o . we find the sought expression for the partial-wave amplitude
X)\e)\p(p()ip ’p05p'P0) JIp'p \np . g p . p . p
T;? ? with definite parityr in terms of T :

1 ’
- ﬁld(cose)XQ,‘;(p’,p;Po)di,)\(ﬁ), (85) "
T =5 f 7ld(cos¢9)[Tf P(B)P;_1/(COSHRY P
with X=V or T. We have chosen the 3-vectggsandp’ to
lie in the XZ plane (hencep=¢'=0), andd is the center- +T‘1’rp( 0)P ., 1,COSH) R‘i’rf’], (B12)
of-mass scattering angle.
Parity conservationnfers the following symmetry for the where the dependence on external momenta is omitted for

partial-wave helicity amplitudes: brevity and only the dependence on the scattering angle is
exhibited. The factors
TGP Po.PiPo)=p pT™! (PGP’ .Po.P:Po). N
VAo Mo (B6) , pp'NN =+
REP=1 N (B13)
. . . T IN_ 1 r=—,
These relations reduce the number of independent ampli- e
tudes from 16 to eighfTime-reversal invariancémplies
Ep=my . EprErmy
N.= , Ni=——, (B14)
2Ep B 2Ep/

TV (PGP Po.PiPo) = 4N AT X(Pg P Po.PiPo),

(B7) arise from the helicity spinors.

Now we can write down the relations due to ttiearge
which obviously does not give any new relations. conjugation symmetryit relates the amplitudes of positive
It is convenient to introduce the partial-wave state with€nergy with those of negative energy and opposite parity:

definite parityr in terms of the partial-wave helicity state ')yt o
[51,52: T P(pg,p’ Po,P;Po)

=TX P =P (=pl.p’,—Po.p;—Po). (B15)

s p>=|J,p,)\>+rP|J1P,—)\> (Bg)  Needless to say, these relations will only hold in the quasi-
v V2 ' potential formulations which satisfy the charge conjugation
symmetry.
The BS equation for the parity-conserving amplitudes takes Theisospin decompositioof the wN amplitude is carried
the form out as follows. If we denotgy and ¢2 as the isospin states
of the nucleon and pion, respectively, then
’ ’ | * * n ron " = ra. .’ (+) i (7) b
T?P P:va P+;fwdqofo dqqZZH el )VF"P p Tfp P, T=¢ "X\ Cap T +ieapctc T XDy
P ’ !
(B9) =" 33 7amo T2+ (Sab— $7am) T 0 eb),

wherer denotes parity. Note the simplification: H&R9) has (B16)

two less coupled channels than Eg3). The partial-wave \herer, (a=1,2,3) are the isospin Pauli matrices, satisfy-

decomposition of the ET quatlcﬁmO) proceeds in the same ing [ 7, r,]=ie 7. Evidently,

way. In addition we use in this case the fact that in the c.m.s.

V and T are independent af,. The resulting equations are T =124 2732 T7OI=1(T¥2-T32) (B17)

given by Eq.(14).

The amplltudeilS) are related in a Simple way to the APPENDIX C: THE OFF-SHELL =N POTENTIAL

parity-conserving partial-wave amplitudes of Jacob and

Wick [51]. Starting from representatiqii3), we first reduce According to Eq(1) the off-shellwN amplitude can com-

the spinor algebra to the subspace of Pauli spigg(®) and  pletely be specified by the scalarx2 matricesA and B.

use Here we give the expressions for these matrices correspond-
ing to the tree-diagram potential in Fig. 2. Also the isospin

, , factors, (1), are given.
X1 (0 xn(0)=dY2 (6~ 6). (B10) (1), are g
With the aid of Eqs(B5), (B8), and the identity 1. Baryon-exchange graphs

For the isospin-1/2 baryor#(3)=—1, F(3)=2.
1 For the isospin-3/2 baryoF(3)=2, F(3)=3.
1/2 J _ - ’ 2 ’ 2 2
din(0)dy,(8) =5 (Py-1/AC0SH) + AAN"P;11/(COSH)), (a) Theu-channel exchange of a baryon with sginmass
(B11) m, and parityz, using the(pseudgscalar vs(pseudgvector
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admixture coupling, cf. Ref5], specified by parametar [A =0 corresponds to pur@seudgvector and is used in the tgxt

_gerB 1

477 u_m2 ]:(I)i

(CD

AI

(m ")+M<_2’7“+’7(p2+p'2) —m) (1—>\)2<m(u—p2—p’2) n(p2+p’2)>
Y 0 2m 4m2 n(p2+pr2)

-m 2y

-7 0
0 O

B|:g§TNB 1

+(1—>\)2
47 y—m?

preca IR | ECDR (C2

NM1-N)[2m —p
2m

—nu m)

_77 0
(b) The A exchange using the conventional coupling, EXl):
, 0 p'-pu—Popp'?
a D 2
P-Py—P—p 0
m(@r(p’zw p?p’)-py/u 0
—2az ,
0 1=(p+p')-pu/u
((p’2k+ p?K") - pu/u—(k+k')-py— 2Pz 0
X

2
1 fﬂTNA 1

_47Tmﬂ. u_m2

Apizyt —=
P(3/2) 3m2

)+m(%—2az)

0 k’-pu+2P22>

+a(l+
al+a)l o +2p,, 0

0 (k+k'")-py/u

0 1 1 0
—(1+a)2P22(1 0)—m(1+2az)P22<0 O)Hf(n, (C3

2 522 0 h‘( 0 p/'pulu
a —2az
0o 1 p-p,/u 0

(k"+k)-py+2P,, O
0 0

2

1
3m?

= — +m(3—2az
4’7Tm77. u_m2 (2 )

0 —k-p,/u
K'-p,/u 0

[ Bp(ai)t

10
—a(l+a) +(1+a)2P22(0 O)H]-‘(I), (C4)

where
a=—-z—3,

Poo=(K' -pu)(k-p)/u, Pyp=(p"-pu)(p-pu)u,

pu=p—k'=p'—k, u=pZ,

andAp3/2), Bp(s) are the contributions of the spin-3/2 projection operator.
For the half-integer spin the contributions of the spiprojection operator read

(-1 -5
(2

~ ) m 1
Apj= (kZR'Z)(JlIZ)IZ{(l O)PJ—'H/Z(Xu)

. ( M[Pa— (p'2p+p?p’)-pu/u] P’ pu—Pr—p'?
p-py— Pay—p? 0

) P 12(Xu)

[ mp’-p,/u
mp-p,/u 1

(—DITYH = - 10\
Bpj= 2 (k%k'2)-v23 — 0 o PiruXw)+

) Pi_1/2(Xu)

whereP/| (x) is the first derivative of the Legendre polynomial, and

~  (kpy) ~ . (Kpy) k-’
k=k— u Py K'=k'— u Py Xu:_(l'zz-k—,z)l/z' (CS)

(c) The A exchange using the gauge-invariant coupli@§), according to Eq(66) gives
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| f2na u
:477me mAP(S,Z)J-‘(I ), (C6)
f2 u
1 7NA
B —477me me(g/z)f(l) (C?)
2. Meson-exchange graphs
For the isoscalar mesotF(3)=F(3)=2.
For the isovector mesorf(3) =2, F(3)=-1.
(a) p-meson exchange:
K
L[ amo(EHkZ=2s) —1
e A1), (c9)
T mi-t _1 K
My
2 %
mT 1
gl = Jemmdonn 49”NN . (). (C9)
™ m,—t| Kp 0
My
(b) o-meson exchange:
2 11,2 12
omno ms  3(k“+k’9)|[1 O
- Gommdonn) M 208 TR ) ( )]-‘(I), (C10
8mm,_ mi mi—t 0 O
B'=0 (C1)

APPENDIX D: #N AMPLITUDES FOR HIGHER-SPIN BARYON EXCHANGE

The use of Gl couplings of higher-spin barydi®i] allows us to treat exchanges of baryons with any spin in a straight-
forward way. Taking the point of view that consistenNN; couplings (where byN we denote the spip-baryon,

=3/2) are those invariant under the appropriate gauge transformationsl‘cb}‘ theld, we can write down the following ansatz
for the =N scattering amplitude through a sgjirbaryon tree-level exchange:

I! 2 Coa o -
M(k’,k;P)=(—1)'—(2|+1)” —yﬁm><[P|’+1(—k-k’)+lk’kP|’(—k~k’)](PZ\/kZR’Z)', (D1)

wherel =j—3, P/(x) is the first derivative of the Legendre polynomiBljs the momentum of the exchanged baryon, and

- k-P
K,=k,—

F"z P, k,=Kk,/\k2. (D2)

This amplitude is actually just the spjnprojection operator contracted with the external pion momenta and multiplied by
9°p?(p—m) 1. Because of the projection operator, the amplitude contains only thej smintributions, as we will now
demonstrate.

In the c.m.s.P=(W,5), hencek= (0k) =(0,— 5). The s-channel helicity amplitude is then written as

’ —' =, , - —/ ’ W'y0+
MER=ul, (p" )M(K' k;p)uf(p)=Cjuf.(p")

m RN -
W[P(H(XSH(pp')fl(VD')(?’D)P((Xs)](pp's)'uﬁ(p), (D3)
wherex,=cos#, 6 is the c.m. scattering angls=W?, and the constant factors are absorbeg@ jn Using the Dirac equation,
(yP)uR(p) = (pEpyo—my)ui(p), we obtain
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—Wyo+m p Epryo—my pEpyo—m

> > o Plx)|(pP'9)uR(p).  (DA)

MY A=Cul(p")

W’}/O+m ,
2 P|+1(XS)+
S—m —m

The contribution of this amplitude to the partial wave with total spis given by the corresponding partial-wave amplitude.
The latter can be obtained by the procedure of Appendix B, for that we only need to know the following angular integrals:

11 ) 1, L=1-2n—-1,
Ef_ldxﬂ OIPL(X)= 0, otherwise, (3

wheren should be an integer between 0 atet()/2. The resulting parity-conserving partial-wave amplitude is then found to
be
S(“)Rf,p, J=j,
M?'P=Ci(pp's)' x| STO(RIPHN. N RE'P), J=j—1-2n, (D6)
SENRPPHNINREP),  J=j-2-2n,

whereN.. = (PEp=my)/p, SH)=(xW-m)~1, and factorRR are defined in Eq(B13). Using the explicit form oR, we can
see that the lower partial-wave contributions vanish exactly. Thus, ampliR@ehas only the highest-spin contribution:

M?'P=5,,Ci(pp’s)'SUR?”. (D7)
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