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State dependent effective interaction for the hyperspherical formalism
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The effective interaction method, traditionally used in the framework of a harmonic oscillator basis, is
applied to the hyperspherical formalism of few-body nuclei (A5326). The separation of the hyperradial part
leads to a state dependent effective potential. Undesirable features of the harmonic oscillator approach asso-
ciated with the introduction of a spurious confining potential are avoided. It is shown that with the present
method one obtains an enormous improvement of the convergence of the hyperspherical harmonics series in
calculating ground state properties, excitation energies, and transitions to continuum states.

PACS number~s!: 21.45.1v, 21.30.Fe, 31.15.Ja
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I. INTRODUCTION

Shell-model calculations in complex nuclei make use
the single particle harmonic oscillator~HO! basis and are
carried out in a truncated model space. In the last few ye
impressive progress has been made in the application
these shell-model methods to the study of light nuclei@1–5#.
In the so called no-core shell-model calculations one ke
all the nucleons active and, instead of the single particle
basis, one introduces HO basis functions that depend on
Jacobi coordinates, thus removing the spurious cente
mass motion from the beginning@4,5#.

Since the HO series has a slow convergence rate one
erally has to replace the bare nucleon-nucleon~NN! interac-
tion by an effective interaction tailored to the truncat
model space. Theoretically for a given model space one
find an effective interaction such that the spectrum of
effectiveA-body Hamiltonian coincides with a subset of th
spectrum of the full-space bare Hamiltonian. In practi
however, finding such an effective interaction is as diffic
as solving the fullA-body problem. Therefore one resorts
an approximate effective interaction, usually obtained fr
the solution of a two-body Hamiltonian. These two-body
fective interactions no longer lead to the exact result in
truncated space, but, if constructed properly, they retain
important properties:~i! they converge to the bare Hami
tonian if the model space is enlarged up to the full Hilb
space;~ii ! the energy levels of the effective Hamiltonian co
verge to the exact values faster than those of the bare Ha
tonian.

The HO basis functions resulting from a confining Ham
tonian do not possess the correct asymptotic behavior of
nuclearA-body Hamiltonian. As a result the use of the H
basis may lead to a rather slow convergence for energy le
as well as other observables. This limitation can be circu
vented by using hyperspherical harmonic~HH! basis func-
tions instead of a HO basis. In the HH formalism, which w
successfully applied to the nuclear few-body problem@6–9#,
the Jacobi coordinates are replaced by a single length c
dinate, the hyperradius, and a set of 3A24 hyperangles. The
0556-2813/2000/61~5!/054001~10!/$15.00 61 0540
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HH are theA-body generalization of the two-body spheric
harmonics, and likewise depend only on the hyperangu
~angular! coordinates in the hyperspherical~spherical! de-
composition of theA-body ~two-body! system. In general
the wave function can be expanded in a series consistin
products of HH basis functions and hyperradial basis fu
tions. Very often the use of correlation functions will acce
erate the slow convergence rate of the HH basis@6,8–10#. It
is the aim of the present work to investigate an alternat
way of improving the convergence. To this end we reform
late the effective interaction method for the HH expansio

The HO and the HH expansion become equivalent fo
particular choice for the hyperradial basis functions. The
fore a trivial way to achieve a reformulation would be
make the HH expansion equivalent to the HO expansi
However, by doing so one would lose the extra flexibility t
HH basis has in comparison to the HO basis and, moreo
impose an incorrect asymptotic behavior on the wave fu
tion. Therefore we reject such an equivalent formulation.

There is a further advantage of the HH basis, which is d
to the presence of the collective hyperradial coordina
Eventually it will allow the introduction of a state depende
effective interaction similar to the recently formulated H
multivalued effective interaction@2,11#. At first sight, how-
ever, it appears that the hyperradius leads to two proble
First, its collective feature seems to make it difficult to sing
out a two-body Hamiltonian in a natural way. Secondly,
using a general form for the hyperradial basis functions o
may find it difficult to identify a model space in accordan
with a two-body effective interaction. In this work we pro
pose to solve these problems by defining a model space
consists of a complete hyperradial set and the set of
functions with generalized angular momentum quant
numberK<Kmax. The effective interaction is then deduce
from a hyperangular Hamiltonian associated with the tw
body problem.

In Sec. II we review the method of hyperspherical coo
dinates and of the HH expansion. In Sec. III we derive
effective interaction for the HH expansion. Numerical resu
are then given in Sec. IV and conclusions are drawn
Sec. V.
©2000 The American Physical Society01-1
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II. THE HYPERSPHERICAL HARMONIC FUNCTIONS

To introduce the hyperspherical coordinates we start fr
the center-of-mass coordinateRW 5(1/A)( i 51

A rW i and the nor-
malized reversed orderN5A21 Jacobi coordinates

hW 15AA21

A S rW12
1

A21
~rW21rW31•••1rWA! D , ~1!

hW 25AA22

A21S rW22
1

A22
~rW31rW41•••1rWA! D ,

. . . ,

hW N5A1

2
~rWA212rWA!,

where thej th particle is specified relative to the center
mass of particlesj 11 to A. The Jacobi coordinatehW j con-
sists of a radial coordinateh j and a pair of angular coordi
natesĥ j[(u j ,f j ).

These coordinates are then transformed into the hype
gular coordinatesa2 , . . . ,aN through the relation

sinan5hn /rn , ~2!

where
05400
n-

rn
25rn21

2 1hn
25(

j 51

n

h j
2 . ~3!

For n5N we also find the relation

r2[rN
2 5

1

A (
i , j

A

~rW i2rW j !
2. ~4!

Therefore, the hyperradial coordinater is symmetric with
respect to permutations of the underlying single particle
ordinates.

The 3N53(A21) internal coordinates for theA-particle
system consist of the hyperradial coordinater[rN , and the
3N21 ‘‘hyperangular’’ coordinates VN

[$ĥ1 ,ĥ2 , . . . ,ĥN ,a2 ,a3 , . . . ,aN%. These coordinates de
pend on the set of Jacobi coordinates specified in Eq.~1!.

By using hyperspherical coordinates one can write
Laplace operator forn Jacobi coordinatesn51 . . .N, as a
sum of two terms

Dn5
1

rn
3n21

]

]rn
rn

3n21 ]

]rn
2

1

rn
2
K̂n

2 . ~5!

The hyperspherical, or grand angular momentum operatoK̂n
2

of the n Jacobi coordinates can be expressed in terms
K̂n21

2 and l̂ n
2 as follows@13#:
f

K̂n
252

]2

]an
2

1
3n262~3n22!cos~2an!

sin~2an!

]

]an
1

1

cos2an

K̂n21
2 1

1

sin2an

l̂ n
2 , ~6!

where we defineK̂1
2[ l̂ 1

2. The angular momentum operator associated with thesen coordinates isL̂W n5L̂W n211 l̂Wn . The operators

K̂n
2 , l̂ n

2 , K̂n21
2 , L̂n

2 , andL̂nz
commute with each other. The hyperspherical harmonic functionsY[Kn] are the eigenfunctions o

this hyperangular operator. The explicit expression for the HH functions of the firstn Jacobi coordinates is given by@12#

Y[Kn]5F (
m1 , . . . ,mn

^ l 1m1l 2m2uL2M2&^L2M2l 3m3uL3M3&3•••^Ln21Mn21l nmnuLnMn&)
j 51

n

Yl j ,mj
~ ĥ j !G

3F)
j 52

n

Nj~K j ; l jK j 21!~sina j !
l j~cosa j !

K j 21Pm j

[ l j 11/2,K j 211(3 j 25)/2]
„cos~2a j !…G , ~7!

whereYl ,m are the spherical harmonic functions,Pm
(a,b) are the Jacobi polynomials, andNj (K j ; l jK j 21) are normalization

constants given by@13#

Nj~K j ; l jK j 21!5F ~2K j13 j 22!m j !G@m j1K j 211 l j1~3 j 22!/2#

GS m j1 l j1
3

2DG@m j1K j 211~3 j 23!/2# G 1/2

. ~8!
1-2
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STATE DEPENDENT EFFECTIVE INTERACTION FOR . . . PHYSICAL REVIEW C 61 054001
The symbol@Kn# stands for the set of quantum numbe
l 1 , . . . ,l n , L2 , . . . ,Ln , m2 , . . . ,mn , and Mn . The quan-
tum numbersK j are given by

K j52m j1K j 211 l j ; m1[0, ~9!

and the m j are non-negative integers. By constructio
rn

KnY[Kn] is a harmonic polynomial of degreeKn . The HH

function Y[Kn] is an eigenfunction ofK̂n
2 with eigenvalues

Kn~Kn13n22!. ~10!

It is evident that the HH functions~7! do not possess an
special properties under particle permutation. Therefore
first step in applying the HH expansion to theA-body prob-
lem is the symmetrization of the HH basis. In the curre
work we employ two powerful algorithms@14,15# recently
developed for the construction of a HH basis with well d
fined permutational symmetry. This enabled us to check
results, since they could be obtained in two independ
ways.

In view of Eqs. ~3! and ~4! it is evident that the HO
Hamiltonian, written in the form

(
j 51

N S 2
D j

2
1v2h j

2D5
1

2S ]2

]r2 1
3N14

r

]

]r
2

K̂2

r2
1v2r D ,

~11!

has eigenvectors of the form

CHO5Rnr
~r!Y[K] , ~12!

with eigenvalues

En5\vS 3~A21!

2
1nD5\vS 3~A21!

2
12nr1K D .

~13!

Therefore the HHK-quantum number can be associated w
the quanta of excitations of the HO wave function.

III. THE EFFECTIVE INTERACTION

In general we would like to use the HH basis functions
solve theA-body Hamiltonian

H5(
i 51

A pW i
2

2m
1(

i , j

A

Vi j , ~14!

wherem is the nucleon mass andVi j is theNN interaction. In
practice, looking for the eigenvectors ofH in terms of the
HH expansion turns out to be a notoriously difficult tas
Therefore, one usually has to introduce correlation functi
in order to accelerate the convergence of the calcula
@6,8–10#. In this work, however, we shall explore anoth
possibility and instead of using correlation functions we sh
use the method of effective interactions@16#. This approach
is largely used in shell-model calculations~see, e.g., Ref.
@17#!, where the harmonic oscillator basis is used in a tr
05400
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cated model space. Instead of the bareNN interaction one
uses effective interactions inside the model space. DefininP
as the projection operator onto the model space andQ51
2P as the projection onto the complementary space,
model space Hamiltonian can be written as

HP5PF(
i 51

A pW i
2

2mGP1PF(
i , j

A

Vi j G
eff

P. ~15!

In general the effective interaction appearing in Eq.~15! is
an A-body interaction. If it is determined without any ap
proximation, then the model-space Hamiltonian provide
set of eigenvalues which coincide with a subset of the eig
values of the original full-space Hamiltonian, Eq.~14!. How-
ever, calculation of the exactA-body effective interaction is
as difficult as finding the full-space solution.

In the HH formalism the model space can be defined a
product of the hyperradial subspace and the complete se
HH basis functions with generalized angular moment
quantum numberK<Kmax. Instead of calculating the exac
effective interaction we shall look for an approximate effe
tive interaction with the following properties:Veff→V as
Kmax→`; the eigenvalues,Ei(Kmax), and eigenvectors of the
effectiveA-body Hamiltonian converge to their limiting val
ues faster than the eigenvalues and eigenvectors of the
Hamiltonian.

Let us now turn to the problem of constructing the effe
tive interaction. It is customary to approximateVeff by a sum
of two-body effective interactions determined from a tw
body problem. As the nuclear two-body system contains o
one bound state one is forced to introduce a confining po
tial into the two-body problem in order to ensure large ov
laps between the model space states and the eigenvecto
the two-body problem. It will be shown that in the prese
approach one does not need such an additional confi
potential.

Using the symmetrized HH basis, one can deduce the
trix elements of the effective interaction from the matrix e
ements of the ‘‘last’’ pair,

K (
i , j

A

V2 eff~rW i j !L 5
A~A21!

2
^V2 eff~rWA,A21!&. ~16!

The relevant hyperspherical degrees of freedom associ
with V2 eff(rWA,A21) are ĥN and the hyperangle,

sinaN5
r A,A21

A2r
. ~17!

A natural choice for the corresponding hyperspherical ‘‘tw
body’’ Hamiltonian is

H2~r!5
1

2m

K̂N
2

r2
1V~A2r sinaN•ĥN!, ~18!

since K̂N
2 contains the canonical kinetic energy associa

with the two-body variablesaN and ĥN @see Eq.~6!#. Such
1-3
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BARNEA, LEIDEMANN, AND ORLANDINI PHYSICAL REVIEW C 61 054001
anH2 is in fact anA-body effective interaction as it contain
the hyperspherical part of theA-body kinetic energy operato
and it is a function of the collective coordinater. The hy-
perradial kinetic energy operator has not been included
H2. The reason is that we can use a complete basis set fo
r space and therefore we do not need to define an effec
interaction for the hyperradial part.

Due to the collective coordinate,r, in H2 one has auto-
matically a confinement of the two-body system: for mod
ate values ofr the relation 0<r A,A21<A2r ensures local-
ization of the two-body wave function and for large values
r the effective Hamiltonian coincides with the bare on
since theNN interaction vanishes. Therefore large overla
between the model space states and the eigenvectors o
two-body problem are ensured.

As opposed to the HO approach we do not calculate
effective interaction for a ‘‘free’’ two-body system but for
‘‘bound’’ one. Therefore we can avoid the introduction inH2
of the additional confining potential which is necessary
the HO effective interaction and which leads to undesira
features.

The matrix elements ofH2 between theA-body HH func-
tions, Eq.~7!, are given by

^@KN#uH2~r!u@KN8 #&5d [KN][ K
N8 ]

1

2m

KN~KN13N22!

r2

1d [KN21][ K
N218 ]VKNLNl N ,K

N8 L
N8 l

N8

KN21LN21 ~r!,

~19!

where

V
KNLNl N ,K

N8 L
N8 l

N8

KN21LN21 ~r!5E dVNY[KN]* V~A2r sinaN•ĥN!Y[K
N8 ] .

~20!

We see thatH2 is diagonal in the quantum numbers@KN21#
and also, for central potentials, inLN , l N . Due to the hyper-
angular integrationH2 explicitly depends on quantum num
bers of the residual system, i.e.,KN21 and, for noncentral
forces,LN21. The effective two-body Hamiltonian is inde
pendent of the other quantum numbers in@KN21# @see Eq.
~7!#. As a result the HH effective interaction depends on
state of the residualA22 particle subsystem. Such a ‘‘me
dium correction’’ of the two-body force is of course a gre
advantage of our approach and is similar to the HO mu
valued effective interaction@2,3#. On the other hand one ha
to pay for it with greater numerical effort, since the effecti
interaction has to be calculated for all the various states
because it also depends on the specificA-body system con-
sidered.

We solve the hyperradial equation on a grid, whereH2 is
diagonalized for each grid pointr i and for all the possible
values ofKN21 in our model space. In general one shou
reach aKMAX value for theQ space of about 60 for the
ground state of thes-shell nuclei andKMAX;200 forp-shell
nuclei and excited states. From this point we can follow
same procedure as Barrett and Navra´til @4,5#. That is, by
05400
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employing the Lee-Suzuki@16# similarity transformation
method, we can use the eigenvectors,$u i &%, and eigenvalues
$e i%, of H2

KN21 ,LN21(r) to construct the effective interaction
Let us denote byua& the HH functions that belong to ou
model space, i.e., the HH functionu@KN#& such thatKN
<Kmax, and by ub& the states that belong to theQ space,
Q5$u@KN#&; KN.Kmax%. The Lee-Suzuki effective interac
tion then takes the form

PH̃2P5PH2P1PH2QvP, ~21!

where the transformation operatorv5QvP is given by the
equation

^bu i &5(
a

^buvua&^au i &. ~22!

If nP is the number of model-space HH basis functions t
belong to the subspaceKN21, we may solve Eq.~22! for v
by choosing a set,A, of nP eigenvectors with the lowes
eigenvaluesu i & and inverting the matrix̂au i &. The resulting
effective two-body Hamiltonian

^auH̃2~KN21 ,r!ua8&

5(
i

nP F ^au i &e i^ i ua8&1(
b

^au i &e i^ i ub&^buvua&G ,
~23!

will have the property thatPu i &, u i &PA, is a right eigenvec-
tor of H̃2 with eigenvaluee i . The effective interaction is in
general a non-Hermitian operator, however it can be H
mitized, using the transformation@18#

H2 eff5@P~11v†v!P#1/2H̃2@P~11v†v!P#21/2. ~24!

The effective interaction can be now deduced fromH2 eff , by
subtracting the kinetic energy term,

Veff5H2 eff2
1

2m

K̂N
2

r2
. ~25!

It can be seen that asKmax→` V2 eff indeed reproduces th
bareNN interaction in contrast to the HO effective intera
tion, where only the total Hamiltonian converges to the c
rect result. Another interesting feature of the current form
lation is that, in contrast to the HO effective interaction, t
HH effective interaction vanishes at large distances a
should for a system of noninteracting particles. In additi
we would like to mention that as in the HO approach@4,19#
the present formalism can be extended beyond two-body
fective interactions to also incorporate three- and more-b
effective interactions.

IV. NUMERICAL RESULTS

In order to check the proposed formulation of the hyp
spherical effective interaction, we have applied the form
ism to few-body nuclei in the mass rangeA5326. The
1-4
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TABLE I. List of the parameters of theNN potentials used in this work. The potential is written as a s
of a few terms; each is expressed asVi f (m i ,r )(Wi1Bi Ps2Hi Pt1Mi Pr), wherePs , Pt , Pr are spin-,
isospin-, and space-exchange operators.f (m i ,r )5exp(2mr2) for Gauss-type potential; f (m i ,r )
5exp(2mr)/r for Yukawa-type potential. The potential strengthsVi are in~MeV!. The rangem is in (fm22)
for Gauss-type or (fm21) for Yukawa type.

Potential Type i Vi m i Wi M i Bi Hi

MTV @20# Yukawa 1 1458.05 3.11 1.0 0.0 0.0 0.0

2 2 578.09 1.55 1.0 0.0 0.0 0.0

MTI-III @21# Yukawa 1 1458.27 3.11 0.5 0.5 0.0 0.0

2 2578.178 1.555 0.5 0.5 0.0495 0.0495

MN @22# Gauss 1 200.0 1.487 0.5 0.5 0.0 0.0

2 2178.0 0.639 0.25 0.25 0.25 0.25

3 291.85 0.465 0.25 0.25 20.25 20.25
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following simpleNN interactions are used: Malfliet-Tjon po
tentials MTV @20# and MTI-III @21# as well as the Minnesota
potential MN @22# ~see Table I!. The MTV interaction is
considered in all partial waves~not only in s waves! and in
the case of MTI-III the interaction is taken into account in
even partial waves. Of course we are aware that real
potential models have already been used even for nuclei
A.4 @23#, but the principal aim of the present work is th
introduction of the HH effective interaction. To this end w
investigate the rate of convergence of the HH series with
effective interaction for ground state energies, radii, and
citation energies. In addition we study transitions to co
tinuum states via the method of the Lorentz integral tra
form @24#.

By expanding the effective wave functions into HH ba
functions we transform the effective Hamiltonian@Eq. ~15!#
into a set of coupled differential equations in the hyperrad
r. These equations are then solved by expanding the solu
in terms of generalized Laguerre polynomials.

Our results for ground state energies and radii as wel
first excitation energies are summarized in Table II. In ca
where results from other authors were available, they are
given in Table II. In general one observes very good agr
ment between our results and those of the various o
methods. In the following we discuss in detail the quality
the convergence for the calculated observables.

In Fig. 1 we illustrate the convergence patterns with b
and effective interactions for binding energy and radius
the A53 system with the MN potential. It is readily see
that the effective interaction improves the convergence d
tically. Already withK52 one finds for the energy~radius! a
deviation of only 0.6%~1.3%! from the converged value
while with the bare interaction one needsK510(8) for a
similarly good result. ForK510 one obtains sufficiently
converged results with the effective interaction, whereas
the bare interaction one has to go up toK518 or higher to
reach a similar precision.

In Fig. 2 we show the corresponding results for4He with
the MTV potential. In this case the difference between
convergence of effective and bare interactions is even st
05400
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ger. For the effective interaction one nearly obtains the c
rect values for energy and radius with a rather lowK of 4.
The convergence with the bare interaction is considera
worse since even withK520 one does not have complete
converged results. In Fig. 3 we compare our results to th
of Navrátil and Barrett with the HO effective interactio
@5,25#. One also obtains a very nice convergence in the
case, although it depends on the chosen harmonic oscil
frequency V. On the other hand it is evident that th
parameter-free HH effective interaction leads to a consid
able improvement.

In Figs. 4–6 we give an overview of our results for th
bound state properties with the various potential models.
A54 one finds very good convergence for both the bind
energy and radius. For the systems withA.4, which can be
considered approximately as ana core plus remaining nucle
ons at larger distances, there is generally good converge
except for the case of the radii with the MTV potential. W
do not reach the same extremely good precision as in
cases withA<4, however, since we have to restrict our ca
culation to a somewhat lowerK. This is due to the fact tha
an increasing number of nucleons leads to a much hig
number of HH functions for the sameK. In general our cal-
culations are limited to about 400 HH basis functions.

The first excitation energies of theA56 systems are il-
lustrated in Fig. 7. One sees that the convergence pattern
quite similar to the ground state patterns. Figure 7 also sh
that also non-ground-state observables can be calculated
sufficient precision with the HH effective interaction.

One may ask what happens at even higher energies,
in reactions where states in the continuum are involved
order to address this question we consider response func
describing transitions from the ground state to the continu
due to an external probe. Such response functions can
calculated with the method of the Lorentz integral transfo
@24#. In this formalism, one needs, in addition to the grou
state, an additional ‘‘Lorentz-state’’C̃, which is localized
and which carries all the information about the excitation
the system and of the final state interactions. The conv
1-5
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TABLE II. Comparison of binding energies (EB) in ~MeV! and root mean square radii (^r 2&1/2) in ~fm!
obtained with the present effective interaction method in the HH formalism~EIHH! with results of other
methods. In the case of EIHH the calculations with MTI-III and MN potentials include the Coulomb i
action. For EIHH the number in parenthesis indicates the variance with respect to the result obtaine
K5Kmax21. The quality of the convergence can be inferred from Figs. 1–6.

MN MTI–III MTV
Nucleus Method@Ref.# E ^r 2&1/2 E ^r 2&1/2 E ^r 2&1/2

3H EIHH 28.3856~5! 1.7036~1! 28.718~9! 1.7064~2! 28.244~8! 1.6798~3!

EIHO @25# 28.235~5!

SVM @26# 28.380 1.698 28.2527 1.682

Faddeev@27# 28.25273

ATMS @28# 28.26~1! 1.682

CHH1 @29# 28.240

CHH2 @30# 28.716

GFMC @31# 28.26~1! 1.682

VMC @26# 28.27~3! 1.68

3H! EIHH 20.421~9! 4.757~5! 21.01~1! 7.2~1! 20.073~6! 6.973~8!

4He EIHH 229.96~1! 1.4106~1! 230.71~2! 1.4222~2! 231.358~9! 1.40851~3!

SVM @26# 229.937 1.41 231.360 1.4087

FY @32# 231.36

ATMS @28# 231.36 1.40

CHH2 230.69 1.421

CRCG @33# 231.357

GFMC @31# 231.3~2! 1.36

VMC @26# 231.30~5! 1.39

4He! EIHH 27.848~4! 3.405~7! 28.48~1! 3.59~2!

5He EIHH 228.1~2! 2.17~6! 229.4~1! 2.13~5! 243.7~3! 1.499~5!

SVM @26# 243.48 1.51

VMC @26# 243.0~2! 1.51

5He! EIHH 220.8~9! 3.33~1! 222.~1! 3.312~2!

6He EIHH 230.6~5! 2.323~2! 232.5~3! 2.263~9! 268.5~2! 1.512~4!

SVM @26# 230.07 2.44 266.30 1.52

VMC @26# 266.3~3! 1.50

6He! EIHH 222.5~3! 3.55~9! 223.5~2! 3.54~3!

6Li EIHH 235.2~4! 2.16~2! 236.6~3! 2.15~2! 268.5~2! 1.512~4!

SVM @26# 234.59 2.22 266.30 1.52

CHH3 @9# 264.55

6Li! EIHH 225.7~4! 226.6~5! 3.35~3!
un
-

e

ion
nt
gence of the Lorentz integral transform depends on theK0,
the maximum hyperangular quantum number in the gro
state, and onKT , the maximum hyperangular quantum num
ber in C̃. Both effects are illustrated in Fig. 8, where w
05400
d
show the Lorentz integral transform of the4He total photo-
absorption cross section in the electric dipole approximat
with the MTI-III potential. One sees that for a converge
result of the transform a rather lowKT for the HH expansion
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of C̃ is sufficient, while one has to include somewhat high
K0’s in the HH expansion of the ground state. Our result
the Lorentz transform is a bit lower than that of Ref.@34#
since there, as opposed to the Lorentz state, the ground

FIG. 1. Binding energy~a! and root mean square radius~b! of
the A53 system for the Minnesota potential@22# as a function of
the hyperangular quantum numberK. The asymptotic value ha
been indicated by a dashed line.

FIG. 2. Same as Fig. 1 forA54 and the MTV potential@20#.
05400
r
r

ate

FIG. 3. Comparison between results of the present method~full
squares: effective interaction; open squares: bare interaction! and
that of Refs.@5,25# obtained with different values of the HO param
eterV(\51). Binding energy~a! and root mean square radius~b!
of theA54 system for the MTV potential@20# as a function of the
hyperangular quantum numberK or of the HO quantum numberN.

FIG. 4. Binding energies~a! and root mean square radii~b! of
different A-body systems for the MTV potential@20# as a function
of the hyperangular quantum numberK.
1-7
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was calculated without correlations and was not fully co
vergent. However the conclusions of Ref.@34# remain un-
changed.

V. CONCLUSION

In this work we have introduced a hyperspherical effe
tive interaction. To this end we have defined a model sp

FIG. 5. Same as Fig. 3 for MTI-III potential@21#.

FIG. 6. Same as Fig. 3 for MN potential@22#.
05400
-

-
e

consisting of a complete hyperradial basis and a set of
functions with generalized angular momentum quant
numberK<Kmax. The effective interaction has been derive
from a hyperangular Hamiltonian related to the two-bo

FIG. 7. Binding energiesEB and first excitation energiesE1
! of

6He ~a! and 6Li ~b! for the MTI-III @21# and MN potentials@22#.

FIG. 8. Lorentz integral transform of the4He total photoabsorp-
tion cross section as a function ofsR ~s I520 MeV!. In ~a! the
convergence in the ground state hyperangular quantum numbeK0

is shown for a fixed value of the hyperangular quantum numberKT

of the ‘‘Lorentz state’’C̃; in ~b! the convergence in the hyperan

gular quantum numberKT of the ‘‘Lorentz state’’C̃ is shown for a
fixed value of the ground state hyperangular quantum numberK0.
1-8
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problem. The Hamiltonian also includes the hyperangular
netic energy, which is proportional to 1/r2, wherer is the
collective hyperradial coordinate. Because of this additio
A-body piece theA22 residual system cannot be consider
as a pure spectator. We are led to an effective interac
depending explicitly on the state of the residual system, si
lar to the HO multivalued effective interaction.

We should mention that the present approach can be
tended in a straightforward way to derive an HH three-
more-body effective interaction.

We have applied the formalism developed here to fe
body systems in the mass rangeA5326. For these system
we have calculated binding/excitation energies, radii and,
the method of the Lorentz integral transform, reactions
energies far into the continuum. For the largerA’s these
calculations have become feasible due to a powerful a
rithm for constructing symmetrized basis states. In gen
we obtain nicely converging results showing that the H
effective interaction is a very powerful tool. Particularly in
teresting is the fact that the rate of convergence is alw
very good and does not depend much on the observable
der consideration. We believe that the inherent confinem
of the effective ‘‘two-body‘‘ Hamiltonian is largely respon
sible for this fact.

We have compared our results to other calculations av
able in the literature. In general a very good agreemen
obtained.
L

dy

ys
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Finally we would like to point out that the present a
proach has various advantages compared to the harm
oscillator formalism:~i! one does not need to introduce a
additional confining potential and, contrary to the HO a
proach, one obtains an effective interaction which is ess
tially parameter free depending only upon the size of
model space. Therefore one does not have a problem th
typical for the HO formalism, namely, that the convergen
of different observables, e.g., binding energies and radii, l
to rather different optimal choices for such a parameter;~ii !
the HH effective interaction is automatically state depende
and ~iii ! the HH basis functions are more appropriate
describing the asymptotic part of the wave function than
the HO basis functions. On the other hand, it will requ
additional effort to elevate the present approach to the s
level of sophistication as the HO formalism when incorp
rating modern realistic interactions and a larger number
particles.
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