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The effective interaction method, traditionally used in the framework of a harmonic oscillator basis, is
applied to the hyperspherical formalism of few-body nuckeiH3—6). The separation of the hyperradial part
leads to a state dependent effective potential. Undesirable features of the harmonic oscillator approach asso-
ciated with the introduction of a spurious confining potential are avoided. It is shown that with the present
method one obtains an enormous improvement of the convergence of the hyperspherical harmonics series in
calculating ground state properties, excitation energies, and transitions to continuum states.

PACS numbegps): 21.45+v, 21.30.Fe, 31.15.Ja

I. INTRODUCTION HH are theA-body generalization of the two-body spherical
harmonics, and likewise depend only on the hyperangular
Shell-model calculations in complex nuclei make use of(@angulay coordinates in the hypersphericedpherical de-
the single particle harmonic oscillat¢HO) basis and are composition of theA-body (two-body system. In general,

carried out in a truncated model space. In the last few year@e wave function can be e_xpanded in a series consisting of
impressive progress has been made in the application oducts of HH basis functions and hyperradial basis func-

these shell-model methods to the study of light nucdeis]. I(r)erllt?e. t\rqgrglg\flsegom/iruseeng; Crgtréeﬁt;ﬁg le—]lcggﬁhjsszvlllcl] aﬁcel'
In the so called no-core shell-model calculations one keep 9 :

. i : ; i i i [ternativ
all the nucleons active and, instead of the single particle H(éN the aim of the present work to investigate an alternative

: ; ) . ay of improving the convergence. To this end we reformu-
basis, one introduces HO basis functions that depend on theo e effective interaction method for the HH expansion.

Jacobi coordinates, thus .rerr_\oving the spurious center of The HO and the HH expansion become equivalent for a
mass motion from the beginnirg,5|. particular choice for the hyperradial basis functions. There-
Since the HO series has a slow convergence rate one gefyre a trivial way to achieve a reformulation would be to
erally has to replace the bare nucleon-nucléN) interac-  make the HH expansion equivalent to the HO expansion.
tion by an effective interaction tailored to the truncatedHowever, by doing so one would lose the extra flexibility the
model space. Theoretically for a given model space one calH basis has in comparison to the HO basis and, moreover,
find an effective interaction such that the spectrum of thémpose an incorrect asymptotic behavior on the wave func-

effective A-body Hamiltonian coincides with a subset of the tion. Therefore we reject such an equivalent formulation.
spectrum of the full-space bare Hamiltonian. In practice, There is a further advantage of the HH basis, which is due
however, finding such an effective interaction is as difficultto the presence of the collective hyperradial coordinate.
as solving the fullA-body problem. Therefore one resorts to Eventually it will allow the introduction of a state dependent
an approximate effective interaction, usually obtained fromeffective interaction similar to the recently formulated HO
the solution of a two-body Hamiltonian. These two-body ef-multivalued effective interactiof2,11]. At first sight, how-
fective interactions no longer lead to the exact result in thesver, it appears that the hyperradius leads to two problems.
truncated space, but, if constructed properly, they retain twéirst, its collective feature seems to make it difficult to single
important properties(i) they converge to the bare Hamil- out a two-body Hamiltonian in a natural way. Secondly, by
tonian if the model space is enlarged up to the full Hilbertusing a general form for the hyperradial basis functions one
spacefii) the energy levels of the effective Hamiltonian con- may find it difficult to identify a model space in accordance
verge to the exact values faster than those of the bare Hamiwith a two-body effective interaction. In this work we pro-
tonian. pose to solve these problems by defining a model space that
The HO basis functions resulting from a confining Hamil- consists of a complete hyperradial set and the set of HH
tonian do not possess the correct asymptotic behavior of thiinctions with generalized angular momentum quantum
nuclearA-body Hamiltonian. As a result the use of the HO numberK <K ... The effective interaction is then deduced
basis may lead to a rather slow convergence for energy levefsom a hyperangular Hamiltonian associated with the two-
as well as other observables. This limitation can be circumbody problem.
vented by using hyperspherical harmoii¢H) basis func- In Sec. Il we review the method of hyperspherical coor-
tions instead of a HO basis. In the HH formalism, which wasdinates and of the HH expansion. In Sec. Il we derive the
successfully applied to the nuclear few-body probl&m9], effective interaction for the HH expansion. Numerical results
the Jacobi coordinates are replaced by a single length cooare then given in Sec. IV and conclusions are drawn in
dinate, the hyperradius, and a set #-34 hyperangles. The Sec. V.
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Il. THE HYPERSPHERICAL HARMONIC FUNCTIONS

2_ 2 2__
To introduce the hyperspherical coordinates we start from Pn=Pn-1t 77”_12‘1 7; - )
the center-of-mass coordinale=(1/A)= ,r; and the nor-
malized reversed ordéd=A—1 Jacobi coordinates Forn=N we also find the relation
- A-1/. 1 -
m=\"a |17 a" 1“2""’3+ ra) ), (D) p?=pi= A|2<J (f|—f )2, (4)
. A—2/ 1 . Therefore, the hyperradial coordingteis symmetric with
n2= m( f2= A= 2(r3+ gt 1), respect to permutations of the underlying single particle co-
ordinates.
The 3N=3(A—1) internal coordinates for tha-particle
Cy system consist of the hyperradial coordinatepy, and the
3N—-1 “hyperangular” coordinates Qy
) 1. ) ={91.72, - .. \In. 2,3, ... an}. These coordinates de-
INT (ra—1=ra) pend on the set of Jacobi coordinates specified in(Eq.

By using hyperspherical coordinates one can write the
where thejth particle is specified relative to the center of Laplace operator fon Jacobi coordinates=1...N, as a
mass of particles+1 to A. The Jacobi coordlnatej con- SUm of two terms
sists of a radial coordinatg; and a pair of angular coordi-

natesn, (0;.,9). 1 0 4., 0 1.,
These coordinates are then transformed into the hyperan- Anv=—73r7 G o —Kn- ()
gular coordinatesy,, . . . ,ay through the relation Pn " " Pn
sina / @) The hyperspherical, or grand angular momentum opel%ﬁor
n= Mn!Pn; of the n Jacobi coordinates can be expressed in terms of
where K2_, andi? as follows[13]:

., & 3n—6—(3n—-2)coq2a,) J 1

= — —+ . |/\2 =2

. ! ! 6
n Ja? sin(2ay,) dan  cofa, Sinzan " ©

where we definé(fzif. The angular momentum operator associated with theserdinates i¢.,=L,,_,+1,. The operators

K2 I2 Kn 1 ﬁ andIA_nZ commute with each other. The hyperspherical harmonic funcﬂ@,@nq are the eigenfunctions of
this hyperangular operator. The explicit expression for the HH functions of thenfitatobi coordinates is given (2]

n

y[Kn1=L 2 (lamglomel LaMo)(LoMoalaMalLgMa) X - (Lo Mo aloMolLaM) LT Y, (7))

x| 11 N(K; ;|jKj—1)(Sinaj)lj(COSOZj)Kj’1PEL|':+1/2'KJ_1+(3J75)/2](005(2%-)) , (7)
=2 j
where, , are the spherical harmonic functiorB* are the Jacobi polynomials, aud(K;;I;K;_;) are normalization
constants given bj/13]
2K +3j—2)u T +Ki_1+1;+ (3] —2)/2] 112
M(Kj;lej—l): ( i J )/*L?j’ [M] j—17 1 (3] )12] . )
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The symbol[K,] stands for the set of quantum numberscated model space. Instead of the bhifd interaction one

1, ... 00y Loy oo bpny Mo, ...y, @andM,,. The quan- uses effective interactions inside the model space. Defiing
tum numbers; are given by as the projection operator onto the model space @rdl
—P as the projection onto the complementary space, the
Ki=2u;+K;_1+1;;  p1=0, (9) model space Hamiltonian can be written as
. . . A =2 A
and the u; are non-negative integers. By construction, _ Pi
pﬁ"y[Kn] is a harmonic polynomial of degre€,. The HH Hp=P 21 2m|P TP .E<, Vi ﬁP' (15
€

function )k ; is an eigenfunction oK 2 with eigenvalues o _ o ]
" In general the effective interaction appearing in Etp) is

Kn(Ky+3n—2). (100 anA-body interaction. If it is determined without any ap-
proximation, then the model-space Hamiltonian provides a
It is evident that the HH function&) do not possess any set of eigenvalues which coincide with a subset of the eigen-
special properties under particle permutation. Therefore thgalues of the original full-space Hamiltonian, Ed4). How-
first step in applying the HH expansion to tAebody prob-  ever, calculation of the exaét-body effective interaction is
lem is the symmetrization of the HH basis. In the currentas difficult as finding the full-space solution.
work we employ two powerful algorithmgl4,15 recently In the HH formalism the model space can be defined as a
developed for the construction of a HH basis with well de-product of the hyperradial subspace and the complete set of
fined permutational symmetry. This enabled us to check ouHH basis functions with generalized angular momentum
results, since they could be obtained in two independenquantum numbeK=K,.. Instead of calculating the exact
ways. effective interaction we shall look for an approximate effec-
In view of Egs.(3) and (4) it is evident that the HO tive interaction with the following properties/.z—V as
Hamiltonian, written in the form Kmax—2; the eigenvalues; (K40, and eigenvectors of the
\ ) effective A-body Hamiltonian converge to their limiting val-
2 AL 5 o) 1/ #* 3N+4 9 3 K2 5 ues f_aste_r than the eigenvalues and eigenvectors of the bare
; 2 TN TS (;_,)ZJFT% E“L“’ Pl Hamiltonian.
(11) Let us now turn to the problem of constructing the effec-
tive interaction. It is customary to approximate; by a sum
has eigenvectors of the form of two-body effective interactions determined from a two-
body problem. As the nuclear two-body system contains only
Vo= Rnp(p)y[K] , (12 one bound state one is forced to introduce a confining poten-
tial into the two-body problem in order to ensure large over-
with eigenvalues laps between the model space states and the eigenvectors of
the two-body problem. It will be shown that in the present
_ w(S(A—l) +2n +K> approach one does not need such an additional confining
2 P ' potential.
(13 Using the symmetrized HH basis, one can deduce the ma-

) _trix elements of the effective interaction from the matrix el-
Therefore the HHK-quantum number can be associated Withaments of the “last” pair,

the quanta of excitations of the HO wave function.

3(A-1)

E.=fw 5

+n

A . A(A-1) .
IIl. THE EFFECTIVE INTERACTION Z Vaerllij) | =——— (Voeilraa-1)). (16
<]

In general we would like to use the HH basis functions to ) .
solve theA-body Hamiltonian The relevant hyperspherical degrees of freedom associated

with V, i(Faa_1) are 7y and the hyperangle,

A g2 A
H=2 _|m+2 Vij s (14) FaA-1
=1 <] sinay=—=—. (17)
V2p

wheremis the nucleon mass anyj; is theNN interaction. In

practice, looking for the eigenvectors bff in terms of the A natural choice for the corresponding hyperspherical “two-
HH expansion turns out to be a notoriously difficult task. body” Hamiltonian is

Therefore, one usually has to introduce correlation functions

in order to accelerate the convergence of the calculation 1 kﬁ R
[6,8—10. In this work, however, we shall explore another Ha(p)= om 2 TV V2p sinay- ), (18)
possibility and instead of using correlation functions we shall p

use the method of effective interactiofi]. This approach -y _ _ o )
is largely used in shell-model calculatiofisee, e.g., Ref. Since Ky contains the canonical kinetic energy associated
[17]), where the harmonic oscillator basis is used in a trunwith the two-body variablegry and 7y [see Eq.(6)]. Such
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anH, is in fact anA-body effective interaction as it contains employing the Lee-Suzuk{16] similarity transformation

the hyperspherical part of tiebody kinetic energy operator method, we can use the eigenvectdts)}, and eigenvalues,
and it is a function of the collective coordinage The hy-  {¢}, of H;Nfl'LNfl(p) to construct the effective interaction.
perradial kinetic energy operator has not been included ifet ys denote bya) the HH functions that belong to our
H,. The reason is that we can use a complete basis set for thgodel space, i.e., the HH functiofiKy]) such thatKy

p space and therefore we do not need to define an effectivek  and by|g) the states that belong to th@ space,

interaction for the hyperradial part. Q={|[Kn]); Kn>Kmas- The Lee-Suzuki effective interac-
Due to the collective coordinate, in H, one has auto- tjgn then takes the form

matically a confinement of the two-body system: for moder-
ate values op the relation Gsrpa_1=< \/Ep ensures local- p~H2p:pH2p+ PH,QwP, (21)
ization of the two-body wave function and for large values of
p the effective Hamiltonian coincides with the bare one,where the transformation operator=QwP is given by the
since theNN interaction vanishes. Therefore large overlapsequation
between the model space states and the eigenvectors of the
two-body problem are ensured. T ;
As opposed to the HO approach we do not calculate an (Bl ; (Blola)ali). 22
effective interaction for a “free” two-body system but for a
“bound” one. Therefore we can avoid the introductionHn If np is the number of model-space HH basis functions that
of the additional confining potential which is necessary forPelong to the subspadéy_;, we may solve Eq(22) for
the HO effective interaction and which leads to undesirabldy choosing a setA, of np eigenvectors with the lowest
features. eigenvaluesi) and inverting the matriXa|i). The resulting
The matrix elements dfl, between thed-body HH func-  effective two-body Hamiltonian

tions, Eq.(7), are given by (a|F,(K )| ')
alFz(AN-1.p)|@

KT Ha( ) KLy = S s o Kt SN 2) e
([KNIIH2(p)[[K{ D)= KNIKK 2 p? =2i (a|i>ei<i|a'>+%<a|i>5i<i|lg><lg|w|a>’
+5[KN—1][K[Lj—l]vi:[;:_NN'I(l&L&|’L‘(p)a (23)

(199  will have the property thal|i), |i) € A, is a right eigenvec-
tor of ﬁz with eigenvaluee; . The effective interaction is in
where general a non-Hermitian operator, however it can be Her-
mitized, using the transformatidi 8]

Kn—1ln- i 7
yiN-1hN-1 (p):J dQNy[*KN]V(\/EpSInaN.nN)y[K,’\‘].

KnLnN KL Hy o= [P(1+ 0 w)P1YH,[P(1+ w'w)P] Y2 (24)
(20)

The effective interaction can be now deduced fidpg, by
We see thaH, is diagonal in the quantum numbétsy 4] subtracting the kinetic energy term,
and also, for central potentials, in, | . Due to the hyper- .
angular integratioH, explicitly depends on quantum num- 1 Kﬁ
bers of the residual system, i.&y_; and, for noncentral Ver=Haerr— 50— (25
forces,Ly_;. The effective two-body Hamiltonian is inde- P

pendent of the other quantum numberg iy 1] [see EQ. |t can be seen that d€ya—* V, e indeed reproduces the
(7)]. As a result the HH effective interaction depends on theyare NN interaction in contrast to the HO effective interac-
state of the residuah—2 particle subsystem. Such a “me- tjon, where only the total Hamiltonian converges to the cor-
dium correction” of the two-body force is of course a great rgct result. Another interesting feature of the current formu-
advantage of our approach and is similar to the HO multiqation is that, in contrast to the HO effective interaction, the
valued effective interactiof?,3]. On the other hand one has L effective interaction vanishes at large distances as it
to pay for it with greater numerical effort, since the effective shouid for a system of noninteracting particles. In addition
interaction has to be calculated for all the various states ange \would like to mention that as in the HO approddhi 9]
because it also depends on the spedfisody system con-  the present formalism can be extended beyond two-body ef-

sidered. _ _ _ . fective interactions to also incorporate three- and more-body
We solve the hyperradial equation on a grid, whikgis  offective interactions.

diagonalized for each grid point; and for all the possible
values ofKy_1 in our model space. In general one should
reach aKyax Vvalue for theQ space of about 60 for the
ground state of the-shell nuclei and{y;ax ~ 200 for p-shell In order to check the proposed formulation of the hyper-
nuclei and excited states. From this point we can follow thespherical effective interaction, we have applied the formal-
same procedure as Barrett and Nar§4,5]. That is, by ism to few-body nuclei in the mass range=3—6. The

IV. NUMERICAL RESULTS
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TABLE I. List of the parameters of theN potentials used in this work. The potential is written as a sum
of a few terms; each is expressed\§$(u; ,r)(W;+B;P,—H;P,.+M;P,), whereP_,, P, P, are spin-,
isospin-, and space-exchange operatof§u;,r)=exp(—ur?) for Gauss-type potential;f(u;,r)
=exp(—ur)/r for Yukawa-type potential. The potential strengiisare in(MeV). The rangeu is in (fm~2)
for Gauss-type or (fm?) for Yukawa type.

Potential Type i Vi Mi W, M; B; H;

MTV [20] Yukawa 1 1458.05 3.11 1.0 0.0 0.0 0.0
2 — 578.09 1.55 1.0 0.0 0.0 0.0

MTI-III [21] Yukawa 1 1458.27 3.11 0.5 0.5 0.0 0.0
2 —578.178 1.555 0.5 0.5 0.0495 0.0495

MN [22] Gauss 1 200.0 1.487 0.5 0.5 0.0 0.0
2 —178.0 0.639 0.25 0.25 0.25 0.25
3 —91.85 0.465 0.25 0.25 -0.25 -0.25

following simpleNN interactions are used: Malfliet-Tjon po- ger. For the effective interaction one nearly obtains the cor-
tentials MTV[20] and MTI-11I [21] as well as the Minnesota rect values for energy and radius with a rather lkvof 4.
potential MN [22] (see Table )l The MTV interaction is  The convergence with the bare interaction is considerably
considered in all partial wave®ot only ins waves and in - worse since even witK =20 one does not have completely
the case of MTI-Ill the interaction is taken into account in all converged results. In Fig. 3 we compare our results to those
even partial waves. Of course we are aware that realistigf Navrail and Barrett with the HO effective interaction
potential models have already been used even for nuclei witfs; o5) One also obtains a very nice convergence in the HO
A>4 [23], but the principal aim of the present work is the case  although it depends on the chosen harmonic oscillator
introduction of the HH effective interaction. To this end we frequency 0. On the other hand it is evident that the

invest.igat_e the rqte of convergence of the HH serig_s with th%arameter-free HH effective interaction leads to a consider-
effective interaction for ground state energies, radii, and X5 pje improvement

citation energies. In addition we study transitions to con- In Figs. 4—6 we give an overview of our results for the

Eg]rl:#r[nz Afs]tates via the method of the Lorentz integral trans'bound state properties with the various potential models. For

By expanding the effective wave functions into HH basisA:A' one finds_very good convergence for bOI.h the binding
functions we transform the effective Hamiltoniq. (15)]  €nergy and radius. For the systems with 4, which can be
into a set of coupled differential equations in the hyperradiugensidered approximately as arcore plus remaining nucle-

p. These equations are then solved by expanding the solutids at larger distances, there is generally good convergence,
in terms of genera”zed Laguerre po|yn0mia|s_ except for the case of the radii with the MTV pOtential. We

Our results for ground state energies and radii as well ago not reach the same extremely good precision as in the
first excitation energies are summarized in Table Il. In case§ases withA<4, however, since we have to restrict our cal-
where results from other authors were available, they are alseHlation to a somewhat lowe¢. This is due to the fact that
given in Table II. In general one observes very good agreean increasing number of nucleons leads to a much higher
ment between our results and those of the various othgtumber of HH functions for the same In general our cal-
methods. In the following we discuss in detail the quality ofculations are limited to about 400 HH basis functions.
the convergence for the calculated observables. The first excitation energies of the=6 systems are il-

In Fig. 1 we illustrate the convergence patterns with bardustrated in Fig. 7. One sees that the convergence patterns are
and effective interactions for binding energy and radius ofguite similar to the ground state patterns. Figure 7 also shows
the A=3 system with the MN potential. It is readily seen that also non-ground-state observables can be calculated with
that the effective interaction improves the convergence drassufficient precision with the HH effective interaction.
tically. Already withK =2 one finds for the energyadiug a One may ask what happens at even higher energies, e.g.,
deviation of only 0.6%(1.3% from the converged value, in reactions where states in the continuum are involved. In
while with the bare interaction one neels=10(8) for a  order to address this question we consider response functions
similarly good result. FolkK =10 one obtains sufficiently describing transitions from the ground state to the continuum
converged results with the effective interaction, whereas foflue to an external probe. Such response functions can be
the bare interaction one has to go upkie-18 or higher to ~ calculated with the method of the Lorentz integral transform
reach a similar precision_ [24] In this formalism, one needS, in addition to the ground

In Fig. 2 we show the corresponding results fote with  state, an additional “Lorentz-state¥, which is localized
the MTV potential. In this case the difference between theand which carries all the information about the excitation of
convergence of effective and bare interactions is even strorthe system and of the final state interactions. The conver-
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TABLE Il. Comparison of binding energies€g) in (MeV) and root mean square radiir)*/?) in (fm)
obtained with the present effective interaction method in the HH formalBsiHH) with results of other
methods. In the case of EIHH the calculations with MTI-1Il and MN potentials include the Coulomb inter-
action. For EIHH the number in parenthesis indicates the variance with respect to the result obtained with
K=Ka—1. The quality of the convergence can be inferred from Figs. 1—6.

MN MTI-IlI MTV
Nucleus MethodRef] E (r2yt2 E (r3)2 E (r3)12
SH EIHH —8.38565) 1.70361) —8.7189) 1.70642) —8.2448) 1.67983)
EIHO [25] —8.2355)
SVM [26] —8.380 1.698 —8.2527 1.682
Faddee\27] —8.25273
ATMS [28] —8.261) 1.682
CHH1[29] —8.240
CHH2[30] —8.716
GFMC [31] —8.261) 1.682
VMC [26] —8.273) 1.68
SH* EIHH —0.4219) 4.7575) —1.01(1) 7.21) —0.0736) 6.9738)
“He EIHH —29.961) 1.41061) —30.712) 1.42222) —31.3589) 1.408513)
SVM [26] —29.937 1.41 —31.360 1.4087
FY [32] —31.36
ATMS [28] —31.36 1.40
CHH2 —30.69 1.421
CRCG[33] —31.357
GFMC [31] -31.32) 1.36
VMC [26] —31.305) 1.39
“He* EIHH —7.8484) 3.4057) —8.481) 3.592)
SHe EIHH —28.1(2) 2.1716) —29.41)  2.135) —43.73) 1.4995)
SVM [26] —43.48 1.51
VMC [26] —43.02) 1.51
SHer EIHH —20.89) 3.331) -22(1)  3.3122)
SHe EIHH —30.65 2.3232) —3253) 22639 —68.52 1.5124)
SVM [26] —30.07 2.44 —66.30 1.52
VMC [26] —66.393) 1.50
SHer EIHH —22.573) 3559 —2352)  3.543)
BLi EIHH —35.24) 2.162) —36.63 2152 —68.52) 1.5124)
SVM [26] —34.59 2.22 —66.30 1.52
CHH3[9] —64.55
B~ EIHH —25.74) —26.65  3.353)

gence of the Lorentz integral transform depends onkBe  show the Lorentz integral transform of tiéle total photo-
the maximum hyperangular quantum number in the groungibsorption cross section in the electric dipole approximation
state, and oy, the maximum hyperangular quantum num- with the MTI-IIl potential. One sees that for a convergent
ber in ¥'. Both effects are illustrated in Fig. 8, where we result of the transform a rather lok; for the HH expansion
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FIG. 1. Binding energya) and root mean square radi(s of FIG. 3. Comparison between results of the present metfutid
the A=3 system for the Minnesota potent{@2] as a function of ~squares: effective interaction; open squares: bare interaciioth
the hyperangu|ar quantum numbkr The asymptotic value has that of Ref5[5,25:| obtained with different values of the HO param-
been indicated by a dashed line. eterQ)(2=1). Binding energy(a and root mean square radi(ty

of the A=4 system for the MTV potentidR0] as a function of the
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of ¥ is sufficient, while one has to include somewhat higher

Ky's in the HH expansion of the ground state. Our result for
the Lorentz transform is a bit lower than that of RE34]

since there, as opposed to the Lorentz state, the ground state
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consisting of a complete hyperradial basis and a set of HH

Wars Cﬁtlmlj_:ated ert?r(])ut C(:]rrlelqtlc;]ns ?n'ge\évgsrnr%t fg”yncon'functions with generalized angular momentum quantum
vergent. However the conclusions o 4l remain un- - imberk < Kmax- The effective interaction has been derived

changed. from a hyperangular Hamiltonian related to the two-body
V. CONCLUSION
20
In this work we have introduced a hyperspherical effec- e @
tive interaction. To this end we have defined a model space sl o~ s
0 — S
. 2
\\ MN 5 1.0
45 - . T <
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FIG. 6. Same as Fig. 3 for MN potentig22].
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FIG. 8. Lorentz integral transform of tHtHe total photoabsorp-
tion cross section as a function ofz (0;,=20 MeV). In (a) the
convergence in the ground state hyperangular quantum nuiyer
is shown for a fixed value of the hyperangular quantum nurkier
of the “Lorentz state”¥; in (b) the convergence in the hyperan-
gular quantum numbeg; of the “Lorentz state”¥ is shown for a
fixed value of the ground state hyperangular quantum nurkdger
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problem. The Hamiltonian also includes the hyperangular ki- Finally we would like to point out that the present ap-
netic energy, which is proportional togf, wherep is the  proach has various advantages compared to the harmonic
collective hyperradial coordinate. Because of this additionabscillator formalism:(i) one does not need to introduce an
A-body piece thé\— 2 residual system cannot be consideredadditional confining potential and, contrary to the HO ap-
as a pure spectator. We are led to an effective interactioproach, one obtains an effective interaction which is essen-
depending explicitly on the state of the residual system, simitially parameter free depending only upon the size of the
lar to the HO multivalued effective interaction. model space. Therefore one does not have a problem that is

We should mention that the present approach can be exypical for the HO formalism, namely, that the convergence
tended in a straightforward way to derive an HH three- orof different observables, e.g., binding energies and radii, lead
more-body effective interaction. to rather different optimal choices for such a paramdier;

We have applied the formalism developed here to fewthe HH effective interaction is automatically state dependent;
body systems in the mass rangje= 3— 6. For these systems and (iii) the HH basis functions are more appropriate for
we have calculated binding/excitation energies, radii and, vialescribing the asymptotic part of the wave function than are
the method of the Lorentz integral transform, reactions athe HO basis functions. On the other hand, it will require
energies far into the continuum. For the larg&¥s these additional effort to elevate the present approach to the same
calculations have become feasible due to a powerful algotevel of sophistication as the HO formalism when incorpo-
rithm for constructing symmetrized basis states. In generalating modern realistic interactions and a larger number of
we obtain nicely converging results showing that the HHparticles.
effective interaction is a very powerful tool. Particularly in-
teresting is the fact that the rate of convergence is always ACKNOWLEDGMENTS
very good and does not depend much on the observable un-
der consideration. We believe that the inherent confinement The authors would like to thank Petr Natitdor trigger-
of the effective “two-body* Hamiltonian is largely respon- ing this work by presenting his results at an EGorkshop,
sible for this fact. for stimulating discussions and for providing us with thée

We have compared our results to other calculations availresults for the MTV potential. We would also like to ac-
able in the literature. In general a very good agreement i&nowledge Bruce Barrett and Kalman Varga for useful dis-
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