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Spectra of doubly heavy quark baryons
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Baryons containing two heavy quarks are treated in the Born-Oppenheimer approximation. Tngehnro
equation for the two-center Coulomb plus harmonic oscillator potential is solved by the method of the ethalon
equation at large intercenter separations. Asymptotical expansions for the energy term and wave function are
obtained in analytical form. Using those formulas, the energy spectra of doubly heavy baryons with various
guark compositions are calculated analytically.

PACS numbes): 24.85:+p, 03.65.Pm, 12.39.Pn, 12.40.Yx

INTRODUCTION In this paper, we tred® Qq baryons in the nonrelativistic
approach by using the solution of the Sdfirmer equation
The investigation of the properties of hadrons containingwith two-center Coulomb plus harmonic oscillator potential,
one or more heavy quarks is very important for understandk.e., the well-known method of the ethalon equation which is
ing the dynamics of quark and gluon interactions. Presentlyidely used for solving the Schdinger equation with two-
at the LHC,B factories, and the Tevatron with high luminos- center pure Coulomb potential in the physicstbf [4—6].
ity, several experiments have been proposed, in which a dd~irst, we give a general scheme of treatm®@®@q baryons in
tailed study of baryons containing two heavy quarks can behe Born-Oppenheimer approximation. Then, the two-center
performed. In particular, in the forthcoming experiment atSchralinger equation with two-center Coulomb plus har-
CERN, the COMPASS group is going to find the doubly monic oscillator potential is analytically solved with some
charmed baryons and study their physical properties. In thiapproximation: the energy term of the light quark moving in
connection, doubly heavy quark baryons are now becominghe field of two heavy quarks is obtained in the form of an
one of the most exciting subjects in particle physics. Thereasymptotical expansion over the inverse power of the dis-
fore, theoretical predictions of the properties of doubly heavytance between heavy quarks. Finally, we give an analytical
quark baryons acquire a large significance for the forthcomformula of the baryon energy spectrum QQa.
ing experimental study of these particles. So far there have
been various approaches by which their mass spectra and
other properties can be calculated. One of them is the non-
relativistic quark model which gives relatively accurate re-

sults for baryon spectridl—3]. The possible quark composi-  |n the Born-Oppenheimer approximation the wave func-

tions of doubly heavy quark baryons areq cbg andbbg  tion is split into heavy- and light-quark degrees of freedom
whereq denotes a lighti,d, or squark. Note that the baryons

containing the top quartk) are not a practical subject here

because the top quark is extremely heavy and hence we have V(R =2, dn(R)Yn(RI),

no chance of finding them as stable hadrons. The doubly n

heavy quark baryons may be considered as an analog of the

hydrogen molecular ioH; , which has been treated suc- whereR is the distance between two heavy quarks arsl
cessfully in the Born-Oppenheimer approximation. The samehe distance between the light quark and center of mass of
approximation is expected to be efficient even for doublythe heavy-quark pair. The light-quark wave functigr,R)
heavy quark baryons, though there exist some differencesnd its energy terr(R) can be found from the Schiinger
between these baryons aHg systems. One of them is, for equation

this case, the appearance of the confining potential in addi-

tion to the QCD Coulomb potential. As is well known, the 1

variables of the Schainger equation with two-center Cou- ——A+V(r)+V(ry) |¢y=E(R) ¢,

lomb plus confining potential cannot be separated for their 2mq

kinematical variables, in general. To our knowledge, the

two-center potential which allows the separation of variablesvherer, andr, are the distances between light and heavy
is only the two-center Coulomb plus harmonic oscillator po-quarks,Q; andQ,, respectively. The binding energy of this
tential. system is approximated by the equation
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A+Voo(R)+E(R) | p=84,

QQ

whereM o is the reduced mass 61 Q.

A quark potential with Coulomb plus harmonic confine-

ment for this baryon is given bj3]

1 @
V(rj)=2, inxj(vo—ArﬁJrr—__s)
1] 1]

2

o
VO—Ari2j+—S).
rij

In the field of two heavy quarks with this potential, the mo-
tion of a light quark can be nonrelativistically described by

the following Schrdinger equation:

1A222224V—ER 1
5 _E_E+w(rl+r2)_§ o|=ER)y, (1)

whereZ=2a¢/3 andw?=2A/3.
In prolate spheroidal coordinates defined as

r{+ro, r—ro

Fo(1<g<m), =g

¢= (—1<n<1),

the potential term in Egl) can be written in the form

2 a(é)+b(n) w’R® 4
V(rler)Z_E 27 t———3V% @
where
w’R*
a(§)=2ZR—- 2 £(8-1),
wZ 4
b(n)=2ZR~ ’(n*—1).

As is well known[4], the Schrdinger equation with po-
tential in the form of Eq(2) is separable in prolate spheroi-
dal coordinates. Then it is convenient to use

U Ving e™m

VI ar

where ¢ andm are azimuthal angle and azimuthal quantum

number, respectively. After substituting this into Edy), we

obtain from the following ordinary differential equations

connected with separation constaiktand m:

h2

h _ 2
U”(§)+ ZJFM_ 1

héye+ ——|U(§)=0,
-1 (#—1)°
3
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V() + h2+ LI L-m V(7)=0
n 4 1_772 Yn (1_7]2)2 n )
(4)
wherea=27/\2E’ and y= w?/8E’?, and further
h=+2E'R, (5)
with
e w’R? 4V
-—*3V%.

The finiteness and continuity of the wave functignn the
whole space lead to the following boundary conditions for
the functionsU andV:

U(6)]g=1=0, U(§)e..—0,

V(n)l,-+1=0.

(6)
)

ASYMPTOTICS OF THE QUASIANGULAR EQUATION

We will approximately solve Eqg3) and (4) for largeR
by the method of the ethalon equation. This method is suc-
cessfully applied to the solution of the nonrelativistic two-
center Coulomb problerf¥—6] and in the theory of the dif-
fraction of waves. Details of the method of the ethalon
equation are given if4—7], also briefly described in Appen-
dix B.

Let us start from the angular equatiof). As an ethalon
equation for Eq.(4), we choose the following Whittaker
equation[8]:

W h* h%k 1-m? 0 g
+ Z+ T+ 422 = ( )

and seek a solution in the form
V=12 ()] ¥My ma(h?2), 9

whereM k,m,z(hzz) is the solutionregular at zerpof Eq. (8).
Substituting Eq(9) into Eq. (4) and taking into account Eq.
(8), we get the following equation far

z'? 12 11 kz'? A
T_y(x_ ) h? TR - 2x(1-x/2)
LT 1 z'? 1{ 10, @0
—| ———— | ——{zx}=0,
h2\x?(1-x?) z?/] 2h?

where

"

3
{Z,X}=—§(—,

2 i
+ - )

!

N

andr=(1—-m?)/4x=1+ 7.
The requirement of coincidence at the transition points
[6,7],
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Z(X)lx:o:(),

leads to the following “quantum condition:

27

\=2kz' (0)+— 2(0) _

z'(0)

We will seek the solution of Eq10) and eigenvalue& in
the form of the following asymptotical expansion:

R

11

xlx

Substitution of these expansions into EfQ) gives us the
recurrence system of differential equations or

z5=2y"Ax-1),

z;=0,
o1 +2kz(’) (z1)? 2\q 7’3
zy=— - - — e,
2220 20 2z zZx(1-x/2) 2
and forX,

)\O:2kz(,)(0)1

\1=2kZ(0),

25(0)
N,=2kz)(0)+27 -1, ...

z;(0)

Solving these recurrence equations, we obtain
2kB—4r 1
)\(”)=4k’yl/2+T+O(F) , (12

for A, and

. (13

z= 1’2x(2—x)+i In(1—x)+0 1
4 hzﬁ a

for z
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a solution of which is expressed by the confluent hypergeo-

metric functiong 8,9]

s—2c—1 1

W= yCe— h4y2/2|: 2 C+ E’h4y2 ’

wherec=(1+Jm?+3)/2.
Boundary condition(6) and the properties of functiorts

[8] give rise to the following expression far

s=4n+\ym’+3+2.

Substituting

U=[y(&)] "W(y(¢))
into Eq. (3), we obtain

2yr2 1(1 A 1
A ertdeeye M) L
4 h2 4 52_1 h3 §2_1
. 47 3—4ry'? 1{ fa-0. (15
h%(&2-1)2  4h* y2  2n* v '
After substitution of
2
y<(t)
¢_ 4 ’

this equation can be reduced to the form

) 11 ( 1>¢'2 A
¢ _’y(t+1)+¥ Z— n+§ 7_t(tT2)

1 a(t+l) 7(¢'?
|Gtz e

TRt

(16)

wheret=¢—1. The quantization condition which follows
from ¢(x)=0 is written in the form

1 ¢/I
N=-2s (0)+——— —+1]
¢' Y

. an

t=0

From boundary conditions one can obtain, for quantum

numberk [5,6],

ke g+ m+1
_q 77

whereq=0,1,2 ... .

ASYMPTOTICS OF THE QUASIRADIAL EQUATION

As an ethalon equation for E(), we take the following
equation:
47+3

W+
4y?

h2s—hy?— W=0, (14)

Inserting the asymptotical expansions

E E

xlx

into Eq. (16) and solving the equations obtained herewith,
we get the following result:

1
y=2yM(t?+2t) 1%+ v Sy~ Y(t?+2t) YIn(t+1)

1 2(t+1
+ﬁay*3’4(t2+ 2t)*1’2|n¥ +0

t+1 - (18

ht
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for y, and
a 4r7—So Say —ua 1
& =_ v2_ — -
A 2sy h+ " o +0 ik
(19
for \.

ASYMPTOTICAL EXPANSION FOR THE ENERGY

Asymptotical expansiong&l2) and(19) give us an expres-

sion for the energy term in the form of multipole expansion.

In order to obtain this expansion one should insert

into Egs.(12) and(19). Equating\(” to be\(¥) and taking
into account Eq(5), we get the following equations for co-
efficientsgq ,E,, ... :

1
E1= g [(sw—2ko™*)(2E) %+ (45"~ 16k* ~ 167)

X (2E)*?,

5
E2:_

> E2+ 25w YEq+Eq(2Eg) Y22~

L1672+ 16k?

—4s%), ... .

Now we need to fincgy. In order to find this value, we
note that forR—«,E'=E,, and hence we have

w’R? 4
——+ V.

(20)
On the other hand, for large we have

Z o0
V(ry,ry)= FZ( ) P,(cosf) +

R2

X || r2+2rR cosf+ T

RZ

r’—2rR cosf+ —

+
4

|

2

R
2l 2r24 —

4
5 Vo.

3 (21

Hence, for the energy term with this potential we obtain

N »’R?
2

4

E=20| N+~ +3

2

Vo, (22

where N=n+q+m+1 is the principal qguantum number.
Comparing Egs(20) and (22), we obtain
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3
N+ =

EOZZ(D 2 .

Thus, the following asymptotical expansion is obtained
for the energy term of a light quark in the field of two heavy
quarks:

w?R?
—— +Eo+

4
Vot

E="3

E, E
B B
R R2?

QQq BARYON SPECTRA

As mentioned above, th®Qq binding energy can be
finally obtained by solving the Schdimger equation

— —=—A+Voo(R)+E(R) |p=¢¢. (23
QQ
If one takesE(R) in the form
e Ay CR g B
=T3Vot 5 TRt R
for
Voo(R) = w?R? 2v
QQ( )= "R 3V0
then Eq.(23) can be rewritten as
- A+w’2R2—Z—I—V p=co (24)
2Moq R °° ’
whereZ'=Z—E;, o'?=30? andV{=2V,—E,.

To solve this equation, we use the resulf 0] where a
method for an analytical solution of the Schinger equa-
tion with potential

V(R)= £ +\RK

(R)=—=

was offered. Details of this method and its application to our
potential are given in Appendix A. Application of this

method to Eq(24) gives us

2w

ENnI—

3
N+ 5) +[Z2"%w'0ry]¥5—2V,y, (25

whereN is the principial quantum number of the light quark
moving in the field ofQQ, andr ,, is defined in Appendix A.
Formula (25) describes the energy spectrum of tQ€q
baryon. In Tables I, II, and Ill, the mass spectraof, bbq,
and bcq baryons calculated using formul@5) are given,
respectively. The following values of potential parameters
are chosen in this calculation=0.39, ©>=0.174 GeV,
andV,=0.05 GeV for the potential

|
3

V

a
—TS—I—er—VO).
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TABLE |. The mass spectrum of thecq baryon (in GeV) calculated using formula25); m,
=0.385 GeV,m.=1.486 GeV,n, and nq are the principal quantum numbers of the light quark aod
diquark, respectively, and is the orbital quantum number of thee diquark.

n ,ng,L Mass n;,nq,L Mass  n;,nq,L Mass  n;,ng,L Mass

1,1,0 3.661 111 3.613 1,2,2 3.649 1,33 3.694
1,2,0 3.730 121 3.708 1,3,2 3.764 1,43 3.825
1,30 3.816 1,31 3.799 1,4,2 3.872 153 3.949
1,40 3.914 141 3.901 15,2 3.988 1,6,3 4.077
1,50 4.024 151 4.012 1,6,2 4.110 1,73 4.210
2,10 3.839 2,11 3.791 2,2,2 3.828 2,33 3.873
2,2,0 3.908 2,21 3.887 2,3,2 3.942 2,43 4.003
2,30 3.994 231 3.978 24,2 4.051 2,53 4.127
2,4,0 4.093 2,41 4.079 2,52 4.166 2,6,3 4.255
2,50 4.202 2,51 4.190 2,6,2 4.289 2,7,3 4.388
3,10 4.018 3,11 3.970 3,2,2 4.006 3,3,3 4.051
3,2,0 4.086 3,21 4.065 3,32 4.120 34,3 4.182
3,3,0 4.172 33,1 4.156 3,4,2 4.229 3,53 4.305
3,4,0 4.271 34,1 4.257 3,52 4.344 3,6,3 4.433
3,50 4.380 3,51 4.369 3,6,2 4.467 3,7,3 4.567

CONCLUSION calculations in the nonasymptotical region.

In this work we have treated doubly heavy baryons in the
Born-Oppenheimer approximation. The following two prob- APPENDIX A: THE SCALING VARIATIONAL METHOD
lems have been solved in the framework of this approxima- AND ITS APPLICATION TO THE COULOMB PLUS
tion: (1) the Schrdinger equation for the two-center Cou- CONFINING POTENTIAL
lomb plus harmonic oscillator potential and?) the Consider the following Hamiltonian
Schralinger equation for the central symmetric Coulomb
plus harmonic oscillator potential. As the final result an ana- 1
lytical formula for the energy spectrum of baryons contain- H=—5A+V(r), (A1)
ing two heavy quarks is derived. The formula obtained is
applied for the calculation of the mass spectra of doublywhich obeys the eigenvalue equation
heavy quark baryons with various quark compositions. The
above analytical results could be useful for further numerical Hm=Entn, (il ¥nn)=8nn 17 (A2)

TABLE Il. The mass spectrum of thébq baryon (in GeV) calculated using formula25); m,
=0.385 GeV,m,=4.88 GeV,n, and nq are the principal quantum numbers of the light quark &id
diquark, respectively, and is the orbital quantum number of thdd diquark.

n;,ng,L Mass  nj,ng,L Mass  nj,ng,L Mass  n;,ng,L Mass

1,1,0 9.890 111 9.874 12,2 9.886 1,33 9.900

1,2,0 9.911 12,1 9.905 1,32 9.922 1,4,3 9.942

1,30 9.939 1,31 9.934 14,2 9.957 153 9.981

1,40 9.970 14,1 9.966 152 9.993 1,6,3 10.022
15,0 10.005 151 10.001 16,2 10.032 17,3 10.064
2,10 10.096 211 10.081 2,2,2 10.093 2,33 10.107
2,2,0 10.118 2,21 10.112 2,32 10.129 2,43 10.149
2,3,0 10.146 231 10.141 24,2 10.164 2,53 10.188
2,4,0 10.177 2,41 10.173 2,52 10.200 2,6,3 10.229
2,50 10.212 251 10.208 2,6,2 10.239 2,7,3 10.271
3,1,0 10.303 3,11 10.288 3,2,2 10.300 3,3,3 10.314
3,2,0 10.325 3,21 10.318 3,3,2 10.336 3,4,3 10.356
3,3,0 10.353 33,1 10.347 3,4,2 10.371 3,5,3 10.395
3,4,0 10.384 34,1 10.380 3,52 10.407 3,6,3 10.436
3,5,0 10.419 3,51 10.415 3,6,2 10.446 3,7,3 10.478
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TABLE lll. The mass spectrum of thécq baryon (in GeV) calculated using formulg25); m,
=0.385 GeV,m,=4.88 GeV,m.=1.486 GeV,n, andny are the principal quantum numbers of the light
quark andbc diquark, respectively, and is the orbital quantum number of thee diquark.

n ,ng,L Mass n;,nq,L Mass  n;,ng,L Mass  n;,ng,L Mass

1,2,0 7.217 121 7.160 1,3,2 7.178 1,4,3 7.199
1,3,0 7.259 1,31 7.206 1,4,2 7.233 15,3 7.263
1,40 7.307 141 7.251 15,2 7.286 1,6,3 7.324
1,50 7.361 151 7.300 1,6,2 7.343 1,73 7.386
2,10 7.438 2,11 7.355 2,2,2 7.403 2,3,3 7.452
2,2,0 7.471 2,21 7.414 2,3,2 7.432 2,43 7.454
2,30 7.513 231 7.461 24,2 7.488 2,53 7.518
2,40 7.562 241 7.505 2,52 7.541 2,6,3 7.579
2,50 7.615 251 7.555 2,6,2 7.597 2,7,3 7.641
3,10 7.692 3,11 7.669 3,2,2 7.687 3,3,3 7.709
3,2,0 7.726 3,21 7.716 3,32 7.743 3,4,3 7.773
3,3,0 7.768 3,31 7.760 3,4,2 7.796 3,53 7.833
3,4,0 7.816 34,1 7.810 3,52 7.852 3,6,3 7.896
3,5,0 7.870 3,51 7.864 3,6,2 7.912 3,7,3 7.961

nn'=12..., LI'=12,..., eni(@)=(dn[Hol of) +(nlw’r?| o)
where n and | denote the principal and angular quantum _ Z'%a® o?a ?n?
numbers, respectively. To solve this equation, we start from - on2 + 2
a set of functionq ¢} which are the eigenfunctions of an
arbitrary central field Hamiltonia# X[5n%+1-3l(1+1)]. (AB6)
Hodn=€mbnis (bl bnr)=8nwdyr.  (A3)  For calculation of the second matrix element, we have used
the well-known expression for average vahfein Coulomb
Then, we construct the functionals field which is given in[11]. Fromde(a)/da=0, we obtain
a a 1/5
eni(@)=(onlHon), (A4) 2w?n*
" nin ap=1 — [5n2+1—3I(1+1)]
322
where
o 3p Then, for the energy level one can get the following analyti-
bni=a”¢pn (ar). cal formula:
The value fora is determined by en=[Z%w%r 15, (A7)
de where
(£>(a—a)—0. (A5)

ry=n?5n%+1-3I(1+1)]°
Let us now apply this method to our problem, i.e., to the

Schralinger equation with potential APPENDIX B: THE FORMAL PROCEDURE OF THE
METHOD OF ETHALON EQUATION

!

V(r)y=— E+w’2r2. Let us consider the following second order differential
equation:
As H,, we choose a pure Coulomb Hamiltonian, i.e., y"(X)+p2 N —q(x)]y(x)=0 (B1)
Ho— — EA— Z_' in the interval[ a,b]. Let Eq.(B1) in this interval have one
0 2 R” transition point[poles and zeros of functio®(x,\) =q(x)
—\ are called transition points of this equatjon
Then, e, =—2Z'?/2n? with n=n,+1+ 1, wheren, is the ra- The equation
dial quantum number.
According to the above procedure, we have w"(z) — p?R(z)w(z)=0, (B2)
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which has the same or close transition points as(B@), is  In the case of Eq(4) we have forQ
called the ethalon equation for E@1).
We will seek the solution of EqB1) in the form

y(x)=[Z'(x,p)]~ Yaw(z(x,p)), (B3)
wherew is the solution of Eq(B2). Inserting Eq.(B3) into

h2+ h\ hio 2 1-m?
o —htyptt
47152 )2

Q=-

and forR [from Eq. (8)]

Eg. (B1) and taking into account EqB2) we obtain the h* h%k 1-m?
following (nonlineay differential equation forz(x,p): R=—|— Z* 7+ 172
1 H .
R(2)Z'2— Q(x.\)— —Z{z,x}=0 (B4) So for z one obtains Eq(10):
2p 2’2_ e 1+kz’2_ A
where 4 yx=1) ﬁ 4 z 2X(1—x/2)
{ } ( //)2+ " . pe ( 1 Z/Z 1 { } 0
ZX}=—z| — — — —— | ——{zx
2\ 7z 7' h2\x3(1-x%) Z?] 2h?
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