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Spectra of doubly heavy quark baryons
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Baryons containing two heavy quarks are treated in the Born-Oppenheimer approximation. The Schro¨dinger
equation for the two-center Coulomb plus harmonic oscillator potential is solved by the method of the ethalon
equation at large intercenter separations. Asymptotical expansions for the energy term and wave function are
obtained in analytical form. Using those formulas, the energy spectra of doubly heavy baryons with various
quark compositions are calculated analytically.

PACS number~s!: 24.85.1p, 03.65.Pm, 12.39.Pn, 12.40.Yx
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INTRODUCTION

The investigation of the properties of hadrons contain
one or more heavy quarks is very important for understa
ing the dynamics of quark and gluon interactions. Prese
at the LHC,B factories, and the Tevatron with high lumino
ity, several experiments have been proposed, in which a
tailed study of baryons containing two heavy quarks can
performed. In particular, in the forthcoming experiment
CERN, the COMPASS group is going to find the doub
charmed baryons and study their physical properties. In
connection, doubly heavy quark baryons are now becom
one of the most exciting subjects in particle physics. The
fore, theoretical predictions of the properties of doubly hea
quark baryons acquire a large significance for the forthco
ing experimental study of these particles. So far there h
been various approaches by which their mass spectra
other properties can be calculated. One of them is the n
relativistic quark model which gives relatively accurate
sults for baryon spectra@1–3#. The possible quark compos
tions of doubly heavy quark baryons areccq, cbq, andbbq,
whereq denotes a lightu,d, or s quark. Note that the baryon
containing the top quark~s! are not a practical subject her
because the top quark is extremely heavy and hence we
no chance of finding them as stable hadrons. The dou
heavy quark baryons may be considered as an analog o
hydrogen molecular ionH2

1 , which has been treated su
cessfully in the Born-Oppenheimer approximation. The sa
approximation is expected to be efficient even for dou
heavy quark baryons, though there exist some differen
between these baryons andH2

1 systems. One of them is, fo
this case, the appearance of the confining potential in a
tion to the QCD Coulomb potential. As is well known, th
variables of the Schro¨dinger equation with two-center Cou
lomb plus confining potential cannot be separated for th
kinematical variables, in general. To our knowledge,
two-center potential which allows the separation of variab
is only the two-center Coulomb plus harmonic oscillator p
tential.
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In this paper, we treatQQq baryons in the nonrelativistic
approach by using the solution of the Schro¨dinger equation
with two-center Coulomb plus harmonic oscillator potenti
i.e., the well-known method of the ethalon equation which
widely used for solving the Schro¨dinger equation with two-
center pure Coulomb potential in the physics ofH2

1 @4–6#.
First, we give a general scheme of treatmentQQq baryons in
the Born-Oppenheimer approximation. Then, the two-cen
Schrödinger equation with two-center Coulomb plus ha
monic oscillator potential is analytically solved with som
approximation: the energy term of the light quark moving
the field of two heavy quarks is obtained in the form of
asymptotical expansion over the inverse power of the d
tance between heavy quarks. Finally, we give an analyt
formula of the baryon energy spectrum forQQq.

DOUBLY HEAVY QUARK BARYON IN THE
BORN-OPPENHEIMER APPROXIMATION

In the Born-Oppenheimer approximation the wave fun
tion is split into heavy- and light-quark degrees of freedo

C~R,r !5(
n

fn~R!cn~R,r !,

whereR is the distance between two heavy quarks andr is
the distance between the light quark and center of mas
the heavy-quark pair. The light-quark wave functionc(r ,R)
and its energy termE(R) can be found from the Schro¨dinger
equation

F2
1

2mq
D1V~r 1!1V~r 2!Gc5E~R!c,

where r 1 and r 2 are the distances between light and hea
quarks,Q1 andQ2, respectively. The binding energy of th
system is approximated by the equation
©2000 The American Physical Society04-1
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F2
1

2M̄QQ

D1VQQ~R!1E~R!Gf5«f,

whereM̄QQ is the reduced mass ofQQ.
A quark potential with Coulomb plus harmonic confin

ment for this baryon is given by@3#

V~r i j !5(
i , j

1

4
l il j S V02Ari j

2 1
as

r i j
D

52
2

3 (
i , j

S V02Ari j
2 1

as

r i j
D .

In the field of two heavy quarks with this potential, the m
tion of a light quark can be nonrelativistically described
the following Schro¨dinger equation:

F2
1

2
D2

Z

r 1
2

Z

r 2
1v2~r 1

21r 2
2!2

4

3
V0Gc5E~R!c, ~1!

whereZ52as/3 andv252A/3.
In prolate spheroidal coordinates defined as

j5
r 11r 2

R
~1,j,`!, h5

r 12r 2

R
~21,h,1!,

the potential term in Eq.~1! can be written in the form

V~r 1 ,r 2!52
2

R2

a~j!1b~h!

j22h2
1

v2R2

2
2

4

3
V0 , ~2!

where

a~j!52ZR2
v2R4

4
j2~j221!,

b~h!52ZR2
v2R4

4
h2~h221!.

As is well known@4#, the Schro¨dinger equation with po-
tential in the form of Eq.~2! is separable in prolate sphero
dal coordinates. Then it is convenient to use

c5
U~j!

Aj221

V~h!

A12h2

e6 imf

A2p
,

wheref andm are azimuthal angle and azimuthal quantu
number, respectively. After substituting this into Eq.~1!, we
obtain from the following ordinary differential equation
connected with separation constantsl andm:

U9~j!1Fh2

4
1

h~aj2l!

j221
2h4gj21

12m2

~j221!2GU~j!50,

~3!
04520
V9~h!1Fh2

4
1

hl

12h2
2h4gh21

12m2

~12h2!2GV~h!50,

~4!

wherea52Z/A2E8 andg5v2/8E82, and further

h5A2E8R, ~5!

with

E85E2
v2R2

2
1

4

3
V0 .

The finiteness and continuity of the wave functionc in the
whole space lead to the following boundary conditions
the functionsU andV:

U~j!uj5150, U~j!uj→`→0, ~6!

V~h!uh56150. ~7!

ASYMPTOTICS OF THE QUASIANGULAR EQUATION

We will approximately solve Eqs.~3! and ~4! for largeR
by the method of the ethalon equation. This method is s
cessfully applied to the solution of the nonrelativistic tw
center Coulomb problem@4–6# and in the theory of the dif-
fraction of waves. Details of the method of the ethal
equation are given in@4–7#, also briefly described in Appen
dix B.

Let us start from the angular equation~4!. As an ethalon
equation for Eq.~4!, we choose the following Whittake
equation@8#:

W91F2
h4

4
1

h2k

z
1

12m2

4z2 GW50 ~8!

and seek a solution in the form

V5@z8~h!#21/2Mk,m/2~h2z!, ~9!

whereMk,m/2(h
2z) is the solution~regular at zero! of Eq. ~8!.

Substituting Eq.~9! into Eq. ~4! and taking into account Eq
~8!, we get the following equation forz:

z82

4
2g~x21!22

1

h2 S 1

4
1

kz82

z
2

l

2x~12x/2! D
1

t

h2 S 1

x2~12x2!
2

z82

z2 D 2
1

2h2
$z,x%50, ~10!

where

$z,x%52
3

2 S z9

z8
D 2

1
z-

z8
,

andt5(12m2)/4,x511h.
The requirement of coincidence at the transition poi

@6,7#,
4-2
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z~x!ux5050,

leads to the following ‘‘quantum condition’’:

l52kz8~0!1
2t

h2 Fz9~0!

z8~0!
21G . ~11!

We will seek the solution of Eq.~10! and eigenvaluesl in
the form of the following asymptotical expansion:

z5 (
k50

`
zk

hk
, l5 (

k50

`
lk

hk
.

Substitution of these expansions into Eq.~10! gives us the
recurrence system of differential equations forz,

z0852g1/2~x21!,

z1850,

z285
1

2z08
1

2kz08

z0
2

~z18!2

2z08
2

2l0

z08x~12x/2!
2

z82
2

2
, . . . ,

and forl,

l052kz08~0!,

l152kz18~0!,

l252kz28~0!12tS z09~0!

z18~0!
21D , . . . .

Solving these recurrence equations, we obtain

l (h)54kg1/21
2kb24t

h2
1OS 1

h4D , ~12!

for l, and

z5g1/2x~22x!1
1

h2
b ln~12x!1OS 1

h4D , ~13!

for z.
From boundary conditions one can obtain, for quant

numberk @5,6#,

k5q1
m11

2
,

whereq50,1,2, . . . .

ASYMPTOTICS OF THE QUASIRADIAL EQUATION

As an ethalon equation for Eq.~3!, we take the following
equation:

W91Fh2s2h4y22
4t13

4y2 GW50, ~14!
04520
a solution of which is expressed by the confluent hyperg
metric functions@8,9#

W5yce2h4y2/2FS s22c21

4
,c1

1

2
,h4y2D ,

wherec5(11Am213)/2.
Boundary condition~6! and the properties of functionsF

@8# give rise to the following expression fors:

s54n1Am21312.

Substituting

U5@y~j!#21/2W„y~j!…

into Eq. ~3!, we obtain

y2y82

4
2gj21

1

h2 S 1

4
2sy822

l

j221
D 1

1

h3

aj

j221

1
4t

h4~j221!2
2

324t

4h4

y82

y2
2

1

2h4
$y,j%50. ~15!

After substitution of

f5
y2~ t !

4
,

this equation can be reduced to the form

f822g~ t11!1
1

h2 F1

4
2S n1

1

2Df82

f
2

l

t~ t12!G
1

1

h3

a~ t11!

t~ t12!
1

t

h4 S f82

f2
2

4

t2~ t12!2D 2@f,t#50,

~16!

where t5j21. The quantization condition which follow
from f(x)50 is written in the form

l522sf8~0!1
a

h
2

1

h2 Ff9

f8
11GU

t50

. ~17!

Inserting the asymptotical expansions

f5 (
k50

`
fk

hk
, l5 (

k50

`
lk

hk

into Eq. ~16! and solving the equations obtained herewi
we get the following result:

y52g1/4~ t212t !1/21
1

h2
dg21/4~ t212t !21/2 ln~ t11!

1
1

h3
ag23/4~ t212t !21/2 ln

2~ t11!

t11
1OS 1

h4D , ~18!
4-3
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for y, and

l (j)522sg1/22
a

h
1

4t2sd

h2
2

sag21/4

2h3
1OS 1

h4D ,

~19!

for l.

ASYMPTOTICAL EXPANSION FOR THE ENERGY

Asymptotical expansions~12! and~19! give us an expres
sion for the energy term in the form of multipole expansio
In order to obtain this expansion one should insert

E85E01
E1

R
1

E2

R2
1•••

into Eqs.~12! and ~19!. Equatingl (h) to bel (j) and taking
into account Eq.~5!, we get the following equations for co
efficientsE1 ,E2 , . . . :

E15
1

6Z
@~sv22kv21!~2E0!5/21~4s2216k2216t!

3~2E0!3/2#,

E25
5

2
E1

212sv21E01E1~2E0!1/2Z21~16t2116k2

24s2!, . . . .

Now we need to findE0. In order to find this value, we
note that forR→`,E85E0, and hence we have

E5E01
v2R2

2
1

4

3
V0 . ~20!

On the other hand, for largeR we have

V~r 1 ,r 2!5
2Z

R (
l 50

` S r

RD l

Pl~cosu!1v2

3F S r 212rR cosu1
R2

4 D
1S r 222rR cosu1

R2

4 D G
'v2S 2r 21

R2

2 D2
4

3
V0 . ~21!

Hence, for the energy term with this potential we obtain

E52vS N1
3

2D1
v2R2

2
1

4

3
V0 , ~22!

where N5n1q1m11 is the principal quantum numbe
Comparing Eqs.~20! and ~22!, we obtain
04520
.

E052vS N1
3

2D .

Thus, the following asymptotical expansion is obtain
for the energy term of a light quark in the field of two hea
quarks:

E52
4

3
V01

v2R2

2
1E01

E1

R
1

E2

R2
1••• .

QQq BARYON SPECTRA

As mentioned above, theQQq binding energy can be
finally obtained by solving the Schro¨dinger equation

F2
1

2M̄QQ

D1VQQ~R!1E~R!Gf5«f. ~23!

If one takesE(R) in the form

E52
4

3
V01

v2R2

2
1E01

E1

R
,

for

VQQ~R!5v2R22
Z

R
2

2

3
V0 ,

then Eq.~23! can be rewritten as

F2
1

2M̄QQ

D1v82R22
Z8

R
2V08Gf5«f, ~24!

whereZ85Z2E1 , v825 3
2 v2, andV0852V02E0.

To solve this equation, we use the result of@10# where a
method for an analytical solution of the Schro¨dinger equa-
tion with potential

V~R!52
Z

R
1lRk

was offered. Details of this method and its application to o
potential are given in Appendix A. Application of thi
method to Eq.~24! gives us

«Nnl52vS N1
3

2D1@Z82v86r nl#
1/522V0 , ~25!

whereN is the principial quantum number of the light qua
moving in the field ofQQ, andr nl is defined in Appendix A.
Formula ~25! describes the energy spectrum of theQQq
baryon. In Tables I, II, and III, the mass spectra ofccq, bbq,
and bcq baryons calculated using formula~25! are given,
respectively. The following values of potential paramete
are chosen in this calculation:as50.39, v250.174 GeV3,
andV050.05 GeV for the potential

V5
2

3 S 2
as

r
1v2r 2V0D .
4-4
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TABLE I. The mass spectrum of theccq baryon ~in GeV! calculated using formula~25!; mq

50.385 GeV,mc51.486 GeV,nl and nd are the principal quantum numbers of the light quark andcc
diquark, respectively, andL is the orbital quantum number of thecc diquark.

nl ,nd ,L Mass nl ,nd ,L Mass nl ,nd ,L Mass nl ,nd ,L Mass

1,1,0 3.661 1,1,1 3.613 1,2,2 3.649 1,3,3 3.694
1,2,0 3.730 1,2,1 3.708 1,3,2 3.764 1,4,3 3.825
1,3,0 3.816 1,3,1 3.799 1,4,2 3.872 1,5,3 3.949
1,4,0 3.914 1,4,1 3.901 1,5,2 3.988 1,6,3 4.077
1,5,0 4.024 1,5,1 4.012 1,6,2 4.110 1,7,3 4.210
2,1,0 3.839 2,1,1 3.791 2,2,2 3.828 2,3,3 3.873
2,2,0 3.908 2,2,1 3.887 2,3,2 3.942 2,4,3 4.003
2,3,0 3.994 2,3,1 3.978 2,4,2 4.051 2,5,3 4.127
2,4,0 4.093 2,4,1 4.079 2,5,2 4.166 2,6,3 4.255
2,5,0 4.202 2,5,1 4.190 2,6,2 4.289 2,7,3 4.388
3,1,0 4.018 3,1,1 3.970 3,2,2 4.006 3,3,3 4.051
3,2,0 4.086 3,2,1 4.065 3,3,2 4.120 3,4,3 4.182
3,3,0 4.172 3,3,1 4.156 3,4,2 4.229 3,5,3 4.305
3,4,0 4.271 3,4,1 4.257 3,5,2 4.344 3,6,3 4.433
3,5,0 4.380 3,5,1 4.369 3,6,2 4.467 3,7,3 4.567
th
b-
a
-

b
na
in
i

bl
h

ica
CONCLUSION

In this work we have treated doubly heavy baryons in
Born-Oppenheimer approximation. The following two pro
lems have been solved in the framework of this approxim
tion: ~1! the Schro¨dinger equation for the two-center Cou
lomb plus harmonic oscillator potential and~2! the
Schrödinger equation for the central symmetric Coulom
plus harmonic oscillator potential. As the final result an a
lytical formula for the energy spectrum of baryons conta
ing two heavy quarks is derived. The formula obtained
applied for the calculation of the mass spectra of dou
heavy quark baryons with various quark compositions. T
above analytical results could be useful for further numer
04520
e

-

-
-
s
y
e
l

calculations in the nonasymptotical region.

APPENDIX A: THE SCALING VARIATIONAL METHOD
AND ITS APPLICATION TO THE COULOMB PLUS

CONFINING POTENTIAL

Consider the following Hamiltonian

H52
1

2
D1V~r !, ~A1!

which obeys the eigenvalue equation

Hcnl5Enlcnl , ^cnlucn8 l 8&5dnn8d l l 8 , ~A2!
TABLE II. The mass spectrum of thebbq baryon ~in GeV! calculated using formula~25!; mq

50.385 GeV,mb54.88 GeV,nl and nd are the principal quantum numbers of the light quark andbb
diquark, respectively, andL is the orbital quantum number of thebb diquark.

nl ,nd ,L Mass nl ,nd ,L Mass nl ,nd ,L Mass nl ,nd ,L Mass

1,1,0 9.890 1,1,1 9.874 1,2,2 9.886 1,3,3 9.900
1,2,0 9.911 1,2,1 9.905 1,3,2 9.922 1,4,3 9.942
1,3,0 9.939 1,3,1 9.934 1,4,2 9.957 1,5,3 9.981
1,4,0 9.970 1,4,1 9.966 1,5,2 9.993 1,6,3 10.022
1,5,0 10.005 1,5,1 10.001 1,6,2 10.032 1,7,3 10.064
2,1,0 10.096 2,1,1 10.081 2,2,2 10.093 2,3,3 10.107
2,2,0 10.118 2,2,1 10.112 2,3,2 10.129 2,4,3 10.149
2,3,0 10.146 2,3,1 10.141 2,4,2 10.164 2,5,3 10.188
2,4,0 10.177 2,4,1 10.173 2,5,2 10.200 2,6,3 10.229
2,5,0 10.212 2,5,1 10.208 2,6,2 10.239 2,7,3 10.271
3,1,0 10.303 3,1,1 10.288 3,2,2 10.300 3,3,3 10.314
3,2,0 10.325 3,2,1 10.318 3,3,2 10.336 3,4,3 10.356
3,3,0 10.353 3,3,1 10.347 3,4,2 10.371 3,5,3 10.395
3,4,0 10.384 3,4,1 10.380 3,5,2 10.407 3,6,3 10.436
3,5,0 10.419 3,5,1 10.415 3,6,2 10.446 3,7,3 10.478
4-5
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TABLE III. The mass spectrum of thebcq baryon ~in GeV! calculated using formula~25!; mq

50.385 GeV,mb54.88 GeV,mc51.486 GeV,nl and nd are the principal quantum numbers of the lig
quark andbc diquark, respectively, andL is the orbital quantum number of thebc diquark.

nl ,nd ,L Mass nl ,nd ,L Mass nl ,nd ,L Mass nl ,nd ,L Mass

1,2,0 7.217 1,2,1 7.160 1,3,2 7.178 1,4,3 7.199
1,3,0 7.259 1,3,1 7.206 1,4,2 7.233 1,5,3 7.263
1,4,0 7.307 1,4,1 7.251 1,5,2 7.286 1,6,3 7.324
1,5,0 7.361 1,5,1 7.300 1,6,2 7.343 1,7,3 7.386
2,1,0 7.438 2,1,1 7.355 2,2,2 7.403 2,3,3 7.452
2,2,0 7.471 2,2,1 7.414 2,3,2 7.432 2,4,3 7.454
2,3,0 7.513 2,3,1 7.461 2,4,2 7.488 2,5,3 7.518
2,4,0 7.562 2,4,1 7.505 2,5,2 7.541 2,6,3 7.579
2,5,0 7.615 2,5,1 7.555 2,6,2 7.597 2,7,3 7.641
3,1,0 7.692 3,1,1 7.669 3,2,2 7.687 3,3,3 7.709
3,2,0 7.726 3,2,1 7.716 3,3,2 7.743 3,4,3 7.773
3,3,0 7.768 3,3,1 7.760 3,4,2 7.796 3,5,3 7.833
3,4,0 7.816 3,4,1 7.810 3,5,2 7.852 3,6,3 7.896
3,5,0 7.870 3,5,1 7.864 3,6,2 7.912 3,7,3 7.961
m
o
n

he

sed

ti-

ial
n,n851,2, . . . , l ,l 851,2, . . . ,

where n and l denote the principal and angular quantu
numbers, respectively. To solve this equation, we start fr
a set of functions$fnl% which are the eigenfunctions of a
arbitrary central field HamiltonianH0:

H0fnl5enlfnl , ^fnlufn8 l 8&5dnn8d l l 8 . ~A3!

Then, we construct the functionals

«nl~a!5^fnl
a uHfnl

a &, ~A4!

where

fnl
a 5a3/2fnl~ar !.

The value fora is determined by

S ]«

]a D ~a5a!50. ~A5!

Let us now apply this method to our problem, i.e., to t
Schrödinger equation with potential

V~r !52
Z8

R
1v82r 2.

As H0, we choose a pure Coulomb Hamiltonian, i.e.,

H052
1

2
D2

Z8

R
.

Then,enl52Z82/2n2 with n5nr1 l 11, wherenr is the ra-
dial quantum number.

According to the above procedure, we have
04520
m

«nl~a!5^fnl
a uH0ufnl

a &1^fnl
a uv2r 2ufnl

a &

52
Z82a3

2n2
1

v2a22n2

2

3@5n21123l ~ l 11!#. ~A6!

For calculation of the second matrix element, we have u
the well-known expression for average valuer̄ 2 in Coulomb
field which is given in@11#. From ]«(a)/]a50, we obtain

a05H 2
2v2n4

3Z2
@5n21123l ~ l 11!#J 1/5

.

Then, for the energy level one can get the following analy
cal formula:

«nl5@Z2v6r nl#
1/5, ~A7!

where

r nl5n2@5n21123l ~ l 11!#3.

APPENDIX B: THE FORMAL PROCEDURE OF THE
METHOD OF ETHALON EQUATION

Let us consider the following second order different
equation:

y9~x!1p2@l2q~x!#y~x!50 ~B1!

in the interval@a,b#. Let Eq. ~B1! in this interval have one
transition point@poles and zeros of functionQ(x,l)5q(x)
2l are called transition points of this equation#.

The equation

w9~z!2p2R~z!w~z!50, ~B2!
4-6
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which has the same or close transition points as Eq.~B2!, is
called the ethalon equation for Eq.~B1!.

We will seek the solution of Eq.~B1! in the form

y~x!5@z8~x,p!#21/2w„z~x,p!…, ~B3!

wherew is the solution of Eq.~B2!. Inserting Eq.~B3! into
Eq. ~B1! and taking into account Eq.~B2! we obtain the
following ~nonlinear! differential equation forz(x,p):

R~z!z822Q~x,l!2
1

2p2
$z,x%50 ~B4!

where

$z,x%52
3

2 S z9

z8
D 2

1
z-

z8
.

nd

o
,

04520
In the case of Eq.~4! we have forQ

Q52Fh2

4
1

hl

12h2
2h4gh21

12m2

~12h2!2G
and forR @from Eq. ~8!#

R52F2
h4

4
1

h2k

z
1

12m2

4z2 G .

So for z one obtains Eq.~10!:

z82

4
2g~x21!22

1

h2 S 1

4
1

kz82

z
2

l

2x~12x/2! D
1

t

h2 S 1

x2~12x2!
2

z82

z2 D 2
1

2h2
$z,x%50.
n,

em.
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