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Quark-photon vertex and the pion charge radius
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The rainbow truncation of the quark Dyson-Schwinger equation is combined with the ladder Bethe-Salpeter
equation for the dressed quark-photon vertex to study the low-momentum behavior of the pion electromagnetic
form factor. With model gluon parameters previously fixed by the pion mass and decay constant, the pion
charge radiusr p is found to be in good agreement with the data. In this work, about half ofr p

2 is seen to be
attributable to the presence of ther pole in the solution of the ladder Bethe-Salpeter equation.

PACS number~s!: 24.85.1p, 14.40.Aq, 13.40.Gp, 11.10.St
tio
ll

e

A
th

ti

uc
ro

or

g
is

he

m

r

son
ole,
-
the
a

nt
u-

us.
rm

. A
ent

at

he
tion
ga-
tion
lly
g to
pre-

d a
a-
he
That
the

rk-
ro-

sons
e
uark
en-
and
ters
I. INTRODUCTION

For timelike photon momentaQ2 in the vicinity of the
r-meson mass shell, the pion charge form factorFp(Q2)
will exhibit a resonant peak associated with the propaga
of intermediate stater mesons~we ignore a possible sma
effect due tor-v mixing!. That is,

Fp~Q2!→
grppmr

2

gr~Q21mr
22 imrGr!

, ~1!

in the Euclidean metric (Q2,0 corresponds to the timelik
region!, which we use throughout this work. Heremr

2/gr is
ther-g coupling strength fixed by ther→e1e2 decay,grpp

is the coupling constant for ther→pp decay, andGr is the
r width which is principally due to the latter process.
long-standing issue in hadronic physics is the question of
extent to whichFp(Q2) at low spacelikeQ2 can be de-
scribed by ther-resonance mechanism. This is an essen
element of the vector meson dominance~VMD ! model
which is one of the earliest field theory models to be s
cessful in a point coupling description of aspects of had
dynamics. In the form of VMD wherer-g coupling is de-
scribed by the contraction of the two field strength tens
rmnFmn , the pion charge form factor is produced as

Fp~Q2!'12
grppQ2

gr@Q21mr
22 imrGr~Q2!#

. ~2!

The nonresonant first term arises from the photon couplin
the charge of a point pion. The resonant second term ar
from r-g coupling, it implements theQ2 dependence, and
vanishes atQ250 in accordance with gauge invariance. T
width Gr is nonzero beyond the threshold forpp production
only, and the form factor is real forQ2.24mp

2 . In this
model the charge radiusr p

2 526Fp8 (0) comes entirely from
the resonant term and is 6grpp /(mr

2gr)50.48 fm2, which
compares favorably with the experimental value 0.44 fm2.
See Ref.@1# for a recent review of the pion charge for
factor and VMD in this form.

In terms of QCD, where the pion is aq̄q bound state, the
content of Eq.~2! cannot provide a realistic picture fo
Fp(Q2) at ~low! spacelikeQ2. The photon couples only to
0556-2813/2000/61~4!/045202~11!/$15.00 61 0452
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the distributed quark currents in the pion, the vector me
bound state is not a well-defined concept away from the p
and the question of a resonantr contribution has to be ad
dressed within the dressed quark-photon vertex. This is
topic we explore in this work. Given that one can find
convenient~and necessarily model-dependent! representation
of the quark-photon vertex involving direct and resona
parts, the direct coupling will necessarily produce a distrib
tion Fp

dir(Q2) to replace the first term in Eq.~2! and there
will be a corresponding contribution to the charge radi
The remaining contribution must differ from the second te
of Eq. ~2! becausegrpp , gr , mr , andGr are well defined
only for the physical on-shell vector meson bound state
measure of the ambiguities involved is provided by a rec

study that modeled the underlyingq̄q substructure ofr and
p. Under the assumption that ther Bethe-Salpeter~BS! am-
plitude is applicable also atQ250, it was found that
grpp

eff (Q250)'grpp/2 @2#. On face value, this suggests th
only about 50% of r p

2 would be attributable to the
r-resonance mechanism.

In this work we obtain the quark-photon vertex as t
solution of the inhomogeneous Bethe-Salpeter equa
~BSE! in ladder truncation with the dressed quark propa
tors taken as solutions of the Dyson-Schwinger equa
~DSE! in rainbow truncation. Such a procedure automatica
incorporates the pole structure of the vertex correspondin
the vector meson spectrum of the homogeneous BSE. A
vious exploratory study@3# of the coupled DSE-BSE for the
quark propagator and the quark-photon vertex employe
simple infrared dominant form of the effective gluon prop
gator in order to utilize closed form expressions for t
dressed quark propagators and the resulting BSE kernel.
study was not carried far enough to draw implications for
pion form factor.

We employ a more realistic model for the effective qua
antiquark coupling that has recently been shown to rep
duce the pion and kaon masses and decay constants@4# as
well as the masses and decay constants for the vector me
r, f, andK! to within 10% @5#. There, as well as here, th
quark propagators are consistently dressed through the q
DSE using the same effective gluon propagator, which
sures that the vector Ward-Takahashi identity is obeyed
electromagnetic current is conserved. The model parame
are all fixed in previous work@5# and constrained only by
©2000 The American Physical Society02-1
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mp , mK , f p , and ^q̄q&. With this model, we solve the in
homogeneous BSE for the quark-photon vertex without f
ther approximations. Next, we use the BSE solution for
vertex to investigate the low-momentum behavior of the p
charge form factor, and find excellent agreement with
experimental charge radius. We also compare our result
the Ball-Chiu~BC! Ansatz@6#, which is commonly used in
contemporary studies of electromagnetic interactions@7–12#.

In Sec. II we review the formulation that underlies rece
studies of the pion form factor within a modeling of QC
through the DSEs, and discuss the need for a dressed q
photon vertex in such models. The BSE for the quark-pho
vertex is described in Sec. III and the vector meson p
contributions are identified. Also described there are
model used for the effective coupling in ladder truncatio
the basis of covariants used, and the comparison of the
merical BSE solution with the BCAnsatz. Our analysis of
the low-momentum behavior of the pion form factor a
charge radius is presented in Sec. IV, and concluding
marks are given in Sec. V.

II. PION ELECTROMAGNETIC FORM FACTOR

A number of works have treated the electromagnetic fo
factors of pions@7,8#, kaons@9,10#, and more recently vecto
mesons@11# and nucleons@12# in the course of QCD mod
eling via truncations of the DSEs. Using dressed qu
propagators and bound state BS amplitudes, form factors
be calculated in impulse approximation, as depicted in Fig
for the gpp vertex. Such work proceeds most easily in E
clidean metric $gm ,gn%52dmn , gm

† 5gm , and a•b
5( i 51

4 aibi . In the space of color, flavor, and Dirac spin, w

denote byG̃m(p;Q) the quark-photon vertex describing th
coupling of a photon with momentumQ to a quark with
initial and final momentap2Q/2 andp1Q/2, respectively.
With this notation, thegpp vertex takes the form

Ln~P,Q!52PnFp~Q2!

522E d4q

~2p!4
Tr@Gp~k1 ;2P1!S~q12!

3 i G̃n~q1 ;Q!S~q11!Gp~k2 ;P2!S~q2!#, ~3!

FIG. 1. The impulse approximation for the pion charge fo
factor.
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where Fp(Q2) is the pion form factor andP65P6Q/2,
q65q6P/2, q165q16Q/2, andk65q6Q/4. S(q) is the
dressed quark propagator,Gp(k;P) is the pion BS amplitude
corresponding to relativeq̄q momentumk ~we choose equa
partitioning! and pion momentum P, and
Tr@•••# denotes the trace over color, flavor, and spin indic
The quark-photon vertexG̃n(q;Q) at sufficiently large
spacelikeQ2 becomesG̃n(q;Q)→Q̂gm , where Q̂ is the
quark charge operator.

The quark-photon vertex satisfies the Ward-Takaha
identity ~WTI!

iQmG̃m~p;Q!5Q̂@S21~p1Q/2!2S21~p2Q/2!#, ~4!

as a result of gauge invariance. AtQ50 the vertex is com-
pletely specified by the differential Ward identity

i G̃m~p;0!5Q̂
]

]pm
S~p!21. ~5!

This reduces Eq.~3! to Fp(Q250)51 if Gp is properly
normalized.1 This clearly shows that the bare vertexgm is
generally a bad approximation due to the momentum dep
dence of the quark self-energy: only with bare quark pro
gators does a bare vertex satisfy Eqs.~4! and ~5!. Use of a
bare vertex, in combination with dressed propagators, in
~3!, violates charge conservation and leads toFp(0)Þ1.

The WTI determines the longitudinal part of the vert
completely in terms of the~inverse! quark propagator. How-
ever, the transverse part is largely unconstrained by sym
tries. A commonAnsatzfor the dressed vertex is that due
Ball and Chiu @6# which was developed in the context o
QED investigations and is a representation in terms of
quark propagator functionsA andB defined by

S~p!215 ip”A~p2!1B~p2!. ~6!

With G̃m
BC(p;Q)5Q̂Gm

BC(p;Q) the BCAnsatzis

Gm
BC~p;Q!5

1

2
gm@A~p1!1A~p2!#12p” pm

A~p1!2A~p2!

p1
2 2p2

2

22ipm

B~p1!2B~p2!

p1
2 2p2

2
, ~7!

where p65p6Q/2. This satisfies the constraints from th
WTI, Eq. ~4!, and the Ward identity, Eq.~5!, transforms
under CPT as a vector vertex should, and has the corr
perturbative limitgm in the ultraviolet. The longitudinal par
of Gm

BC is exact; the transverse part is exact only atQ50 and
in the UV limit. Curtis and Pennington have explored ad

1This equivalence holds if the kernel of the pion BSE is indep
dent of the pion momentum. For the ladder truncation of the ker
which we consider here, this is the case.
2-2
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QUARK-PHOTON VERTEX AND THE PION CHARGE RADIUS PHYSICAL REVIEW C61 045202
tional Dirac structures that are possible for the transve
part of the vertex and have suggested an improvedAnsatz
@13# based on multiplicative renormalizibility in QED

Gm
CP~p;Q!5Gm

BC~p;Q!1@~p1
2 2p2

2 !gm2~p”12p”2!pm#

3
~p1

2 1p2
2 !@A~p1!2A~p2!#

~p1
2 2p2

2 !21@M ~p1!21M ~p2!2#2
, ~8!

with M (p)5B(p)/A(p). Both Ansätze, Eq. ~7! and Eq.~8!,
for the q̄qg vertex satisfy all symmetry constraints, and u
of them in Eq.~3! leads toFp(0)51, but neither of them
contains the timelike vector meson poles of the exact ver

The pion charge radius

r p
2 526

]Fp~Q2!

]Q2 U
Q250

~9!

will receive two types of contribution within the impuls
approximation in Eq.~3!: ~1! contributions fromG̃n(Q50)
coupled with theQ2 slope produced by the quark propag
tors andGp and ~2! contributions proportional to theQ2

slope of G̃n(Q). For the first type, use of the BCAnsatzis
sufficient since the BCAnsatzis exact atQ50. However,
for the second type of contribution,]G̃m(p;Q)/]Q2 is not
constrained by symmetries.

Previous studies of three-point quark loops such as Eq~3!
for form factors have, for practical reasons, utilized para
etrized representations of the DSE solutions for quark pro
gators and the BS amplitudes, in conjunction with the B
Ansatzfor the quark-photon vertex@7–11#. The parameters
are fitted to give a good description of pion and related ch
observables such asf p , mp , r p , and ^q̄q& with a view
towards parameter-free studies of other mesons and ob
ables@14#. This procedure can produce values ofr p

2 in the
range 20%–30% below the experimental value@8,14#, which
leaves some room for additional contributions, such as th
coming frompp rescattering@15# and from ther-resonance
mechanism. However, the estimated 50% ofr p

2 being due to
the r resonance@2# appears to be incompatible with the
parametrizations.

Here, we reconcile the VMD picture with the QCD pic
ture of a photon coupled to distributed quarks in aq̄q bound
state by calculating all ingredients needed forFp(Q2) via
Eq. ~3! from their dynamical equations: we solve the qua
DSE, the pion BSE, and the inhomogeneous vertex BSE
self-consistent way, using the same model for the effec
quark-antiquark coupling. Both resonance and nonresona
contributions to the vertex are dynamically genera
through the BSE. By comparison with the BCAnsatzwe can
identify resonance contributions; however, one must kee
mind that such an identification is necessarily model dep
dent.
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III. BETHE-SALPETER SOLUTION
FOR THE VECTOR VERTEX

The quark-photon vertex satisfies the renormalized in
mogeneous BSE

G̃m~p;Q!5Z2Q̂gm1EL d4q

~2p!4
K~p,q;Q!

3S~q1hQ!G̃m~q;Q!S~q2h̄Q!, ~10!

where h1h̄51 describes the momentum sharing betwe
the two quarks. The kernelK operates in the direct produc
space of color, flavor, and Dirac spin for the quark and
tiquark and is the renormalized, amputatedq̄q scattering ker-
nel that is irreducible with respect to a pair ofq̄q lines. The
notation*L denotes a translationally invariant regularizati
of the integral, withL the regularization mass scale. At th
end of all calculations the regularization is removed by ta
ing the limit L→`.

The renormalization constantZ2 and the renormalized
dressed quark propagatorS follow from the quark DSE

S~p!215Z2ip”1Z4m~m!1Z1EL d4q

~2p!4
g2Dmn~p2q!

3
la

2
gmS~q!Gn

a~q,p!, ~11!

whereDmn(k) is the renormalized dressed-gluon propaga
andGn

a(q;p) is the renormalized dressed-quark-gluon vert
The solution of Eq.~11! is renormalized according to

S~p!21up25m25 ip”1m~m!, ~12!

at a sufficiently large spacelikem2, with m(m) the renormal-
ized quark mass at the scalem. In Eq. ~11!, S, Gm

a , and
m(m) depend on the quark flavor, although we have n
indicated this explicitly. The renormalization constants d
pend on the renormalization point and the regularizat
mass scale, but not on flavor: in our analysis we emplo
flavor-independent renormalization scheme.

A. Bound state contributions

Solutions of the homogeneous version of Eq.~10! at dis-
crete timelike momentaQ2 define vector meson bound stat
with massesmn

252Q2. It follows thatG̃m(p;Q) has poles at
those locations. The corresponding resonant form can be
tained by observing that Eq.~10! has the equivalent form

G̃m~p;Q!5Z2Q̂gm1Z2EL d4q

~2p!4
M ~p,q;Q!

3S~q1hQ!Q̂gmS~q2h̄Q!, ~13!

with M being theq̄q scattering amplitude given in schemat
form by M5K1KSMS. In the vicinity of the timelike
points Q252mn

2 where the homogeneous BSE has so
2-3
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tions,M has poles with residues that define the physical m
son BS amplitudes. In particular, for two flavors,

M ~p,q;Q!→2
Gn

r~p;Q!Ḡn
r~q;2Q!

Q21mr
2

2
Gn

v~p;Q!Ḡn
v~q;2Q!

Q21mv
2

, ~14!

with the BS amplitudes properly normalized. In the ladd
truncation that we will be concerned with in practice, t
normalization condition reduces to (n5r0,v)

2Pm5
]

]Pm

1

3E
L d4q

~2p!4
Tr@Ḡn

n~q;2K !S~q1hP!

3Gn
n~q;K !S~q2h̄P!#uP25K252m2, ~15!

where the factor of 1/3 appears because the three trans
directions are summed. Using the fact that massive ve
mesons are transverse, the resonant form of the quark-ph
vertex near the vector meson poles can be written as

G̃m~p;Q!→
Gm

r ~p;Q!mr
2/gr

Q21M r
2

1
Gm

v~p;Q!mv
2 /gv

Q21Mv
2

, ~16!

where the coupling constantsgn (n5r0,v) for r-g and
v-g mixing are

mn
2

gn
52

Z2

3 EL d4q

~2p!4
Tr@Ḡn

n~q;2Q!S~q1hQ!

3Q̂gnS~q2h̄Q!#. ~17!

Away from the pole, the separation into a resonant and n
resonant part is not unique; the solution of the BSE for
complete vertex contains both aspects in a consistent w

At the level of the ladder approximation, which is com
monly used in practical calculations, and using isospin sy
metry, we havemr5mv5mV , and the flavor structure of th
BS amplitudes is Gn

r(p;Q)5(t3 /A2)Gn
V(p;Q) and

Gn
v(p;Q)5(1/A2)Gn

V(p;Q). The flavor trace in Eq.~17!

gives gv53gr53gV . The factorizationG̃m5Q̂Gm allows
Eq. ~16! for the vector pole structure to simplify to th
flavor-independent form

Gm~p;Q!→
Gm

V~p;Q! f VmV

Q21mV
2

, ~18!

where f VmV5A2mV
2/gV . Our numerical study is carried ou

for the flavor-independent vector vertexGm(p;Q).

B. Ladder-rainbow truncation

We use a ladder truncation for the BSE,
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Ktu
rs~p,q;P!→2G„~p2q!2

…Dmn
free~p2q!S la

2
gmD ru

^ S la

2
gnD ts

, ~19!

whereDmn
free(k) is the perturbative gluon propagator in La

dau gauge. The resulting BSE is consistent with a rainb
truncationGn

a(q,p)→gnla/2 for the quark DSE, Eq.~11!, in
the sense that the combination produces vector and a
vector vertices satisfying the respective WTIs. In the ax
case, this ensures that in the chiral limit the ground st
pseudoscalar mesons are massless even though the
mass functions are strongly enhanced in the infrared@4,16#.
In the vector case, this ensures electromagnetic current
servation.

The model is completely specified once a form is chos
for the ‘‘effective coupling’’ G(k2). We employ theAnsatz
@4,5#

G~k2!

k2
5

4p2

v6
Dk2e2k2/v2

14p
gmp

1
2 ln@t1~11k2/LQCD

2 !2#
F~k2!, ~20!

with F(k2)5@12exp(2k2/@4mt
2#)#/k2, and gm512/(33

22Nf). This Ansatzpreserves the one-loop renormalizatio
group behavior of QCD for solutions of the quark DSE.
particular, it produces the correct one-loop QCD anomal
dimension of the quark mass functionM (p2) for both the
chiral limit and explicit chirally broken case@4,17#. The first
term of Eq.~20! implements the strong infrared enhanceme
in the regionk250 –1 GeV2 which is a phenomenologica
requirement for sufficient dynamical chiral symmetry brea
ing to produce an acceptable strength for the quark cond
sate @18#. We use mt50.5 GeV, t5e221, Nf54, and
LQCD

Nf54
50.234 GeV and a renormalization pointm

519 GeV, which is sufficiently perturbative to allow th
one-loop asymptotic behavior of the quark propagator to
used as a check@4,5#. The remaining parameters are fixed
v50.4 GeV andD50.93 GeV2 to give a good description
of mp/K and f p . The subsequent values forf K and the
masses and decay constants of the vector mesonsr,f,K! are
very well described@5#.

C. Numerical solution

The general form ofGm(q;Q) can be decomposed into 1
independent Lorentz covariants, made from the three vec
gm , the relative momentumqm , and the photon momentum
Qm , each multiplied by one of the four independent matric
l, q” , Q” , andsmnqmQn . Four of the covariants represent th
longitudinal components which are completely specified
the WTI and can be taken as the longitudinal projectionGm

L

of the BC Ansatz, Eq. ~7!. The solution of the BSE for the
transverse vertex can be expanded in eight covaria
Tm

i (q;Q). Thus the total vertex is decomposed as
2-4
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Gm~q;Q!5Gm
L ~q;Q!1(

i 51

8

Tm
i ~q;Q!Fi~q2,q•Q;Q2!,

~21!

with the invariant amplitudesFi being Lorentz scalar func
tions. The choice for the covariantsTm

i (q;Q) to be used as a
basis is constrained by the required properties under Lor
and CPT transformations, but is not unique. The BSE~10!
must be projected onto the covariant basis to produc
coupled set of eight linear equations for the invariant am
tudesFi to be cast in matrix form. This requires a procedu
to project out a single amplitude from the general form, E
~21!. It is therefore helpful if the chosen covariants satisfy
Dirac-trace orthogonality property. The following set of o
thogonal covariants is used here2:

Tm
1 ~q;Q!5gm

T , ~22!

Tm
2 ~q;Q!5@qm

Tq” T2 1
3 gm

T~qT!2#/q2, ~23!

Tm
3 ~q;Q!5qm

TQ” q•Q/~q2Q2!, ~24!

Tm
4 ~q;Q!52~gm

T@Q” ,q” #12qm
TQ” !/2q, ~25!

Tm
5 ~q;Q!5 iqm

T /q, ~26!

Tm
6 ~q;Q!5 i @gm

T ,q” T#q•Q/q2, ~27!

Tm
7 ~q;Q!5 i @gm

T ,Q” #~12cos2u!22Tm
8 ~q;Q!, ~28!

Tm
8 ~q;Q!5 iqm

Tq” TQ” /q2, ~29!

where VT is the component ofV transverse toQ, that is,
Vm

T5Vm2Qm(Q•V)/Q2 and q•Q5qQ cosu. Each ampli-
tude can be projected onto a basis of even-order Cheby
polynomials in cosu to producenFi(q

2,Q2) @5#. It is found
that terms beyond the zeroth order,n.0, are insignificant
and are not used in the subsequent study of the form fac

For a range of small timelike and spacelikeQ2, the ratio
of the BSE solution to the BCAnsatzfor the dominant am-
plitude 0F1 is displayed in Fig. 2 as function ofq2. The
deviation from unity indicates differences between the
Ansatzand our numerical solution of the ladder BSE. It
immediately obvious that for timelike photon momenta a
q2,3 GeV2 there is a significant enhancement of the B
solution compared to the BCAnsatz. This strong increase in
the vertex BSE solution is due to the vector meson pole
Q2'20.55 GeV2, which only affects the vertex at sma
q2; at largeq2 both the BSE solution and the BCAnsatz
approach the bare vertex for any value ofQ2.

2Since the domain of interest here includes both timelike a
spacelikeQ2, we avoid factors ofQ5AQ2. Therefore we do not
require the covariants to be normalized, as we did in Ref.@5#. We
also include explicit factors ofq•Q in T3 andT6 so that now every
Fi is even inq•Q.
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Charge conservation is evident through the ratio be
one atQ50: the ladder vertex BSE solution satisfies t
WTI. The fact that our numerical solution indeed is to with
1% equal to the BCAnsatz, not only for 0F1, but also for the
other amplitudes, indicates the accuracy of our numer
methods. At small spacelike momenta the BSE solution
fers considerably from the BCAnsatz. The difference in-
creases withQ2 in the range 0,Q2,2 GeV2; it is only at
asymptotic values ofQ2 that they become equal again.

A different perspective is shown by Fig. 3 which com
pares theQ2 dependence of0F1 at q250. Again, the agree-

d

FIG. 2. The ratio of the BSE solution over the BCAnsatzfor the
dominant amplitude0F1, associated withgm

T , of the quark-photon
vertex as function ofq2 for the indicated values of the photo
momentumQ2. The quark momenta areq6Q/2.

FIG. 3. TheQ2 dependence of the BSE solution for the dom

nant amplitude0F1 of the q̄qg vertex atq250 ~solid line!. The
dashed line with circles is the BCAnsatzfor this amplitude in the
present model; the dotted line with diamonds is the BCAnsatzwith
phenomenological quark propagator functionsA and B param-
etrized and fitted to pion observables, includingr p , according to
Ref. @8#.
2-5



e
x
he
o
s

b-
tte

th
uc
th
BC
ge

S

s
se

d

the

-

ain
-

t for
ep-
ap-
for

n
he
t-

PIETER MARIS AND PETER C. TANDY PHYSICAL REVIEW C61 045202
ment atQ250 is dictated by the Ward identity; however, th
slope of 0F1(0,Q2) at Q250 as obtained from the verte
BSE solution differs significantly from that produced by t
BC Ansatz. This can be of importance for the charge radii
the pion and other hadrons. In this figure one can clearly
the presence of the vector pole in theq̄qg vertex at Q2

'20.55 GeV2. Also in this figure we plot the amplitude
0F1 as obtained from the BCAnsatzwith the quark propa-
gators of Ref.@8#, which were parametrized rather than o
tained as the solution of a DSE. The parameters were fi
to f p , mp , r p , and^q̄q&, using the BCAnsatzin the calcu-
lation of r p . The Q2 dependence of theq̄qg vertex neces-
sary in order to reproduce a reasonable value forr p was thus
incorporated via the quark propagator functions. We see
this phenomenological vertex amplitude has indeed a m
stronger Q2 dependence than is obtained by use of
present DSE solution for the quark propagator in the
Ansatz. This phenomenological procedure allows one to
reasonable electromagnetic form factors at lowQ2 without
explicitly taking resonances into account.

We have investigated the extent to which the vertex B
solution can be represented by the interpolating form

Gm~q;Q!.Gm
BC~q;Q!2(

i
Tm

i ~q;Q!Fi
V~q2!

f VQ2

mV~Q21mV
2 !

,

~30!

whereFi
V are the leading Chebyshev moments of the ma

shell vector meson BS amplitudes produced by the pre
model@5#. The second term, Eq.~30!, correctly describes the
vertex near the vector meson pole atQ252mV

2 ; there is no
width generated for the vector meson in the present lad
truncation of the BSE. One would have to add thepp chan-
nel to the ladder BSE kernel to produce ar width; for the

FIG. 4. Theq2 dependence of the BSE solution for the domina
amplitude 0F1 for a range of timelike and spacelike values of t
photon momentumQ2. The circles correspond to the resonan
improved BCAnsatzas described in the text.
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vertex, this would generate an imaginary part beyond
threshold for pion production,Q2,24mp

2 .
For small spacelikeQ2, Eq. ~30! represents an extrapola

tion consistent with the requirements that~a! GBC(q;Q50)
be exact due to gauge invariance and~b! the r-g coupling
should not generate a photon mass. Over the limited dom
2mV

2,Q2,0.2 GeV2, Eq. ~30! produces a very good rep
resentation of the vertex amplitudes0F1 , 0F3, and 0F5 and a
quite reasonable representation for the remainder, excep
0F4 which is clearly the worst case and the hardest to r
resent in a resonance formula. In Figs. 4, 5, and 6, this
proximate form is compared to the vertex BSE solution
the three dominant amplitudes0F1 , 0F4, and0F5.

In this sense we shall refer to the BCAnsatzas missing a
contribution near ther pole, and to Eq.~30! as a resonant-
improved BCAnsatzapplicable in the region20.4 GeV2

t

FIG. 5. The same as Fig. 4 except now for theq̄qg vertex
amplitude0F4.

FIG. 6. The same as Fig. 4 except now for theq̄qg vertex
amplitude0F5.
2-6
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QUARK-PHOTON VERTEX AND THE PION CHARGE RADIUS PHYSICAL REVIEW C61 045202
,Q2,0.2 GeV2 only. At asymptoticQ2, this form is obvi-
ously not adequate: it does not go to the bare vertex. Clos
the r pole, neither our vertex BSE solution nor the interp
lating form, Eq.~30!, are physically realistic, because neith
one takes into account the widthGr generated by the ope
pp decay channel. SinceGr /mr;0.2, the width contributes
little for Q2.20.4 GeV2, and ther contribution can be
approximated by the simple pole term in Eq.~30! for appli-
cations such as the pion form factor calculation.

IV. RESULTS FOR THE PION FORM FACTOR

In addition to the solution of the BSE for theq̄qg vertex
and the quark propagatorS as the solution of its DSE, we
also need the pion BS amplitudeGp(q;P). This BS ampli-
tude is the solution of a homogeneous BSE, and for pseu
scalar bound states it has the form@4#

Gp~q;P!5g5@ iEp~q;P!1P” Fp~q;P!1q”q•PGp~q;P!

1smnqmPnHp~q;P!#, ~31!

with the invariant amplitudesEp , Fp , Gp , andHp being
Lorentz scalar functions ofq2 andq•P5qP cosu, with P2

52mp
2 the fixed, on-shell, pion momentum. Each amplitu

can be projected onto a basis of even-order Chebyshev p
nomials in cosu and in Ref. @4# it was found that terms
beyond the zeroth order are insignificant. With these ing
dients we can now calculate the pion electromagnetic fo
factor in impulse approximation, Eq.~3!.

In Fig. 7 we show our results for the pion form facto
With the BSE solution for theq̄qg vertex we obtain an ex
cellent description of the lowQ2 data, both in the spacelik
and timelike region,without fine-tuning the model param
eters: the parameters are completely fixed bymp and f p in
Ref. @5#. Experimentally, the form factor shows a resonan

FIG. 7. The pion charge form factorFp(Q2) as obtained from
different treatments of the quark-photon vertex. The inset shows
Q2 region relevant for the charge radius. The data correspon
uFpu, taken from Refs.@19# ~circles!, @20# ~squares!, and@21# ~dots!.
04520
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peak atQ252mr
2520.593 GeV2. Our calculatedFp(Q2)

diverges as 1/(Q21mV
2) as one approachesQ252mV

2

'20.55 GeV2, where the homogeneous BSE admits
bound state solution; in the ladder truncation for the BSE o
does not get a width for ther meson. We expect that if we
incorporate the open decay channelr→pp in the BSE ker-
nel to generate a widthGr for the r, we will have better
agreement with the data close to the resonance peak. In
dition, some of the present difference between our calcu
tion and the data in the resonance region is due to the
that our numerical value formr is about 4% below the physi
cal r mass.

Four of the eight amplitudes,F3 , F6 , F7, andF8, con-
tribute less than 1% toFp(Q2) on theQ2 range considered
Although the amplitudeF3 contributes very little to the form
factor, this amplitude is needed for strict charge conser
tion. Therefore we can truncate the BSE solution to
dominant five covariantsF1–F5 without significantly chang-
ing the description ofFp(Q2). In Fig. 7, the result using the
five dominant amplitudes is almost indistinguishable fro
the results obtained with all eight amplitudes.

The relative contributions toFp(Q2) from the amplitudes
F1 , F2 , F4, andF5 of the vertex BSE solution are displaye
in Fig. 8. This shows that the canonical amplitudeF1, to-
gether with the canonical~pseudoscalar! amplitudeEp of the
pion, generates the bulk of the form factor in the infrar
region. The pion pseudovector amplitudesFp andGp give a

e
to

FIG. 8. The relative contributions toFp(Q2) from the four most
important amplitudesF1 ~top!, F2 ,F4, andF5 ~bottom! of the BSE

solution for theq̄qg vertex. For the dominant amplitudeF1, we
also display the relative contribution from the dominant pion a
plitudesEp only ~top!.
2-7
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TABLE I. Results for the pion charge radius according to various treatments of the quark-photon v

FVpp(0) roughly characterizes the reduction in thepp coupling strength for the vectorq̄q correlation in the
vector vertex compared to the on-shell coupling to ther, grpp .

Photon vertex r p r p
2 r p

2 2r p,BC
2 FVpp(0)

Expt. @21# 0.6636 0.0006 0.446 0.0012
DSE F1–F8 0.678 0.460 0.278 0.58
DSE F1–F5 0.677 0.459 0.277 0.58
BC Ansatz~BCA! 0.426 0.182
BCA 1 res.F1–F5 0.640 0.409 0.227 0.47
BCA 1 res. (F1 ,F5) 0.625 0.390 0.208 0.44
BCA 1 res.F1 0.605 0.366 0.184 0.38
BCA 1 phenom. res.F1 0.68 0.46 0.28 0.58
BCA of Ref. @8# 0.55 0.30
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negative contribution of about 25% nearQ250, but they are
known to dominate at largeQ2: the asymptotic behavior o
the form factor, Fp(Q2);1/Q2, is governed by the
pseudovector amplitudes of the pion@8#. The vertex ampli-
tudesF2 ,F4, andF5 give negative contributions toFp of the
order of 10% at smallQ2. Of particular note is the contribu
tion from amplitudeF4. Because of the Ward identity, thi
vertex contribution, and hence its contribution toFp(Q2),
must vanish atQ250. The latter is indeed evident in Fig. 8
it is also evident there that this amplitude nevertheless is
of the important contributors to the slope and hencer p ; its
contribution to the form factor grows roughly linear withQ2

in the range we studied. This could have significant con
quences for the form factor at intermediate energies.
asymptotic values ofQ2 the q̄qg vertex approaches the ba
vertex, and thus all functionsFi except forF1 will vanish.
The asymptotic behavior of the form factor is therefore n
influenced byF4 nor any other subdominant amplitude of th
q̄qg vertex.

A. Comparison with other vertices

In Fig. 7 we also compare our results with those obtain
using a bare vertex and using the BCAnsatz. Clearly a bare
quark-photon vertex is incorrect: current conservation, wh
ensuresFp(0)51, is violated. Use of the BCAnsatzcon-
serves the current because it satisfies the vector Ward i
tity. However the resulting form factor misses the data co
pletely, in particular in the timelike region; theQ2

dependence is clearly too small. This is mainly due to
fact that the BCAnsatzdoes not incorporate vector meso
poles; in the present model, addition of ar resonant term to
the BCAnsatzimproves the results dramatically, as we sho
in detail in the next subsection. The use of the Cur
PenningtonAnsatz, Eq. ~8!, gives results for the form facto
essentially the same as those obtained with the BCAnsatz.

In terms of the pion charge radiusr p , our results are
summarized in Table I. It is seen that, compared to the
pirical valuer p

2 50.44 fm2, the BSE solution for the vertex
generates an excellent value:r p

2 50.46 fm2 using all eight
transverse covariants or using the dominant five,F1–F5.
Within the present model, the BCAnsatzproduces a value
04520
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for r p
2 that is less than half this value; this is also evident

Fig. 7. The main reason for this is that theQ2 slope of the

BSE solution for theq̄qg vertex atQ250 is poorly repre-
sented by the BCAnsatz, as shown, for example, in Fig. 3
Again, the Curtis-PenningtonAnsatzgives almost the same
result as the BCAnsatz.

In a more phenomenological approach, using para
etrized quark propagators fitted to pion observables includ
r p as was done in Ref.@8#, one obtains a much better valu
for r p using a BCAnsatz. In such an approach theQ2 de-
pendence of the vertex is parametrized via the quark pro
gator, and can thus give an acceptable representation o
pion form factor in the spacelike region. The charge rad
obtained in this way,r p

2 50.30 fm2, is much closer to the
experimental value than the one using a BCAnsatzwith the
quark propagators of the present model. This can be use
an indication of the model dependence and arbitrarines
separating the contributions into resonant and nonreso
terms.

B. Resonance contribution tor p

In the previous section we found that the vertex BSE
lution could be simulated by a resonant-improved BCAn-

satz, Eq. ~30!. The use of such a form for theq̄qg vertex
yields, via the impulse approximation, Eq.~3!, a charge form
factor that can be expressed as

Fp~Q2!'Fp
BC~Q2!2

grppFVpp~Q2!Q2

gr~Q21mr
2!

, ~32!

whereFp
BC(Q2) is the result from the BCAnsatz. The com-

binationgrppFVpp represents thepp coupling to the vector
q̄q correlationTm

i Fi
V evident in the resonant term of Eq.~30!.

The behavior of this latter term guarantees that at the ve
meson pole, the second term of Eq.~32! reproduces the stan
dard behavior andFVpp(2mr

2)51. For otherQ2 values
FVpp(Q2) does not correspond to a physical process: o
shell mesons are by definition not physical. However,
departure ofFVpp(Q2) from unity is a rough measure of th
2-8
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QUARK-PHOTON VERTEX AND THE PION CHARGE RADIUS PHYSICAL REVIEW C61 045202
difference inpp coupling experienced by the effective ve
tor q̄q correlation away from ther mass shell compared t
the physicalrpp coupling.

The charge form factors resulting from two versions
the resonant-improved BCAnsatzare shown in Fig. 9. One
version is based on the five dominant invariant amplitu
0Fi

V(q2) of the r meson, and the other uses only the sin
dominant amplitude0F1

V(q2); physical normalization is im-
posed in each case. The employed values ofmr and f r in
each case are those obtained consistently from the hom
neous BSE in the present model@5#; see Table II. It is seen
from Fig. 9 that both forms of the resonant-improved B
Ansatzsimulate the behavior ofFp(Q2) produced by the
vertex BSE solution quite well.

The obtained values ofr p are shown in Table I for the
approximations discussed above. Also shown there is
charge radius produced by using the two dominant am
tudesF1 andF5 for the resonant addition to the BCAnsatz.
Compared tor p,BC

2 50.18 fm2, all versions of a resonant
improved BCAnsatzprovide results roughly a factor of
higher and in significantly better agreement with the res
from the vertex BSE solution and the experimental da
When the five dominantr amplitudes are used, the resona

FIG. 9. The pion charge form factorFp(Q2) as obtained from
different descriptions of the quark-photon vertex in terms o
resonant-improved BCAnsatz, and compared toFp(Q2) as ob-
tained from the vertex BSE solution.

TABLE II. The vector meson massmr and decay constantf r in
GeV corresponding to various truncations of the eight possible
variant amplitudes of ther BS amplitude@5#.

mr f r

Expt. 0.770 0.216
F1–F8 0.742 0.207
F1–F5 0.730 0.201
F1 ,F5 0.765 0.203
F1 0.875 0.20
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improved BCAnsatzreproduces the vertex BSE result forr p

to within 5%. The error increases to 10% if only the sing
dominant vector meson covariant is used for the reson
term of the vertex; part of the reason for this is due to
increase in the vector meson mass@5#: with F1 only, mr

2

50.766 GeV2, which moves the pole 30% further into th
timelike region.

Use of Eq.~32! allows r p
2 to be characterized as a res

nant addition to the result of the BCAnsatz. If we write the
difference betweenr p

2 and the BC contributionr p,BC
2 as

r p
2 2r p,BC

2 5
6grppFVpp~0!

mr
2gr

, ~33!

and compare this with Eq.~2!, we see thatFVpp(0) charac-
terizes the necessary weakening of the VMD mechanism
r p

2 to account for the distributedq̄q substructure. The value
of FVpp(0) defined by Eq.~33!, using the experimental val
ues forgrpp , mr , andgr , are also shown in Table I. Th
difference between ther p

2 result from the vertex BSE solu
tion andr p,BC

2 represents about 60% of the VMD value fo
the charge radius,r p,VMD

2 50.48 fm2. The result from the
best resonant-improved BCAnsatz~using the vector meson
amplitudesF1–F5) shows that the resonant term is contri
uting to r p

2 at the level of 50% of the VMD value. This
decreases somewhat when the description of the vector
son is simplified. One can attribute this weakening of t
VMD mechanism atQ250 to the fact that the photon
couples to a distributed, interactingq̄q correlation and a sig-
nificant part of this is already accounted for by the BCAn-
satzfor the vertex. With the remainder viewed as due to t
r resonance, its effect is overestimated if, for example,
coupling topp is described by the physical mass-shell val
grpp . The effective reduction of thegrpp is evidently about
50% in the present approach; this supports the previ
cruder estimate@2#.

The utility of the BC Ansatzfor studies of electromag
netic coupling to hadrons is that it is completely specified
terms of the quark self-energy amplitudes. For similar r
sons we seek to summarize the main features of the B
solution for the quark-photon vertex also in terms of t
quark self-energy amplitudes and a phenomenolog
r-meson BS amplitude, based on the resonance formula,
~30!. For ther BS amplitude we use a simpleAnsatzfor the
dominant amplitude only,F1

V(q2)→Nr /(11q4/v4), prop-
erly normalized and withv50.66 GeV to give a decay con
stant f r5201 MeV, similar to the parametrization used
Ref. @14#. In order to construct anAnsatzwhich can be used
both at small and at largeQ2, we consider the following
phenomenological form forQ2>2mr

2 :

Gm~q;Q!5Gm
BC~q;Q!

2gm
T Nr

11q4/v4

f rQ2

mr~Q21mr
2!

e2a(Q21mr
2).

~34!

-

2-9
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PIETER MARIS AND PETER C. TANDY PHYSICAL REVIEW C61 045202
Since the correct UV asymptotic limit is provided byGm
BC,

the parametera.0 provides for aQ2 suppression of the
resonant term. We fita to r p , using the experimental value
for mr and f r , and find good agreement witha
50.03 GeV22. The form factorFp(Q2) produced by this
phenomenological vertex is shown in Fig. 9, and is seen
provide an excellent fit to the vertex BSE solution and hen
according to Fig. 7, also to the experimental data. Extens
to a more realisticr BS amplitude are straightforward t
implement in phenomenological model calculations.

V. SUMMARY AND OUTLOOK

We have used a ladder truncation for the BSE for
quark-photon vertex, in conjunction with a ladder-rainbo
truncation for the quark DSE. Both the vector WTI for th
quark-photon vertex and the axial-vector WTI are preser
in this truncation. This ensures both current conservation
the existence of massless pseudoscalar mesons if chiral
metry is broken dynamically: pions are Goldstone bos
@4#. The details of the model were fixed in previous work@5#.
It leads to dynamical chiral symmetry breaking and confi
ment; furthermore, at large momenta, our effective inter
tion reduces to the perturbative running coupling and t
preserves the one-loop renormalization group behavio
QCD and reproduces perturbative results in the ultravio
region. The model gives a good description of thep, r, K,
K!, andf masses and decay constants@5#.

Our numerical solution of the vertex BSE shows clea
the vector meson pole in all eight transverse amplitudes
the photon momentumQ50, the solution agrees perfectl
with the BC Ansatz, as required by the WTI and gauge in
variance. Also at spacelike asymptotic momenta our tra
verse solution agrees with the BCAnsatz: both go to the bare
vertex. At small but nonzeroQ2 the BSE solution depart
significantly from the BCAnsatz: the BSE solution has a
stronger Q2 dependence. In the region2mr

2,Q2

,0.2 GeV2, the quark-photon vertex can be described b
BC Ansatzplus a resonant term. However, there is no uniq
decomposition of the vertex into resonant and nonreson
terms away from the pole, and the BSE solution for the v
tex is the appropriate representation containing both asp

Subsequently, we have calculated the pion charge f
factor in impulse approximation. The results using the B
solution for theq̄qg vertex are in excellent agreement wi
the data~see Fig. 7! and producer p

2 50.46 fm2, without
fine-tuning the model parameters: the parameters are com
pletely fixed in Ref.@5#. Use of the BCAnsatz tends to
produce a charge radius which is too low: in the pres
model, the resultingr p

2 50.18 fm2 is less than half the ex
perimental value, while the remainder can be described b
r resonant term. This indicates that as much as half ofr p

2 can
ll-

04520
to
e,
ns

e

d
d
m-
s

-
-
s
of
t

t

s-

a
e
nt
r-
ts.
m
E

t

a

be attributed to a reasonable extrapolation of ther resonance
mechanism. On the other hand, the strict VMD picture is
simple; about half ofr p

2 arises from the nonresonant photo
coupling to the quark substructure of the pion. One shou
however, keep in mind that such a separation in resonant
nonresonant contributions is ambiguous and model dep
dent. For comparison, in a more phenomenological appro
one can generate as much as 70–80 % of the experime
value of r p

2 using the BCAnsatz@8,14#.
The form factorFp(Q2) exhibits a resonance peak

timelike momentaQ2 near2mr
2 , and our calculatedFp(Q2)

does indeed show such a peak. Since in ladder truncation
does not generate a width for ther meson, we overshoot th
data close to ther pole. We expect that if we include thepp
mechanism for ther width in our formalism, we will have
better agreement with the data in the timelike region. A d
tailed comparison close to ther pole will be postponed until
we have included this effect in our calculations.

Pion loops will not only generate a width for ther; they
will also give a direct contribution to the pion form facto
and generate a nonzero imaginary part for momentaQ2,
24mp

2 . Estimates are that the pion charge radius increa
by 10–15 %@15# due to pion loops, which would lead to
charge radius which is too large in the present model. Ho
ever, the pion loops will also affect the calculated mes
masses: estimates for the shift in ther mass vary between
2% and 10%@22#, and the parameters in the effective quar
antiquark coupling will have to be readjusted to mainta
agreement with the experimental data. We hope to add
these question in future work.

With our BSE solution for theq̄qg vertex we can now
investigate other hadron form factors. First results indic
@23# that also theg* pg transition form factor at lowQ2 is
reasonably well described with the present vertex BSE s
tion. In the near future we will also apply this method to t
kaon form factor and to electromagnetic decays such ar
→pg. Another interesting application is the nucleon for
factor, using models for the nucleon such as those be
developed in Refs.@12,24#. The phenomenological resonanc
addition to the BCAnsatz, Eq. ~34!, can be used as guidanc
for phenomenological models to facilitate these and ot
hadron form factor calculations, without having to solve t
vertex BSE numerically.

ACKNOWLEDGMENTS

We acknowledge useful conversations and corresp
dence with C.D. Roberts and D. Jarecke. This work w
funded by the National Science Foundation under Grant
PHY97-22429, and benefited from the resources of the
tional Energy Research Scientific Computing Center.
@1# H.B. O’Connell, B.C. Pearce, A.W. Thomas, and A.G. Wi
iams, Prog. Part. Nucl. Phys.39, 201 ~1997!.

@2# P.C. Tandy, inFuture Directions in Quark Nuclear Physics,
edited by A.W. Thomas and A.G. Williams~World Scientific,
Singapore, 1999!, pp. 62–71.

@3# M.R. Frank, Phys. Rev. C51, 987 ~1995!.
2-10



t.

nd

v.

A

s.
,

e-
ear
ty,

t,
nt
ro-

QUARK-PHOTON VERTEX AND THE PION CHARGE RADIUS PHYSICAL REVIEW C61 045202
@4# P. Maris and C.D. Roberts, Phys. Rev. C56, 3369~1997!.
@5# P. Maris and P.C. Tandy, Phys. Rev. C60, 055214~1999!.
@6# J.S. Ball and T.W. Chiu, Phys. Rev. D22, 2542~1980!.
@7# C.D. Roberts, Nucl. Phys.A605, 475 ~1996!.
@8# P. Maris and C.D. Roberts, Phys. Rev. C58, 3659~1998!.
@9# C.J. Burden, C.D. Roberts, and M.J. Thomson, Phys. Let

371, 163 ~1996!.
@10# P.C. Tandy, Prog. Part. Nucl. Phys.39, 117 ~1997!.
@11# F.T. Hawes and M.A. Pichowsky, Phys. Rev. C59, 1743

~1999!.
@12# J.C.R. Bloch, C.D. Roberts, S.M. Schmidt, A. Bender, a

M.R. Frank, Phys. Rev. C60, 062201~1999!.
@13# D.C. Curtis and M.R. Pennington, Phys. Rev. D42, 4165

~1990!.
@14# M.A. Ivanov, Yu.L. Kalinovsky, and C.D. Roberts, Phys. Re

D 60, 034018~1999!.
@15# R. Alkofer, A. Bender, and C.D. Roberts, Int. J. Mod. Phys.

10, 3319~1995!.
@16# P. Maris, C.D. Roberts, and P.C. Tandy, Phys. Lett. B420, 267

~1998!.
04520
B

@17# V.A. Miransky, Phys. Lett.165B, 401~1985!; D. Atkinson and
P.W. Johnson, Phys. Rev. D37, 2296~1988!.

@18# F.T. Hawes, P. Maris, and C.D. Roberts, Phys. Lett. B440,
353 ~1998!.

@19# C.J. Bebeket al., Phys. Rev. D13, 25 ~1976!.
@20# L.M. Barkov et al., Nucl. Phys.B256, 365 ~1985!.
@21# S.R. Amendoliaet al., Nucl. Phys.B277, 168 ~1986!.
@22# L.C.L Hollenberg, C.D. Roberts, and B.H.J. McKellar, Phy

Rev. C 46, 2057 ~1992!; D.B Leinweber and T.D. Cohen
Phys. Rev. D49, 3512~1994!; K.L Mitchell and P.C. Tandy,
Phys. Rev. C55, 1477 ~1997!; M.A. Pichowsky, S. Wala-
walkar, and S. Capstick, Phys. Rev. D60, 054030~1999!.

@23# P. Maris and P.C. Tandy, ‘‘The quark-photon vertex and m
son electromagnetic form factors,’’ nucl-th/9908045, to app
in the proceedings of PANIC’99, 1999, Uppsala Universi
edited by S. Kullander, G. Fa¨ldt, and B. Höistad.
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