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Quark-photon vertex and the pion charge radius
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The rainbow truncation of the quark Dyson-Schwinger equation is combined with the ladder Bethe-Salpeter
equation for the dressed quark-photon vertex to study the low-momentum behavior of the pion electromagnetic
form factor. With model gluon parameters previously fixed by the pion mass and decay constant, the pion
charge radius ., is found to be in good agreement with the data. In this work, about half i seen to be
attributable to the presence of tpepole in the solution of the ladder Bethe-Salpeter equation.

PACS numbse(s): 24.85+p, 14.40.Aq, 13.40.Gp, 11.10.St

[. INTRODUCTION the distributed quark currents in the pion, the vector meson
bound state is not a well-defined concept away from the pole,
For timelike photon moment®? in the vicinity of the  and the question of a resongmtcontribution has to be ad-
p-meson mass shell, the pion charge form fadtq(Q?) dressed within the dressed quark-photon vertex. This is the
will exhibit a resonant peak associated with the propagatiofiopic we explore in this work. Given that one can find a
of intermediate statp mesons(we ignore a possible small convenien{and necessarily model-dependemipresentation
effect due top-» mixing). That is, of the quark-photon vertex involving direct and resonant
parts, the direct coupling will necessarily produce a distribu-
tion F9"(Q?) to replace the first term in Eq2) and there
will be a corresponding contribution to the charge radius.
The remaining contribution must differ from the second term

in the Euclidean metric@?<0 corresponds to the timelike ©Of Ed. (2) because, ., g,, m,, andI'; are well defined
region, which we use throughout this work. Hemazp/gp is  only for the phyS|caI_ oq—_she_ll vector meson bound state. A
the p-y coupling strength fixed by the—~e*e™ decayg,,, Mmeasure of the ambiguities mvolled is provided by a recent
is the coupling constant for the— 77 decay, and’,, is the  study that modeled the underlying substructure op and
p width which is principally due to the latter process. A . Under the assumption that tpeBethe-SalpetefBS) am-
long-standing issue in hadronic physics is the question of thelitude is applicable also aQ?=0, it was found that
extent to whichF(Q?) at low spacelikeQ” can be de- g (Q*=0)~g,,./2[2]. On face value, this suggests that
scribed by thep-resonance mechanism. This is an essentiabnly about 50% ofr2 would be attributable to the
element of the vector meson dominan¢éMD) model p-resonance mechanism.
which is one of the earliest field theory models to be suc- In th|s Work we Obtain the quark-photon vertex as the
cessful in a point coupling description of aspects of hadrorspjution of the inhomogeneous Bethe-Salpeter equation
dynamics. In the form of VMD where-y coupling is de-  (BSE) in ladder truncation with the dressed quark propaga-
scribed by the contraction of the two field strength tensorgors taken as solutions of the Dyson-Schwinger equation
p*'F,,, the pion charge form factor is produced as (DSE) in rainbow truncation. Such a procedure automatically
incorporates the pole structure of the vertex corresponding to
’ gpMQ2 the vector meson spectrum of the homogeneous BSE. A pre-
FA(Q9)~1- Q2+ mi—im I (Q%)] (2 vious exploratory studj3] of the coupled DSE-BSE for the
9 P pep quark propagator and the quark-photon vertex employed a
gimple infrared dominant form of the effective gluon propa-
tor in order to utilize closed form expressions for the
ressed quark propagators and the resulting BSE kernel. That
study was not carried far enough to draw implications for the
pion form factor.

. > . We employ a more realistic model for the effective quark-
only, and the form fe_lctor IS re"f" fo©2>—4m7,: In this antiquark coupling that has recently been shown to repro-
model the charge rad|u§,=—6Fw(O) comes entirely from  §,,ce the pion and kaon masses and decay condihts
the resonant term and isgf,/(myg,)=0.48 fnt, which  \yell as the masses and decay constants for the vector mesons
compares favorably with the experimental value 0.44.fm p, ¢, andK* to within 10%[5]. There, as well as here, the
See Ref[1] for a recent review of the pion charge form guark propagators are consistently dressed through the quark
factor and VMD in this form. o DSE using the same effective gluon propagator, which en-

In terms of QCD, where the pion isgqg bound state, the sures that the vector Ward-Takahashi identity is obeyed and
content of EQ.(2) cannot provide a realistic picture for electromagnetic current is conserved. The model parameters
F.(Q?) at (low) spacelikeQ?. The photon couples only to are all fixed in previous work5] and constrained only by

2
gp’ﬂ"ﬂmp

9,(Q%+m2—im,I')

FA(Q%)— D

The nonresonant first term arises from the photon coupling t
the charge of a point pion. The resonant second term aris
from p-y coupling, it implements th&? dependence, and
vanishes aQ?=0 in accordance with gauge invariance. The
width ", is nonzero beyond the threshold ferr production
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where F_(Q?) is the pion form factor and®.=P+Q/2,
g-=0q*P/2,9,..=0q,%£Q/2, andk. =qxQ/4. S(q) is the
dressed quark propagatjhr(k; P) is the pion BS amplitude
corresponding to relativgq momenturmk (we choose equal
partitioning and pion momentum P, and
Tr[ - - - ] denotes the trace over color, flavor, and spin indices.
L The quark-photon vertex,(q;Q) at sufficiently large
spacelike Q% becomesT’ V(q;Q)—>QyM, where Q is the
quark charge operator.

The quark-photon vertex satisfies the Ward-Takahashi
identity (WTI)

iQ, T ,(p;Q=0Q[S Xp+Q/2)-S Xp—-Q/2)], 4

FIG. 1. The impulse approximation for the pion charge form

factor. as a result of gauge invariance. @t=0 the vertex is com-

m,, me, f., and(ﬁq). With this model. we solve the in- pletely specified by the differential Ward identity

homogeneous BSE for the quark-photon vertex without fur- J
ther approximations. Next, we use the BSE solution for the iT,(p;00=0—S(p) ~. (5)
vertex to investigate the low-momentum behavior of the pion Py
charge form factor, and find excellent agreement with the
experimental charge radius. We also compare our result witfihis reduces Eq(3) to F,(Q*=0)=1 if I, is properly
the Ball-Chiu(BC) Ansatz[6], which is commonly used in normalized: This clearly shows that the bare vertey is
contemporary studies of electromagnetic interact[@asl?.  generally a bad approximation due to the momentum depen-

In Sec. Il we review the formulation that underlies recentdence of the quark self-energy: only with bare quark propa-
studies of the pion form factor within a modeling of QCD gators does a bare vertex satisfy E¢®.and (5). Use of a
through the DSEs, and discuss the need for a dressed quatfkare vertex, in combination with dressed propagators, in Eq.
photon vertex in such models. The BSE for the quark-photort3), violates charge conservation and lead$¢0)+ 1.
vertex is described in Sec. Il and the vector meson pole The WTI determines the longitudinal part of the vertex
contributions are identified. Also described there are thecompletely in terms of théinverse quark propagator. How-
model used for the effective coupling in ladder truncation,ever, the transverse part is largely unconstrained by symme-
the basis of covariants used, and the comparison of the ndifies. A commonAnsatzfor the dressed vertex is that due to
merical BSE solution with the B@nsatz Our analysis of Ball and Chiu[6] which was developed in the context of
the low-momentum behavior of the pion form factor and QED investigations and is a representation in terms of the
charge radius is presented in Sec. IV, and concluding requark propagator functions andB defined by
marks are given in Sec. V.

S(p)~*=ipA(p®) +B(p?). (6)
Il. PION ELECTROMAGNETIC FORM FACTOR

H TBC/ s _ ATBC/ . :
A number of works have treated the electromagnetic formVith I',"(p:Q) =QI',*(p;Q) the BC Ansatzis

factors of piong7,8], kaons[9,10], and more recently vector

mesong 11] and nucleon$12] in the course of QCD mod- 1 A(p+)—A(p-)
eling via truncations of the DSEs. Using dressed quarkric(p;Q):E y#[A(p+)+A(p,)]+2¢pMW
propagators and bound state BS amplitudes, form factors can A

be calculated in impulse approximation, as depicted in Fig. 1 B(p.)—B(p_)

for the y7ror vertex. Such work proceeds most easily in Eu- —2ip,———— (7
clidean metric {y,,7,}=25,,, ¥,=v,, and ab P+—P-

= Ei“: ,a;b; . In the space of color, flavor, and Dirac spin, we
denote by'f‘#(p;Q) the quark-photon vertex describing the
coupling of a photon with momentur® to a quark with
initial and final momenta —Q/2 andp+ Q/2, respectively.
With this notation, theyw 7 vertex takes the form

where p..=p=*Q/2. This satisfies the constraints from the
WTI, Eg. (4), and the Ward identity, Eq(5), transforms
under CPT as a vector vertex should, and has the correct
perturbative limity,, in the ultraviolet. The longitudinal part
of I'B€ is exact; the transverse part is exact onlat 0 and
A(P,Q)=2P,F.(Q?% in the UV limit. Curtis and Pennington have explored addi-

dq
=-2 f T[T (ky;—P -
(271-)4 [Pl +)S(0--) This equivalence holds if the kernel of the pion BSE is indepen-

~ dent of the pion momentum. For the ladder truncation of the kernel,
Xil' (g4 ;Q)S(g; I (k_;P_)S(g_)], (3  which we consider here, this is the case.
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tional Dirac structures that are possible for the transverse . BETHE-SALPETER SOLUTION
part of the vertex and have suggested an impro&edatz FOR THE VECTOR VERTEX

[13] based on multiplicative renormalizibility in QED The quark-photon vertex satisfies the renormalized inho-

mogeneous BSE
LpiQ) =T (pi Q) +[(ph —p2) v = (B —B-)P,] . . r d'g
(P2 4P )AL —A(P)] A e

(2m)*
(P2 —p2)2+[M(p )2+ M(p_)??’ ®

XS+ 7QT ,(a;Q)S(a—7Q), (10

with M(p)=B(p)/A(p). Both Ansdze Eq.(7) and Eq.(8), where 77+;=1 describes the momentum sharing between

for theaqy vertex satisfy all symmetry constraints, and usethe two quarks. The kern& operates in the direct product
! . ’ f color, fl , and Di in for th k and an-
of them in Eq.(3) leads toF (0)=1, but neither of them space ot color, Tlavor, and Dirac spin Tor the quark and an

contains the timelike vector meson poles of the exact vertextiduark and is the renormalized, amputaggfiscattering ker-
The pion charge radius nel that is irreducible with respect to a pairqd lines. The
notation* denotes a translationally invariant regularization
of the integral, withA the regularization mass scale. At the

IF _(Q?) end of all calculations the regularization is removed by tak-
2 w . . .
re=—6——— (9)  ing the limit A —co.
9Q Q2=0 The renormalization constarf, and the renormalized

dressed quark propagatSifollow from the quark DSE

4

will receive two types of contribution within the impulse _ A dq

approximation in Eq(3): (1) contributions froml",(Q=0) S(p)‘1=22|¢+z4m(,u)+zlj WQZDW(P—CI)
coupled with theQ? slope produced by the quark propaga-

tors andI",. and (2) contributions proportional to th€? A2 a

slope ofTV(Q). For the first type, use of the B&nsatzis ><77M8(q)1“,,(q,p), (1D

sufficient since the BQAnsatzis exact atQ=0. However, _ _
for the second type of contributiodl” ,(p;Q)/dQ? is not whereD ,, (k) is the renormalized dressed-gluon propagator
constrained by symmetries. a andI"%(q;p) is the renormalized dressed-quark-gluon vertex.
Previous studies of three-point quark loops such ag®q. 1he solution of Eq(11) is renormalized according to
for form factors have, for practical reasons, utilized param- - .
i b S(P)~Hpo-u2=iB+ mip), (12)

etrized representations of the DSE solutions for quark propa-
gators and the BS amplitudes, in conjunction with the BCy; 4 sufficiently large spacelike?, with m( ) the renormal-

Ansatzfor the quark-photon vertek7—11]. The parameters ized quark mass at the scale In Eq. (11, S T2, and

are fitted to give a good description of pion and related chira (1) depend on the quark flavor, althou,gh we ,have not
observables such as,, m,, r,, and(qq) with a view jndicated this explicitly. The renormalization constants de-
towards parameter-free studies of other mesons and obsefyend on the renormalization point and the regularization
ables[14]. This procedure can produce valuesr@fin the  mass scale, but not on flavor: in our analysis we employ a

range 20%—-30% below the experimental vel@g 4], which  flavor-independent renormalization scheme.
leaves some room for additional contributions, such as those

coming fromm-r rescattering[l&_')] and from thep—_resonance A. Bound state contributions
mechanism. However, the estimated 50% Dhbeing due to Soluti fthe h . ‘ i
the p resonancg2] appears to be incompatible with these olutions of the omggengous version of Et) at dis-
parametrizations. crete timelike moment®- define vect~or meson bound states

Here, we reconcile the VMD picture with the QCD pic- With masse_$n§= — Q7. Itfollows thatI",,(p; Q) has poles at
ture of a photon coupled to distributed quarks iaqabound thpse locations. '!'he corresponding resonant form can be ob-
state by calculating all ingredients needed For(Q?) via tained by observing that E¢10) has the equivalent form

Eq. (3) from their dynamical equations: we solve the quark A
DSE, the_plon BSE, anql the inhomogeneous vertex BSE ina T.(pQ) :ZZQ%ﬁLsz
self-consistent way, using the same model for the effective

qguark-antiquark coupling. Both resonance and nonresonance . _
contributions to the vertex are dynamically generated xX3S(q+7Q)Qv,.S(q—7Q), (13
through the BSE. By comparison with the B®satzwe can o

identify resonance contributions; however, one must keep itvith M being theqq scattering amplitude given in schematic
mind that such an identification is necessarily model depenform by M=K+KSMS In the vicinity of the timelike
dent. points Q2=—m§ where the homogeneous BSE has solu-

q
M(p,q;
(2m)* (p,a;Q)
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tions,M has poles with residues that define the physical me- . A\ ru
son BS amplitudes. In particular, for two flavors, K{ﬁ(p,q;P)—>—g((p—q)2)Dﬁe(p—q)(7yﬂ)
(P Qg — Q) (V‘ )ts
M(p,q; - - 5 Y (19)
Fw(p.Q)Fw(q._Q) where Djﬁe(k) is the perturbative gluon propagator in Lan-
AL . 2’ , (14) dau gauge. The resulting BSE is consistent with a rainbow
Q+my, truncation"3(qg,p) — y,\?/2 for the quark DSE, Eq11), in

the sense that the combination produces vector and axial-
with the BS amplitudes properly normalized. In the ladderyector vertices satisfying the respective WTIs. In the axial
truncation that we will be concerned with in practice, thecase, this ensures that in the chiral limit the ground state
normalization condition reduces to € p° ) pseudoscalar mesons are massless even though the quark
mass functions are strongly enhanced in the infry#/ed6].

g 1 (A d%q — In the vector case, this ensures electromagnetic current con-
2P, ==5~ §f (ZT)JF[FV(q;—K)S(qJF 7P) servation.
" The model is completely specified once a form is chosen
- “ : H ” 2
XT™(q:K)S(q— 7P) 1| p2—k2— s (15) E(L)lrS‘ihe effective coupling” G(k“). We employ theAnsatz

where the factor of 1/3 appears because the three transverse
directions are summed. Using the fact that massive vector
mesons are transverse, the resonant form of the quark-photon
vertex near the vector meson poles can be written as

g k2 4 2
% :iﬁ Dk2e~ K2/ w?
[0}

YmT

F(k?), (20
W%In[7+(1+k2/AéCD)2] (k. (9

+4

I (p;Q)m2/g, , re(p;Qma/g,,
Q*+M? Q*+M?

I'.(p;Q)— , (16
with  F(k?)=[1—exp(—kI/[4n?]) K3, and ym=12/(33
—2N;). This Ansatzpreserves the one-loop renormalization
group behavior of QCD for solutions of the quark DSE. In
particular, it produces the correct one-loop QCD anomalous
5 4 dimension of the quark mass functidn(p?) for both the
%: _ é A diq Tr[F”(q' ~Q)S(q+ 7Q) chiral limit and explicit chirally broken cadé,17]. The first
On 3) (2m)* v g term of Eq.(20) implements the strong infrared enhancement
A o in the regionk?=0-1 Ge\f which is a phenomenological
XQvy,S(g—7Q)]. (17) requirement for sufficient dynamical chiral symmetry break-
ing to produce an acceptable strength for the quark conden-
Away from the pole, the separation into a resonant and norsate [18]. We usem,=0.5 GeV, r=e?—1, N;=4, and
resonant part is not unique; the solution of the BSE for theANgD“:o_234 GeV and a renormalization poinj
complete vertex contains both aspects in a consistent way.— 19" Gev, which is sufficiently perturbative to allow the
At the level of the ladder approximation, which is com- gne.joop asymptotic behavior of the quark propagator to be
monly used in practical calculations, and using isospin SyMyseq as a chedi,5]. The remaining parameters are fixed to
metry, we haven,=m,=my, and the flavor structure ofthe )04 Gev andd=0.93 Ge\? to give a good description
BS amplitudes is I')(p;Q)=(r3/v2)I}(p:Q) and  of m_, and f,. The subsequent values fdg and the
I'2(p:Q)=(12)I'Y(p;Q). The flavor trace in Eq(1l7)  masses and decay constants of the vector mgs@h&* are
gives g,=39,=3gy. The factorizationTMZC}FM allows very well described5].
Eq. (16) for the vector pole structure to simplify to the
flavor-independent form C. Numerical solution

where the coupling constant, (n=p° ) for p-y and
w-7y mixing are

Voo The general form of' ,(q;Q) can be decomposed into 12
FL(p;Q)fymy (19) independent Lorentz covariants, made from the three vectors
Q%+ m\Z/ ' Y, the relative momenturg,,, and the photon momentum

Q,., each multiplied by one of the four independent matrices
wherefymy=y2m2/gy . Our numerical study is carried out b 4, @, and,,q,Q, . Four of the covariants represent the

for the flavor-independent vector vert&,(p; Q). longitudinal components which are complgtely specified by
the WTI and can be taken as the longitudinal prOjeclTQp

of the BC Ansatz Eq. (7). The solution of the BSE for the
transverse vertex can be expanded in eight covariants
We use a ladder truncation for the BSE, T'ﬂ(q;Q). Thus the total vertex is decomposed as

r,(p;Q)—

B. Ladder-rainbow truncation
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8 ; — ;
L (4:Q)=T%(a:Q)+ 2 T,(4;Q)Fi(0%9-Q:Q?), 25t ‘. e T
i=1 ! ——— @'=-01GeV’
(21) e -\ ol
~< e Q' =0.1GeV
. . . . . 2.0 1 N ! --- O°=03GeV’
with the invariant amplitude&; being Lorentz scalar func-  ~ N \ —— Q-06GeV’
tions. The choice for the covarianTi(q;Q) to be used as a N?; N \ —-d-toceV
basis is constrained by the required properties under Lorentz™5 1.5 | AN \ ]
and CPT transformations, but is not unique. The BEH) u .
must be projected onto the covariant basis to produce a_= -
. . . R . . g 1.0
coupled set of eight linear equations for the invariant ampli- o
tudesF; to be cast in matrix form. This requires a procedure 7 e
to project out a single amplitude from the general form, Eq. .~ g5 o _
(21). It is therefore helpful if the chosen covariants satisfy a
Dirac-trace orthogonality property. The following set of or-
thogonal covariants is used hére 0.9, o7 0° o 0
q [GeV]
THa;Q) =7}, (22)
FIG. 2. The ratio of the BSE solution over the B@satzor the
Ti(q;Q)I[q;qT—%7;(qT)2]/q2, (23 dominant amplit_udé’Flé associatt_ad yvithy;, of the quark-photon
vertex as function ofg- for the indicated values of the photon
3O =T 22 momentumQ?. The quark momenta ag+ Q/2.
T,(a;Q)=0,Qq9-Q/(q°Q7), (24)
Charge conservation is evident through the ratio being
Th(0;Q)=—(v,[@.4]+2q,®)/2q, (25)

one atQ=0: the ladder vertex BSE solution satisfies the
WTI. The fact that our numerical solution indeed is to within
1% equal to the B@\nsatz not only for °F, but also for the
other amplitudes, indicates the accuracy of our numerical
To(a;Q)=i[v,,.4"]9-Q/¢?, (270 methods. At small spacelike momenta the BSE solution dif-
fers considerably from the B@nsatz The difference in-
7N —ir AT 8- 2 2 P
T,(0:Q)=i[y,,Q](1-cos0)—2T5(q;Q), (28  creases witlQ* in the range 6:Q*<2 GeV# it is only at
asymptotic values of< that they become equal again.
T8 (q:Q)=iq d"Q/q2, 29 A different perspective is shown by Fig. 3 which com-
H0:Q)=10,4° Qg @9 pares theQ? dependence ofF; atq?>=0. Again, the agree-

T2(9;Q)=iq,/q, (26)

where VT is the component o¥ transverse tdQ, that is, . . .
V], =V,—Q,(Q-V)/Q? and g-Q=qQcosh. Each ampli-

35t |
tude can be projected onto a basis of even-order Chebyshe — BSE solution
polynomials in co® to produce"F;(g?,Q?) [5]. It is found a0 | & -~ BC Ansatz, S solution of DSE |
that terms beyond the zeroth order;>0, are insignificant ' ¢ BCA, parametrized S
and are not used in the subsequent study of the form factor , |

For a range of small timelike and spaceli®é, the ratio
of the BSE solution to the B@nsatzfor the dominant am- g ,, |

plitude °F; is displayed in Fig. 2 as function af’>. The %
deviation from unity indicates differences between the BC &
Ansatzand our numerical solution of the ladder BSE. It is
immediately obvious that for timelike photon momenta and
q°<3 Ge\ there is a significant enhancement of the BSE
solution compared to the B&nsatz This strong increase in 5 |
the vertex BSE solution is due to the vector meson pole ai

Q?~—0.55 GeVf, which only affects the vertex at small ‘ . . . |
g?; at largeq? both the BSE solution and the BE@nsatz 0 2 4 L6 8
approach the bare vertex for any value@f. photon momentum Q" [GeV/]

1.0 |

10

FIG. 3. TheQ? dependence of the BSE solution for the domi-
nant amplitude®F; of the qqy vertex atq®=0 (solid ling). The
2Since the domain of interest here includes both timelike anddashed line with circles is the B&nsatzfor this amplitude in the
spacelikeQ?, we avoid factors ofQ= JQZ2. Therefore we do not present model; the dotted line with diamonds is the ®Gatzwith
require the covariants to be normalized, as we did in Rgf.We phenomenological quark propagator functioAsand B param-

also include explicit factors aj- Q in T; andTg so that now every etrized and fitted to pion observables, including, according to
F; is even ing- Q. Ref.[8].
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ment atQ?=0 is dictated by the Ward identity; however, the

slope of °F,(0,Q%) at Q?=0 as obtained from the vertex

BSE solution differs significantly from that produced by the

BC Ansatz This can be of importance for the charge radii of _
the pion and other hadrons. In this figure one can clearly set ‘\\ ’//

the presence of the vector pole in thgy vertex atQ? -2 e ]
~—0.55 Ge\f. Also in this figure we plot the amplitude ~ & &

OF; as obtained from the B@nsatzwith the quark propa- X -3 |\, ! 1
gators of Ref[8], which were parametrized rather than ob- L% ‘\“\ /!

tained as the solution of a DSE. The parameters were fitteC -4 \j ,’I.’ e QP--05GeV ]
tof,, m,, r,, and(qq), using the BCAnsatzn the calcu- \\\\ ;5,' T gif‘g'? gggi
lation of r... The Q% dependence of thgqy vertex neces- - ‘\\ I Q:=o.1' GeV?
sary in order to reproduce a reasonable value fowas thus &L ‘\\® [ ——-Q’=03GeV" |
. . . A\ K G—-o© BCA + resonance
incorporated via the quark propagator functions. We see tha L ol

this phenomenological vertex amplitude has indeed a muct - N e s . .
stronger Q2 dependence than is obtained by use of the 107 10" 10° 10' 10°
present DSE solution for the quark propagator in the BC q° [GeV]

Ansatz This phenomenological procedure allows one to get _ —
reasonable electromagnetic form factors at Q& without FIG. 5. The same as Fig. 4 except now for they vertex
explicitly taking resonances into account. amplitude°F .

We have investigated the extent to which the vertex BSE _ _ _
solution can be represented by the interpolating form vertex, this would generate an imaginary part beyond the
threshold for pion productiorQ?< —4m2 .
£,Q? For small spacelik&®?, Eq. (30) represents an extrapola-
) . . . : BC( ~-
T (qO)=T8%q:0)- > T (q:0)FY(q? v , tion consistent with the requirements that I'~(q;Q=0)
W aQ=T,"aQ) 2 AR )m 24+ m?) be exact due to gauge invariance &l the p-y coupling
\ V
(30 should not generate a photon mass. Over the limited domain
—m\2,<Q2<O.2 Ge\?, Eq. (30) produces a very good rep-
whereF" are the leading Chebyshev moments of the massiesentation of the vertex amplitud®s ,, °F 3, and °Fs and a
shell vector meson BS amplitudes produced by the prese ite reasonable representation for the remainder, except for
model[5]. The second term, EG30), correctly describes the T4 Which is clearly the worst case and the hardest to rep-
vertex near the vector meson poleGt= —m\2/§ there is no  '€sent in a resonance formula. In Figs. 4, 5, and 6, _th|s ap-
width generated for the vector meson in the present ladd roximate f°”‘? IS compa_lred to th(? vertexOBSE solution for
truncation of the BSE. One would have to add the chan- € three dominant amplitudé¥ , °F 4, and°Fs. .
nel to the ladder BSE kernel to producepawidth; for the In this sense we shall refer to the BXisatzas missing a
' contribution near the pole, and to Eq(30) as a resonant-

, " , , improved BC Ansatzapplicable in the region-0.4 Ge\?
\ —-— ’=-05GeV’
7r '\ - O:=—03GeVZ 7 7 T | T T
‘ — Q*=-0.1GeV /1 H —— Q=
L O e Q°= 0.1 GeV? | 7t of i . Qz: 0.5Ge$
6 v 2 V2 ! Q =-03Ge
\ ——-Q =03Ge /’/ ) Q% = —01 GeV?
: O—O BCA + resonance i vV e Q= 0.1 GeV?
\ 4 6 /e v > e
5 - Y 1 ——- Q*=0.3GeV*
— \ // s . O—COBCA + resonance
C af ! 1 A H
Ng D----0o_ (5 — I “
-  Fe-~-ZZ ~Oo o .
&g I \ 9 4 o/ 1 .
2 < \
w 1
& 3l b |
\
.0~0 v
oL
2 e \9 ‘_
N
I ! L L 1+ . ;:’/ Q\\ o)
107 107" 10° 10' 10° o=~ e\
e TEOTQE, AR
d [GeV] o EE=gEE-0 000
10° 10" 10° 10" 10
FIG. 4. Theg? dependence of the BSE solution for the dominant ? 2

amplitude °F, for a range of timelike and spacelike values of the
photon momentumQ?. The circles correspond to the resonant-

FIG. 6. The same as Fig. 4 except now for m_mw vertex
improved BCAnsatzas described in the text.

amplitude °Fs.
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1.00 et
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FIG. 7. The pion charge form factét (Q?) as obtained from |  ~77°F S
different treatments of the quark-photon vertex. The inset shows the T~ AN
Q? region relevant for the charge radius. The data correspond tc | T TTteeel_ N
|F .|, taken from Refs[19] (circles, [20] (squarel and[21] (dots. -0.10 b i S 1
<Q?<0.2 GeV only. At asymptoticQ?, this form is obvi- . . ‘ . . . ‘
-04  -02 0.0 0.2 0.4 0.6 0.8

ously not adequate: it does not go to the bare vertex. Close t
the p pole, neither our vertex BSE solution nor the interpo-
lating form, Eq.(30), are physically realistic, because neither  FIG. 8. The relative contributions ,(Q?) from the four most
one takes into account the widih, generated by the open important amplitude§, (top), F,F4, andFs (bottom of the BSE
m decay channel. Sinde,/m,~0.2, the width contributes  solution for theqqy vertex. For the dominant amplitude;, we
little for Q?>—0.4 Ge\#, and thep contribution can be also display the relative contribution from the dominant pion am-
approximated by the simple pole term in Eg§0) for appli-  plitudesE,, only (top).

cations such as the pion form factor calculation.

Q° [GeVH

peak atQ?= —m>=—0.593 Ge\. Our calculated:W(QZ)
IV. RESULTS FOR THE PION FORM FACTOR diverges as 1Q2+ mg) as one approache®’=—my
o ~—0.55 GeVf, where the homogeneous BSE admits a
In addition to the solution of the BSE for thogy vertex  bound state solution; in the ladder truncation for the BSE one
and the quark propagat@ as the solution of its DSE, we does not get a width for the meson. We expect that if we
also need the pion BS amplitude,(q;P). This BS ampli- incorporate the open decay chanpel w7 in the BSE ker-
tude is the solution of a homogeneous BSE, and for pseudarel to generate a widtl', for the p, we will have better

scalar bound states it has the fofd] agreement with the data close to the resonance peak. In ad-
dition, some of the present difference between our calcula-
I'.(q;P)=vsliE (q;P)+PF_(q;P)+dq-PG,(q;P) tion and the data in the resonance region is due to the fact
that our numerical value fan, is about 4% below the physi-
+ O-;LVq,uPVHW(q; P)], (31) cal p mass.

_ ) _ _ ) Four of the eight amplitudes;s, Fg, F7, andFg, con-
with the invariant amplitude& ., F,, G, andH being  yipyte less than 1% t&,(Q?) on theQ? range considered.
Lorentz scalar functions aj? andq-P=qP cosé, with P Although the amplitudé 5 contributes very little to the form
= —m? the fixed, on-shell, pion momentum. Each amplitudefactor, this amplitude is needed for strict charge conserva-
can be projected onto a basis of even-order Chebyshev polyipon. Therefore we can truncate the BSE solution to the
nomials in co® and in Ref.[4] it was found that terms dominant five covariants;—Fs without significantly chang-
beyond the zeroth order are insignificant. With these ingreing the description oF -(Q?). In Fig. 7, the result using the
dients we can now calculate the pion electromagnetic fornfive dominant amplitudes is almost indistinguishable from
factor in impulse approximation, E¢3). the results obtained with all eight amplitudes.

In Fig. 7 we show our results for the pion form factor.  The relative contributions t& _(Q?) from the amplitudes
With the BSE solution for thejqy vertex we obtain an ex- F,, F,, F,, andF5 of the vertex BSE solution are displayed
cellent description of the lowQ? data, both in the spacelike in Fig. 8. This shows that the canonical amplituele to-
and timelike regionwithout fine-tuning the model param- gether with the canonicdpseudoscalammplitudeE .. of the
eters the parameters are completely fixed iy, andf . in pion, generates the bulk of the form factor in the infrared
Ref. [5]. Experimentally, the form factor shows a resonanceregion. The pion pseudovector amplitudesandG,, give a
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TABLE I. Results for the pion charge radius according to various treatments of the quark-photon vertex.

Fv.-(0) roughly characterizes the reduction in the coupling strength for the vectaq correlation in the
vector vertex compared to the on-shell coupling to ghey,, . .

Photon vertex r. r2 r2—r2 oc Fyar(0)
Expt. [21] 0.663 = 0.0006 0.44+ 0.0012

DSE F,~F4 0.678 0.460 0.278 0.58
DSEF,—F5 0.677 0.459 0.277 0.58
BC Ansatz(BCA) 0.426 0.182

BCA + res.F—F5 0.640 0.409 0.227 0.47
BCA + res. Fy,Fs) 0.625 0.390 0.208 0.44
BCA + res.F; 0.605 0.366 0.184 0.38
BCA + phenom. resF, 0.68 0.46 0.28 0.58
BCA of Ref.[8] 0.55 0.30

negative contribution of about 25% ne@f=0, but they are  for rfT that is less than half this value; this is also evident in
known to dominate at larg®?: the asymptotic behavior of Fig. 7. The main reason for this is that tQ¥ slope of the

the form factor, F.(Q%)~1/Q? is governed by the RggSE soution for theac 2.0
T . . eqqy vertex atQ =0 is poorly repre-
pseudovector amplitudes of the pitll. The vertex ampli- sented by the BAnsatz as shown, for example, in Fig. 3.

tugestf,fgé/an;ng, 9"’2 ngfganvt(_a C?nmbltjt".)n?hﬂé” of;chs Again, the Curtis-PenningtoAnsatzgives almost the same
order o 6 at smalQ®. Of particular note is the contribu-  “ "o oo B et

tion from amplitudeF,. Because of the Ward identity, this In a more phenomenological approach, using param-

vertex contribution, and hence its contribution g (Q?), . ! . ) :
must vanish aQ2=0. The latter is indeed evident in Fig. 8: etrized quark pro.pagators fitted to pion observables including
it is also evident there that this amplitude nevertheless is ongr 2 Was doneBlcr;ARe[B], Ione oEtalns a muchhbettgrdvalue
of the important contributors to the slope and henge its orr, using a nsatz In such an approac e~ de-
pendence of the vertex is parametrized via the quark propa-

contribution to the form factor grows roughly linear wig? : .
in the range we studied. This could have significant consed3tor: and can thus give an acceptable representation of the

qguences for the form factor at intermediate energies. Apion form factor in the spacelike region. The charge radius

asvmptotic value 2 the ag v vertex anproaches the bare obtained in this wayr2=0.30 fn?, is much closer to the
symptotic values oQ -9’y verlex approaches h experimental value than the one using a B@satzwith the
vertex, and thus all functions; except forF, will vanish.

The asymptotic behavior of the form factor is therefore notquark propagators of the present model. This can be used as

infl db h bdominant litude of th an indication of the model dependence and arbitrariness of
Influenced by, nor any other subdominant amplitude o eseparating the contributions into resonant and nonresonant

aqy vertex. terms.

A. Comparison with other vertices B. Resonance contribution tor

In Fig. 7 we also compare our results with those obtained In the previous section we found that the vertex BSE so-
using a bare vertex and using the B@satz Clearly a bare |ution could be simulated by a resonant-improved B@-

quark-photon vertex is incorrect: current conservation, whichsarz Eq. (30). The use of such a form for theqy vertex

ensuresk;(0)=1, is violated. Use of the B@&nsatzcon- yjelds, via the impulse approximation, E§), a charge form
serves the current because it satisfies the vector Ward idefyctor that can be expressed as

tity. However the resulting form factor misses the data com-

pletely, in particular in the timelike region; theQ? oo gmevW(QZ)Qz
dependence is clearly too small. This is mainly due to the FA(Q)~F29(Q?)~ PN (32
fact that the BCAnsatzdoes not incorporate vector meson 9,(Q"+m))

poles; in the present model, addition opaesonant term to

the BCAnsatzimproves the results dramatically, as we show BC, o

in detail in the next subsection. The use of the CurtiswhereF7-(Q%) is the result from the BGnsatz The com-
PenningtorAnsatz Eq. (8), gives results for the form factor binationg, . .Fy ., represents therm coupling to the vector
essentially the same as those obtained with theAB&atz aq correlationT'MFiV evident in the resonant term of EQO).

In terms of the pion charge radius,, our results are The behavior of this latter term guarantees that at the vector
summarized in Table I. It is seen that, compared to the emmeson pole, the second term of £§2) reproduces the stan-
pirical valuer2=0.44 fn?, the BSE solution for the vertex dard behavior andFy,,(—m?)=1. For otherQ? values
generates an excellent vaIué;=O.46 fn? using all eight F,..(Q?) does not correspond to a physical process: off-
transverse covariants or using the dominant fikg-Fs.  shell mesons are by definition not physical. However, the
Within the present model, the B@nsatzproduces a value departure of,..(Q?) from unity is a rough measure of the
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T improved BCAnsatzreproduces the vertex BSE result for

—— BSEsolution, F1-F8 1 to within 5%. The error increases to 10% if only the single
— — Ball-Chiu Ansatz 1 dominant vector meson covariant is used for the resonant
""""" BCA+resonance F1-FS 4 term of the vertex; part of the reason for this is due to the

increase in the vector meson md&g: with F, only, mi

=0.766 GeV, which moves the pole 30% further into the
timelike region.

Use of Eq.(32) allows rfT to be characterized as a reso-
nant addition to the result of the B@nsatz If we write the
difference between? and the BC contributiom? 5. as

— - - BCA + resonance F1
- - - BCA + phenom.res. F,

2 2 _Gngﬂ'FVﬂ'W(O)

r7T_ r'n’,BC_ ng ’ (33)
pIp

02 00 02 04 06 0.8 , X i
Q* [GeV] terizes the necessary weakening of the VMD mechanism for
rfT to account for the distributegq substructure. The values

FIG. 9. The pion charge form factdt,(Q?) as obtained from of Fy...(0) defined by Eq(33), using the experimental val-

and compare this with Eq2), we see thaF,.,(0) charac-

different descriptions of the quark-photon vertex in terms of a
resonant-improved B@\nsatz and compared td-.(Q?) as ob-
tained from the vertex BSE solution.

ues forg,,., m,, andg,, are also shown in Table I. The
difference between the? result from the vertex BSE solu-
tion andrf,’BC represents about 60% of the VMD value for

: . . . . the charge radius;? \,,,=0.48 fn?. The result from the
difference inm coupling experienced by the effective vec- N .
best resonant-improved B&nsatz(using the vector meson

tor qq correlation away from the mass shell compared 0 3mpjitudesF,—Fs) shows that the resonant term is contrib-

the physicalpra coupling. uting to r2 at the level of 50% of the VMD value. This

th The char?g form fgcéo@rs retsultmghfrom _twlc;vegsug\s Ofdecreases somewhat when the description of the vector me-
€ resonant-improve nsatzare snown in Fg. 3. ONe g4 g simplified. One can attribute this weakening of the

version is based on the five dominant invariant amplitudes,\,0 mechanism atQ?=0 to the fact that the photon

0V/n2 .
Fi(q°) of the p meson, and the other uses only the single L . — . .
dominant amplitud€’Fy (q?); physical normalization is im- couples to a distributed, interactimg correlation and a sig-

di h Th loved val fand f i nificant part of this is already accounted for by the B@-
POSEC In each case. 1he employed valuesmplandf, in satzfor the vertex. With the remainder viewed as due to the

each case are those obtained consistently from the homoge- . : . .
. . resonan its effect is overestim if, for example, th
neous BSE in the present modél; see Table Il. It is seen p resonance, its effect is overestimated if, for example, the

from Fig. 9 that both forms of the resonant-improved BCcouplmg torrr is described by the physical mass-shell value

. . 5 d,-=- The effective reduction of the, ., is evidently about
cgr?:)t(zgg; Isgleuttir;?\ gﬁikt]:\CvoerIIOFw(Q ) produced by the 50% in the present approach; this supports the previous
e ooine vl o, re sheun i Tl ot e ity f the BCAnsetor tucis of lckomag
charae radius produced by usin ' the two dominant am “ﬁetic coupling to hadrons is that it is completely specified in
i degF andF pfor the resgnant gdd't'on t0 the BaNsat Plterms of the quark self-energy amplitudes. For similar rea-
Cuompalred torg _018 f?. all verls:ions of a resonaznt sons we seek to summarize the main features of the BSE

m,BC™ Y- ’ -

. . solution for the quark-photon vertex also in terms of the
improved BCAnsatzprovide results roughly a factor of 2 quark self-energy amplitudes and a phenomenological

higher and in significantly better agreement with the resultp_meson BS amplitude, based on the resonance formula, Eq.

from the vertex BSE solution and the experimental data(30) For thep BS amplitude we use a simpRnsatzfor the
When the five dominan amplitudes are used, the resonant'dominant amplitude onIyF\l’(qZ)—>N I(1+q% %), prop-
P ’
. erly normalized and witlw=0.66 GeV to give a decay con-

TABLE II. The vector meson mass, and decay constai,in  ggantf =201 MeV, similar to the parametrization used in
GeV corresponding to various truncations of the eight possible INRef [14]. In order to construct aAnsatzwhich can be used
variant amplitudes of thp BS amplitudef5]. both at small and at larg®?, we consider the following
phenomenological form foR?= — mi:

m, fp
Expt. 0.770 0.216 F#(q;Q)=Fic(q;Q)
Fi—Fg 0.742 0.207
2
F1—Fs 0.730 0.201 T N, f,Q o a(Q+m)
Fi1,Fs 0.765 0.203 14 qYet m(Q2+m)
Fi 0.875 0.20 P

(34)
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Since the correct UV asymptotic limit is provided mﬁc, be attributed to a reasonable extrapolation ofglresonance

the parameten>0 provides for aQ? suppression of the mechanism. On the other hand, the strict VMD picture is too
resonant term. We fit tor ., using the experimental values simple; about half of 2 arises from the nonresonant photon
for m, and f,, and find good agreement withy coupling to the quark substructure of the pion. One should,
=0.03 GeV 2. The form factorF _(Q?) produced by this however, keep in mind that such a separation in resonant and
phenomenological vertex is shown in Fig. 9, and is seen tmonresonant contributions is ambiguous and model depen-
provide an excellent fit to the vertex BSE solution and hencegent. For comparison, in a more phenomenological approach
according to Fig. 7, also to the experimental data. Extensionsne can generate as much as 70-80 % of the experimental
to a more realistico BS amplitude are straightforward to value ofrfr using the BCAnsatz8,14].

implement in phenomenological model calculations. The form factorF ,(Q?) exhibits a resonance peak at
timelike momentaQ? near—m?, and our calculate# ,(Q?)
V. SUMMARY AND OUTLOOK does indeed show such a peak. Since in ladder truncation one

. does not generate a width for themeson, we overshoot the
Wke T‘a\{e useci a Iadder .trun:;atlon_tfrc])r tTedSSE f.orbthedata close to the pole. We expect that if we include ther
quark-pnoton Vertex, in conjunction with a 1adaer-rainbow ., o -y 4 nism for the width in our formalism, we will have

trunclfltlcr)]ntfor thetquarkdEtJhSE. E.’Olth thte vs\(/:_trolr WTI for the(?etter agreement with the data in the timelike region. A de-
quark-photon vertex and the axial-vector aré presenveqy;ag comparison close to thepole will be postponed until

in this truncation. This ensures both current conservation ans@e have included this effect in our calculations.

the existence of massless pseudoscalar mesons if chiral sym- Pion loops will not only generate a width for the they

metry is broken dynamically: pions are Goldstone boson%” also give a direct contribution to the pion form factor

[4]. The details of the model were fixed in previous wsk and generate a nonzero imaginary part for momepRe:

It leads to dynamical chiral symmetry breaking and confine- . . L
y y Y g —4mf,. Estimates are that the pion charge radius increases

ment; furthermore, at large momenta, our effective interac- y 10-15 %[15] due to pion loops, which would lead to a

tion reduces to the perturbative running coupling and thu h di hich is 100 | i th t model. H
preserves the one-loop renormalization group behavior ofharge radius which 1S too large In the present model. How-

QCD and reproduces perturbative results in the ultraviolef V" th.e pion loops wil also_ a_ffect the calculated meson

region. The model gives a good description of thep, K masses: estimates for the shift in the_nass vary k_)etween

K*, and ¢ masses and decay constafih Y 2% and 109422], and the parameters in the effective quark-
bur numerical solution of the vertex BSE shows clearlyam'quark couplmg will haye to be readjusted to maintain

the vector meson pole in all eight transverse amplitudes. A greement with the experimental data. We hope to address

the photon momentun®=_0, the solution agrees perfectly t esg question in futur_e work.

with the BC Ansatz as required by the WTI and gauge in-  With our BSE solution for thegqy vertex we can now
variance. Also at spacelike asymptotic momenta our transnvestigate other hadron form factors. First results indicate
verse solution agrees with the BXhsatz both go to the bare  [23] that also they* my transition form factor at lovQ? is
vertex. At small but nonzer®? the BSE solution departs reasonably well described with the present vertex BSE solu-
significantly from the BCAnsatz the BSE solution has a tion. In the near future we will also apply this method to the
stronger Q2 dependence. In the region—m2<Q? kaon form factor and to electromagnetic decays suclp as
<0.2 Ge\, the quark-photon vertex can be desclr’ibed by a7 An_other interesting application is the nucleon forr_n
BC Ansatzplus a resonant term. However, there is no uniqud@ctor, using models for the nucleon such as those being
decomposition of the vertex into resonant and nonresonarfi€veloped in Refg.12,24. The phenomenological resonance
terms away from the pole, and the BSE solution for the ver-&ddition to the BCAnsatz Eq. (34), can be used as guidance
tex is the appropriate representation containing both aspect®’ Phenomenological models to facilitate these and other

Subsequently, we have calculated the pion charge formpadron form factor calculations, without having to solve the
factor in impulse approximation. The results using the BSEVErtex BSE numerically.

solution for theqqy vertex are in excellent agreement with
the data(see Fig. 7 and produceri=0.46 f?, without
fine-tuning the model parameterthe parameters are com-
pletely fixed in Ref.[5]. Use of the BCAnsatztends to We acknowledge useful conversations and correspon-
produce a charge radius which is too low: in the presentlence with C.D. Roberts and D. Jarecke. This work was
model, the resulting2=0.18 fn? is less than half the ex- funded by the National Science Foundation under Grant No.
perimental value, while the remainder can be described by RHY97-22429, and benefited from the resources of the Na-
p resonant term. This indicates that as much as harlﬁ,mfan tional Energy Research Scientific Computing Center.
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