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gKLN and gKSN coupling constants in light cone QCD sum rules

T. M. Aliev* and M. Savci†
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The strong coupling constantsgKLN andgKSN for the structuresmng5 are calculated within light-cone QCD
sum rules. A comparison of our results on these couplings with predictions from traditional QCD sum rules is
presented.

PACS number~s!: 24.85.1p, 11.55.Hx, 13.75.Gx, 13.75.Jz
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I. INTRODUCTION

In understanding the dynamics of kaon nucleon scatte
or photokaon production in the nucleon, it is important
know the hadronic coupling constants involving the kao
Among them,gKLN andgKSN are the most relevant couplin
constants. Phenomenological models for the determinatio
these constants from kaon-nucleon scattering and from
kaon photoproduction involve many unknown paramet
~see, for example,@1# and references therein!. Therefore any
prediction about these constants is strongly model depen
and suffers from large uncertainties. For this reason a qu
titative calculation of thegKYN ~Y5L or S! coupling con-
stants with a tractable and reliable theoretical approac
needed.

It is widely accepted that QCD is the underlying theory
strong interactions. In the typical hadronic scale the stro
coupling constantas(m5mhad) becomes large and QCD i
nonperturbative. For this reason the calculation ofgKYN is
related to the nonperturbative sector of QCD, and some k
of nonperturbative approach is needed for the determina
of the above-mentioned coupling constants. Among vari
nonperturbative methods, QCD sum rules@2# are a powerful
one. This method is based on the short distance oper
product expansion~OPE! of the vacuum-vacuum correlatio
function in terms of condensates. For processes involving
light mesonsp, K, or r, there is an alternative method to th
traditional QCD sum rules, namely, light-cone QCD su
rules @3#. In this approach the expansion of the vacuu
meson correlator is performed near the light cone in term
the meson wave functions. The meson wave functions
defined by the matrix elements of nonlocal composite ope
tors sandwiched between the meson and vacuum states
classified by their twists, rather than dimensions of the
erators, as is the case in the traditional sum rules~more about
application of light-cone QCD sum rules can be found
@5–12# and references therein!.

In this work we employ light-cone QCD sum rule
method to extract the coupling constantsgKYN . These cou-
pling constants were investigated in the framework of
traditional QCD sum rules method in@1,13# for the structure
q”g5 and for the structuresmng5 in @14#. The discrepancy
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between the results of these works makes it necessar
perform independent calculations in determining the c
pling constantsgKYN . In the present article we restrict ou
selves to consideration of the structuresmng5 whose choice
is dictated by the following reason. In@15,16# it was pointed
out that there is a coupling scheme dependence for the s
tures g5 ,q”g5 ~i.e., the dependence on the pseudoscalar
pseudovector forms of the effective interaction Lagrang
of the pion with hadrons in the phenomenological part ha
been used!, while the structuresmng5 is shown to be inde-
pendent of any coupling schemes.

In order to calculate the coupling constantsgKYN , we
start with the following two-point function:

P~p,p1 ,q!5E d4x eipx^0uThY~x!h̄N~0!uK~q!&, ~1!

wherep andhY are the four-momentum of the hyperon an
its interpolating current, respectively,hN is the nucleon in-
terpolating current, andq is the four-momentum ofK meson.
The interpolating currents forL, S, andN are @17,18#

hL5A2

3
eabc@~ua

TCgmsb!g5gmdc2~da
TCgmsb!g5gmuc#,

hS05&eabc@~ua
TCgmsb!g5gmdc1~da

TCgmsb!g5gmuc#,

hN5eabc~ua
TCgmub!g5gmdc , ~2!

where s, u, and d are strange, up, and down quark field
respectively,C is the charge conjugation operator, anda, b,
andc are the color indices.

As has already been mentioned, it was pointed out
@14,15# that a better determination ofgpNN can be done by
the structuresmng5 , since this structure is independent
the effective models employed in the phenomenological p
This fact motivates us to calculategNYK in this structure.

Using the Lorentz, parity, and charge conjugation inva
ance,T(p,p1 ,q) can be represented in the following gene
form:

T~p,p1 ,q!5T1~p2,p1
2,q2!g51T2~p2,p1

2,q2!q”g5

1T3~p2,p1
2,q2!P” g5

1T4~p2,p1
2,q2!smng5pmqn, ~3!

whereq5p2p1 andP5(p1p1)/2.
©2000 The American Physical Society01-1
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On the phenomenological part, these different Dirac str
tures are obtained by saturating correlator~1! of the Y state:

T5^0uhYuY~p!&^Y~p!uh̄NuK~q!&. ~4!

The matrix elements in Eq.~4! are defined in the following
way:

^0uhYuY~p!&5lYu~p!,

^Y~p!uh̄NuK~q!&5lNgKYNū~p!g5

1

p” 12mN
. ~5!

Substituting Eq.~5! into Eq. ~4!, we get

T5
gKYNlYlN

~p22mY
2 !~p1

22mN
2 !

~p”1mY!g5~p” 11mN!

1higher resonances,
04520
-which can be written as

T5
gKYNlYlN

~p22mY
2 !~p1

22mN
2 !

F ~mYmN2pp1!g51
mY1mN

2
q”g5

2
mY2mN

2
P” g52 isabpaqbg5G . ~6!

Choosing the structuresabg5 as the physical part, we hav

Tphys52 i
gKYNlYlN

~p22mY
2 !~p1

22mN
2 !

paqb . ~7!

Let us now turn our attention to the theoretical part of t
correlator~1!. From Eq.~1! we immediately get
rators
ns, and up
T5aE dx eipx$24g5gmiSgng5^0uū~0!gnC iSTC21gms~x!uK~q!&7g5gmiSgng5gmiSgng5^0uū~0!g5s~x!uK~q!&

7g5gmiSgng5grgmiSgng5^0uū~0!grg5s~x!uK~q!&%, ~8!

where the upper~lower! sign corresponds to theL ~S! case anda5A2/3(&) for L ~S!. In Eq. ~8!, S is the full light quark
propagator containing both perturbative and nonperturbative contributions,

iS5 i
x”

2p2x42S ^q̄q&
12

1
x2m0

2

192
^q̄q& D 2 i

gs

16p2 E
0

1

duH x”

x2 sabGab~ux!24i
xa

x2 GabgbJ 1¯ . ~9!

It follows from Eq.~8! that, in order to calculate the correlator function in QCD, the matrix elements of the nonlocal ope
between the vacuum and kaon states are needed. These matrix elements are defined in terms of kaon wave functio
to twist 4 these wave functions can be written as@6,7#

^0uū~0!gmg5s~x!uK~q!&5 i f pqmE
0

1

du e2 iuqx@wK~u!1x2g1~u!#1 f pS xm2
x2qm

qx D E
0

1

du e2 iuqxg2~u!,

^0uū~0!ig5s~x!uK~q!&5 f KmKE
0

1

du e2 iuqxwp~u!,

^0uū~0!sabg5s~x!uK~q!&5~qaxb2qbxa!
i f KmK

6 E
0

1

du e2 iuqxws~u!,

^0uū~0!gmg5Gab~ux!s~x!uK~q!&5FqbS gam2
xaqm

qx D2qaS gbm2
xbqm

qx D G E Da iw'~a i !e
2 iqx~a11ua3!

1
qm

qx
~qaxb2qbxa!E Da iw i~a i !e

2 iqx~a11ua3!,

^0uū~0!gmigG̃ab~ux!s~x!uK~q!&5FqbS gam2
xaqm

qx D2qaS gbm2
xbqm

qx D G E Da i w̃'~a i !e
2 iqx~a11ua3!

1
qm

qx
~qaxb2qbxa!E Da i w̃ i~a i !e

2 iqx~a11ua3!, ~10!

where
1-2
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mK5
mK

2

mu1ms
, E Da i[E da1da2a3d~12a12a22a3!.

Because of the choice of the gaugexmAm(x)50, the path-ordered gauge factorP expi@gs*du xmAm(ux)# has been omitted. The
wave functionwK(u) is the leading twistt52, g1(u), w' , w i , w̃' , andw̃ i , are twistt54, andwp(u) andws(u) are the twist
t53 wave functions. Using Eqs.~8!, ~9!, and~10!, for the structuresabg5 we get

Ttheor5 iaE dx eipxH 24
f K

2p2x4 S ^q̄q&
12

1
x2m0

2

192
^q̄q& D2qbxaE du e2 iuqx$wK~u!1x2@g1~u!1G2~u!#%24

2 f K

16p2x2 S ^q̄q&
12

1
x2m0

2

192
^q̄q& D2qbxaE duE Da ie

2 iqx~a11ua3!@w i~122u!2w̃ i#7F2
4

p2x4 S ^q̄q&
12

1
x2m0

2

192
^q̄q& D xaG

3F2qbE du e2 iuqx$wK~u!1x2@g1~u!1G2~u!#%G J , ~11!

where

G2~u!52E
0

u

g2~v !dv.

In deriving this equation we omit terms which are equal to zero after integration overx. After Fourier transformation for the
theoretical part of the correlator function, we get

Ttheor52 ia f KpaqbH 4E duwK~u!F ^q̄q&
12 S 2

~p2qu!2 1
1

2

m0
2

~p2qu!4D G1
8

3
^q̄q&E duF ~g1~u!1G2~u!#

1

~p2qu!4

2
2

3
^q̄q&E duE Da i@w i~a1,12a12a3 ,a3!~122u!2w̃ i~a1,12a12a3 ,a3!#64F ^q̄q&

12 E duwK~u!S 2

~p2qu!2

1
1

2

m0
2

~p2qu!4D G6
8

3
^q̄q&E duF ~g1~u!1G2~u!#

1

~p2qu!4J . ~12!

According to the general strategy of QCD sum rules, the quantitative prediction forgKYN can be obtained by matching th
representations of a correlator~1! in terms of hadronic@Eq. ~7!# and quark-gluon degrees of freedom@Eq. ~12!#. Equating Eqs.
~7! and ~12!, and performing a double Borel transformation for the variablesp2 andp1

2 in order to suppress higher state a
continuum contributions, we finally get the following sum rules forgKLN andgKSN coupling constants:

gKLNlLlN5 f KM2e~mN
2

1mL
2

!/2M2A2

3
^q̄q&H 4

3
wK~u0! f 0~s0 /M2!1

1

3M2 wK~u0!m0
21

16

3M2 @g1~u0!1G2~u0!#

1
2

3M2 E
0

u0
da1E

u02a1

12a1 da3

a3
F S 122

u02a1

a3
Dw i~a1,12a12a3 ,a3!2w̃ i~a1,12a12a3 ,a3!G J , ~13!

gKSNlSlN5 f Ke~mN
2

1mS
2

!/2M2
&

2

3
^q̄q&E

0

u0
da1E

02a1

12a1 da3

a3
F S 122

u02a1

a3
Dw i~a1,12a12a3 ,a3!2w̃ i~a1,12a12a3 ,a3!G ,

~14!
od ses
se
where the function

f n~s0 /M2!512e2s0 /M2

(
k50

n
~s0 /M2!k

k!

is the factor used to subtract the continuum, which is m
eled by the dispersion integral in the regions1 , s2>s0 , s0
04520
-

being the continuum threshold@of course, the continuum
threshold for Eq.~13! is different than that for Eq.~14!#,

u05
M2

2

M1
21M2

2 , M25
M1

2M2
2

M1
21M2

2 ,

andM1
2 andM2

2 are the Borel parameters. Since the mas
of N, L, andS are very close to each other, we can choo
1-3
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M1
2 and M2

2 to be equal to each other, i.e.,M1
25M2

2

52M2, from which it follows thatu051/2.
From Eqs.~13! and ~14! we see that the coupling con

stantsgKLN andgKSN are determined by the quark conde
sate and wave functions~for the structuresabg5!. We can
deduce from these expressions that the coupling cons
gKLN is determined mainly by the lowest twist (t52) wave
functionwK(u) and that thegKSN is determined by the twis
(t54) wave function; hence, we expect thatgKLN.gKSN .
Indeed, our numerical calculations confirm this expectati
as is presented in the next section.

II. NUMERICAL ANALYSIS

The principal nonperturbative inputs in the sum rules~13!
and~14! are the kaon wave functions on the light cone. In@3#
a theoretical framework has been developed to study th
functions. In particular, it has been shown that the wa
functions can be expanded in terms of the matrix element
conformal operators which in a leading logarithmic appro
mation do not mix under renormalization. For details,
refer the reader to the original literature@4,7#. In our numeri-
cal analysis we use the set of wave functions proposed in@7#.
The explicit expressions of the wave functions and the val
of the various parameters are

wK~u,m!56uū@11a1~m!C1
3/2~2u21!1a2~m!

3C2
3/2~2u21!#,

g1~u,m!5
5

2
d2~m!ū2u21

1

2
«~m!d2~m!Fuū~2113uū!

110u3 ln uS 223u1
6

5
u2D

110ū3 ln ūS 223ū1
6

5
ū2D G ,

G2~u,m!5
5

3
d2~m!ū2u2,

w i~a i !5120d2~m!«~m!~a12a2!a1a2a3 ,

w̃ i52120d2~m!a1a2a3F1

3
1«~m!~123a3!G , ~15!

where theC1
3/2 and C2

3/2 are the Gegenbauer polynomia
defined as

C1
3/2~2u21!53~2u21!,

C2
3/2~2u21!5

3

2
@5~2u21!221#, ~16!

and a1(m51 GeV)50.17 anda2(m51 GeV)50.2 ~see for
example,@4# and the second reference in@7#!. The parameter
d(m)2 was estimated from QCD sum rules to have the va
d2(m)50.2 GeV2 @19#, and«(m51 GeV)50.5 @7#. Further-
04520
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more, we take f K50.156 GeV, mK(m51 GeV)51 GeV,
m0

250.8 GeV2, ^q̄q&um51 GeV52(0.243 GeV)3, s0
L5(mL

10.5)2 GeV2, and s0
S5(mS10.5)2 GeV2. Also remember

that all further calculations are performed atu5u051/2.
Having fixed the input parameter, one must find the ran

of values ofM2 for which the sum rules~13! and ~14! are
reliable. The lowest possible value ofM2 is determined by
the requirement that the terms proportional to the high
inverse power of the Borel parameters stay reasonably sm
The upper bound ofM2 is determined by demanding that th
continuum contribution be not too large. The interval ofM2

which satisfies both conditions is 1 GeV2,M2,2 GeV2.
The dependence of Eqs.~13! and ~14! on M2 is depicted in
Figs. 1 and 2. From these figures one can directly predic

gKLNlLlN520.00860.001, ~17!

gKSNlSlN520.000660.0001. ~18!

In determining the values of the strong coupling consta
gKLN andgKSN , we need the residues of hadronic curren
i.e., lN , lL , andlS , whose values are obtained from th
corresponding mass sum rules for the nucleon andL andS
hyperons@17,18# as follows:

ulNu2e2mN
2 /M2

32p45M6f 2~s0
N/M2!1

4

3
a2, ~19!

FIG. 1. The dependence ofgKLNlLlN on the Borel paramete
M2.

FIG. 2. The same as in Fig. 1, but forgKSNlSlN .
1-4
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ulLu2e2mL
2 /M2

32p45M6f 2~s0
L/M2!1

2

3
ams

3~123g!M2f 0~s0
L/M2!1bM2f 0

3~s0
L/M2!1

4

9
a2~314g!, ~20!

ulSu2e2mS
2 /M2

32p45M6f 2~s0
S/M2!22ams

3~11g!M2f 0~s0
S/M2!1bM2f 0

3~s0
S/M2!1

4

3
a2, ~21!

where

a522p2^q̄q&,

b5
as^G

2&
p

.0.12 GeV4,

g5
^q̄q&

^s̄s&
21520.2,

and the functionsf 2(x) and f 0(x) describe subtraction of th
continuum contributions, whose explicit forms are presen
just after Eq.~14!. Dividing both sides of Eq.~17!, lLlN ,
and Eq.~18! by lSlN , whose numerical values are obtain
from Eqs. ~19!, ~20!, and ~21!, respectively, forgKLN and
gKSN coupling constants we get

ugKLNu51062,

ugKSNu50.7560.15. ~22!

Let us compare our predictions ofgKLN and gKSN cou-
pling constants with that of traditional three-point QCD su
rules results for the structuresmng5pmqn @14#. The results
for these quantities in framework of the traditional thre
point QCD sum rules method are

ugKLNu52.3760.09,

ugKSNu50.02560.015. ~23!
l.

in

04520
d

-

When Eqs.~23! and~24! are compared, it is observed th
the light-cone predictions ongKLN and gKSN are approxi-
mately 4 and 30 times larger, respectively, compared to
of the traditional three-point QCD sum rules results.

Here we would like to remind the reader that these c
pling constants are investigated in the framework of the
ditional QCD sum rules, by considering a two-point co
relator sandwiched between the vacuum and kaon state
the structureq”g5 in @21#, and the results obtained are

ugKLNu51066,

ugKSNu53.662.0. ~24!

When these results are compared with those given in
~21!, we see that the predictions of both sum rules conce
ing the coupling constantgKLN are quite close, while the
coupling constantgKSN in our case is 5 times smaller com
pared to the one given in@20# for the central values.

As an additional remark, it should be noted that the valu
of the coupling constantsgKLN and gKSN obtained in this
work differ from that of the exact SU~3! prediction. Using de
Swart’s convention@21#, SU~3! symmetry predicts

gKLN52
1

)
~322aD!gpNN, ~25!

gKSN5~2aD21!gPNN. ~26!

Taking aD50.64 @22# from Eqs.~25! and ~26!, we have

UgKLN

gKSN
U.3.55, ~27!

while our result for this ratio isugKLN /gKSNu.12.
Such a large difference among the predictions of the lig

cone and traditional sum rules and SU~3! symmetry for the
ratio of the couplingsgKLN /gKSN @see Eqs.~22!, ~23!, and
~27!# may indicate that the Ioffe currents are not optimal f
the determination of the above-mentioned coupling c
stants. So it may be useful to use other representations@23#
for the nucleon currents for the determination of the coupl
constants of the kaon with baryons which we plan to disc
in the future elsewhere.
.
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