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Okan and ggsn coupling constants in light cone QCD sum rules
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The strong coupling constangg y andgxsy for the structurer ,,ys are calculated within light-cone QCD
sum rules. A comparison of our results on these couplings with predictions from traditional QCD sum rules is
presented.

PACS numbsds): 24.85+p, 11.55.Hx, 13.75.Gx, 13.75.Jz

[. INTRODUCTION between the results of these works makes it necessary to
perform independent calculations in determining the cou-
In understanding the dynamics of kaon nucleon scatteringling constantgkyy. In the present article we restrict our-
or photokaon production in the nucleon, it is important toselves to consideration of the structurg,ys whose choice
know the hadronic coupling constants involving the kaonsis dictated by the following reason. [45,16 it was pointed
Among themgy,n andgysy are the most relevant coupling Out that there is a coupling scheme dependence for the struc-
constants. Phenomenological models for the determination dBres s.4vys (i.e., the dependence on the pseudoscalar or
these constants from kaon-nucleon scattering and from tnhSeudovector forms of the effective interaction Lagrangian
kaon photoproduction involve many unknown parameter®f the pion with hadrons in the phenomenological part have
(see, for example[1] and references thergirTherefore any ~2€€n used while the structures,,, ys is shown to be inde-
prediction about these constants is strongly model dependeRgndent of any coupling schemes.
and suffers from large uncertainties. For this reason a quan- In o.rder to calcglate the qoupllng.copsta@ﬁm, we
titative calculation of thegxyy (Y=A or X) coupling con- start with the following two-point function:
stants with a tractable and reliable theoretical approach is _
needed. H(p,DLQ):I d*x &P(0[T7y(x) 7n(0)[K(@)), (1)
It is widely accepted that QCD is the underlying theory of

strong interactions. In the typical hadronic scale the strongvherep and 7y are the four-momentum of the hyperon and
coupling constantrg(u=m;,9 becomes large and QCD is its interpolating current, respectivelyyy is the nucleon in-
nonperturbative. For this reason the calculationggf, is  terpolating current, and is the four-momentum ok meson.
related to the nonperturbative sector of QCD, and some kindhe interpolating currents fok, 3, andN are[17,1§
of nonperturbative approach is needed for the determination 5
of the above-mentioned coupling constants. Among various _ _ T T
nonperturbative methods, Q(E:)D gum rulé$are a povgerful B \[5 €abd (UaC¥,uSp) Y5 7" de™ (A3 C,80) 57U,
one. This method is based on the short distance operator
product expansiofOPBE of the vacuum-vacuum correlation 7720=1/26ab0[(u;Cyﬂsb) y5y“dc+(dleMsb)75y/‘uc],
function in terms of condensates. For processes involving the
light mesons, K, or p, there is an alternative method to the IN= €and UC Y, Up) Y50, 2

traditional QCD sum rules, namely, light-cone QCD sum ]
rules [3]. In this approach the expansion of the vacuum-Wheres, u, andd are strange, up, and down quark fields,

meson correlator is performed near the light cone in terms ofespectivelyC is the charge conjugation operator, e,

the meson wave functions. The meson wave functions ar@ndc are the color indices. _ _ .

defined by the matrix elements of nonlocal composite opera- AS_has already been mentioned, it was pointed out in

tors sandwiched between the meson and vacuum states aki19 that a better determination @f;y can be done by

classified by their twists, rather than dimensions of the opihe structureo,,ys, since this structure is independent of

erators, as is the case in the traditional sum r(iesre about  the effective models employed in the phenomenological part.

application of light-cone QCD sum rules can be found inThis fact motivates us to calculaggy in this structure.

[5—12] and references thergin Using the Lorentz, parity, and charge conjugation invari-
In this work we employ light-cone QCD sum rules ance,T(p,p;,q) can be represented in the following general

method to extract the coupling constanis,y. These cou- form:

ling constants were investigated in the framework of the 2 2
Itorzald?tional QCD sum rules mgthod ji,13] for the structure T(p,p1,Q)=Tu(p?p1,0%) vs+ To(p% P1,0%) 475
4ys and for the structurer,,ys in [14]. The discrepancy +Ta(p%p2 02 Pys

+T4(p%p1.0%) 0, v5PH 0, €)
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On the phenomenological part, these different Dirac strucwhich can be written as
tures are obtained by saturating correlatbrof the Y state:

T=(0[ny|Y(P))(Y(P)|7nlK(Q)). (4) _ OkyNAYAN
(p?—my)(pi—my)

my -+ my
(Mymy—pP1) ys+ 2 4vs

The matrix elements in Edq4) are defined in the following

way: my— My i
7> Pys—i a-aﬂpaQB')’S}- (6)
(0l 7y Y(p))=A\yu(p),
(Y(D)|7N|K(Q)>=)\NQKYNU(D)J’spl_mN- 5) Choosing the structure,, ;s as the physical part, we have
Substituting Eq(5) into Eq. (4), we get Tohys_ | Z_QK\;N Y2_N > Palls. )
(pe=m{)(p1—my)
_ OkyNAYAN
= o (Pt my) ys(pr+my)
(p=—m{)(p1—my) . .
Let us now turn our attention to the theoretical part of the
+higher resonances, correlator(1). From Eq.(1) we immediately get

T= af dx €PX{—4y57,iSy,ys5(0[u(0)y,CiSTC™ 1y, S(X)|K(A)) F 57,1 S¥, V57, S¥,¥s(0[U(0) yss(X)|K(Q))
FY5Yul SV Y5Y,Yui 7, v5(0[u(0) ¥, vs8(X) [K(a))}, t5)

where the uppetlower) sign corresponds to th& () case andv=/2/3(v2) for A (3). In Eq. (8), S is the full light quark
propagator containing both perturbative and nonperturbative contributions,

% (@ ¥*mg | ds (1, [X X,
|S=|2W2X4—( o " 192(qq> —|—216:T fodu FUQBG“B(UX)—MYZGD‘B)/B

oo ©)

It follows from Eq.(8) that, in order to calculate the correlator function in QCD, the matrix elements of the nonlocal operators
between the vacuum and kaon states are needed. These matrix elements are defined in terms of kaon wave functions, and uj
to twist 4 these wave functions can be written[&¢]

x?q,,
ax

1 _
(0[u(0) VMYSS(X)lK(q»:iquML du e P (u)+x*gy(u)]+f | x,—

)fldu e M¥g,(u),
0
— 1 i
(0[u(0)i 758(X)|K(Q)>=f|<u|<fo due "% (u),
if 1 .
(O[TT0)075500) K (@) = (A5~ 0%, 2 [ du e 9%, u),

Xa X
(0[u(0) v, ¥5G o p(ux)s(x)|K(q))= [qﬁ,< Yop— &) - qa( 9pu™ %)

o f Darjp, ()€ PHearves

q i
+q_l;((q“xﬁ_qﬁ'xa)f Da;g)(a;)e WXt uas),

— - Xqq Xgq - i
<0|u(o)yulgGaﬁ(ux)s(XHK(Q»I[qﬁ<ga,u_ q_xﬂ)_qcy(gﬁ,u_% fDaigoi(ai)e lax(ay +uag)

+ %((qaxﬁ_qBXa)f Da;P(a;)e Xt ues) (10
where
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my

=mu+ms, fDaiEf dadarazd6(l—a;— ar,— ajg).

MK

Because of the choice of the gaug®A ,(x) =0, the path-ordered gauge fac®expi[gs/du x‘A,(ux)] has been omitted. The
wave functiongg (u) is the leading twist=2,g4(u), ¢, , ¢, ¢, , andg,, are twistr=4, ande,(u) ande,(u) are the twist
=3 wave functions. Using Eq$8), (9), and(lO) for the structurer,zys we get

. f
Ttheor:iaf dxépx[—42W§X <<?_q2> 192 <_ >)ZQBX fdue W o (U) + X[ g1 (U) +Gp(u) ]} —4 16772 2(<qq>

12
4 ((6‘1) X mo _ )
a2 12 192< qa) |

x2m?

+F20<EQ>>2%XLYJ dUJ Daje ' Matuad o (1-2u) -]+ | -

_Q,Bf du e "o (u) +x*[gy(u) + Go(u)]} ] (12)

where

Gz(u>=—fougz<v)du.

In deriving this equation we omit terms which are equal to zero after integrationxowdter Fourier transformation for the
theoretical part of the correlator function, we get

<E®( 2 +1 mg
(p—qu? 2 (p—qu)*

Tmem=-—iapraqﬁ{4J.dU¢K(u)

8 1
+§<QQ>f du (gl(U)+Gz(U)]m

<qq>J‘du¢K()(

1
(91(U)+G2(U)]m]- (12)

2
_§<EQ>J duf Dail ¢y(ay,1— a;—az,a3)(1-2u) —¢|(a,1—a;— a3, a3) | =4

1 m )
TS T T an?
2 (p—qu)

(p—qu)?

=50 [ du

According to the general strategy of QCD sum rules, the quantitative predictiag{qr can be obtained by matching the
representations of a correlatdy in terms of hadroni¢Eq. (7)] and quark-gluon degrees of freeddBy. (12)]. Equating Egs.
(7) and(12), and performing a double Borel transformation for the variapfeand pf in order to suppress higher state and
continuum contributions, we finally get the following sum rules ¢ n andgysy coupling constants:

2 2 , 2 4 1 16
Ik anA ANN= FieM2eMi M)/ \/; <QQ>|§<PK(U0)fo(So/M2)+ WQDK(UO)”%”L W[gl(UoH‘Gz(Uo)]

J' fl ag da3
da
T 3m? Yig-ay
1da3

OksnAsAN= fKe(mN+m2/2M‘/_ <QQ>f dalf —

Up— ay -
1-2 s QDH(alyl_al_asﬂa)‘@n(al,l_011_“3,013) ) (13

Up— ay -
1-2 s o(a,1—-a;—az,a3) — ¢ (a,1— a;—az,a3) |,

(14
|
where the function being the continuum thresholf course, the continuum

threshold for Eq(13) is different than that for Eq14)],

n

So/M?)k
fn(SO/MZ):j__e_So/MZE M B M3 - M2M3
= Up=

212 sa2? M 32 na2?
MZ+M3 M3+M53

is the factor used to subtract the continuum, which is modandM? andM3 are the Borel parameters. Since the masses
eled by the dispersion integral in the regisp, s,=sqy, S of N, A, andX are very close to each other, we can choose
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M2 and M3 to be equal to each other, i.eMZ=M3 0000 F - - ' 3
=2M?2, from which it follows thatuy=1/2. '
From Egs.(13) and (14) we see that the coupling con- 0003 - T

stantsgx n andggsy are determined by the quark conden-
sate and wave functiongor the structureo,zys). We can
deduce from these expressions that the coupling constan
Ok an is determined mainly by the lowest twist€ 2) wave
function ¢ (u) and that thegysy is determined by the twist
(7=4) wave function; hence, we expect that, N> dks -
Indeed, our numerical calculations confirm this expectation,  .oust ) . . g
as is presented in the next section. 100 12 1.50 17 200
M? (GeV?)

-0.006 + T

AAn

-0.009 - -

GKAN

-0.012 [~ n

II. NUMERICAL ANALYSI
v SIS FIG. 1. The dependence gf,nApaAn ON the Borel parameter

2

The principal nonperturbative inputs in the sum rul&3) M*
and(14) are the kaon wave functions on the light conel3h
a theoretical framework has been developed to study thes89'®: W€ takef=0.156 GeV, px(u=1 GeV)=A1 GeV,
functions. In particular, it has been shown that the wavé“ozoz'8 Gey, (qq)2|ﬂ:1 GeV:_(ZO-243 GeVj, sy=(my
functions can be expanded in terms of the matrix elements of 0-5)° GeV?, and sy = (my +0.5)* GeV2. Also remember
conformal operators which in a leading logarithmic approxi-that all further calculations are performeduat up=1/2.
mation do not mix under renormalization. For details, we Having fixed the input parameter, one must find the range
refer the reader to the original literat 7). In our numeri-  of values ofM? for which the sum rule¢13) and (14) are
cal ana]ysis we use the set of wave functions proposéﬁ]jn reliable. The lowest possible value Mz is determined by
The explicit expressions of the wave functions and the valuefe requirement that the terms proportional to the highest

of the various parameters are inverse power of the Borel parameters stay reasonably small.
The upper bound df1? is determined by demanding that the
ex(U,u)=6ut[1+a;(u)C3A2u—1)+a,(u) continuum contribution be not too large. The interval\df

which satisfies both conditions is 1 GBYM?<2 Ge\~.
The dependence of Eq&l3) and(14) on M? is depicted in
Figs. 1 and 2. From these figures one can directly predict

X CIH2u—-1)],

ua(2+ 13u0)

5 2 —2,,2 1 2
gl(u,,u)=§5 (m)ucu +§8(,u)5 (w)
Ok anA AAn= —0.008+0.001, (17)

6
+10u%In u(2—3u+ guz) OksnAsAy=—0.0006+0.0001. (18)

In determining the values of the strong coupling constants
Okan andggsn, We need the residues of hadronic currents,
i.e., AN, N, andAs, whose values are obtained from the
corresponding mass sum rules for the nucleon Arahd s,
hyperong 17,18 as follows:

’

6
+101_13InU<2—3U+ gﬁz)

5
Ga(uu)=3 8% (w)utu?,

@) =1206%(w)e(p) (a1 — az) arasas, 4
ey ;) (w)e(p)(ay 2) X103 |)\N|Ze_mﬁ/M232774=Mﬁfz(Sg/Mz)“‘§aza (19

)= —1208%(p) asazaz , (19

1
3 Te(w)(1-3ay)

0.0004 T T '

where theC¥? and C3? are the Gegenbauer polynomials s} 1

defined as
-0.0004 |- I

Cc¥2u—1)=3(2u-1),

-0.0008 [~ |

gKEN/\Z/\N

3
Ciq2u-1)= E[5(2u—1)2—1], (16) o0z | :

-0.0016 | 1 ! [l -

anda;(u=1 GeV)=0.17 anda,(u=1 GeV)=0.2 (see for 100 1% 150 175 2.00
example[4] and the second reference[ifi]). The parameter M? (Gev?)

8(w)? was estimated from QCD sum rules to have the value
5%(n)=0.2GeV? [19], ande(u=1 GeV)=0.5[7]. Further- FIG. 2. The same as in Fig. 1, but fggsyAsAy -
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2
[\ al2e7 ™M B2t = MOF,(s5/M2) + Sam,
X (1—3y)M2fo(s5/M?)+bM?f,

4
x(sg/M2)+§a2(3+4y), (20)

2
s |26 MM?3274 = MOF,(s3/M2) — 2am,

X (1+ y)M?fo(s5/M?) + bM?f,

4
X (s5/M?) + 38 (21)

where

a=—2m(qq),
as<G2>

m

b= =~0.12 GeV,

(qa)

Y= @—12 —0.2,

and the function$,(x) andfy(x) describe subtraction of the
continuum contributions, whose explicit forms are presented

just after Eq.(14). Dividing both sides of Eq(17), Ny \y,

and Eq.(18) by Ns\y, whose numerical values are obtained

from Egs.(19), (20), and (21), respectively, forgx,n and
Oksn coupling constants we get

|gkan|=10+2,

Let us compare our predictions gf ,n andggsy COU-

pling constants with that of traditional three-point QCD sum

rules results for the structure,,,ysp,q, [14]. The results

for these quantities in framework of the traditional three-

point QCD sum rules method are
|0k an|=2.37+0.09,

|gksnl=0.025+0.015. (23)
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When Egs(23) and(24) are compared, it is observed that
the light-cone predictions ogy,yn and gysy are approxi-
mately 4 and 30 times larger, respectively, compared to that
of the traditional three-point QCD sum rules results.

Here we would like to remind the reader that these cou-
pling constants are investigated in the framework of the tra-
ditional QCD sum rules, by considering a two-point cor-
relator sandwiched between the vacuum and kaon states for
the structurefys in [21], and the results obtained are

|9k an|=10%6,

|gksn|=3.6x2.0. (24

When these results are compared with those given in Eq.
(21), we see that the predictions of both sum rules concern-
ing the coupling constangy,n are quite close, while the
coupling constangksy in our case is 5 times smaller com-
pared to the one given if20] for the central values.

As an additional remark, it should be noted that the values
of the coupling constantgg,n and ggsy Obtained in this
work differ from that of the exact S(3) prediction. Using de
Swart’s conventior21], SU3) symmetry predicts

1
gKAN:_‘/_j(S_za'D)ngNy (25
Oksn= (2ap—1)gnnn- (26)

Taking ap=0.64[22] from Egs.(25) and(26), we have

JkAN

=3.55, (27

JksN

while our result for this ratio i$gxan/gxsn|=12.

Such a large difference among the predictions of the light-
cone and traditional sum rules and @Usymmetry for the
ratio of the couplinggkan/gksn [Se€ Eqs(22), (23), and
(27)] may indicate that the loffe currents are not optimal for

the determination of the above-mentioned coupling con-
stants. So it may be useful to use other representaf28is

for the nucleon currents for the determination of the coupling
constants of the kaon with baryons which we plan to discuss
in the future elsewhere.
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