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Relativistic modification of the Gamow factor
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In processes involving Coulomb-type initial- and final-state interactions, the Gamow factor has been tradi-
tionally used to take into account these additional interactions. The Gamow factor needs to be modified when
the magnitude of the effective coupling constant increases or when the velocity increases. For the production
of a pair of particles under their mutual Coulomb-type interaction, we obtain the modification of the Gamow
factor in terms of the overlap of the Feynman amplitude with the relativistic wave function of the two particles.
As a first example, we study the modification of the Gamow factor for the production of two bosons. The
modification is substantial when the coupling constant is large.

PACS number~s!: 25.75.2q, 13.75.Cs, 24.10.Jv
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I. INTRODUCTION

Initial- and final- state interactions are important in ma
branches of theoretical physics involving the reaction or
production of particles. They have a great influence on
reaction rates or the production cross sections@1–11#. These
initial- and final-state interactions lead to a large enhan
ment of the cross section if the particles are subject t
strong attractive interaction; they can lead to a large supp
sion under a strong repulsive interaction. We shall use
term ‘‘the K factor’’ to label the ratio of the cross sectio
with the interaction to the corresponding quantity without t
interaction.

As is well known, for interactions such as the electr
Coulomb and color-Coulomb interactionA(r )52a/r in
nonrelativistic physics, the effect of the initial- or final-sta
interactions leads to aK factor given by the Gamow
Sommerfeld factor@2,3#. The Gamow-Sommerfeld factor~or
simply called the Gamow factor! is given explicitly by

G~h!5
2ph

12e22ph
, ~1!

where

h5
a

v
. ~2!

The magnitude of the relative velocityv is the ratio of the
asymptotic momentump to the energyew in the relative
coordinate system@see Eqs.~28! and~31! below#. Following
Todorov @12#, Crater and Van Alstine@13#, and Eqs.
~21.13a!–~21.13c! of Crateret al. @14#, the relative velocity
for the particlesa and b is related to their center-of-mas
energyAs by

v5
~s224sm2!1/2

s22m2
. ~3!

This givesv;2A124m2/s whenAs;2m andv→1 when
s→`. This Gamow factor has been used to study initial- a
final-state interactions in reaction processes.
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There are physical processes in which the coupling c
stant of the interaction between the particles can be q
large and the use of the Gamow factor to correct the init
state and final-state interactions may not be adequate.

example, in the annihilation or the production ofqq̄ pairs,
the interaction arising from the exchange of a gluon leads
a color-Coulomb interaction with a coupling constanta
about 0.2–0.4, depending on the renormalization scale of
reaction process. Another example is the modification of
Gamow factor in the presence of a final-state Coulomb in
action and its effects on the the Hanbury-Brown–Twiss
fects of intensity interferometry as studied by Baym a
Braun-Munzinger@15#. Another example with strong cou
pling occurs in the case of a negatively charged particle i
nucleus with a largeZ number. Such a large coupling con
stant will also lead to a modification of the Gamow factor
there are higher-order effects of the potential which are
portant when the coupling constant becomes large. One
mention, for example, the well-known case of the ‘‘Land
fall’’ which is the relativistic nonperturbative collapse of th
wave function for an attractive Coulomb-type potential wh
the coupling constant exceeds a certain limit@16#. Further-
more, although the effect of the interaction is very large
low relative velocities, it is useful to see how the effect va
ies as the velocity increases. For brevity of notation, we s
use the term ‘‘Coulomb interaction’’ with a variable cou
pling constant to refer to both the electric-Coulomb a
color-Coulomb interactions.

While one sees the need to use the relativistic formal
to study the case with high relative velocities, one may wo
der what special cases can be of interest to use a relativ
formalism for the case of low relative velocities. By the ter
‘‘the relative velocity,’’ we usually refer to the relative ve
locity between the particles in the asymptotic region ofr
→` where there is no interaction. However, when there i
strongly attractive interaction, the actual relative velocity d
pends on the spatial location. One can envisage that if
coupling constant is large, the motion of the two particles
small distances can become relativistic, even though the r
tive velocity atr→` is small. Hence, it is necessary to u
the relativistic formalism to study the effects of the mutu
©2000 The American Physical Society05-1
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interaction with large coupling constants, even for the c
of low asymptotic relative velocities atr→`.

TheK factor for the Coulomb potential can be studied
examining the two-body wave function in the Klein-Gordo
or the Dirac equation involving a Coulomb potential. Com
pared with the nonrelativistic Schro¨dinger equation involv-
ing the Coulomb potential, there is an additional effect
attractive potential,2uA(r )u2/2mw , and a repulsive term
from the spacelike part of the gauge interaction@see Eqs.
~30! and ~66! below#, which lead to a nontrivial behavio
when the coupling constant becomes large. In the cas
fermions under the Coulomb interaction, there are furt
modifications associated with additional spin-dependent
tential terms.

The question of initial- and final-state interactions is a
related to the question of the decay and the production
bound states when the interactions lead to the formation
bound states@17,18#. Previously, the decay of the bound po
itronium 1S0 state into two photons has been studied in
relativistic formalism by Crater@18#. In our present study
we are interested mainly in the case of two particles in
continuum. We wish to find out how the mutual interacti
may affect their reaction or production rates.

The proper method to obtain theK factor is by taking the
overlap of the relativistic wave function with the Feynm
amplitude. When the Feynman amplitude is independen
the momentum, then one obtains the familiar result that thK
factor is the absolute square of the wave function at the
gin. However, this is not valid in the general case where
Feynman amplitude is a function of the relative momentu
It will then be necessary to evaluate theK factor by taking
the overlap of the Feynman amplitude with the relativis
wave function.

As an illustration, we shall try out the method for th
production of a pair of scalar particles interacting with
Coulomb-type final-state interaction. We shall first study
case with only the timelike part of the gauge interaction
Secs. III, IV, and V. We then study the addition of the tran
verse part of the interaction. The inclusion of the transve
component of the gauge interaction modifies the results o
slightly and will be discussed subsequently in Secs. VI a
VII.
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II. K FACTOR

The effects of the final- and initial-state interaction d
pend on the physical process. Here we shall be intereste
the class of processes involving the reaction or the prod
tion of a pair of particlesa and b, subject to the mutua
interaction betweena andb. For definiteness, we shall stud
the production process, as theK factor is the same for pro
duction or reaction.

The simplest description of such a process is in terms
perturbation theory which gives the amplitude for the p
duction of this pair of particlesa andb. The stateFab of the
ab pair after the reactionx1y→a1b is represented by the
state vector

uFab&5M„xy→a~P/21q!b~P/22q!…

3ua~P/21q!b~P/22q!&, ~4!

whereM(xy→ab) is the Feynman amplitude for thex1y
→a1b process. For the two-particle systemab, we define
the center-of-mass momentumP5a1b and the relative mo-
mentumq5(a2b)/2.

On the other hand, under their mutual interaction wh
can be represented by a two-body potentialA(r ) betweena
and b, we can describe anab pair with a center-of-mass
momentumP as

uCV&5c̃~q!uP&. ~5!

The probability amplitude for the production of anab
pair under their mutual interaction is obtained by taking t
overlap of the amplitude in Eq.~4! with the wave function in
Eq. ~5!. The overlap is the simplest in theab center-of-mass
system whereP5(As,0) and q5(0,q) and the~unnormal-
ized! probability amplitude is@17–19#

^CVuFab&5E d3q

~2p!3
c̃~q!M„xy→a~q!b~Àq!…. ~6!

@For a properly normalized probability amplitude, see E
~29!–~31! of Ref. @19#.# The K factor for the occurrence o
ab in the stateCV is then given by
.
n
y multi-
K[
u^CVuFab&u2

u^C0uFab&u2
5

~production cross section with final-state interaction!

~production cross section without final-state interaction!
, ~7!

whereuC0& is the state of theab pair without their mutual interaction. We have used the unnormalized amplitude in Eq~6!
as any normalization constant will cancel out in the definition of theK factor in Eq. ~7!. The result of the cross sectio
calculated using the simple first-order diagram can be corrected to include the effects of the final-state interaction b
plying by theK factor:

S production cross section
with final-state interactionD5K3S production cross section

without final-state interactionD . ~8!
5-2



e
de
o
t
q

te
io

ive

i
in

ro
e

lik

al

m

ve

a
r

s.

his
lu-

ral

e

-

en

of
ss

RELATIVISTIC MODIFICATION OF THE GAMOW FACTOR PHYSICAL REVIEW C61 044905
III. FEYNMAN AMPLITUDE AND THE OVERLAP
WITH THE WAVE FUNCTION

To obtain the effect of the final-state interaction betwe
a andb produced in a pair-production process, we consi
the production of the pair of bosons from the fusion of tw
photons. Because the relevant factors associated with
mode of production will be canceled out at the end in E
~7!, the results of theK factor depend only on the final-sta
interaction and is the same for a similar mode of product
of the pair of bosons.

The diagrams we include are shown in Fig. 1 which g
the amplitude

2 iM„xy→a~P/21q!b~P/22q!…

5 ie2F2
~2q1k!•e1 k•e2

~q1k!21m2 1
~2q2k!•e2 k•e1

~q2k!21m2 G ,

~9!

wherek is the momentum of the photon,q is the momentum
of one of the bosons, ande i is the polarization vector of the
i th photon. In addition to the two diagrams in Fig. 1, there
also the seagull diagram which is required to get gauge
variance and is of the same order. The seagull diagram
independent of the relative momentum and leads to a p
ability amplitude proportional to the wave function at th
origin. When one properly takes into account the space
component of the Coulomb interaction~see Sec. VI!, the
spatial wave function is zero at the origin@20# and thus the
contribution to the probability amplitude from the seag
term is zero.

The overlap of the wave function with the Feynman a
plitude is then

^CVuFab&5 ie2E dq

~2p!3c̃~q!F2
~2q1k!•e1 k•e2

~q1k!21m2

1
~2q2k!•e2 k•e1

~q2k!21m2 G . ~10!

It is useful to write the above integral in terms of the wa
function in configuration space. The latter is given by

c~r!5E dq

~2p!3
c̃~q!e2 iq•r. ~11!

In conventional applications, one expands the Feynm
amplitude~9! in powers ofq and keeps only the lowest-orde
q-independent termM0:

M'M01O~ uqu!. ~12!

FIG. 1. Feynman diagrams included in the calculation.
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In this approximation of keeping only the leading term, Eq
~7! and ~11! then give the usualK factor as the absolute
square of the wave functionc(r ) at the origin:

K5uc~r 50!u2. ~13!

However, we are interested in the improvement over t
approximation and use the full Feynman amplitude to eva
ate the overlap integral and theK factor in Eqs.~9! and ~7!.

In terms of the spatial wave function, the overlap integ
~10! is

^CVuFab&5e2E dr c~r!Fe2 ik•rH 2ê1•
¹

i
2 ê1•kJ e2mr

4pr
ê2•k

2eik•rH 2ê2•
¹

i
1 ê2•kJ e2mr

4pr
ê1•kG . ~14!

We shall specialize to theS-wave case withl 50. The
overlap integral~14! becomes

^CVuFab&5e2 ê1•k ê2•k @A2B#, ~15!

where

A5
4

kE0

`

dr j 1~kr !c~r !e2mr~11mr! ~16!

and

B52E
0

`

r dr j 0~kr !c~r !e2mr. ~17!

For the probability amplitude for the case without th
final-state interaction, we use the wave functionc0(r )
5sinpr/pr for the S state and we obtain the probability am
plitude as given by

^C0uFab&52e2~ ê1•k!~ ê2•k!B, ~18!

where the factorB is

B5Im$~cotu* 22m/k!~u* cotu* 21!%/pk, ~19!

and u* is a complex conjugate ofu. Here, we have intro-
duced the complex angle variable

u5tan21
k

m1 ip
5

p

4
2 i

1

4
ln

k1p

k2p
, ~20!

which is a relativistic measure of the relative motion betwe
particlesa andb. The real part ofu is alwaysp/4, and the
imaginary part is negative, with a magnitude that is half
the rapidity of the produced particle in the center-of-ma
system.

Thus, theK factor is given by
5-3
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K5UA2B

2B U2

. ~21!

IV. KLEIN-GORDON EQUATION FOR THE TIMELIKE
PART OF THE GAUGE INTERACTION

In this first study, in order to illustrate the main features
the effect and to avoid complications brought on by t
spinor algebra, we shall carry out the procedures outli
above for the production of two scalar particles.

We need to separate out the center-of-mass motion
the relative motion for these two particles. Consider first
case without a mutual interaction as in the region where
two particles are far apart. The two particles have fo
momentap1 and p2 and rest massesm1 andm2. We intro-
duce the total momentumP @13,14#,

P5p11p2 , ~22!

and the relative momentumq,

q5
e2p12e1p2

As
, ~23!

where

e15
s2m2

21m1
2

2As
~24!

and

e25
s2m1

21m2
2

2As
, ~25!

with s5P2. We have the following identity:

p1
22m1

21p2
22m2

25
~e1

21e2
2!P2

s
12q22m1

22m2
250.

~26!

We can choose to work in the center-of-mass system
which P5(As,0) andq5(0,q). The above equation can b
written in terms of an effective energyew , and a generalized
reduced massmw as

ew
2 2q22mw

2 50, ~27!

where

ew5
s2m1

22m2
2

2As
~28!

and

mw5
m1m2

As
. ~29!
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Next, we study first the system of massesm15m25m
interacting only with a timelike part of the gauge interacti
A(r )52a/r because the results can be written out in
analytical form. We shall postpone the discussion of the
interaction to Sec. VI. The equation of motion can be o
tained from Eq.~27! by the canonical method of replacin
the timelike componentew with ew2A(r ). The Klein-
Gordon equation for the two-particle system under a mut
Coulomb-type interactionA(r ) is

$@ew2A~r !#22q22mw
2 %c~r!50. ~30!

We introduce the dimensionless variablez5pr wherep is
the asymptotic momentum atr→` given by

p5Aew
2 2mw

2 . ~31!

Writing c(r)5Rnl(z)Ylm(u,f) in Eq. ~30!, the equation for
Rnl(z) is

F d

dz2 1
2

z

d

dz
2

l ~ l 11!

z2 1
2h

z
1

a2

z2 11GRnl~z!50.

~32!

The wave functionRnl(z) is characterized by two dimen
sionless parameters:h5a/v and a2, where v5p/ew is
given by Eq.~3!.

The solution of Eq.~32! is

Rnl~z!5
uG~a!u
G~b!

eph/2~2iz!m21/2e2 iz
1F1~a,b,2iz!,

~33!

where

a5m1
1

2
1 ih, ~34!

b52m11, ~35!

m5AS l 1
1

2D 2

2a2, ~36!

1F1 is the confluent hypergeometric function, and the n
malization constant has been determined by using the bo
ary condition that atr→`, Rnl(z)→( i )m21/2 sin(z1dl)/z
with the Coulomb phase shiftd l . For theSstate, the critical
value ofa is 1/2.

Using the wave function of Eq.~33!, we carry out the
integrations of Eqs.~16! and ~17! and obtain
5-4
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^CVuFab&52e2~ ê1•k!~ ê2•k!
uG~a!u
G~b!

eph/2(
n50

` ~a!nGS 3

2
1m1nD

~b!n n! S 2ip

Ad21k2D n1m21/2
1

d21k2

3F 2

3
FS 3

4
1

m1n

2
,
5

4
2

m1n

2
;
5

2
;j2D1

2m

3

3

2
1m1n

Ad21k2
FS 5

4
1

m1n

2
,
3

4
2

m1n

2
;
5

2
;j2D

2FS 3

4
1

m1n

2
,
1

4
2

m1n

2
;
3

2
;j2D G , ~37!
where

d5m1 ip, ~38!

j25
k2

~m1 ip !21k2 . ~39!

In Eq. ~37!, (a)n5a(a11)(a12)•••(a1n21), with (a)0
51. The quantity (b)n is similarly defined.
04490
V. RESULTS FOR THE K FACTOR FOR THE TIMELIKE
PART OF THE GAUGE INTERACTION

In terms of the angle variable of Eq.~20!, Eq. ~37! can be
transformed as follows:

^CVuFab&52e2~ ê1•k!~ ê2•k!
uG~a!u
G~b!

eph/2D, ~40!

where the factorD is
out the

w factor
D5 (
n50

`
~a!nG~2n!

~b!n n! S 2ip

Ad21k2D n1m21/2
1

k2sinu
F 2

2n23 H sin~2n22!u

2n22
cosu2

sin~2n21!u

2n21 J
1

2m

k

2n

2n22
sinuH sin~2n21!u

2n21
cosu2

sin 2nu

2n J 2 sin2 u
sin~2n21!u

2n21 G , ~41!

and n53/41(m1n)/2. On the other hand, the overlap between the Feynman amplitude and the wave function with
final-state interaction is given by Eq.~18!. Thus, the ratio between the absolute squares of Eqs.~40! and~18! is the relativistic
expression of theK factor,

K5UG~a!

G~b!
eph/2

D
BU

2

. ~42!

We can identify the factoruG(a)eph/2/G(b)u2 as closely related to the Gamow factorG(h). One can show that

UG~a!

G~b!
eph/2U2

5G~h!UG~m11/2!

G~2m11!
U2

)
j 50

` S 11
m21/2

11 j D 2S 11

S 3

2
1m12 j D S 1

2
2m D

S m1
1

2
1 j D 2

1h2
D . ~43!

Therefore, the proper treatment of the dynamics of the interacting particles leads to the modification of the Gamo
G(h) of Eq. ~1! by a factork given by

K5G~h!k, ~44!

where
5-5
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k5UG~m11/2!

G~2m11!
U2

)
j 50

` S 11
m21/2

11 j D 2S 11

S 3

2
1m12 j D S 1

2
2m D

S m1
1

2
1 j D 2

1h2
D UDBU

2

~45!

and

UDBU
2

5U(
n50

`
~a!nG~2n!

~b!n n! sinu S 2ip

Ad21k2D n1m21/2F 2

2n23 H sin~2n22!u

2n22
cosu2

sin~2n21!u

2n21 J 1
2m

k

2n

2n22

3sinuH sin~2n21!u

2n21
cosu2

sin 2nu

2n J 2 sin2 u
sin~2n21!u

2n21 GU2Y U~k/p!ImH S cotu* 2
2m

k D ~u* cotu* 21!J U2

.

~46!
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In the limit of a→0 or v→0, the factork goes to 1 and is
consistent with the Gamow factor.

We note that the center-of-mass energyAs in units of the
rest mass of the produced particle is a function ofh/a:

As

m
5A2S 11

h/a

Ah2/a221
D . ~47!

Various other kinematic variables, such ask/m5As/2m and
p/m5As/4m221, can be similarly expressed as a functi
of h/a. From these relations and the relation between thK
factor andh and a, we can study theK factor for the pro-
duction of a pair of particles in any specific kinematic co
figuration.

We show the behavior of theK factor as a function ofh
in Fig. 2 for various values ofa. The solid curve gives theK
factor fora50.02 and the dotted curve gives theK factor for
a50.32. For a fixed value ofa, theK factor decreases ash
decreases. This is consistent with the expectation that
effects of the final-state interaction diminish as the veloc

FIG. 2. TheK factor versush for various values ofa, with only
the timelike component of the gauge interaction.
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becomes relativistic. The limiting value isK51 ash5a/v
→a. Figure 2 also shows that for a given value ofh5a/v,
theK factor decreases asa increases. It should be noted th
the same value ofh corresponds to different velocitiesv for
different values ofa. To see the effect of the final-stat
interaction as a function ofa for a fixed value ofv, we plot
in Fig. 3 theK factor as a function ofv. As one observes
when the velocity is fixed, theK factor increases as the cou
pling constant increases, indicating a greater effect of
final-state interaction asa increases. For all values ofa, the
K factor decreases asv increases and goes to unity asv
approaches 1. The decrease is very rapid for small value
a.

It is of interest to see how theK factor obtained here is
different from the Gamow factor. In Fig. 4, we showed t
ratio between theK factor and the Gamow factor for variou
values ofa. As we expect, the ratio is almost 1 for wea
coupling and the use of the Gamow factor is relatively s
there. However, if we increasea to 0.32, the ratio decrease
significantly. The Gamow factor overestimates the mag
tude of the final-state interaction. It cannot be used for

FIG. 3. TheK factor versus the velocityv for various values of
a, with only the timelike component of the gauge interaction.
5-6
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RELATIVISTIC MODIFICATION OF THE GAMOW FACTOR PHYSICAL REVIEW C61 044905
case with strong coupling. There is an effective screening
the long-range Coulomb interaction. As a consequence,
enhancement due to the long-range Coulomb-type inte
tion is reduced. It can also be observed in Fig. 4 that the r
of K/G(h) is a relatively slowly varying function ofh for
h.1 but drops down rapidly ash decreases in the region o
small h.

It is worth pointing out that the expansion ofD in Eqs.
~41! and ~46! is given as a series in powers ofp/Ad21k2

which increases as the velocityv increases. We still obtain
convergent results forv up to about 0.8, but there is a lim
on using such an expansion for greater velocities wh
p/Ad21k2 is too large to allow for a convergent term-b
term summation. A different expansion method is needed
v.0.8.

VI. INCLUSION OF THE SPACELIKE PART
OF THE GAUGE INTERACTION

In the above discussions, we consider only the timel
part of the gauge interaction,A0[A. Two charged particles
interact not only through the static timelike part of the gau
interaction, but also through the currents and the space
part of their mutual interactionA. It is of interest to see how
the additional spacelike gauge interaction modifies theK fac-
tor.

The spacelike part~the transverse part! of the gauge in-
teraction can be included as formulated by Crater and V
Alstine @20#. We briefly summarize their results here. In cla
sical field theory, the interacting two particles satisfy tw
equations of motion:

H15p1
22m1

250, ~48!

H25p2
22m2

250. ~49!

In the above two equations, the spacelike componentpi is

p15q2A52p2 . ~50!

FIG. 4. The ratio between theK factor and the Gamow facto
G(h) for various values ofa, with only the timelike component o
the gauge interaction.
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The transverse fieldA is proportional toq, and the two terms
in the above equation can be grouped together into a func
G:

p15Gq52p2 , ~51!

where the factorG should be chosen to give the correct p
tential in the weak-field limit and to make Eqs.~48! and~49!
compatible ~i.e., @H1 ,H2#50) @20,21#. The timelike mo-
mentump i

0 is proportional to (e i2A) and the proportional
factor turns out to be the same functionG as for the spacelike
components:

p1
05G~e12A!, ~52!

p2
05G~e22A!, ~53!

wheree1 ande1 are given by Eqs.~24! and ~25!. The func-
tion G is a function of the coordinatex' where

~x'!m5xm2~x• P̂!P̂m ~54!

and P̂ is the unit vector of the total momentumP. In the
center-of-mass system,x'5r .

Crater and Van Alstine showed that a consistent choice
the functionG(r ) which gives all the correct properties o
the weak field limit and makes the system of Eqs.~48! and
~49! compatible is

G~r !5F12
2A
As

G21/2

. ~55!

In particular, in addition to giving the correct Darwin term o
the two-body electromagnetic interaction, such a function
G leads to an effective potential which, in the weak-fie
limit, is canonically equivalent to the Lie´nert-Wiechert po-
tential up to order (v/c)2 @20,21#.

In covariant form, the four-momentum of the two pa
ticles can be related to the total momentumP and the relative
momentumq by

p1
m5G@ P̂m~e12A!1qm# ~56!

and

p2
m5G@ P̂m~e22A!2qm#. ~57!

When one quantizes the two-body systems, the momen
operator needs to be Hermitized and one has

p1
m5GF P̂m~e12A!1qm1

1

2
i $]m ln G%G ~58!

and

p2
m5GF P̂m~e22A!2qm2

1

2
i $]m ln G%G . ~59!

The total Hamiltonian is
5-7
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H5
e1

As
H11

e2

As
H2 . ~60!

The two-body equation of motion for the system is

HC505H1C5H2C. ~61!

Upon working out the operators in the above equation,
obtains

HC5G2F S q1
1

i
$¹ ln G% D 2

1
1

4
$~¹ ln G!2%

1
1

2
$¹2 ln G%2~ew2A!21mw

2 GC50. ~62!

Upon making the scale transformation

C5
c

G
, ~63!

we have

HC5GF2¹22~ew2A!21
1

4
$~¹ ln G!2%

1
1

2
$¹2 ln G%1mw

2 Gc50. ~64!

Thus the transverse field leads to an additional effective
teraction of the form

1

4
~¹ ln G!21

1

2
¹2 ln G, ~65!

in addition to the scale transformation, Eq.~63!. It gives the
Darwin term and the proper perturbation expansion limits
explained in detail in Ref.@20#.

Using the form ofG(r ) as given by Eq.~55!, we obtain

HC5GFq22~ew2A!21mw
2 1

5a2

4r 2~rAs12a!2Gc~r !50,

~66!

which differs from Eq.~30! for the timelike component only
by the additional last term, aside from the overall factorG.
This additional term goes as 5/16r 2 at small values ofr to
make the effective interaction repulsive at the origin. As
result, the wave function nearr→0 goes as

c~r !;r l 8, ~67!

with

l 85
211A11~5216a2!/4

2
. ~68!

The wave functionc(r ) therefore approaches zero at t
origin.
04490
e

-

s

a

What is the orthonomality condition for the amplitude
terms ofC or c? For the region of energyewi close toew j
we have

E dr ~C iHC j2C jHC i !

5~ewi
2 2ew j

2 !E dr c i~r !c j~r !'0. ~69!

The approximate equality arises because of the depend
of the interaction on energy. Equality is attained whenewi
approachesew j . The wave function can therefore be norma
ized in a local energy region according to

E dr c i~r !c j~r !5d i j . ~70!

Thus, the amplitudec(r ) @and notC(r )5c(r )/G(r )# is the
probability amplitude to be used in calculating the overl
integral in Eq.~14!.

VII. NUMERICAL SOLUTION OF THE WAVE FUNCTION

If we use the dimensionless variablez5pr as before, then
Eq. ~66! becomes

@2¹z
21U~z!21#c~z!50, ~71!

where

U~z!52
2h

z
2

a2

z2 1
5

4

a2

z2~zAs/p12a!2
. ~72!

To obtain the wave functionc(z), we follow the phase-angle
method discussed in detail by Calogero@22#. We write the
wave function as

c lm~r!5
ul~z!

z
Ylm~ r̂!. ~73!

We represent the wave functionul(z) in terms of the ampli-
tudea l(z) and the phase shiftd l(z):

ul~r !5
a l~z!

a l~`!
D̂ l~z!sin@ d̂ l~z!1d l~z!#A 4p

2l 11
, ~74!

with the boundary condition thatd l(z→0)50. The functions
D̂(z) and d̂(z) are known functions@22#:

D̂0~z!51, D̂1~x!5~111/z2!1/2 ~75!

and

d̂0~z!5z, d̂1~z!5z2tan21z. ~76!

The equation ford l(z) is @22#

d

dz
d l~z!52U~z!D̂ l

2~z!$sin@ d̂ l~z!1d l~z!#%2. ~77!
5-8
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After the functiond l(z) is evaluated, the amplitude can b
obtained fromd l(z) by

a l~z!5 expH 1

2E0

z

ds U~s!D̂ l
2~s!sin2@ d̂ l~s!1d l~s!#J .

~78!

We shall again specialize to theS wave. After we obtain
the wave functionc(r ) by solving the above equations nu
merically, we use it in Eqs.~16! and ~17! to get the overlap
integralsA andB and theK factor in Eq.~21!. The results are
shown in Figs. 5–7. In Fig. 5, we show the results of theK
factor as a function ofh for various values ofa when the
spacelike part component of the gauge interaction is a
taken into account. TheK factor increases withh and is
much greater than 1 for large values ofh. Its behavior is
very similar to those with only the timelike component of t
interaction.

FIG. 5. TheK factor versush for various values ofa, with the
inclusion of both the timelike and the spacelike components of
gauge interaction.

FIG. 6. TheK factor versus the velocityv for various values of
a, with the inclusion of both the timelike and the spacelike comp
nents of the gauge interaction.
04490
o

In Fig. 6, we show the behavior ofK as a function of
velocity for different values ofa, for the case with both the
timelike and the spacelike components of the gauge inte
tion. TheK factor is much larger than unity for small veloc
ties, and it decreases to unity as the velocity increases
Fig. 7, we plotK/G as a function ofh for various values of
a. The results in Fig. 7 show significant differences from t
Gamow factor and the difference is greater at smallerh ~i.e.,
at higher velocities!. The gross features of Figs. 5–7 are ve
similar to those with only the timelike part of the gaug
interaction. For example, theK factor is getting closer to the
Gamow factor and much greater than unity as the velo
becomes small, and theK factor is getting to 1 as the velocit
becomes greater. However, there exist some small dif
ences between the results with and without the space
component of the gauge interaction. Comparing Fig. 2 a
Fig. 5, for all cases ofa and for the whole range ofh, theK
factor with the spacelike component of the gauge interac
is smaller than that for the case without the spacelike co
ponent. The same conclusion can be obtained by compa
Fig. 4 with Fig. 7. This indicates that the spacelike comp
nent of the gauge interaction reduces the attractive final
initial-state interactions. The spacelike part of the gauge
teraction produces an effective repulsive interaction an
reduces the magnitude of theK factor. This effect is stronge
for higher values ofh or for slower velocities. This effect is
also stronger in higher values ofa, corresponding to a stron
ger coupling. For example, ath54 the spacelike componen
leads to a reduction of theK factor by only 0.8% fora
50.02 but 9% fora50.32.

VIII. CONCLUSIONS AND DISCUSSIONS

The mutual final-state interaction between the produ
particles has an effect on their rate of production. There w
be similar effects if the particles interact via the initial-sta
interaction. The effects are simplest to be taken into acco
by using the method of theK factor. One calculates the rat
for the process as though there were no initial- or final-st

e

-

FIG. 7. The ratio between theK factor and the Gamow facto
G(h) for various values ofa, with the inclusion of both the time-
like and the spacelike components of the gauge interaction.
5-9
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interactions, using, for example, the perturbation theory. T
additional initial- or final-state interactions can be includ
by multiplying aK factor as given by Eq.~8!.

For Coulomb-type interactions, theK factor has been tra
ditionally taken to be the Gamow factor obtained as the
solute square of the wave function at the origin of the re
tive coordinate. With relativistic Coulomb wave function
the K factor can be obtained as the overlap of the wa
function with the Feynman amplitude.

Our investigation of theK factor for the case of the pro
duction of a pair of scalar particles indicates that there
substantial deviations from the Gamow factor when
strength of the coupling is large. In particular, the prop
treatment reduces the magnitude of the Gamow factor
nificantly. The reason for this reduction is that in the p
production, there is an effective screening of the Coulom
type interaction arising from the effective ‘‘exchange’’ o
one of the produced particles.

We have presented an explicit formula for the relativis
modification of the Gamow factor for the production of
pair of bosons for the case of an attractive timelike part
the gauge interaction. Numerical results are also obtaine
show the magnitude of theK factor. The results of theK
factor can be applied to a class of processes in which
boson particles are produced and interacting with
Coulomb-type interaction.

We have also studied the effects of the additional spa
like part ~the transverse part! of the gauge interaction. I
leads to an effective repulsive potential and it serves to
crease the magnitude of theK factor. This reduction is large
.

s
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for smaller values ofh ~or for lower velocities! and for
stronger coupling constants. However, the magnitude of
reduction of theK factor is small~less than about 10% an
smaller in most cases!. To the extent that a 10% error can b
tolerated, the analytical results in Sec. V obtained with
the transverse component are an adequate representati
theK factor. More accurate results will require the inclusio
of the transverse component of the gauge interaction as
cussed in Secs. VI and VII.

The large modification of the Gamow factor for the pr
duction of two bosons studied here indicates the need
extend the present formalism to study the case of two fer
ons or two gluons. The application to fermions or gluons w
be useful in the problem of production or reaction of qua
and gluons. As a pair of quarks or gluons interact with
strong color-Coulomb interaction with a coupling constanta
about 0.2–0.4, the simple results from the present study
dicate that the effects of the initial- or final-state interacti
for quarks and gluons will be large, and theK factor will be
substantially different from what one obtains using t
Gamow factor. We hope to study the modification of t
Gamow factor for two produced fermions in our next inve
tigation.
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