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Relativistic modification of the Gamow factor
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In processes involving Coulomb-type initial- and final-state interactions, the Gamow factor has been tradi-
tionally used to take into account these additional interactions. The Gamow factor needs to be modified when
the magnitude of the effective coupling constant increases or when the velocity increases. For the production
of a pair of particles under their mutual Coulomb-type interaction, we obtain the modification of the Gamow
factor in terms of the overlap of the Feynman amplitude with the relativistic wave function of the two particles.
As a first example, we study the modification of the Gamow factor for the production of two bosons. The
modification is substantial when the coupling constant is large.

PACS numbgs): 25.75—-q, 13.75.Cs, 24.10.Jv

[. INTRODUCTION There are physical processes in which the coupling con-
stant of the interaction between the particles can be quite
Initial- and final- state interactions are important in manylarge and the use of the Gamow factor to correct the initial-
branches of theoretical physics involving the reaction or thestate and final-state interactions may not be adequate. For
production of particles. They have a great influence on th%xample, in the annihilation or the production @ pairs,

reaction rates or the production cross sectidnsl1]. These the interaction arising from the exchange of a gluon leads to

initial- and final-state interactions lead to a large enhance; ..\ ~sulomb interaction with a coupling constamt

ment of the Cross SeCt'.on_'f the particles are subject to 3bout 0.2-0.4, depending on the renormalization scale of the
strong attractive interaction; they can lead to a large suppres-

sion under a strong repulsive interaction. We shall use th%eacﬂonfpr(?[cegs.tr,?nother examfplef!s tretrr:o<jc|f|ca|1t|oanftthe
term “the K factor” to label the ratio of the cross section —2MoW factorin the presence ot a final-state L.oulomb inter-

with the interaction to the corresponding quantity without the2ction and its effects on the the Hanbury-Brown—Twiss ef-
interaction. fects of intensity interferometry as studied by Baym and

As is well known, for interactions such as the electric-Braun-Munzinger{15]. Another example with strong cou-
Coulomb and color-Coulomb interactiod(r)=—a/r in  Pling occurs in the case of a negatively charged particle in a

nonrelativistic physics, the effect of the initial- or final-state ucleus with a large number. Such a large coupling con-
interactions leads to & factor given by the Gamow- Stant will also lead to a modification of the Gamow factor as

Sommerfeld factof2,3]. The Gamow-Sommerfeld factéor ~ there are higher-order effects of the potential which are im-

simply called the Gamow factpis given explicitly by portant when the coupling constant becomes large. One can
mention, for example, the well-known case of the “Landau
27y fall” which is the relativistic nonperturbative collapse of the
G( ”):m’ () \wave function for an attractive Coulomb-type potential when
the coupling constant exceeds a certain lifi]. Further-
where more, although the effect of the interaction is very large for

low relative velocities, it is useful to see how the effect var-
a ies as the velocity increases. For brevity of notation, we shall
=y 2) use the term “Coulomb interaction” with a variable cou-
pling constant to refer to both the electric-Coulomb and
The magnitude of the relative velocity is the ratio of the color-Coulomb interactions.
asymptotic momentunp to the energye,, in the relative While one sees the need to use the relativistic formalism
coordinate systerfsee Eqs(28) and(31) below]. Following  to study the case with high relative velocities, one may won-
Todorov [12], Crater and Van Alstine[13], and Egs. der what special cases can be of interest to use a relativistic
(21.133—(21.139 of Crateret al.[14], the relative velocity formalism for the case of low relative velocities. By the term
for the particlesa and b is related to their center-of-mass “the relative velocity,” we usually refer to the relative ve-

energy+/s by locity between the particles in the asymptotic regionrof
5 (2172 —oo where there is no interaction. However, when there is a
b= (s"—4snr) 3) strongly attractive interaction, the actual relative velocity de-
s—2m? pends on the spatial location. One can envisage that if the

coupling constant is large, the motion of the two particles at
This givesv ~2y1—4m?/s whens~2m andv—1 when  small distances can become relativistic, even though the rela-
s—o. This Gamow factor has been used to study initial- andive velocity atr —« is small. Hence, it is necessary to use
final-state interactions in reaction processes. the relativistic formalism to study the effects of the mutual
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interaction with large coupling constants, even for the case Il. KFACTOR
of low asymptotic relative velocities at— .

The K factor for the Coulomb potential can be studied by
examining the two-body wave function in the Klein-Gordon
or the Dirac equation involving a Coulomb potential. Com-
pared with the nonrelativistic Schdimger equation involv-
ing the Coulomb potential, there is an additional effective
attractive potential,—|.A(r)|?/2m,,, and a repulsive term
from the spacelike part of the gauge interactisee Egs.
(30) and (66) be_lovv], which lead to a nontrivial behavior rturbation theory which gives the amplitude for the pro-
when the coupling constant becomes large. In the case

. . . uction of this pair of particlea andb. The stateb ,, of the
fermions under the Coulomb interaction, there are furthe%1b air after the reactios+v—a-t b is represented by the
modifications associated with additional spin-dependent po- P y P y

tential terms. state vector

The effects of the final- and initial-state interaction de-
pend on the physical process. Here we shall be interested in
the class of processes involving the reaction or the produc-
tion of a pair of particlesa and b, subject to the mutual
interaction between andb. For definiteness, we shall study
the production process, as tKefactor is the same for pro-
duction or reaction.

The simplest description of such a process is in terms of

The question of initial- and final-state interactions is also | ) = M(xy—a(P/2+q)b(P/2—q))
related to the question of the decay and the production of
bound states when the interactions lead to the formation of X|a(P/2+q)b(P/2—q)), (4)

bound statefl7,18. Previously, the decay of the bound pos- ] )

itronium 1S, state into two photons has been studied in theVhere M(xy—ab) is the Feynman amplitude for thety
relativistic formalism by Cratef18]. In our present study, —@&+b process. For the two-particle systerb, we define
we are interested mainly in the case of two particles in théhe center-of-mass momentui=a-+b and the relative mo-

continuum. We wish to find out how the mutual interaction Mentumg=(a—b)/2. _ _ _ _

The proper method to obtain tefactor is by taking the ~can be represented by a two-body potentgt) betweena
overlap of the relativistic wave function with the Feynman@and b, we can describe aab pair with a center-of-mass
amplitude. When the Feynman amplitude is independent offomentumpP as
the momentum, then one obtains the familiar result thakthe ~
factor is the absolute square of the wave function at the ori- |Wv)=¥(a)|P). (5
gin. However, this is not valid in the general case where the

Feynman amplitude is a function of the relative momentum. _The probab_lllty ampl_|tude fo_r the proquctlon of ab
It will then be necessary to evaluate tiefactor by taking pair under their mutual interaction is obtained by taking the

the overlap of the Feynman amplitude with the relativisticoverlalo of the amplitgde in ECM) With the wave function in
wave function. Eq. (5). The overlap is the simplest in tlab center-of-mass

As an illustration, we shall try out the method for the SYStém whe.re'Pz(\/E,.O) andq=(0,) and the(unnormal-
production of a pair of scalar particles interacting with aiz€d probability amplitude ig17-19
Coulomb-type final-state interaction. We shall first study the &g

case with only the timelike part of the gauge interaction in _ _

Secs. lll, IV, and V. We then study the addition of the trans- (¥v|Pan) f (Zﬁ)s‘!’(q)M(Xy_’a(Q)b( 9. ©®
verse part of the interaction. The inclusion of the transverse

component of the gauge interaction modifies the results onljfFor a properly normalized probability amplitude, see Egs.
slightly and will be discussed subsequently in Secs. VI and29)—(31) of Ref.[19].] The K factor for the occurrence of
VIL. ab in the stateW, is then given by

(WD ap)|? (production cross section with final-state interaction
(W o| D ap)| ~ (production cross section without final-state interagtion

K= (7)

where| W) is the state of th@b pair without their mutual interaction. We have used the unnormalized amplitude €)Eq.

as any normalization constant will cancel out in the definition of khéactor in Eq.(7). The result of the cross section
calculated using the simple first-order diagram can be corrected to include the effects of the final-state interaction by multi-
plying by theK factor:

8

production cross sectioh production cross section
with final-state interaction without final-state interactign
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lll. FEYNMAN AMPLITUDE AND THE OVERLAP In this approximation of keeping only the leading term, Egs.
WITH THE WAVE FUNCTION (7) and (11) then give the usuaK factor as the absolute

To obtain the effect of the final-state interaction betweensquare of the wave functiog(r) at the origin:

a andb produced in a pair-production process, we consider
the production of the pair of bosons from the fusion of two
photons. Because the relevant factors associated with the

mode of production will be canceled out at the end in Eq.1OWever, we are interested in the improvement over this
(7), the results of th& factor depend only on the final-state approximation and use the full Feynman amplitude to evalu-

interaction and is the same for a similar mode of productiorft€ the overlap integral and thefactor in Egs.(9) and (7).
In terms of the spatial wave function, the overlap integral

of the pair of bosons. .
The diagrams we include are shown in Fig. 1 which give(lo) 1S
the amplitude

K=|y(r=0)|2. (13

. ~ V . e M.
— a2 —ik-r . .
—i M(xy—a(P/2+q)b(Pl2—q)) (v|®ap)=e Jdr vin)e [2‘51' e k} 2K
20+k)- € k- 20—Kk)- e k- . ~ V . -mr
_jed - QAR ek e (207K ek — ek 26, —+ & k| ——ey K. (14)
(Q+k*+m? " (q—k)2+m? i 4t
© We shall specialize to th&wave case with=0. The

wherek is the momentum of the photog,is the momentum overlap integral14) becomes

of one of the bosons, ang is the polarization vector of the ..

ith photon. In addition to the two diagrams in Fig. 1, there is (V| ®op)=€” € ke -k[A—B], (15
also the seagull diagram which is required to get gauge in-

variance and is of the same order. The seagull diagram ighere

independent of the relative momentum and leads to a prob-

ability amplitude proportional to the wave function at the 4 (= e
origin. When one properly takes into account the spacelike A= EL drja(kr)g(rie ™ (1+mr) (16)
component of the Coulomb interactiqsee Sec. V| the
spatial wave function is zero at the oridi20] and thus the and
contribution to the probability amplitude from the seagall
term is zero. .

The overlap of the wave function with the Feynman am- Bzzf rdrjo(kr)y(rye ™. (17)
plitude is then 0

~ (29+Kk)- € k- € For the probability amplitude for the case without the

: dq
(Wy|Pap) = 'ezf (27.,)3‘”(‘1) final-state interaction, we use the wave functigi(r)
=sinpr/pr for the S state and we obtain the probability am-

plitude as given by

(g+k)2+m?

20—k)-e k-
+(q ) €K €

(q—k)?+m? 1o
(Wo|@ap)=2€°(€1-K)(€&-K) B, (18)
It is useful to write the above integral in terms of the wave )
function in configuration space. The latter is given by where the factol3 is
dgq -~ _ B=Im{(cotd* —2m/k)( 6* cotd* —1)}/pk, (19
w(r)=f (e . (1
(2m)

and #* is a complex conjugate of. Here, we have intro-

. L duced the complex angle variable
In conventional applications, one expands the Feynman

amplitude(9) in powers ofg and keeps only the lowest-order K m 1 k+p

-independent ter : —tan ! = _iZIn—=-
g p Mo f=tan miip 4 |4|nk—p’ (20)
M=~Mq+0(|q). (12)
which is a relativistic measure of the relative motion between
k1(E, —k) s Arosomss n(E, q) it NS particlesa andb. The real part ofg is always#/4, and the
q+ki q_ki :;<:' imaginary part is negative, with a magnitude that is half of
ka(E, k) v (B, —q) ko N the rapidity of the produced particle in the center-of-mass
system.
FIG. 1. Feynman diagrams included in the calculation. Thus, theK factor is given by
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A—B|? Next, we study first the system of masses=m,=m
= ‘T : (21)  interacting only with a timelike part of the gauge interaction
A(r)=—alr because the results can be written out in an
analytical form. We shall postpone the discussion of the full
IV. KLEIN-GORDON EQUATION FOR THE TIMELIKE interaction to Sec. VI. The equation of motion can be ob-
PART OF THE GAUGE INTERACTION tained from Eq.(27) by the canonical method of replacing

In this first study, in order to illustrate the main features ofthe timelike componente,, with €,—A(r). The Klein-
the effect and to avoid complications brought on by theGordon equation for the two—partlcle system under a mutual
spinor algebra, we shall carry out the procedures outline§oulomb-type interactiovA(r) is
above for the production of two scalar particles.

We need to separate out the center-of-mass motion and _ 2_ 22 _
the relative motion for these two particles. Consider first the {lew= AN =a =myhy(r)=0. (30
case without a mutual interaction as in the region where the
two particles are far apart. The two particles have four\We introduce the dimensionless variatate pr wherep is
momentap, andp, and rest masse®; andm,. We intro-  the asymptotic momentum at-c given by
duce the total momentura [13,14),

_ [2_ 2
P=Pp1+P2, (22 P=Vew™ M D
and the relative momentuny Writing (r) =R,(2)Yim( 6, ¢) in Eq. (30), the equation for
Rni(2) is
€2P1—€1P2
ZT. (23
d 2d I(I+1) 27 a?
where a2 zaz 2z Tz Pz THR@=0
(32)
s—m3+m3
G@=——fr— (24
2\s The wave functionR,(z) is characterized by two dimen-
sionless parametersy=al/v and a2, where v=ple, is
and given by Eq.(3).
The solution of Eq(32) is
s—mi+ms 29
Er=—"" _—
2 I'a .
v Rui(2)= |FEb;| e""?(2i2)* %" Fy(a,b,22),
with s=P2. We have the following identity: (33
(e1+ex)P?
pi—mi+pi-mi= T 4207 mE-mE=0.  where
(26)
Wg can choose to work in the center—of—mas.s system in a=,u+1+i 7 (34)
which P=(4/s,0) andq=(0,0). The above equation can be 2
written in terms of an effective energy,, and a generalized
reduced masm, as b=2u+1, (35
e2—q—m2=0, (27) .
— - -2
where w (|+2 “ (36
s—mi—-mj . . |
€y=—"7 (28 1F1 is the confluent hypergeometric function, and the nor-
2\s malization constant has been determined by using the bound-
d ary condition that atr—o, R, (z)—(i)* ?sin(z+48)/z
an with the Coulomb phase shif . For theS state, the critical
mem value ofa is 1/2.
my,=——=. (29) Using the wave function of Eq33), we carry out the
\/5 integrations of Egs(16) and(17) and obtain
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3
w (@) I'|z+utn . n+p—1/2
R R | (a)] 2 2ip 1
— 2 A 777;/2
<\PV|CI)ab> 2e (61 k)(€2 F(b) nZO (b)nnl 52+k2 52_,{_ k2

3
2 (3 ptn5 ptn5 +2m§+“+”
: 3

N ] F5 mutn 3 utnbs
47 2 4 22 K2

R - 2
1t 2 1 2 %

3 pu+tnl pu+n3
—F(Z+T,Z— 5 o ) ; (37
|
where V. RESULTS FOR THE K FACTOR FOR THE TIMELIKE
) PART OF THE GAUGE INTERACTION
o=m+ip, (38) In terms of the angle variable of ERO), Eq.(37) can be
K2 transformed as follows:
52:(m+ip)2+ K2 (39 ~ ~ @)
(| D) =26%(€-K) (€ k)mem’lzp. (40)
In Eq. (37), (a),=a(a+1)(a+2)---(a+n—1), with (a)g
=1. The quantity b),, is similarly defined. where the factoD is
|
g (@),C(2v)[ 2ip \"™ " 1 2 :sin(zy—z)e , sin(zy—l)e]
coS— ———F—
=0 (b)an! | (K2 Ksingl2v—3| 2v-2 2v-1
2m 2v sin(2v—1)60 sin2v6 2 sin(2v—1)60 a1
TR 22 2y—1 COS0T TSmO | 4D

and v=3/4+ (n+n)/2. On the other hand, the overlap between the Feynman amplitude and the wave function without the
final-state interaction is given by E(L8). Thus, the ratio between the absolute squares of @Gsand(18) is the relativistic
expression of th& factor,

T'(a) D2

71'7;/2_
K= F(b) B (42
We can identify the factolT’(a)e™”?%/T'(b)|? as closely related to the Gamow fac®( 7). One can show that
3 +u+2j !
L@ 67 ST (e B 12) P VI 43
I'(b) (7 )F(Z +1)| jo 14§ 10 L, (43
pmt 5t 7

Therefore, the proper treatment of the dynamics of the interacting particles leads to the modification of the Gamow factor
G(7n) of Eq. (1) by a factork given by

K=G(7)«, (44)

where
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3 1
P(ur )7 u—1/2\2 (5“”21 E_“) D|? .5
e e\ T\ T I 49
pts+l +n
2
and
D)2 (@, 2y [ 2ip \""™ Y 2 (sin2v-2)0 sin2v—1)0) 2m 2v
B T|& nisingl [ e 23| 2v-2 5,1 [T 22
[ SM2r=1)0 sinzvg] _, sin2v-1)6]l* /| L O I
sing 551 cosf > Si B (k/p)Imj | cotd 7(0 cotd )
(46)

In the limit of «—0 orv—0, the factork goes to 1 and is becomes relativistic. The limiting value is=1 asn=alv

consistent with the Gamow factor. — «. Figure 2 also shows that for a given valuemnt a/v,
We note that the center-of-mass enek@yin units of the  theK factor decreases asincreases. It should be noted that
rest mass of the produced particle is a functiongbé: the same value ofy corresponds to different velocitiesfor

different values ofa. To see the effect of the final-state
\/g \/ ( nla ) interact;onhas af function Qiffor a fixe% value o, vt\)/e plot
—= 2l 1+ ——]. 4 in Fig. 3 theK factor as a function of. As one observes,
m Vrila®—1 “n Wher?the velocity is fixed, th& factor increases as the cou-
pling constant increases, indicating a greater effect of the
Various other kinematic variables, suchkde=\'s/2m and final-state interaction as increases. For all values of, the
p/m=\/s/4m?>—1, can be similarly expressed as a functionK factor decreases as increases and goes to unity as
of »/«. From these relations and the relation betweenkthe approaches 1. The decrease is very rapid for small values of
factor andz and a, we can study th&« factor for the pro- «a.
duction of a pair of particles in any specific kinematic con- It is of interest to see how thi factor obtained here is
figuration. different from the Gamow factor. In Fig. 4, we showed the
We show the behavior of thi€ factor as a function ofy ratio between th&« factor and the Gamow factor for various
in Fig. 2 for various values ok. The solid curve gives th€  values ofa. As we expect, the ratio is almost 1 for weak
factor for«=0.02 and the dotted curve gives thdactor for ~ coupling and the use of the Gamow factor is relatively safe
a=0.32. For a fixed value a#, theK factor decreases ag  there. However, if we increase to 0.32, the ratio decreases
decreases. This is consistent with the expectation that th&gnificantly. The Gamow factor overestimates the magni-
effects of the final-state interaction diminish as the velocitytude of the final-state interaction. It cannot be used for the

25

25
20 ¢ 20
15 | 15
~ x
10 | 10 |
571 5
0 * ! : 0 . . .
0 1 2 3 4 0.0 0.2 0.4 0.6 0.8
n v/c
FIG. 2. TheK factor versusy for various values o, with only FIG. 3. TheK factor versus the velocity for various values of
the timelike component of the gauge interaction. a, with only the timelike component of the gauge interaction.
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Lo ‘ =002 ‘ The transverse field is proportional tag, and the two terms
------------------------- DOL oo in the above equation can be grouped together into a function
L S — 008 ______________] G:
I'd
/
0.8 ’/-—""_'—'—-_-_-_A_o-'lg ____________________ ] m= Gq: — T, (51)
o7y /7 1 .
= ; where the factoG should be chosen to give the correct po-
§ 0.6 0.32 ] tential in the weak-field limit and to make Eqg4.8) and(49)
b 0.5 T compatible (i.e., [H;,H,]=0) [20,21. The timelike mo-
’ mentum is proportional to ¢ —.A) and the proportional
04 | ] factor turns out to be the same functiGras for the spacelike
components:
0.3
02 ‘ m9=G(e— A), (52)
0 1 2 3 4
n mo=G(e— A), (53

FIG. 4. The ratio between thi¢ factor and the Gamow factor wheree; ande; are given by Eqs(24) and(25). The func-
G( ) for various values oy, with only the timelike component of tion G is a function of the coordinate, where
the gauge interaction.

. . . . . (X, )#=x#—(x-P)P* (54)

case with strong coupling. There is an effective screening of
the long-range Coulomb interaction. As a consequence, thend P is the unit vector of the total momentuf In the
enhancement due to the long-range Coulomb-type interaGsenter-of-mass system, =r.
tion is reduced. It can also be observed in Fig. 4 that the ratio ¢ ater and Van Alstine showed that a consistent choice of
of K/G(7) is a relatively slowly varying function of for — he functionG(r) which gives all the correct properties of
7> 1 but drops down rapidly ag decreases in the region of he \yeak field limit and makes the system of EG8) and

small 7. o _ ) (49) compatible is
It is worth pointing out that the expansion &f in Eqs.

(41) and (46) is given as a series in powers pf/8?+k? 2A) 712
which increases as the velocityincreases. We still obtain G(r)=|1-—& (55)
convergent results fay up to about 0.8, but there is a limit \/;

on using such an expansion for greater velocities where

p/ &2+ K2 is too large to allow for a convergent term-by- In particular, in addition to giving the correct Darwin term of

term summation. A different expansion method is needed fo e wo-body electromagnetic ir?teract'ion, .SUCh a functiqn of
0>0.8 leads to an effective potential which, in the weak-field

limit, is canonically equivalent to the Liert-Wiechert po-
tential up to orderg/c)? [20,21].

In covariant form, the four-momentum of the two par-
ticles can be related to the total momentBrand the relative

In the above discussions, we consider only the timelikenomentumg by
part of the gauge interactioA’= 4. Two charged particles .
interact not only through the static timelike part of the gauge ' =G[P*(e;—A)+0*] (56)
interaction, but also through the currents and the spacelike
part of their mutual interactioA. It is of interest to see how an
the additional spacelike gauge interaction modifies<dtiac- N
tor. mh=G[P*(e3— A)—g”]. (57)

The spacelike partthe transverse parbf the gauge in- ,
teraction can be included as formulated by Crater and VaVhen one quantizes the two-body systems, the momentum
Alstine [20]. We briefly summarize their results here. In clas-OPerator needs to be Hermitized and one has
sical field theory, the interacting two particles satisfy two

VI. INCLUSION OF THE SPACELIKE PART
OF THE GAUGE INTERACTION

, > . 1

equations of motion: =G| P*(e,— A)+ g~ + Ei{&” In G} (59

Hy=m2—mi=0, (48)
and
Hy=m5—m5=0. (49 L
L=G|l P*(e,— A)—gt— —ilg*

In the above two equations, the spacelike compongrns T =G| Pie=A)~d ZI{{? InG}). (59

m=q—A=—1m,. (500  The total Hamiltonian is
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What is the orthonomality condition for the amplitude in

€
= —1H1+ —2H2. (60)  terms of ¥ or ¢? For the region of energy,; close toe,;
\/g \/g we have

The two-body equation of motion for the system is

H

f dr(W/HW;— W HY)

HY=0=H,V=H,V. (61)
Upon working out the operators in the above equation, one =(6fvi—éfvj)f dr i(r)¢(r)~0.  (69)
obtains
1 2 4 The approximate equality arises because of the dependence
HY = G2 (q+ ZIVInG}| +>{(VInG)3 of the interaction on energy. Equality is attained whegp
I 4 approaches,,; . The wave function can therefore be normal-

ized in a local energy region according to
v=0. (62

1 2 2 2
+§{V ING}—(ey—A)+mj,
f dr i(r)¢i(r)= ;. (70
Upon making the scale transformation

Thus, the amplitudes(r) [and notW (r)=(r)/G(r)] is the
Wy = f 63) probability amplitude to be used in calculating the overlap
G’ integral in Eq.(14).

we have VII. NUMERICAL SOLUTION OF THE WAVE FUNCTION

If we use the dimensionless varialaie pr as before, then

1
H\PzG[—Vz—(Ew—A)2+ 7{(VInG)?} Eq. (66) becomes

[—V2+U(2)—1]¢(2)=0, (72)

1
+§{V2In G}+m2|y=0. (64)

where

Thus the transverse field leads to an additional effective in-

. 2 a? 5 a?
teraction of the form U(z)=— <

g2
z % 472(zslp+2a)? (72

1 1
- 2, T2
4 (VInG)"+ 2 ViinG, (65) To obtain the wave functiog(z), we follow the phase-angle

method discussed in detail by Calogd&?]. We write the
in addition to the scale transformation, E§3). It gives the  wave function as
Darwin term and the proper perturbation expansion limits, as

explained in detail in Ref.20]. _w(2) -
Using the form ofG(r) as given by Eq(55), we obtain Yim(1) = —Nm(1).- (73
B ) 5. 2 5a° B We represent the wave functian(z) in terms of the ampli-
HY =G| q"= (en— A"+ my,+ 4r2(r s+ 2a)? ¥(r)=0, tude o (z) and the phase shiff;(z):
(66)

(74)

a(2) . o p
U|(r)=WD|(Z)S|r[5|(z)+5l(z)] ST

which differs from Eq.(30) for the timelike component only
by the additional last term, aside from the overall fad®r
This additional term goes as 5fF6at small values of to  with the boundary condition tha(z—0)=0. The functions
make the effective interaction repulsive at the origin. As aD(z) and 8(z) are known function$22]:
result, the wave function near—0 goes as

, Do(2)=1, Dy(x)=(1+1/z%)? (75)

yr)~r', (67)
and

with
So(2)=2, &y(z)=z—tan 'z (76)

| !

_ —1+J1+(5—16a%)/4
- 5 _

€8  The equation for(z) is [22]

The wave functiony(r) therefore approaches zero at the

d . “
origin. 3;8@=-U@Db{@{sina(2)+a)]}> (77
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FIG. 5. TheK factor versusy for various values ofy, with the FIG. 7. The ratio between thié factor and the Gamow factor
inclusion of both the timelike and the spacelike components of thé(7) for various values ofy, with the inclusion of both the time-
gauge interaction. like and the spacelike components of the gauge interaction.

After the function|(z) is evaluated, the amplitude can be  In Fig. 6, we show the behavior df as a function of
obtained froms,(z) by velocity for different values ot, for the case with both the

timelike and the spacelike components of the gauge interac-
1z R . tion. TheK factor is much larger than unity for small veloci-
a(2)= exp{ EJ ds U(S)D|2(S)Si”2[5|(3)+5|(S)]]- ties, and it decreases to unity as the velocity increases. In
0 (79) Fig. 7, we plotK/G as a function ofy for various values of

a. The results in Fig. 7 show significant differences from the
Gamow factor and the difference is greater at smajlére.,
at higher velocities The gross features of Figs. 57 are very
similar to those with only the timelike part of the gauge
interaction. For example, the factor is getting closer to the
Gamow factor and much greater than unity as the velocity
becomes small, and theéfactor is getting to 1 as the velocity
Becomes greater. However, there exist some small differ-
ences between the results with and without the spacelike
component of the gauge interaction. Comparing Fig. 2 and
Fig. 5, for all cases of and for the whole range of, theK
factor with the spacelike component of the gauge interaction
is smaller than that for the case without the spacelike com-
25 o ponent. The same conclusion can be obtained by comparing
Fig. 4 with Fig. 7. This indicates that the spacelike compo-
nent of the gauge interaction reduces the attractive final- or
initial-state interactions. The spacelike part of the gauge in-
teraction produces an effective repulsive interaction and it
reduces the magnitude of tiefactor. This effect is stronger
for higher values ofy or for slower velocities. This effect is
also stronger in higher values af corresponding to a stron-
ger coupling. For example, at=4 the spacelike component
leads to a reduction of th& factor by only 0.8% fora
=0.02 but 9% fora=0.32.

We shall again specialize to tf&wave. After we obtain
the wave functiony(r) by solving the above equations nu-
merically, we use it in Eq9.16) and(17) to get the overlap
integralsA andB and theK factor in Eq.(21). The results are
shown in Figs. 5-7. In Fig. 5, we show the results of khe
factor as a function ofy for various values oftx when the
spacelike part component of the gauge interaction is als
taken into account. Th& factor increases withy and is
much greater than 1 for large values of Its behavior is
very similar to those with only the timelike component of the
interaction.

20

15

10

VIIl. CONCLUSIONS AND DISCUSSIONS

000 0.2 0.4 0.6 0.8 The mutual final-state interaction between the produced
’ ) ’ ) ’ particles has an effect on their rate of production. There will
be similar effects if the particles interact via the initial-state
FIG. 6. TheK factor versus the velocity for various values of interaction. The effects are simplest to be taken into account
«, with the inclusion of both the timelike and the spacelike compo-by using the method of thk factor. One calculates the rate
nents of the gauge interaction. for the process as though there were no initial- or final-state
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interactions, using, for example, the perturbation theory. Théor smaller values ofy (or for lower velocitie$ and for
additional initial- or final-state interactions can be includedstronger coupling constants. However, the magnitude of this
by multiplying aK factor as given by Eq8). reduction of theK factor is small(less than about 10% and

For Coulomb-type interactions, théfactor has been tra- Smaller in most casgsTo the extent that a 10% error can be
ditionally taken to be the Gamow factor obtained as the abtolerated, the analytical results in Sec. V obtained without
solute square of the wave function at the origin of the relathe transverse component are an adequate representation of
tive coordinate. With relativistic Coulomb wave functions, the K factor. More accurate results will require the inclusion
the K factor can be obtained as the overlap of the wavedf the transverse component of the gauge interaction as dis-

function with the Feynman amplitude. cussed in Secs. Vl. anq Vil
Our investigation of the& factor for the case of the pro- , 'he large modification of the Gamow factor for the pro-

duction of a pair of scalar particles indicates that there aréjucnon of two bosons studied here indicates the need to

substantial deviations from the Gamow factor when theextend the present formal'sm tq study the_ case of two ferr_m-
ons or two gluons. The application to fermions or gluons will

strength of the coupling is large. In particular, the proper ; ) X
treatment reduces the magnitude of the Gamow factor si pe useful in the problgm of production or reaptlon of qu_arks
and gluons. As a pair of quarks or gluons interact with a

nificantly. The reason for this reduction is that in the pair . . X .

production, there is an effective screening of the Coulomb$tong coIor-Coqumk_) interaction with a coupling constant :

type interaction arising from the effective “exchange” of apout 0.2-0.4, the simple re;u_lt; from_the presept SIUdY n-
dicate that the effects of the initial- or final-state interaction

one of the produced particles. ‘ K dal il be | d tefact ilb
We have presented an explicit formula for the relativistic of quarks and giuons will be farge, an actor will be
substantially different from what one obtains using the

ificati f th f for th i f o
modification of the Gamow factor for the production o afGamow factor. We hope to study the maodification of the

pair of bosons for the case of an attractive timelike part o tactor for t duced fermi : ti
the gauge interaction. Numerical results are also obtained tg,amow actor for two produced fermions in our next nves-

show the magnitude of th& factor. The results of th& tigation.

factor can pe applied to a class of processes in wh|_ch the ACKNOWLEDGMENTS
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