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Dynamical pion production via parametric resonance from disoriented chiral condensates
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We discuss a dynamical mechanism of pion production from disoriented chiral condensates. It leads to an
explosive production of pions via the parametric resonance mechanism, which is similar to the reheating
mechanism in inflationary cosmology. Classically it is related with the instability in the solutions of the
Mathieu equation and we explore the quantum aspects of the mechanism. We show that nonlinearities and back
reactions can be ignorable for a sufficiently long time under the small amplitude approximations of background
s oscillations, which may be appropriate for the late stage of a nonequilibrium phase transition. It allows us to
obtain an explicit quantum state of the produced pions ands, the squeezed state of BCS type. Single particle
distributions and two pion correlation functions are computed within these approximations. The results ob-
tained illuminate the characteristic features of multipion states produced through the parametric amplification
mechanism. In particular, two pion correlations of various charge combinations contain back-to-back correla-
tions which cannot be masked by the identical particle interference effect. We suggest that the parametric
resonance mechanism might be a cause of the long lasting amplification of low-momentum modes in linear
sigma model simulations.

PACS number~s!: 25.75.Gz, 11.10.Ef, 25.75.Dw
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I. INTRODUCTION

We now believe in quantum chromodynamics~QCD! as
the theory of strong interaction. Yet, the Centauro and a
Centauro events that were found in cosmic ray experime
@1# indicate some puzzling features. The events are cha
terized by large fluctuations in the ratio of the number
neutral pions to that of charged pions. It appeared to be
likely that such a feature can be realized inside the conv
tional picture of hadronic interactions with ‘‘soft’’ QCD in
teraction, which implies more or less an independ
emission of particles.

However, several authors formulated a scenario which
plains such features of the events based on the idea of
mation of chirally misaligned domains, the disoriented chi
condensate~DCC! @2,3#. It requires that a ‘‘hot’’ matter
forms during hadronic collisions in which the chiral symm
try is restored, and then rapidly cools down so that ch
orientation of the pion fields can align to a random direct
different from that of the vacuum. If the low-momentu
mode of the pion fields are enhanced large domains of d
nite ~but random in direction! isospin would form. Then, a
large isospin, and therefore charge fluctuations, naturally
sult.

The amplification of low-momentum pion modes w
demonstrated by Rajagopal and Wilczek@4# by doing a nu-
merical simulation of the linear sigma model using t
quench initial condition. A more explicit confirmation of th
formation of large domains was provided by Asakaw
Huang, and Wang@5# who computed pion-field correlatio
functions by using an elaborated simulation code wh
takes into account expansion along the longitudinal as w
as the transverse direction.
0556-2813/2000/61~4!/044903~14!/$15.00 61 0449
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One should note, however, that the large charge-neu
fluctuation does not necessarily imply a random isotropic~in
isospin space! rolling down from the top of the Mexican ha
potential. As was shown by Greiner, Gong, and Mu¨ller @6#
any isosinglet multipion states approximately have the w
known neutral fraction distributionP( f ):

P~ f !5
1

2Af
, ~1!

where

f 5
Np0

Np01Np11Np2
. ~2!

We note that this distribution was in fact derived by on
requiring the isospin singlet phase space@7#. Therefore the
large charge-neutral fluctuation may merely imply an isos
singlet DCC state, not a random isotropic rolling down.

The interpretation of the results of the simulation by R
jagopal and Wilczek@4# also requires reexamination. The
interpreted the origin of the amplification of the low
momentum pion mode as due to instability of the Namb
Goldstone modes of chirally symmetric field configuratio
at around the top of the Mexican hat. However, the enhan
ment of the low-momentum pion modes actually take pla
with a much longer time scale than that of rolling dow
motion, ;1/ms , as one can clearly see in Fig. 1 in the
paper. Then, we need to identify a certain mechanism wh
is responsible for the enhancement. The most likely can
date, in our opinion, is the parametric resonance mechan
@8,9#. The mechanism, possibly being tied up with a ne
instability that arises within the approximation scheme
©2000 The American Physical Society03-1
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will take, seems to be capable of explaining qualitative f
tures of long lasting amplification of low-momentum mod
~see Secs. III and VI!. Some other aspects of formatio
mechanism of DCC were explored in Refs.@10–13#.

In a previous paper@15#, we briefly explored the parame
ric resonance mechanism emphasizing its characteristic
tures in the two pion correlations, and its possible releva
as a hunting tool of DCC. In this paper we examine t
mechanism in detail, hoping that it will shed some light
the origin of enhancement of the low-momentum pi
modes. We focus on the pion production at around the b
tom of the Mexican hat potential. It may be an appropri
setting at least for the late stage of nonequilibrium ph
transition which would result in the formation of cohere
DCC domains.

Furthermore, we concentrate on the case that the si
model fields oscillate along thes direction. In fact, it is
shown in the numerical simulation@5# that sigma model field
configurations rapidly point to thes direction in a time scale
of the order of;1/mp . Under the background oscillation o
the s field the quantum fluctuations of the pion and thes
fields can be excited. If the frequencies of background
quantum fluctuations match with each other the fluctuati
are parametrically amplified, leading to an explosive p
production.

We emphasize that the mechanism of pion product
from DCC which we explore in this paper differs from th
usually adopted in the literature@2–4#, as we mentioned ear
lier. In the conventional picture of pion emission from DC
one assumes that the sigma model fields roll down along
direction ~in most cases! different from the s direction.
Then, the field configurations relax toward thes direction,
the orientation of the QCD vacuum, which entails the coh
ent pion emission through the relaxation process. In contr
pion production takes place even when the sigma mo
fields rolls down along thes direction in our parametric
resonance mechanism. To indicate this point, we propos
the next section a set of approximations that leads to a s
plified but a concrete model field theory that allows us
construct explicitly the produced multipion quantum state

We should remark that we do not claim that the param
ric resonance is the whole story. Formation and decay
DCC is a complicated nonlinear phenomenon. The instab
associated with the Nambu-Goldstone modes is an indisp
able ingredient for triggering the growth of the low
momentum pion modes. But, we also stress that it isnot
enough either. In Sec. VI we will calculate the power sp
trum of pion and sigma fields in our framework and attem
a qualitative comparison with the result obtained
Rajagopal-Wilczek’s simulation. It will give us a feeling o
the question of to what extent the amplification of power
due to the parametric resonance mechanism.

Even though the parametric resonance mechanism is
cause of the long lasting amplification of low-momentu
modes we still lack understanding of how the initial instab
ity is mediated to it@14#. Leaving understanding of this las
point to future investigations, our emphasis in this pape
that if the parametric resonance mechanism is operativ
04490
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the late stage of the nonequilibrium phase transition it m
give clear signatures which should be useful for its expe
mental hunting.

In Sec. II, we introduce the linear sigma model, formula
the system with parametric resonance by introducing suc
sive approximations in various stages, and make clear tha
what extent the approximations are valid. In Sec. III, w
quantize the system in a conventional way of quantizin
system of quantum fields, and clarify the relationship w
the other formulation. In Sec. IV, we calculate the sing
particle distributions of pions ands to demonstrate a char
acteristic feature of the parametric resonance mechanism
Sec. V we discuss the two pion correlations which disp
another characteristic feature of the mechanism. We ar
that they can be used as powerful experimental hunting
of DCC. In Sec. VI we compute the power spectrum of pi
and sigma fields and examine the qualitative features of
amplification of power in our framework. In the last sectio
we will summarize our investigation, give concluding r
marks, and discuss the limitations of our framework. In A
pendix A, we summarize the feature of multiparticle sta
implied by the single mode squeezed state. In Appendix
we derive sum rule obeyed by isospin invariance and
isosinglet nature of the multiparticle state within the fram
work of single mode treatment.

II. MODEL AND APPROXIMATIONS

The Lagrangian of the linear sigma model is given by

L5
1

2
]mfa]mfa2

l

4
~fafa2v0

2!21hs, ~3!

where fa5(s,pW ). The typical values of the paramete
which are relevant for phenomenology of QCD are

l520, v0590 MeV, mp5A h

v0
5140 MeV. ~4!

These values of the parameters will be used in the nume
analysis in later sections.

As discussed in the previous section we deal with the p
production that takes place when the sigma model fields
at around the bottom of the Mexican hat potential, whi
may be realized in the time scale of;1/mp after rolling
down. We assume that at this stage the sigma model fi
oscillate along thes direction. For clarity we construct a
further simplified model by doing successive approximatio
in the linear sigma model that allow us to explicitly constru
the produced multipion quantum state.

We expand the sigma model fields at around the m
mum of the Mexican hat potential along thes direction:

x5s2v,

~5!

pW 5pW .

The linear sigma model Lagrangian, then, takes the form
3-2
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DYNAMICAL PION PRODUCTION VIA PARAMETRIC . . . PHYSICAL REVIEW C 61 044903
L@x,pW #5
1

2
~]mx!22

l

2
~3v22v0

2!x22lvx32
l

4
x4

1
1

2
~]mpW !22

1

2
mp

2 pW 22lvxpW 22
1

2
lx2pW 2

2
1

4
lpW 4. ~6!

Following Mrówczyński and Müller @9#, we make a fur-
ther approximation of decomposings model fields into the
classical time-dependent background fields and the quan
fluctuations around them:

x~x,t !5x0~ t !1h~x,t !,
~7!

pW ~x,t !5pW 0~ t !1jW~x,t !.

We have assumed the spatial homogeneity of the backgro
fields. It may be a reasonable assumption if we work insid
single domain because the key feature of DCC is its coh
ence over a domain. Of course, it is a simplifying assumpt
in a real physical situation, but is an inevitable one in ord
to make the treatment technically manageable. Substitu
Eq. ~7! into Lagrangian~6!, we have

L@x01h,pW 01jW #5L@x0 ,pW 0#1
1

2
~]h!22

1

2
@ms

2

13S~ t !#h22
1

2
lpW 0

2h22l~x01v !h3

2
1

4
lh41

1

2
~]jW !22

1

2
@mp

2 1S~ t !#jW2

2
3

2
lpW 0

2jW22lpW 0jW32
1

4
ljW422lvpW 0hjW

2l~x01v !hjW22lpW 0jWh22
1

2
lh2jW2,

~8!

wherems5Al(3v22v0
2) andv is the minimum value of the

s direction determined by the equationl(s22v0
2)s2h

50. For small h, v is given approximately byv5v0
1h/2lv2 . Due to the background field oscillation, a tim
dependent termS(t) arises in the mass terms ofjW and h
fluctuations and is given byS5lx0(x012v). The terms
linearly proportional to fluctuations, of course, vanish due
the equations of motion of the background fields:

ẍ01lx0
313lvx0

21ms
2x01l~x01v !pW 0

250, ~9!

pẄ 01mp
2 pW 012lvx0pW 01lx0

2pW 01lpW 0
350. ~10!

We work with the ansatz that the background fields os
late along thes direction, and setpW 050 in the subsequen
analyses. We further restrict ourselves into the regim
04490
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ux0 /vu!1, in which the nonlinear terms inx0’s equation of
motion are negligible. Then, the solution to thex0’s equation
of motion takes the harmonic form

x0~ t !5x̃0cos~mst1w!, ~11!

wherew is an initial phase which we set to vanish for sim
plicity. In the numerical analysis performed in Sec. IV, w
will use ux0 /vu50.05 ~3 1/2, 1, 2! for illustrative purposes.

We should note that the limitation of small amplitude o
cillation that we have imposed,ux0 /vu!1, restricts the va-
lidity of our treatment only to a qualitative level. Neverth
less, we believe that it is a meaningful starting point, and
fact it makes theoretical analysis transparent as we will
below.

We differ from Mrówczyński and Müller @9# by treatingh
and jW quantum mechanically. The equations of moti
obeyed by fluctuationsh andjW are given as

]2h1ms
2h13~2lvx01lx0

2!h12l~x01v !h21lh350,

~12!

]2jW1mp
2 jW1~2lvx01lx0

2!jW1ljW350.

They are greatly simplified by the restriction of small osc
lation amplitudes of background fields.

Let us first focus on the pion fluctuations. Thex0
2 term is

ignorable compared tovx0 term because of the restriction o
ux0 /vu!1. The vx0 term is also small compared with th
mass term, but we shall keep it otherwise we lose the p
metric resonance. The cubic term ofjW is negligible until the
time scale

z;
ms

2

4lvx̃0

lnS ~ms/2!222lvx̃0

10l
D , ~13!

where the dimensionless timez is measured byms as 2z
5mst1w1p. For instance, it can be numerically estimat
asz;67 for ux0 /vu50.05.

We have ignored the quantum back reactions to the pio
and sigma fluctuations due to particle production. It could
taken into account, e.g., by the Hartree-Fock approximat
Instead of going through this treatment, we estimate the t
scale until which it can be negligible. It is given roughly a

z;
ms

2

4lvx̃0

lnS ms
2 x̃0

10l~x̃01v !
D , ~14!

and the same numerical examination indicates that it isz
;32.

We emphasize therefore that under the approximation
small amplitude oscillation of background fields, ignorin
nonlinear terms in the field fluctuations is a good approxim
tion in a fairly long time even for such strong coupling
l520.

We end up with the equation of motion of sigma a
pionic fluctuations:
3-3
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F d2

dz2
1As22qscos~2z!Ghk~z!50, ~15!

F d2

dz2
1Ap22qpcos~2z!GjW k~z!50, ~16!

where

As[
4~k21ms

2 !

ms
2

, qp[
12lvx̃0

ms
2

, ~17!

and

Ap[
4~k21mp

2 !

ms
2

, qp[
4lvx̃0

ms
2

, ~18!

hk andjW k denote the Fourier components of the fieldshx and
jW (x), respectively. Equations~15! and~16! are known as the
Mathieu equation and are known to admit unstable soluti
for a wide range of parameters ofA’s andq’s. See, e.g., Ref
@16#. Such an unstable solution may be interpreted as ex
sive particle production under the background of oscillat
x0 fields.

III. QUANTUM EVOLUTION OF SYSTEM
AND SQUEEZED STATE

We discuss in this section the quantum evolution of
time-dependent states ofpW ands fluctuations. Thanks to the
restrictions and approximations introduced in the previo
section, the structure of quantum states formed byh and jW
quanta can be analyzed analytically.

We start by writing the Hamiltonian in a form analogo
to the harmonic oscillators but with time-dependent frequ
cies:

H5E d3kF1

2
PkP2k1

1

2
Vk

s~ t !2QkQ2kG
1(

j
E d3kF1

2
Pk

j P2k
j 1

1

2
Vk

p~ t !2Qk
j Q2k

j G , ~19!

where

Vk
s~ t !25k21ms

216lvx0~ t !,

~20!

Vk
p~ t !25k21mp

2 12lvx0~ t !.

The variablesQk andQk
j in Eq. ~19! are defined by

h~x,t !5E d3k

~2p!3
eik•xQk~ t !, j j~x,t !5E d3k

~2p!3
eik•xQk

j ~ t !,

~21!

and Pk and Pk
j are, as usual, the conjugate momenta ofQk

andQk
j , respectively. The indexj runs over 1 to 3, and we
04490
s

o-
g

e

s

-

take the adjoint representation for the isotriplet pion fiel
For its concrete form, we refer Appendix B. One can see t
the equations of motion~15! and ~16! are derived from this
Hamiltonian.

Within the small background oscillation we can take th
(x0 /v),(mp /ms)2 . This restriction guarantees that the fr
quencyVk50

p is real, which is necessary in our present tre
ment which ignores quantum back reactions. If the ba
ground oscillation amplitude is larger than the critical val
the system has an instability which we referred to as a n
instability in the Introduction. It definitely arises within ou
approximation and is indicative of a remnant of th
Rajagopal-Wilczek instability because it arises only f
negativex0 ~which means toward central maximum of th
Mexican hat!. Nevertheless, the new instability has a char
teristic feature that is quite different from that of th
Rajagopal-Wilczek’s. The former can continue for long tim
while the latter lasts only a time scale of 1/ms . Notice that
both of the instabilities that we are talking about are the lo
instabilities, not the real global ones which totally destabil
the whole system.

The nature of the instability, however, is not transpar
to us. When one works with certain truncations in high
nonlinear systems one can easily generate instabilities w
may or may not be possessed by the original system. Th
are instabilities whose origin one can easily understand fr
simple consideration. For example, pion fields can have lo
instability by generating the winding motion encirclin
around the bottom of a wine bottle when the field energy
backgrounds field oscillation with amplitudex0 exceeds the
symmetry breaking energy, that is,1

2 ms
2x0

2.mp
2 v2 . It leads

to the condition for onset of the instabilityx0 /v.mp /ms .
But the instability we encountered above occurs at a m

smaller amplitude, (x0 /v).(mp /ms)2 . To our knowledge,
there is no intuitive way of understanding the instability.
can be the artifact of our approximation and truncati
scheme and, if this is the case, may be cured by taking n
linearities and back reactions into account.

In the rest of the paper we will restrict ourselves to t
small amplitude regime of the backgrounds oscillation so
that we are free from the new instability. In Sec. VII we w
briefly discuss its role together with the parametric resona
as a possible candidate mechanism for understanding
long-lasting amplification of powers in sigma model simu
tions.

The quantum theory of harmonic oscillators with tim
dependent frequencies was developed some time ago.
previous paper@15# we followed the formalism developed b
Shtanov, Traschen, and Brandenberger~STB! @17#, but we
shall present in this paper an equivalent but more conv
tional formalism of quantizing the same system. From
form of the Hamiltonian~19!, we can discuss sigma and pio
sectors collectively; we treat below the sigma sector but w
suppressing the superscripts, and it can be regarded as th
of pion sector in which the superscriptp as well as isospin
index are suppressed.

We decompose the dynamical variables in moment
space in terms of solutions of the equations of motion
3-4
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Qk~ t !5Q1~ t !a0k1Q2~ t !a02k
† ,

~22!

Pk~ t !5Q̇1~ t !a02k1Q̇2~ t !a0k
† ,

whereQ1 andQ2 are the solutions to the equation of motio
of Q derived from the Hamiltonian

Q̈k~ t !1Vk
2~ t !Qk~ t !50. ~23!

Notice thatQ25Q1* . a0k and a0k
† are the annihilation and

the creation operators, respectively. They are tim
independent, i.e., they obey the Heisenberg equation of
tion as

da0k

dt
[

]a0k

]t
1 i @H,a0k#50. ~24!

The consistency condition between the commutation r
tions, i.e.,

@a0k , a0k
† #51, @Qk , Pk8#5 id~k2k8!, ~25!

is achieved by the Wronskian condition

Q1Q̇22Q̇1Q25 i . ~26!

Substituting Eq.~22! into Eq. ~19!, we obtain the follow-
ing form:

Hk5E d3k
1

2
@Aka0ka02k1Ak* a0k

† a02k
†

1Bk~a0k
† a0k1a0ka0k

† !#, ~27!

where the coefficientsAk andBk are defined by

Ak5Q̇1
21Vk

2Q1
2 , Bk5Q̇1Q̇21Vk

2Q1Q2 . ~28!

Note thatAk is complex number, and thatQ1 and Q2 are
complex conjugate with each other. On the other hand,Bk is
real as far asVk is real, which is the case owing to ou
restriction to small background oscillations.

In order to diagonalize the Hamiltonian~27!, we intro-
duce the Bogoliubov transformation as

a0k~ t !5ak* ~ t !ak2bk* ~ t !a2k
† ,

~29!

a0k
† ~ t !5ak~ t !ak

†2bk~ t !a2k ,

with

ak~ t !5eiwacoshuk , bk~ t !5eiwbsinhuk . ~30!

Choosinguk as

tanh 2uk5
uAku
Bk

, ~31!

one can diagonalize the Hamiltonian into the form
04490
-
o-

-

Hk5Vkak
†~ t !ak~ t !, ~32!

where use has been made of the Wronskian relation~26! to
show that the coefficient of Eq.~32! is in fact given byVk .
Therefore the operatorak(t) defined in Eq.~29! does repre-
sent annihilation operator of physical quanta at timet. Using
Eq. ~31! with Eq. ~28! it is easy to show that

cosh2uk5
Bk1Vk

2Vk
, sinh2 uk5

Bk2Vk

2Vk
. ~33!

In the above treatment, we have relied on the fact t
amplitudes of the background oscillation is small so thatVk
is real. If we remove this assumption the system experien
instability in a certain period of time. It is not a totally un
stable system due to the nature of the instability and it wo
be interesting to work out such a system. However, we
not engage in such business in the present paper. Instea
argue that it is important to take account of back reaction
addressing such a problem. It could even be the case tha
quantum back reaction entirely cures the instability.

Let us move on to the analysis of the eigenstates for
effective Hamiltonian. We define the vacuau0& andu0(t)& as

a0ku0&50, ak~ t !u0~ t !&50, ~34!

and assume that the oscillator att50 is in the vacuum state
u0&, i.e., u0(t50)&5u0&. It leads to the initial conditions for
ak(t) andbk(t):

uak~0!u51, bk~0!50. ~35!

The physical quantum with momentumk is created~annihi-
lated! by ak

†(t) @ak(t)#, because the Hamiltonian is diagona
ized by them at each timet. As the system evolves, the sta
u0& is no longer the vacuum annihilated byak(t).

We rewrite the Bogoliubov transformation~29! into the
form of unitary transformation:

a0k5e2 iwae2Gk(t)ak~ t !eGk(t),
~36!

a0k
† 5eiwae2Gk(t)ak

†~ t !eGk(t),

where

Gk~ t !5uk~ak
†a2k

† 2aka2k!. ~37!

From the definitions of vacua~34! and of transformation
~36!, we have

u0&5e2Gk(t)u0~ t !&. ~38!

After a short calculation@19#, we obtain the vacuum state o
the form

u0&5)
k

1

Auak~ t !u
expF bk*

2ak*
ak

†~ t !a2k
† ~ t !G u0~ t !&. ~39!

The state is known as the squeezed state and is widely
in quantum optics@18#. A significant feature of Eq.~39! is
3-5
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that it has pairing correlation between back-to-back mom
tum configurations, namelyk and 2k, modes, and we will
refer to it as the squeezed state of BCS type in this pape
the next two sections, we will discuss, in detail, the char
teristic features of particle production due to the parame
resonance mechanism. Earlier discussions of the sque
state in the context of DCC may be found in Refs.@19# and
@20#. We also note that the particle production via the pa
metric resonance has been extensively discussed in the
text of reheating in the inflationary universe@21–23#, and a
mechanism for producing superheavy dark matter@24#.

Before closing this section, we would like to comment
the relationship between our formalism and the one
Shtanov, Traschen, and Brandenberger@17# which can pro-
vide a description of quantum systems with parametric re
nances. Since we have adopted their formalism in our pr
ous paper, we will try to compare and clarify the relati
between various quantities that appear in both formalism

In short, there is a simple relationship between two f
malisms: they start from the time-dependent operator@our
ak(t)] which diagonalizes the Hamiltonian and then Bog
liubov transform it to the time-independent operatora0k .
Therefore such a correspondence is likely to exist.

In order to make the correspondence more precise,
write down the equations obeyed by the coefficients of
Bogoliubov transformation in both formalisms. In STB fo
malism, they read

ȧk~ t !5
V̇k

2Vk
bk•e2i * t Vkdt8,

~40!

ḃk~ t !5
V̇k

2Vk
ak•e22i * t Vkdt8.

On the other hand, the equations ofak andbk in our formal-
ism are given by

ȧk~ t !5
V̇k

2Vk
bk•

e2iwa

V̇kAk

@2i ẇa~Bk1Vk!Vk1ḂkVk2BkV̇k#,

~41!

ḃk~ t !5
V̇k

2Vk
ak•

e22iwa

V̇kAk*
@2i ẇb~Bk2Vk!Vk1ḂkVk2BkV̇k#.

The above two sets of equations are consistent with e
other provided that the phases of the coefficients satisfy
transformation rule

eiwa5ei * tdt8Vk(t8)S iQ̇11VkQ1

2 iQ̇21VkQ2
D 1/2

,

~42!

eiwb5e2 i * tdt8Vk(t8)S 2 iQ̇11VkQ1

iQ̇21VkQ2
D 1/2

.

Namely, the phase parts, which are undetermined in
present formalism, are chosen in a particular way in the S
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formalism. Notice that the right-hand sides of Eqs.~42! are
pure phases and hence they are consistent.

IV. SINGLE PARTICLE DISTRIBUTIONS

Let us discuss the qualitative features of the single p
ticle distributions of particles produced to explore the pa
metric resonance mechanism. The multipion and multisig
state in our mechanism is given by

u0&s
^ u0&p[uc&, ~43!

whereu0& stands for the BCS type squeezed state~39!. The
factorized form in Eq.~43! stems from the linear approxima
tions described in Sec. II.

The average number of quanta^n&k(t) with momentumk
at time t is given by

^n&k~ t !5^0uak
†~ t !ak~ t !u0&. ~44!

We suppress in this section the isospin index, since the si
particle distributions is independent of isospin. Given t
squeezed state~39!, it can be readily shown to be

^n&k~ t !5ubku25
Bk2Vk

2Vk
~45!

by using Eq.~33! with Bk defined in Eq.~28!.
Before presenting results of numerical computation,

discuss what would be the characteristic feature of the sin
particle distributions. It is natural to expect that an enhan
ment occurs due to the parametric resonance mechan
With physical values of the parameters, we take theq param-
eters defined in Eqs.~17! and ~18! given by

qp52.0S x0

v D , qs56.0S x0

v D . ~46!

Numerically, qp and qs are less than;0.1 and;0.3, re-
spectively, under the present approximation (x0 /v)
,(mp /ms)2 . Therefore we are working with narrow reso
nance approximation. One should keep in mind, howev
that the narrow resonance approximation may not hold in
real world.

At such smallq parameters, the resonance occurs in
narrow bands at around the discrete values ofA, A5n2(n
51,2,3,. . . ). The first resonance takes place for pion
Ap51 and it corresponds tok5276 MeV. For sigma, the
first resonance takes place atAs54 at zero momentum. The
second resonance would be located atAp54 and atAs59
which implies thatk5603 MeV andk5692 MeV for pion
and sigma, respectively. Since the parameterA is indepen-
dent of (x0 /v), we expect that the peak position is stab
against varyingx0, as will be demonstrated below.

We solve the Mathieu equation~23! subject to the bound-
ary condition~35!, and then computên&k(t). In Figs. 1–3
we plot the single particle momentum distributions of pion
a function of momentumk and dimensionless timez with
background oscillation parametersx0 /v50.025, 0.05, and
0.1. We observe that a prominent peak exists at the r
3-6
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position for the first resonance in every three figures indic
ing the parametric resonance enhancement. In Fig. 3 the
mentum rangeuku,A0.1ms

22mp
2 in which an exponentia

instability exists~due to imaginary frequency! and is cut off.
In Fig. 4, we give the single particle momentum distrib

tions of sigma atx0 /v50.05. The first resonance, which
expected atk50, is barely seen in the figure. The seco
resonance is invisible both in pion and sigma distribution

V. TWO PION CORRELATIONS

We now discuss two particle distributions and corre
tions between pions. The quantum pion and sigma stat
summarized in Eq.~43! under the present approximation
We focus on the pion distributions of various charge sta
Because of the factorized form of Eqs.~39! and ~43!
n-particle distributions ofs can readily be obtained from tha
of p0 by an appropriate change of the parameters. It is t
that the interpretation of our results on sigma particles in r
experiments is not very transparent. Furthermore, when

FIG. 1. The single pion momentum distribution as a function
the scaled timez5

1
2 (mst1p). The amplitude of oscillation is

taken asx0 /v50.025.

FIG. 2. The single pion momentum distribution as a function
the scaled timez5

1
2 (mst1p). The amplitude of oscillation is

taken asx0 /v50.05.
04490
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s→pp coupling is turned on thes particles do affect the
two pion correlations. Discussion of this point is, howev
beyond the scope of this work.

Two pion distributions are defined as

^pk
i pk8

j &[^cuak
i†~ t !ak

i ~ t !ak8
j †

~ t !ak8
j

~ t !uc&. ~47!

Because of the factorized form of Eq.~43!, there are no
correlations between pion and sigma. Also, because of
factorized form of the squeezed state~39! in momentum
space, the nontrivial two particle correlations exist only b
tween modes of identical momentum (k andk), or between
back-to-back momentum (k and2k) configurations. One of
the most important feature of the state~43! is that it is the
isosinglet state. It comes from the fact that the frequencyVk

p

is isospin singlet. As we discuss below, it will give us no
trivial constraints on two pion correlations of various char
combinations. At the same time it also generates the la
charge-neutral fluctuations as discussed in Sec. I.

f

f

FIG. 3. The single pion momentum distribution as a function
the scaled timez5

1
2 (mst1p). The amplitude of oscillation is

taken asx0 /v50.1.

FIG. 4. The single sigma momentum distribution as a funct
of the scaled timez5

1
2 (mst1p). The amplitude of oscillation is

taken asx0 /v50.05.
3-7
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In the computation of these quantities, we further rec
nize that the two pion distributions at zero-momentumcan-
not be obtained by taking the smooth limitk→0 of the ex-
pressions of either identical or back-to-back moment
configurations. It is becauseak50 andak50

† do not commute,
whereasak and a2k

† do commute forkÞ0. Therefore we
have to compute three types of the two-pion distributio
separately.

We briefly describe some details of the computation
two pion distributions. It is convenient to use adjoint rep
sentation operatorak

i for this purpose. The two pion distri
bution of the same momentumk goes as follows:

^pkpk&5^ak
†akak

†ak&

5^ak
†ak

†akak&1^ak
†ak&

5Ubk

ak
U4

^a2ka2ka2k
† a2k

† &1ubku2

5Ubk

ak
U4

~^a2k
† a2ka2ka2k

† &12^a2ka2k
† &!1ubku2

5Ubk

ak
U4

~^a2k
† a2ka2k

† a2k&13^a2k
† a2k&12!1ubku2

5Ubk

ak
U4

~^p2kp2k&13ubku212!1ubku2, ~48!

where the third equality stems from the relation

akuc&5
bk*

ak*
•a2k

† uc&. ~49!

Similarly, ^p2kp2k& is given as

^p2kp2k&5Ubk

ak
U4

~^pkpk&13ubku212!1ubku2. ~50!

By solving the coupled Eqs.~48! and ~50!, we obtain two
pion distributions ofj th isospin component as

^pk
j pk

j &5^ak
†akak

†ak&5ubku2~2ubku211!5^p2k
j p2k

j &.
~51!

Via analogous ways, one can compute the following expr
sions of the elements of nontrivial two pion correlations.

For the samekÞ0:

^aik
† aik&5ubku2,

^aik
† aikaj k

† aj k&5ubku4 ~ for iÞ j !,

~52!

^aik
† aikaik

† aik&5ubku2~2ubku211!,

^aik
† aik

† aj kaj k&50 ~ for iÞ j !.

For oppositekÞ0:
04490
-
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f
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^aik
† ai 2k&50,

^aik
† aikaj 2k

† aj 2k&5ubku4 ~ for iÞ j !,
~53!

^aik
† aikai 2k

† ai 2k&5ubku2~2ubku211!,

^aik
† aj kai 2k

† aj 2k&5ubku2~ ubku211!.

By using these formulas, it is straightforward to compu
the two pion distributions of definite isospin states. We tra
form them into the ones written by pion charge states, wh
are more suitable to gain insights for the experiments.
will describe in Appendix B the relationship between t
adjoint representation pion operator~with which we have
worked! and the charge-state operator, the~slightly modi-
fied! Horn-Silver representation

ak
(1)52

1

A2
~ak

12 iak
2!,

ak
(2)5

1

A2
~ak

11 iak
2!, ~54!

ak
(0)5ak

3 ,

whereak
(6) and ak

(0) stand for the annihilation operators o
p6 andp0 with momentumk, respectively. We express th
two pion distributions of various charge combinations in t
form of the ratioR of them to the single pion distributions a
defined by

Rk1 ,k2
~p,q!5

^pk1

(p)pk2

(q)&

^pk1

(p)&^pk2

(q)&
, ~55!

wherep and q stand for6 and 0. They read~a! identical
momentum distribution:

Rk,k~1,1 !5Rk,k~0,0!521
1

^n&k
,

~56!

Rk,k~1,2 !51;

~b! back-to-back momentum distribution:

Rk,2k~1,2 !5Rk,2k~0,0!521
1

^n&k
,

~57!

Rk,2k~1,1 !51;

~c! zero-momentum distribution:

Rk50,k50~1,1 !5Rk50,k50~1,2 !521
1

^n&k50
,

~58!

Rk50,k50~0,0!531
2

^n&k50
.

3-8
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As another measure for two pion correlations, we defi
the correlation function in the following way:

C~pk
a ,pk8

b
![^pk

a ,pk8
b &2dabdk,k8^pk

a&2^pk
a&^pk8

b &.
~59!

Then, it is straightforward to obtain the following result
~a! identical momentum correlations:

C~pk
1 ,pk

1!5C~pk
0 ,pk

0!5^n&k
2 ,

~60!

C~pk
1 ,pk

2!50;

~b! back-to-back momentum correlations:

C~pk
1 ,p2k

2 !5C~pk
0 ,p2k

0 !5^nk&~^n&k11!,
~61!

C~pk
1 ,p2k

1 !50;

~c! zero-momentum correlations:

C~pk50
1 ,pk50

1 !5^n&k50
2 ,

C~pk50
1 ,pk50

2 !5^n&k50~^n&k5011!, ~62!

C~pk50
0 ,pk50

0 !5^n&k50~2^n&k5011!.

As will be discussed in Appendix B, the features of the c
relation functions in~c! can be understood partly as a cons
quence of the isospin singlet nature of Eq.~43!.

The identical and back-to-back momentum correlatio
are depicted in Figs. 5 and 6. In these figures, the amplit
parameter is taken asx0 /v50.05 and it is integrated ove
dimensionless timez from 0 to 10, which corresponds to th
period of time fromt50 to 6.5 fm.

VI. POWER SPECTRUM AND POSSIBLE MECHANISMS
FOR AMPLIFICATION OF LOW-MOMENTUM

MODES

Now we would like to discuss in some detail the proble
of the origin of the long lasting amplification of low
momentum pion modes seen in linear sigma model sim
tions, in particular in Ref.@4#.

FIG. 5. The pion identical momentum correlation function
depicted. The amplitude of oscillation is taken asx0 /v50.05.
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Let us first try to make a rough estimate ofx0 /v in their
simulation. It is shown in Fig. 2 of Ref.@4# that^f2& is given
by a constant superposed by an oscillatory component du
the time scale of about 10–40 in units ofa when large am-
plification takes place. Herea is the lattice constant and it i
taken asa5(200 MeV)21 in Ref. @4#. Since the frequency o
the oscillatory component reflects the pion mass and not
sigma mass it cannot be used to estimate the amplitud
oscillation in the sigma direction. We thus interpret~a quar-
ter of! the constant component as a time and spatially av
aged s oscillation. Since the low-momentum modes a
dominant at later times it may be utilized to estimate t
amplitude of uniform backgrounds oscillations in our
scheme. Using the constant component of;0.01a21 in ^f2&
we obtainx0 /v.0.16. It is a small number and indicate
that our approximation is not totally absurd. But it is larg
than (mp /ms)2.0.05, which implies that the new type o
instability mentioned in Sec. III must also be excited.

Since we confine ourselves to (x0 /v),(mp /ms)2 in this
paper, it is not possible to directly compare our parame
resonance mechanism to the Rajagopal-Wilczek simulat
Nevertheless, we attempt to make a bold comparison
tween these two by estimating the power spectrum, the
responding quantity to the power calculated by them.

Rajagopal-Wilczek used the definition of power spectru
@25#

PRW~k,t !5
1

N3 U (
n1 ,n2 ,n3

eiknaf~n,t !U2

, ~63!

whereN indicates~one-dimensional! box size and they used
N564 andf(n,t) to denote a single component of pion ors
fields at lattice citen. It has the dimension of~mass!2 and
hence the ordinates in their Fig. 1 must be understood to
plotted in units ofa22 .

We define the corresponding quantity, the power sp
trum, in our framework. The natural definition is

Pours~k,t !5^uQk~ t !u2&. ~64!

The expectation valuê•& is to be evaluated by using th
normalized squeezed state~39!. When the fields are confine

FIG. 6. The pion back-to-back momentum correlation functi
is depicted. The amplitude of oscillation is taken asx0 /v50.05.
3-9
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into a finite volumeV, the Fourier integral in Eq.~21! is
modified to the discrete summation of the form

j~x,t !5
1

AV
(

k
e2 ikxQk~ t !, ~65!

or inversely,

Qk~ t !5
1

AV
E d3xeikxj~x,t !. ~66!

Then, usingV5(Na)3, our power spectrum~64! is related
with theirs via the following relation:

PRW~k,t !5Pours~k,t !/a3. ~67!

It should be noticed that the number presented in Ref.@4# is
PRW(k,t)a2 . Therefore we must plotPours(k,t)/a to com-
pare our power with theirs.

We present our power spectra of pions and sigmas
Figs. 7–10. We have adjusted some parameters so that
accord with the values adopted in Ref.@4#; v0587.4 MeV,
v592.5 MeV, mp5135 MeV, though its effect is tiny and

FIG. 7. The power spectrum of pion att50 is depicted. Due to
the boundary condition of no particle production att50, the power
spectrum is not small.

FIG. 8. The time evolution of the power spectrum of pion fie
at k540 MeV is presented. It corresponds to the longest wa
length bin in Fig. 1 of Rajagopal and Wilczek’s paper.
04490
in
ey

does not affect our conclusions. We employ the amplitu
parameter of background oscillation asx0 /v50.05 in order
to avoid the instability.

Plotted in Fig. 7 is the power spectrum of pions att50.
One can see that there is a lot of power at relatively lo
momentum modes. One may be curious about the fact
the power is not small att50 at which we set the boundar
condition of no particle production. One can easily ver
that it is natural because the latter condition implies thatQ

;1/A2V;1/Amp andQ̇;AV/2;Amp.
In Fig. 8 we present the time evolution of power of pio

field at k540 MeV, which is the longest wavelength ca
depicted in Fig. 1 in Ref.@4# and is where the largest ampl
fication occurs. We observe that the average power is
order unity as we expect from the above estimation. It i
reasonable result because it is off resonance.

With these parameters, the first resonance appearsk
5268 MeV and the amplification of the power in this m
mentum bin is depicted in Fig. 9. ThePours /a is growing by
a factor of 50 and reaches to;20 which is a similar order of
magnitude with Rajagopal-Wilczek’s. Of course, the tw
numbers cannot be compared directly because of the di
ence involved between two computations including the i
tial conditions. Nevertheless, the qualitative feature of
growing power to the same order of magnitude may be

-

FIG. 9. The time evolution of the power spectrum of pion fie
at momentumk5268 MeV, which corresponds to the first res
nance band, is drawn.

FIG. 10. The time evolution of the power spectrum of sigm
field at k540 MeV is depicted.
3-10
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indication that the parametric resonance mechanism play
important role in the long lasting amplification of low
momentum modes. One may argue that our results and t
of Rajagopal-Wilczek are qualitatively different because
amplification occurs in low momentum modes in their sim
lation, whereas it happens at resonance in our case. How
if we had not ignored the nonlinearity it might have mediat
the enhancement at resonance to other modes.

Plotted in Fig. 10 is the time evolution of the power
sigma field atk540 MeV as in Fig. 8. The power of sigma
is an order of magnitude smaller than that of pions, in agr
ment with the feature obtained in Rajagopal-Wilczek’s sim
lation.

We now summarize our present understanding on the
sible origin of the long lasting amplification of low
momentum pion modes seen in the linear sigma model si
lations. We have suggested that the parametric reson
might be the cause. The semiquantitative features of
power spectrum including its order of magnitude and the r
of growth is not inconsistent with our proposal. We al
pointed out that a new type of instability exists in our a
proximation scheme which, if real, would enhance the a
plification of low-momentum modes. We, however, failed
achieve an intuitive understanding of the physical origin
the new instability.

VII. CONCLUSION AND DISCUSSION

We have discussed the pion production via the parame
resonance mechanism within the linear sigma model. In p
ticular, stimulated by the feature of the numerical simu
tions of the linear sigma model, we focused on the scen
in which classical background oscillations of the sigm
model fields are in thes direction. Assuming small ampli
tude oscillation which may be natural in the late stage
evolution of DCC, we have shown that one can ignore
fects due to nonlinearity and quantum back reactions fo
sufficiently long time. Thanks to this fact, we were able
construct an explicit quantum pion~and sigma! state which
allows us to calculate the two particle correlations as wel
the single particle distributions.

Our treatment, though under very restrictive assumptio
may be good enough to illuminate characteristic feature
the parametric resonance mechanism. We formulated
quantum theory of the system with Mathieu instability on
more conventional basis of quantum field theory and cl
fied the relationship between our formalism and the o
given by Shtanov, Traschen, and Brandenberger@17#.

We have analyzed the computed single particle distri
tions and clarified the structure of narrow resonances c
acteristic to the parametric resonance mechanism. We
discussed the two pion correlations as a possible experim
tal probe for disoriented chiral condensate. Since the
pion correlations have unique characteristics, the back
back~in momentum space! correlations, it must give a clea
signature which should merit the experimental hunting
DCC. In particular, it cannot be masked by the identi
particle interference, the Hanbury Brown–Twiss effect@26#.

Why two particle correlation? It is certainly far more di
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ficult to measure compared with the multiplicity distribu
tions, on which all the recent experimental searches for D
rely @27,28#. The global analysis using multiplicity distribu
tions is powerful if large fractions of events are accompan
by the DCC domain formation. On the other hand, a differ
strategy is required for hunting if DCC is a rare pheno
enon.

We have discussed possible origin of the long lasting a
plification of low-momentum pion modes in the last sectio
Our discussion cannot be a complete one, but we hope th
stimulates the readers’ interests in this problem.

We should mention the limitation and the drawback in o
treatment in this paper. We ignored the quantum back re
tion and the instability ofs meson which should exist in th
real world. It is a perfectly legitimate approximation if th
amplitudes of backgrounds oscillations are really small
However, it is possible that the amplitudes are sometim
large because of the prevailing thermal fluctuations in
initial stage. Since we are dealing with the system in wh
the coupling is really strong, most probably, the peak in
single particle distributions will go away after the quantu
back reaction is taken into account.

Then, the key question is whether anything in our resu
remains valid after the quantum back reaction is taken i
account. We argue that the answer is yes; it is the charac
istic features of the two pion correlations which are d
cussed in detail in Sec. V. We are now engaged in a com
tation to verify our expectation.

What about thes→pp coupling? It is clear that it also
tends to smear out the resonance peaks and, more im
tantly, may obscure the signature of the back-to-back co
lations. Again we need a more elaborate treatment wh
includes the instability ofs to make a definitive statemen
about how much the signature survives in the case withs
→pp coupling. The formalisms which may be suitable f
such analysis have been investigated in detail@29,30#.

There are also some recent proposals@31,32# that the had-
ronic medium effects may induce the similar back-to-ba
correlations in momentum space, which would mimic t
signature of DCC discussed in this paper. One would h
that it should be possible to find observational features wh
discriminate these two mechanisms. The task is, howe
beyond the scope of this paper.
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APPENDIX A

We discuss in this appendix some aspects of multipart
correlations among particles involved in a normalized sing
mode squeezed state,

uc&5
1

A^0ueg* K2egK1u0&
egK1u0&, ~A1!

whereK15 1
2 (a†)2 and K25 1

2 (a)2, andg denotes a com-
plex number. The operatorsK1 and K2 , together withN
5a†a, form a closed algebra,

@K2 ,K1#5N1
1

2
, @N,K6#562K6 , ~A2!

which will play a role in our following computation.
For convenience in the systematic treatment, we emp

the generating function formalism developed by Koba, Ni
son, and Olesen@33# and by Koba@34#. The generating func-
tion is defined by

F@h#5 (
n50

`

~11h!nPn , ~A3!

using the multiplicity distributionPn5u^nuc&u2 where

un&5
~a†!n

An!
u0&. ~A4!

The generating function can generate a whole set of var
moments when expanded in various manners:

F@h#5 (
n50

`
hk

k!
F (k)5expF (

k50

`
hk

k!
C(k)G . ~A5!

In these equations,F(k) denotes

F (k)5^n~n21!~n22!•••~n2k11!&, ~A6!

where ^•••& implies the average over by the multiplicit
distribution Pn ; ^O&[(n50

` OnPn . As is familiar in cluster
expansion in statistical mechanics,C(k) represents the corre
lations

C(1)5^n&,

C(2)5^n~n21!&2^n&2, ~A7!

C(3)5^n~n21!~n22!&23^n~n21!&^n&2^n&3,

and so on.
The expression of the generating function in a form

operator expectation value is give by Koba@34#:

F@h#5^cu:eha†a:uc&, ~A8!

where :: indicates to take the normal ordering. It proves to
a very useful formula for our purpose. Toward calculati
04490
le
-

y
-

us

f

e

F@h#, we define the quantityAm asAm[^cu(a†)m(a)muc&.
Using the algebra applied to the vacuum state

@am,egK1#u0&5gam21a†egK1u0&,
~A9!

^0u@eg* K2,~a1!m#5g* ^0ueg* K2a~a†!m21,

one can derive the recursion relation amongAm ,

A051,

A15^n&, ~A10!

Am125^n&@~2m13!Am111~m11!2Am# ~m>0!.

One can show, by direct computation, that

^n&5^cua†auc&5
ugu2

12ugu2
. ~A11!

We can convert the recursion relation~A10! into the differ-
ential equation obeyed by the generating function

F S h212h2
1

^n& D d2

dh2
13~h11!

d

dh
11GF@h#50.

~A12!

We make a change of variable

t5
^n&

11^n&
~11h!2 ~A13!

to transform the differential equation into the standard fo

F t~12t !
d2

dt2
1S 1

2
22t D d

dt
2

1

4GF@ t#50. ~A14!

The solution to the equation subject to the boundary con
tions

F@ t#u t5^n&/~11^n&!51,
~A15!

F8@ t#u t5^n&/~11^n&!5
11^n&

2
,

is uniquely given by

F@ t#5
1

A~11^n&!~12t !
. ~A16!

The boundary conditions correspond toA051, A15^n&, and
A25^n&(3^n&11). Thus we have obtained the generati
function as

F@h#5
1

A12^n&~h212h!
. ~A17!

The correlation moments can be easily computed as follo
3-12
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C(1)5^n&,

C(2)5^n&~2^n&11!,

~A18!

C(3)52^n&2~4^n&11!,

C(4)548̂ n&2S ^n&21^n&1
1

8D .

Since the generating function~A17! is the function of
(11h)2, the multiplicity distributionPn for odd n vanishes.
That for evenn is given by

P2k5
~2k!!

22k~k! !2

1

A11^n&
S ^n&
11^n& D

k

, ~A19!

which is nothing but the negative binomial distribution f
miliar in hadronic multiparticle phenomenology. The expre
sion ~A19! reproduces the results obtained by Yoshimu
@23# who also calculated all the off-diagonal elements of
density matrix.

For completeness, we calculate the Koba-Nielsen-Ole
~KNO! scaling function for the multiplicity distribution
~A19!. It is obvious, from the expression of the correlati
moments, that the squeezed state has ‘‘long range’’ corr
tions

Ck

^n&k
——→
^n&→`

finite. ~A20!

The multiplicity distribution obeys the KNO scaling beha
ior. Either by solving the moment problem or by using t
explicit form ~A19!, one can show that

c~z!5 lim
^n&→`

^n&Pn5A 2

pz
e2z/2. ~A21!

APPENDIX B

We derive relations among two pion correlation functio
of various charge states which follow from isospin inva
ance. We restrict ourselves to the case with isosinglet s
which is of concern to us. We also confine ourselves to
case of zero momentum pions; the treatment for nonz
momentum pions is different and is much more involved

We work with the ~slightly modified! Horn-Silver @35#
representation of the isospin generator

TW 5ai†tW i j a
j ~ i , j 51,2,0!, ~B1!

where
04490
-
a
e

en

a-

te
e
ro

t15
1

A2 F 0 0 1

0 0 1

1 1 0
G , t25

1

A2 F 0 0 2 i

0 0 i

i 2 i 0
G ,

t25F 1 0 0

0 21 0

0 0 0
G . ~B2!

The explicit form ofTW is as follows:

T15
1

A2
@a(1)†a(0)1a(0)†~a(1)1a(2)!1a(2)†a(0)#,

T25
i

A2
@2a(1)†a(0)1a(0)†~a(1)2a(2)!1a(2)†a(0)#,

~B3!

T35
1

A2
@a(1)†a(1)2a(2)†a(2)#,

wherea(1), a(0), anda(2) are the annihilation operators o
p1, p0, andp2, respectively, as defined in Eq.~54!. The
relation between the charge eigenstate operators and th
joint representation operators are given in Eq.~54!.

Let uc& be the isosinglet state. Then, it is annihilated
the isospin operator,TW uc&50. From this, it follows that

^cuei jW•TW ak†al uc&5^cuak†al uc& ~B4!

for anyk,l . This is the relation that should be obeyed for
orders injW . If we take the first-order term injW , we obtain the
sum rule

^cuTW ak†al uc&50 ~ for any k,l !. ~B5!

Due to isospin invariance, it is easy to show that^p1&
5^p2&5^p0&. Then, theT1 ~or T2) sum rule produces re
lations like

^p1p0&5^p2p0&, ~B6!

which also follows from theT3-sum rule. The useful rela
tions comes from theT3-sum rule

^p1p1&5^p1p2&5^p2p2&. ~B7!

In these equations,^papb& implies the two pion distribution
of charge statea andb.

The two pion correlation function may be defined as

C~p1,p1!5^p1p1&2^p1&2^p1&2,

C~p1,p0!5^p1p0&2^p1&^p0&, ~B8!
3-13
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etc. Then, we obtain the isospin sum rule

C~p1,p2!5C~p1,p1!1^p&, ~B9!

where^p&[^p1&5^p2&5^p0&. Since^p& is positive, the
inequality among two pion correlations follows:
A.

.
st

,

a
,

H
N
&
,

l

v.

,

04490
C~p1,p2!.C~p1,p1!. ~B10!

It may be surprising that the unlike-sign correlation is stro
ger than the like-sign correlation; this is a consequence of
isospin invariance with isosinglet nature of the multipio
state.
.
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