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Dimensional effects in a relativistic mean-field approach. Il. Finite temperatures
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The Walecka model is studied at finite temperatures in one, two, and three spatial dimensions. The critical
temperaturesT,) and densitiesd.) for the liquid-gas phase transition are calculated in these dimensions. As
expected from a mean-field approach, the phase diagram ifViheversusp/p. plane is dimension indepen-
dent in the vicinity of the critical point. An interesting finding is that, because the critical and “flash”
temperatures are proportional, within numerical errors, dimension-independent curves can also be obtained for
the incompressibility by scaling with the “flash” point coordinaték (p;). At the high-temperature regime,
only the two- and three-dimensional systems present a phase transition.

PACS numbes): 24.10.Jv, 24.10.Nz, 21.65f

I. INTRODUCTION This equation shows explicitly a cubic dependence on the
density p, in much the same way as in the van der Waals
There are many studies in the literature focusing on thdluid.
many-body problem in one and two dimensi¢h$ Relativ- The EOS as an equation fprin terms ofp andT cannot
istic applications folN-body systems in one dimension have be obtained analytically for the Walecka model; the numeri-
also since long been availai2]. In a recent paper, we have cal solution of coupled equations is required in this case. We
studied the extension of the Walecka mo@g| usually con-  present in this paper results for the EOS in 1D and 2D and
sidered in three spatial dimensiof3D), to one and two compare them with the standard 3D model.
spatial dimension&lD and 2D at zero temperatured]. Mo- The use of a mean-field approafiFA) has as a draw-
tivated by current applications of this model to nuclear mat-back that the actual spatial dimension in which the system is
ter in the physical 3D case, we assumed in that paper each efnbedded loses in part its specificity, as far as the critical
the other spatial dimensions to have the same saturatidpehavior is concerned. The critical exponents have the same
point in thep versusp plane as its 3D counterpart. An ex- values in all dimensions, and the EOS collapses into one
pansion of the equation of statEOS for the three dimen- single curve in the neighborhood of criticality, when rescaled
sionalities in terms of the Fermi momentum was derivedwith the critical parameters. For a simple van der Waals gas
following the prescription of Ref.5]. Among other interest- this collapse occurs throughout all the range of the thermo-
ing results, we have shown that, at zero temperature, théynamic variables, as can be trivially verifigtD]. The same
EOS softens as the spatial dimensionality is decreased. The true for the analytically soluble model with Skyrme-type
present paper is an extension of that study to finite temperanteractions above mentioned. For the Walecka model, on
tures. the other hand, this is not true, and both the EOS and the
The 3D EOS for the Walecka model at finite temperaturephase diagram show some dimensional effects away from
presents a structure similar to the one for a van der Waals gake critical point, after rescaling. To show this we had to
[6,7]; this similarity can be related to the use in both cases otalculate the critical parameters numerically for the three di-
a mean-field approach of equivalent dynamftmng-range  mensions. These values are quoted in Table II, below, and
attraction and short-range repulsjoithis form for the EOS show, for example, that the critical temperature increases
is typical of a system that can exist in a liquid or vaporwith dimensionality.
phase, and suggests the existence, at low-density nuclear Mean-field phase diagrams can be valuable, even below
matter, of a line of first-order liquid-vapor phase transition inthe upper critical dimension of a model, to explore its re-
a p versusT phase diagram, ending up at a critical point, gions of metastability. As is well known from the study of
where the transition is continuous. The temperaliy@sso-  fluids, a physical system can get trapped in a local minimum
ciated with this critical point is an upper bound for the rangeof its free energy, from which it escapes only after a finite
of temperatures in which the two phases coexist. time. In an MFA the positions of these local minima are
Many other models for nuclear matter have been proposetounded in the phase diagram by the spinodal curves, which
[8], all of them exhibiting EOS with the same van der Waalslie inside the region of phase coexistence. One usually con-
fluidlike behavior. A simple nonrelativistic example is the siders the isothermic, for quenches through processes at con-
one derived from a Skyrme-type interactifd: stant temperature, and adiabatic spinodals, which can be for-
mally determined by the solutions ofp/dp=0, keeping
constant the appropriate thermodynamic variable—as shown
p=—agp>+2azp>+ pkgT. (1.))  for the 3D Walecka model in Ref6]. The processes of
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fragmentation and superheating are associated with the re- The extension of the Walecka model for finite tempera-

gionsdp/dp<0 anddp/dp>0, respectively. tures can be done in a straightforward way; for a good dis-
A particularly interesting region still inside the coexist- cussion of the 3D case we direct the reader to IRef. It

ence region is that in which a hydrostatic equilibrium ( essentially amounts to replacing the step function which was

=0) is still possible and the nuclear matter incompressibilityused for the ground state distribution by the full Fermi dis-
tribution. Following the same notation of Rd8], the ex-

(9 . .
K(T)= p (1.2 pressions for the energy densit§)(and pressurép) read

P p-0 E=E, 46,4 &, 2.1)
can be calculated. This region is delimited bz T<T;, and and
pu<p<po, Where the point 4, ,Ts,) is obtained as the so-
lution to p=dp/dp=0 and is known as the “flash” point. P=E,—E;+Pp, (2.2)
This point represents the smallest density and the highest
temperature at which a self-bound system can exist in hydroahere
static equilibrium, and belongs by definition to a spinodal.

We found that the flash temperature is an increasing function Cg )

of dimensionality—see Table Il, below—keeping a constant 5‘°:2MD*1P ' 2.3
ratio to the critical temperature, within numerical errors. It

can thus provide an alternate natural dimension-dependent MO+l

scale of temperatures, other than the critical temperature. In E,= (1-y)?, (2.4)
particular, we could find for the Walecka model a 2C?

dimension-independent form for the compressibility as a
function of a rescaled temperature. _ o1 [ o
At very high temperatures and for zero density, usually ~ €b=YAoM> ™ [ dPXE*OQLF-(x,y) +f, (xy)],

interpreted to be a thermal vacuum regime, the 3D Walecka (2.5
model presents a phase transition, characterized by an abrupt

decrease in the nucleon effective mass T6¢185 MeV 1 o+1 [ o x?

[12]. Investigating the other dimensional cases, we found Pb=p YAoM fd XE*(X)[ff(X,Y)+f+(X,Y)],

that this phase transition still occurs in the 2D case Tor
~280 MeV but simply disappears in the 1D case.

The outline of this paper is as follows: In Sec. Il we
present the model and in Sec. Il we present and discuss our p= 7ADMDJ dPXx[f_(x,y)— L (x,y)], 2.7
results. We conclude in Sec. IV.

(2.6

E* (x)=(x>+y?) (2.9
IIl. NUCLEAR MATTER WALECKA EOS
AT FINITE TEMPERATURES In these expressions, convenient powers of the nucleon

In the Waleck del | int t th h th bare masdM =939 MeV were introduced to establish the
n the vvalecka model nucieons interact through the€ exw.q o gimension for each physical quantiyis the degen-
change ofo- and o mesons, witho providing for medium-

an ttraction ane for short-ranae repulsion. The model eracy factor ¢=4 for nuclear matter angb=2 for neutron
range attraction a or short-range repuision. the mode matte) andf. (x,y) stands for the Fermi-Dirac distribution
is usually solved in a mean-field approximation, in which the

meson fields are replaced by their expectation values. Thfor baryons () and antibaryonsf(,), respectively, defined

solution shows the relativistic mechanism for nuclear matter
saturation: it occurs at a densitgd) at which the scala(S

and vector(V) potentials largely cancel each other. A curious fo(X,y)= ! _ (2.9
aspect of this model is that the scafaecto) m, (m,) mass - 1+ oMV +y2=0)/T

and coupling constarg,. (g,) in the equations of state for

infinite_nuclear matter can be eliminated in favor Gf An effective chemical potential, which preserves the num-

=g2M?/m2 (C2=g2M?/m?), whereM is the nucleon bare ber of baryons and antibaryons in the ensemble, is defined by
mass. This means that the model has effectively only twa=u—V, whereu is the thermodynamic chemical potential
free parameter<C2 and C? are fitted to reproduce the satu- andV the vector potential associated with the baryon source
ration point of bulk nuclear matter &=0. (V=C3p/MD*1). The dimensionless effective mass yis

In a previous worK3] we extended this model to the 2D =M*/M, with M* =M+ S, where S=CZ2p,/MP ! is the
and 1D cases, and made a comparative study of the EOS atalar potential associated with the scalar density defined by
T=0 in different dimensions. I spatial dimensionsy,, Eqg. (2.11), while x=k/M is the dimensionless momentum.
and g,, have dimensions ofM]©G~P)2 and therefore we Ay is the volume of the elementary cell B-dimensional
define the dimensionless parameters of this generalizephase space, ¢2) ~P.
model asC2=g2MP~/m? andC?=g?MP~*/m? which are The procedure used to obtain the equation of state con-
fitted atT=0 as before. sists in finding the extrema af with respect to the scalar
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TABLE I. Dimensionless constants from fits of nuclear matter
equilibrium properties at zero temperatur8,E16 MeV, k;

PHYSICAL REVIEW (51 044615

TABLE IlI. Critical and flash parameters. Values are given for
the critical temperature T, (MeV), critical pressure

=1.3 fm1). Values are given for the effective baryonic mass p. (MeV fm~P), critical densityp. (fm~P), flash temperature

M*/M, the compression modulus (MeV), the vectorV (MeV),
and scalaiS (MeV) potentials.

Ty (MeV), and flash density;, (fm~P). The saturation density
po (fm~P) at zero temperature is quoted in the last line for the
sake of a comparison. D is the dimensionality.

Model 3D 2D 1D
2 Model 3D 2D 1D
C2 359.348 17.259 0.483
c? 275.116 13.289 0.835 Te 18.3 15.9 12.2
M*/M 0.539 0.609 0.835 Pc 0.43 1.43 3.63
K 554.322 182.302 36.380 Pe 0.064 0.24 0.81
\Y; 355.798 296.444 98.192 Ty 14.1 12.0 9.3
S —433.123 —367.366 —155.099 pii 0.098 0.36 1.05
Po 0.148 0.538 1.655

field or, equivalently, with respect tp The equation satis-

fied by the values ofy that correspond to these extrema, that cuts out the loop at the point where the liquid and gas-
known as the gap equation, has to be solved selfeous branches of the graph intersect. The transition point
consistently, and its solutions provide the basis for obtainingtself is identified via the Gibbs criterid,;=T,, u;=u,,

all thermodynamic quantities. This equation reads andp;=p,.
c?
1-y— M—;pszo, (2.10 lIl. RESULTS AND DISCUSSION

We start by quoting in Table | the values for the dimen-

where sionless constant€2=g2MP~*/m2 and C2=g?MP~/m?
obtained from fits of the equilibrium nuclear matter proper-
B D o, 1 ties at zero temperature. The same table also contains values
ps=yApM yf d XE*(x) [+ (xy)+T-(x.y)]. for other quantities in the model already presented in Ref.

(2.11) [3], such as the incompressibility, effective mass, and scalar
and vector potentials.

The numerical procedure to solve for the EOS is as fol- A careful numerical analysis is necessary to obtain the
lows. First, the gap equation has to be solved for a gizen critical parameters of the model in any dimension. The criti-
Input values are given to, and solutions foy in Eq. (2.10 cal temperature is the lowest for which there is no loop in the
are searched for. In principle, an arbitrary valueromay p versusu plot or, equivalently, corresponds to the maxi-
allow up to three different solutions for. The values ofv  mum of the coexistence curve in tieversusp plane. The
and the corresponding solutions fprare then inserted into critical parameters obtained for all dimensionalities are
Egs.(2.1)—(2.8) to obtainp and&. The chemical potentigk shown in Table Il. We note that the critical density and tem-
is obtained fromw andV throughu=v+V. The above pro- perature are increasing functions of dimensionality. The non-
cedure is repeated for each value of the temperature. dimensional combinatiop,/kgT¢p., Which evaluates tG

For any given temperature below the critical point, a plotin the van der Waals fluid and; for the Skyrme
of p versusu shows a loop characteristic of first-order phaseinteraction—see the Appendix—has here the dimension-
transitions[10]. In this context, this loop is interpreted as independent value of 0.36.
corresponding to regions of metastability and instability of In Fig. 1 we show the versusp isotherms of the model
the system. It can be eliminated by a Maxwell constructionat T=0, 5, and 10 MeV foD=1, 2, and 3. In these curves,

1D 2D

20 T 8 T T ﬁ;.

pressure

-4

0.5 1
density

FIG. 1. Isotherms in the versusp plane forT=0, 5, and 10 MeV—the lower curves correspond to lower temperatures. The density is
expressed as a dimensionless quantity in units of the density at saturati®sfyrand the pressure is in units of MeVi; D is the
dimensionality, specified on top of each curve.
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FIG. 2. Phase diagrams in tieversusp plane. In(a), the dimensionless density is again expressed in units of the density at saturation
for T=0. In (b) we show the collapse near the critical point when the curves are rescaled by the dimension-dependent critical parameters—
the reduced temperature and density are dimensionless parameters. Solid circles represent data for 1D, open circles for 2D, and diamonds fol
3D.

the density is expressed as a dimensionless quantity by di- In Fig. 3 we present the thermal incompressibility as a
viding it by the density at saturation fdr=0. The isotherms function of temperature. It is a decreasing function, reaching
exhibit a typical van der Waals shape. Their behavior fora null value at the flash point. Like every other point on the
very small temperatures can be described as follows. Fagpinodal, this is also a critical poiritL2l—albeit a rather
very low densities the pressure increases linearly with temspecial one. As already mentioned, its coordinates represent
perature as for an ideal Fermi gas in the classical limit, the smallest density and the highest temperature at which a
~pkgT. It decreases subsequently, because of the attractiveelf-bound system can exist in hydrostatic equilibrium. In
interaction of the sigma field, and finally increases as a conether words, the thermal incompressibility and the pressure
sequence of the repulsion coming from the vector mesorgre identically zero at this point. Its coordinates in phase
which dominates at high densities. The local minimum thusspace ((Qy;,T¢) are determined by the solution of the
formed becomes less pronounced as the temperature ineupled equations

creases, because of the increasing importance of the term

pkgT, disappearing at the critical temperatdrg. ap
The phase diagrams in tieversusp plane are presented % =p(ps)=0. (3.
in Fig. 2. The density is again expressed as a dimensionless p=pg

quantity, as in the former figure. For each dimension, this

curve is the boundary of a region in which the thermody-The values for the flash point coordinates are listed in Table
namically stable system is a mixture of liquid and gas. Thisll for each spatial dimension. It can be seen that the flash
region is contained in the rectangle< <T., 0<p<py, density and temperatures are also increasing functions of di-
wherep, is the equilibrium density of baryonic nuclear mat- mensionality. In particular, there is a constant dimension-
ter. Figure 2a) shows that the volume in phase space wheréndependent ratio between critical and flash temperatures,
the mixture of liquid and gas is stable increases with dimenwithin numerical errors, which evaluates to 1.3. This propor-
sionality. As expected from the mean-field approach we ardionality is at the root of the collapse that is obtained when
using, scalingp, p, and T with the critical parameterg,, the incompressibility and the temperature are rescaled for
pe, and T, causes the collapse of the three curves in theeach dimensionality—see the curvé§(T)/K(0) versus
immediate vicinity of the critical point, as shown in Fig. T/T; in Fig. 3(b), where K(0) is the incompressibility at

2(b).

(a)

T=0. We address this question again in the context of a

(b)

temperature (MeV)

reduced temperature
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FIG. 3. The dimensionless reduced incompressibKitf)/K(0) as a function of temperatufiefor all three dimensionalitiegb) shows
the collapse of these curves when the reduced incompresssibility is plotted as a function of the dimensionless reduced t@mpgrature
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spatial dimensions at=0 [3], we have now extended it for
the finite temperature regime.

We have calculated the coordinates of the critical point
p., pc and T, for each spatial dimension. It could be shown
that these critical parameters are increasing functions of di-
mensionality(see Table IJ. Consistent with a mean-field ap-
proach, we have seen that by scalimgp, and T with the
critical parameterp., p., andT, obtained for each dimen-
sional case, the phase diagrams can be described in a
dimension-independent way at the vicinity of the critical
point. Nonetheless, the collapse gets poorer as we explore
o2} \ ] regions away from criticality. We mention here that the criti-

cal parameters themselves are, of course, dimension depen-

dent.
0 =0 P 50 2000 We have presented a calculation of the thermal incom-

temperature (MaV) pressibility as a function of temperature for the different di-
mensions. In all the cases, it is a decreasing function of the
temperature, reaching a null value at the flash point, which
represents the smallest density and the highest temperature at
which a self-bound system can exist in hydrostatic equilib-
rium. Calculating this point for different dimensional cases,

model with an analytic EOS in the Appendix, where the Ve have seen that the flash density and temperature are also

above-mentioned proportionality and the resulting Collapsépc.reas'ng fEnl():Itlonts ofg|men5|?r?al|ty."Regardl?gtrt]ms point,
can be derived analytically and traced back to general prod- '_? /rKergar ale (1)_ /'Ic') s_ertve th € d(':o apse o q € ((:jurvtes
erties of cubic equations. For the Walecka model, on thf( )/K(0) versusT/Ty into the dimension-independen

08 r

14
o
T

effective mass

I
'S
T

FIG. 4. Effective dimensionless baryonic mask'/M as a
function of temperaturd in the high-temperature, zero-density re-
gime. The abrupt decrease at some temperature signalb,=f&
andD =3, a phase transition.

other hand, with no analytical representation of the EOS, w orm presented in F_ig. 3. This result is related to the propor-
cannot see a trivial justification of this fact other than a pos—c'iona“%.betwein Cr!t'ct‘zl and {Iasth tfemperCiatlLlrgtsH and Wel "’t‘d
sible universal behavior of a certain class of mean-field mod2' c>> IS queéstion in the context ot a model with an analytic
els. EOS in the Appendix. In that case, these features could be

Another phase transition is known to exist in this model atelated to mathematical prpperties of simple functions. Nev-
the high-temperature and zero-density regime. In REf] ertheless, its occurrence in the Walecka model cannot be
the nuclear matter saturation poirB,p,) was allowed to ”aP"?‘d back to anythlng .Of the sort. Its origin must be, in our
vary in a narrow range of values, and a different scalar coyPPinion, related to a critical spinodal point at the flash point

pling constant calculated for each. It was found that the orde nd will deserve further studies. It is worth mentioning at

of the above-mentioned transition becomes dependent on t Qis po_int that critical behavjor at spinodal pointg has been
size of this coupling constant. In particular, for the case w ound in the study of mean-field versions of classical models

are focusing hereB,=16 MeV andk;=1.3 fm 1) a first- " condensed matter, such as the inconspicuous Ising model

order transition could be seen for=185 MeV. To derive [12]. -
data for this regime, we again used Gibbs criteria, now for The 3D Walecka model presents another phase transition

temperatures above 180 MeV. It turns out that a phase trarﬂ-1 the thermal vacuum regime &t-185 MeV[11], and we

sition can indeed be found f@ =3 atT~185 MeV and for ave investigated its occurrence at 1D and 2D. It could be
D=2 atT~280 MeV. In both cases, a detailed study of theIndeeOl found in 2D aT~280 MeV, but not in 1D.

p versusu plot revealed a characteristic loop, which can be

considered as a clear signature of a first-order transition. This ACKNOWLEDGMENTS

transition could not be found in 1D. In Fig. 4 we present the :
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have also analyzed the intermediate region of temperature
in the range 0—180 MeV, for densities below twice that for
the saturation point. No indications of discontinuities in the APPENDIX: SCALING OF THE EOS AND
thermodynamic functions or the effective mass were found. INCOMPRESSIBILITY IN AN ANALYTICAL MODEL
This leads us to believe that there are no transitions other

than the ones we discuss in this paper. In this appendix, we illustrate the discussion regarding the

scaling with critical and flash parameters through a simple
analytical EOS obtained from a model with Skyrme interac-
IV. CONCLUSIONS tions, given by Eq(1.1) [9],
Following a previous study of the relativistic Walecka

model in the mean-field approach for one, two, and three p=—ayp?+2azp>+ pkgT. (A1)
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Although derived for a 3D systefi 3], a straightforward p'=p'3=3p'2+3p'T’ (A8)
reproduction of that reasoning can be used to show that it has
the same functional form in every spatial dimension. Theand
relation between its coefficients and those of the interaction
potential are dimension dependent though. These coefficients @: E{H /1_ iT’ _ ET’} (A9)
have dimensiongay]=MP*! and[az]=M1"2P. The den- K(0) 2 3 3 )
sity at saturation is obtained as the solutionpigy) =0,

leading topy=ay/2as. The incompressibilityat saturation ~ Wherep’ =p/pe, p'=plpc, andT'=T/T..
is obtained as In this particular casey./kgT.p.=1/3, near the 3/8 value

obtained for the van der Waals gas. Equati®®) is an

ap expression of a law of corresponding states valid across dif-
K(T)Z% : (A2)  ferent spatial dimensions.
p=0 Now, let us show that a similar law can be obtained when
which yields the v_ariab_les are rescaled through their “flash point” values.
At this point,
2
ag 8azkgT 8aszkgT 9
K(T)=——| 1+ /1- (A3) L]
433 ag a(Z) ap . p(Pf) 0. (Alo)

and K(0)=a§/2a3. The reduced incompressibility can thus Imposing the above conditions on E@1) we find

be written as
2

E(g) :% . /1_ 8a3IZBT 8a3I:BT e P1= Jay’ kBTf_Sasa pi=0, (A11)
© % 8o with
We begin by deriving a law of corresponding states for kT T
this EOS by rescaling the thermodynamical variables with ap= B T aszB_f, (A12)
their critical values. The critical point in which the liquid- Pt 2p%
vapor coexistence phase disappears and matter starts to be _ _
described as a gas is obtained via which when substituted back into Eq#1) and (A4) leads
to
2
P :r?_p =0 (A5) p* =p*3—2p*2+ p* T* (A13)
ap|P7Pe 9p? '
P=Pc and
leading to K(T) 1
%=§[1+\/1—T*—T*], (A14)
-0 a_g - % (AB)
pC_6a3! B'c 6a3, C_lo&gl where
with p*=plkepTs, p*=plp;, T*=TIT;. (Al5)

Here,p* does not scale with the “flash” parameter which
(A7) is identically zero by construction, but wiltgpT; instead.
We can see in this case tHigt/T;=3, a value close to the
1.3 found in the Walecka model. Equatiof#9) and (A14)
Substituting the values @f, andas into Egs.(Al) and(A4)  express the collapse of the incompressibility curves for all
one obtains spatial dimensions mentioned in the text.

kT ke
0 pc ° 6p§.
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