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Dimensional effects in a relativistic mean-field approach. II. Finite temperatures
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The Walecka model is studied at finite temperatures in one, two, and three spatial dimensions. The critical
temperatures (Tc) and densities (rc) for the liquid-gas phase transition are calculated in these dimensions. As
expected from a mean-field approach, the phase diagram in theT/Tc versusr/rc plane is dimension indepen-
dent in the vicinity of the critical point. An interesting finding is that, because the critical and ‘‘flash’’
temperatures are proportional, within numerical errors, dimension-independent curves can also be obtained for
the incompressibility by scaling with the ‘‘flash’’ point coordinates (Tf ,r f). At the high-temperature regime,
only the two- and three-dimensional systems present a phase transition.

PACS number~s!: 24.10.Jv, 24.10.Nz, 21.65.1f
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I. INTRODUCTION

There are many studies in the literature focusing on
many-body problem in one and two dimensions@1#. Relativ-
istic applications forN-body systems in one dimension ha
also since long been available@2#. In a recent paper, we hav
studied the extension of the Walecka model@4#, usually con-
sidered in three spatial dimensions~3D!, to one and two
spatial dimensions~1D and 2D! at zero temperature@3#. Mo-
tivated by current applications of this model to nuclear m
ter in the physical 3D case, we assumed in that paper eac
the other spatial dimensions to have the same satura
point in thep versusr plane as its 3D counterpart. An ex
pansion of the equation of state~EOS! for the three dimen-
sionalities in terms of the Fermi momentum was deriv
following the prescription of Ref.@5#. Among other interest-
ing results, we have shown that, at zero temperature,
EOS softens as the spatial dimensionality is decreased.
present paper is an extension of that study to finite temp
tures.

The 3D EOS for the Walecka model at finite temperatu
presents a structure similar to the one for a van der Waals
@6,7#; this similarity can be related to the use in both cases
a mean-field approach of equivalent dynamics~long-range
attraction and short-range repulsion!. This form for the EOS
is typical of a system that can exist in a liquid or vap
phase, and suggests the existence, at low-density nu
matter, of a line of first-order liquid-vapor phase transition
a p versusT phase diagram, ending up at a critical poi
where the transition is continuous. The temperatureTc asso-
ciated with this critical point is an upper bound for the ran
of temperatures in which the two phases coexist.

Many other models for nuclear matter have been propo
@8#, all of them exhibiting EOS with the same van der Wa
fluidlike behavior. A simple nonrelativistic example is th
one derived from a Skyrme-type interaction@9#:

p52aor212a3r31rkBT. ~1.1!
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This equation shows explicitly a cubic dependence on
densityr, in much the same way as in the van der Wa
fluid.

The EOS as an equation forp in terms ofr andT cannot
be obtained analytically for the Walecka model; the nume
cal solution of coupled equations is required in this case.
present in this paper results for the EOS in 1D and 2D a
compare them with the standard 3D model.

The use of a mean-field approach~MFA! has as a draw-
back that the actual spatial dimension in which the system
embedded loses in part its specificity, as far as the crit
behavior is concerned. The critical exponents have the s
values in all dimensions, and the EOS collapses into
single curve in the neighborhood of criticality, when resca
with the critical parameters. For a simple van der Waals
this collapse occurs throughout all the range of the therm
dynamic variables, as can be trivially verified@10#. The same
is true for the analytically soluble model with Skyrme-typ
interactions above mentioned. For the Walecka model,
the other hand, this is not true, and both the EOS and
phase diagram show some dimensional effects away f
the critical point, after rescaling. To show this we had
calculate the critical parameters numerically for the three
mensions. These values are quoted in Table II, below,
show, for example, that the critical temperature increa
with dimensionality.

Mean-field phase diagrams can be valuable, even be
the upper critical dimension of a model, to explore its r
gions of metastability. As is well known from the study o
fluids, a physical system can get trapped in a local minim
of its free energy, from which it escapes only after a fin
time. In an MFA the positions of these local minima a
bounded in the phase diagram by the spinodal curves, w
lie inside the region of phase coexistence. One usually c
siders the isothermic, for quenches through processes at
stant temperature, and adiabatic spinodals, which can be
mally determined by the solutions of]p/]r50, keeping
constant the appropriate thermodynamic variable—as sh
for the 3D Walecka model in Ref.@6#. The processes o
©2000 The American Physical Society15-1
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fragmentation and superheating are associated with the
gions]p/]r,0 and]p/]r.0, respectively.

A particularly interesting region still inside the coexis
ence region is that in which a hydrostatic equilibriump
50) is still possible and the nuclear matter incompressibi

K~T!5
]p

]r U
p50

~1.2!

can be calculated. This region is delimited by 0,T,Tf l and
r f l,r,r0, where the point (r f l ,Tf l) is obtained as the so
lution to p5]p/]r50 and is known as the ‘‘flash’’ point
This point represents the smallest density and the hig
temperature at which a self-bound system can exist in hy
static equilibrium, and belongs by definition to a spinod
We found that the flash temperature is an increasing func
of dimensionality—see Table II, below—keeping a const
ratio to the critical temperature, within numerical errors.
can thus provide an alternate natural dimension-depen
scale of temperatures, other than the critical temperature
particular, we could find for the Walecka model
dimension-independent form for the compressibility as
function of a rescaled temperature.

At very high temperatures and for zero density, usua
interpreted to be a thermal vacuum regime, the 3D Wale
model presents a phase transition, characterized by an a
decrease in the nucleon effective mass forT'185 MeV
@12#. Investigating the other dimensional cases, we fou
that this phase transition still occurs in the 2D case foT
'280 MeV but simply disappears in the 1D case.

The outline of this paper is as follows: In Sec. II w
present the model and in Sec. III we present and discuss
results. We conclude in Sec. IV.

II. NUCLEAR MATTER WALECKA EOS
AT FINITE TEMPERATURES

In the Walecka model nucleons interact through the
change ofs and v mesons, withs providing for medium-
range attraction andv for short-range repulsion. The mod
is usually solved in a mean-field approximation, in which t
meson fields are replaced by their expectation values.
solution shows the relativistic mechanism for nuclear ma
saturation: it occurs at a density (r0) at which the scalar~S!
and vector~V! potentials largely cancel each other. A curio
aspect of this model is that the scalar~vector! ms (mv) mass
and coupling constantgs (gv) in the equations of state fo
infinite nuclear matter can be eliminated in favor ofCs

2

5gs
2M2/ms

2 (Cv
2 5gv

2 M2/mv
2 ), whereM is the nucleon bare

mass. This means that the model has effectively only
free parameters.Cs

2 andCv
2 are fitted to reproduce the satu

ration point of bulk nuclear matter atT50.
In a previous work@3# we extended this model to the 2

and 1D cases, and made a comparative study of the EO
T50 in different dimensions. InD spatial dimensions,gs

and gv have dimensions of@M # (32D)/2, and therefore we
define the dimensionless parameters of this general
model asCs

25gs
2MD21/ms

2 andCv
25gv

2MD21/mv
2 which are

fitted atT50 as before.
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The extension of the Walecka model for finite tempe
tures can be done in a straightforward way; for a good d
cussion of the 3D case we direct the reader to Ref.@6#. It
essentially amounts to replacing the step function which w
used for the ground state distribution by the full Fermi d
tribution. Following the same notation of Ref.@3#, the ex-
pressions for the energy density (E) and pressure~p! read

E5Ev1Es1Eb ~2.1!

and

p5Ev2Es1pb , ~2.2!

where

Ev5
Cv

2

2MD21
r2, ~2.3!

Es5
MD11

2Cs
2 ~12y!2, ~2.4!

Eb5gLDMD11E dDxE* ~x!@ f 2~x,y!1 f 1~x,y!#,

~2.5!

pb5
1

D
gLDMD11E dDx

x2

E* ~x!
@ f 2~x,y!1 f 1~x,y!#,

~2.6!

r5gLDMDE dDx@ f 2~x,y!2 f 1~x,y!#, ~2.7!

E* ~x!5~x21y2!1/2. ~2.8!

In these expressions, convenient powers of the nucl
bare massM5939 MeV were introduced to establish th
correct dimension for each physical quantity.g is the degen-
eracy factor (g54 for nuclear matter andg52 for neutron
matter! and f 6(x,y) stands for the Fermi-Dirac distributio
for baryons (f 2) and antibaryons (f 1), respectively, defined
by

f 6~x,y!5
1

11e(MAx21y26n)/T
. ~2.9!

An effective chemical potential, which preserves the nu
ber of baryons and antibaryons in the ensemble, is define
n5m2V, wherem is the thermodynamic chemical potenti
andV the vector potential associated with the baryon sou
(V5Cv

2r/MD21). The dimensionless effective mass isy
5M* /M , with M* 5M1S, whereS5Cs

2rs /MD21 is the
scalar potential associated with the scalar density defined
Eq. ~2.11!, while x5k/M is the dimensionless momentum
LD is the volume of the elementary cell inD-dimensional
phase space, (2p)2D.

The procedure used to obtain the equation of state c
sists in finding the extrema ofE with respect to the scala
5-2
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DIMENSIONAL EFFECTS IN A . . . . II. . . . PHYSICAL REVIEW C61 044615
field or, equivalently, with respect toy. The equation satis
fied by the values ofy that correspond to these extrem
known as the gap equation, has to be solved s
consistently, and its solutions provide the basis for obtain
all thermodynamic quantities. This equation reads

12y2
Cs

2

MD
rs50, ~2.10!

where

rs5gLDMDyE dDx
1

E* ~x!
@ f 1~x,y!1 f 2~x,y!#.

~2.11!

The numerical procedure to solve for the EOS is as
lows. First, the gap equation has to be solved for a givenT.
Input values are given ton, and solutions fory in Eq. ~2.10!
are searched for. In principle, an arbitrary value ofn may
allow up to three different solutions fory. The values ofn
and the corresponding solutions fory are then inserted into
Eqs.~2.1!–~2.8! to obtainp andE. The chemical potentialm
is obtained fromn andV throughm5n1V. The above pro-
cedure is repeated for each value of the temperature.

For any given temperature below the critical point, a p
of p versusm shows a loop characteristic of first-order pha
transitions@10#. In this context, this loop is interpreted a
corresponding to regions of metastability and instability
the system. It can be eliminated by a Maxwell construct

TABLE I. Dimensionless constants from fits of nuclear mat
equilibrium properties at zero temperature (B0516 MeV, kf

51.3 fm21). Values are given for the effective baryonic ma
M* /M , the compression modulusK ~MeV!, the vectorV ~MeV!,
and scalarS ~MeV! potentials.

Model 3D 2D 1D

Cs
2 359.348 17.259 0.483

Cv
2 275.116 13.289 0.835

M* /M 0.539 0.609 0.835
K 554.322 182.302 36.380
V 355.798 296.444 98.192
S 2433.123 2367.366 2155.099
04461
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that cuts out the loop at the point where the liquid and g
eous branches of the graph intersect. The transition p
itself is identified via the Gibbs criteriaT15T2 , m15m2,
andp15p2.

III. RESULTS AND DISCUSSION

We start by quoting in Table I the values for the dime
sionless constantsCs

25gs
2MD21/ms

2 and Cv
25gv

2MD21/mv
2

obtained from fits of the equilibrium nuclear matter prope
ties at zero temperature. The same table also contains va
for other quantities in the model already presented in R
@3#, such as the incompressibility, effective mass, and sc
and vector potentials.

A careful numerical analysis is necessary to obtain
critical parameters of the model in any dimension. The cr
cal temperature is the lowest for which there is no loop in
p versusm plot or, equivalently, corresponds to the max
mum of the coexistence curve in theT versusr plane. The
critical parameters obtained for all dimensionalities a
shown in Table II. We note that the critical density and te
perature are increasing functions of dimensionality. The n
dimensional combinationpc /kBTcrc , which evaluates to3

8

in the van der Waals fluid and1
3 for the Skyrme

interaction—see the Appendix—has here the dimensi
independent value of 0.36.

In Fig. 1 we show thep versusr isotherms of the mode
at T50, 5, and 10 MeV forD51, 2, and 3. In these curves

r TABLE II. Critical and flash parameters. Values are given f
the critical temperature Tc ~MeV!, critical pressure
pc (MeV fm2D), critical density rc (fm2D), flash temperature
Tf l (MeV), and flash densityr f l (fm2D). The saturation density
r0 (fm2D) at zero temperature is quoted in the last line for t
sake of a comparison. D is the dimensionality.

Model 3D 2D 1D

Tc 18.3 15.9 12.2
pc 0.43 1.43 3.63
rc 0.064 0.24 0.81
Tf l 14.1 12.0 9.3
r f l 0.098 0.36 1.05
r0 0.148 0.538 1.655
ity is
FIG. 1. Isotherms in thep versusr plane forT50, 5, and 10 MeV—the lower curves correspond to lower temperatures. The dens
expressed as a dimensionless quantity in units of the density at saturation forT50, and the pressure is in units of MeV fm2D; D is the
dimensionality, specified on top of each curve.
5-3
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FIG. 2. Phase diagrams in theT versusr plane. In~a!, the dimensionless density is again expressed in units of the density at satu
for T50. In ~b! we show the collapse near the critical point when the curves are rescaled by the dimension-dependent critical para
the reduced temperature and density are dimensionless parameters. Solid circles represent data for 1D, open circles for 2D, and d
3D.
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the density is expressed as a dimensionless quantity by
viding it by the density at saturation forT50. The isotherms
exhibit a typical van der Waals shape. Their behavior
very small temperatures can be described as follows.
very low densities the pressure increases linearly with te
perature as for an ideal Fermi gas in the classical limitp
'rkBT. It decreases subsequently, because of the attra
interaction of the sigma field, and finally increases as a c
sequence of the repulsion coming from the vector mes
which dominates at high densities. The local minimum th
formed becomes less pronounced as the temperature
creases, because of the increasing importance of the
rkBT, disappearing at the critical temperatureTc .

The phase diagrams in theT versusr plane are presente
in Fig. 2. The density is again expressed as a dimension
quantity, as in the former figure. For each dimension, t
curve is the boundary of a region in which the thermod
namically stable system is a mixture of liquid and gas. T
region is contained in the rectangle 0,T,Tc , 0,r,r0,
wherer0 is the equilibrium density of baryonic nuclear ma
ter. Figure 2~a! shows that the volume in phase space wh
the mixture of liquid and gas is stable increases with dim
sionality. As expected from the mean-field approach we
using, scalingp, r, and T with the critical parameterspc ,
rc , and Tc causes the collapse of the three curves in
immediate vicinity of the critical point, as shown in Fig
2~b!.
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In Fig. 3 we present the thermal incompressibility as
function of temperature. It is a decreasing function, reach
a null value at the flash point. Like every other point on t
spinodal, this is also a critical point@12#—albeit a rather
special one. As already mentioned, its coordinates repre
the smallest density and the highest temperature at whic
self-bound system can exist in hydrostatic equilibrium.
other words, the thermal incompressibility and the press
are identically zero at this point. Its coordinates in pha
space (0,r f ,Tf) are determined by the solution of th
coupled equations

]p

]r U
r5r f

5p~r f !50. ~3.1!

The values for the flash point coordinates are listed in Ta
II for each spatial dimension. It can be seen that the fl
density and temperatures are also increasing functions o
mensionality. In particular, there is a constant dimensi
independent ratio between critical and flash temperatu
within numerical errors, which evaluates to 1.3. This prop
tionality is at the root of the collapse that is obtained wh
the incompressibility and the temperature are rescaled
each dimensionality—see the curvesK(T)/K(0) versus
T/Tf l in Fig. 3~b!, whereK(0) is the incompressibility at
T50. We address this question again in the context o
ure

FIG. 3. The dimensionless reduced incompressibilityK(T)/K(0) as a function of temperatureT for all three dimensionalities.~b! shows

the collapse of these curves when the reduced incompresssibility is plotted as a function of the dimensionless reduced temperatT/Tf l .
5-4
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DIMENSIONAL EFFECTS IN A . . . . II. . . . PHYSICAL REVIEW C61 044615
model with an analytic EOS in the Appendix, where t
above-mentioned proportionality and the resulting colla
can be derived analytically and traced back to general p
erties of cubic equations. For the Walecka model, on
other hand, with no analytical representation of the EOS,
cannot see a trivial justification of this fact other than a p
sible universal behavior of a certain class of mean-field m
els.

Another phase transition is known to exist in this mode
the high-temperature and zero-density regime. In Ref.@11#
the nuclear matter saturation point (B0 ,r0) was allowed to
vary in a narrow range of values, and a different scalar c
pling constant calculated for each. It was found that the or
of the above-mentioned transition becomes dependent on
size of this coupling constant. In particular, for the case
are focusing here (B0516 MeV andkf51.3 fm21) a first-
order transition could be seen forT'185 MeV. To derive
data for this regime, we again used Gibbs criteria, now
temperatures above 180 MeV. It turns out that a phase t
sition can indeed be found forD53 atT'185 MeV and for
D52 atT'280 MeV. In both cases, a detailed study of t
p versusm plot revealed a characteristic loop, which can
considered as a clear signature of a first-order transition. T
transition could not be found in 1D. In Fig. 4 we present t
behavior of the effective nucleonic massM* as a function of
temperature. The phase transition can be seen through
abrupt decrease ofM* in the D53 and D52 cases. We
have also analyzed the intermediate region of temperatu
in the range 0–180 MeV, for densities below twice that
the saturation point. No indications of discontinuities in t
thermodynamic functions or the effective mass were fou
This leads us to believe that there are no transitions o
than the ones we discuss in this paper.

IV. CONCLUSIONS

Following a previous study of the relativistic Waleck
model in the mean-field approach for one, two, and th

FIG. 4. Effective dimensionless baryonic massM* /M as a
function of temperatureT in the high-temperature, zero-density r
gime. The abrupt decrease at some temperature signals, forD52
andD53, a phase transition.
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spatial dimensions atT50 @3#, we have now extended it fo
the finite temperature regime.

We have calculated the coordinates of the critical po
pc , rc andTc for each spatial dimension. It could be show
that these critical parameters are increasing functions of
mensionality~see Table II!. Consistent with a mean-field ap
proach, we have seen that by scalingp, r, and T with the
critical parameterspc , rc , andTc obtained for each dimen
sional case, the phase diagrams can be described
dimension-independent way at the vicinity of the critic
point. Nonetheless, the collapse gets poorer as we exp
regions away from criticality. We mention here that the cri
cal parameters themselves are, of course, dimension de
dent.

We have presented a calculation of the thermal inco
pressibility as a function of temperature for the different
mensions. In all the cases, it is a decreasing function of
temperature, reaching a null value at the flash point, wh
represents the smallest density and the highest temperatu
which a self-bound system can exist in hydrostatic equi
rium. Calculating this point for different dimensional case
we have seen that the flash density and temperature are
increasing functions of dimensionality. Regarding this poi
it is remarkable to observe the collapse of the curv
K(T)/K(0) versus T/Tf l into the dimension-independen
form presented in Fig. 3. This result is related to the prop
tionality between critical and flash temperatures, and we
dress this question in the context of a model with an anal
EOS in the Appendix. In that case, these features could
related to mathematical properties of simple functions. N
ertheless, its occurrence in the Walecka model canno
traced back to anything of the sort. Its origin must be, in o
opinion, related to a critical spinodal point at the flash po
and will deserve further studies. It is worth mentioning
this point that critical behavior at spinodal points has be
found in the study of mean-field versions of classical mod
in condensed matter, such as the inconspicuous Ising m
@12#.

The 3D Walecka model presents another phase trans
in the thermal vacuum regime atT'185 MeV @11#, and we
have investigated its occurrence at 1D and 2D. It could
indeed found in 2D atT'280 MeV, but not in 1D.
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APPENDIX: SCALING OF THE EOS AND
INCOMPRESSIBILITY IN AN ANALYTICAL MODEL

In this appendix, we illustrate the discussion regarding
scaling with critical and flash parameters through a sim
analytical EOS obtained from a model with Skyrme intera
tions, given by Eq.~1.1! @9#,

p52aor212a3r31rkBT. ~A1!
5-5
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Although derived for a 3D system@13#, a straightforward
reproduction of that reasoning can be used to show that it
the same functional form in every spatial dimension. T
relation between its coefficients and those of the interac
potential are dimension dependent though. These coeffici
have dimensions@a0#5MD11 and @a3#5M122D. The den-
sity at saturation is obtained as the solution top(r0)50,
leading tor05a0/2a3. The incompressibility~at saturation!
is obtained as

K~T!5
]p

]r U
p50

, ~A2!

which yields

K~T!5
a0

2

4a3
F11A12

8a3kBT

a0
2

2
8a3kBT

a0
2 G ~A3!

and K(0)5a0
2/2a3. The reduced incompressibility can thu

be written as

K~T!

K~0!
5

1

2 F11A12
8a3kBT

a0
2

2
8a3kBT

a0
2 G . ~A4!

We begin by deriving a law of corresponding states
this EOS by rescaling the thermodynamical variables w
their critical values. The critical point in which the liquid
vapor coexistence phase disappears and matter starts
described as a gas is obtained via

]p

]r Ur5rc
5

]2p

]r2U
r5rc

50, ~A5!

leading to

rc5
a0

6a3
, kBTc5

a0
2

6a3
, pc5

a0
3

108a3
2

, ~A6!

with

a05
kBTc

rc
, a35

kBTc

6rc
2

. ~A7!

Substituting the values ofa0 anda3 into Eqs.~A1! and~A4!
one obtains
s
th
97

s.

04461
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p85r8323r8213r8T8 ~A8!

and

K~T!

K~0!
5

1

2 F11A12
4

3
T82

4

3
T8G , ~A9!

wherep85p/pc , r85r/rc , andT85T/Tc .
In this particular case,pc /kBTcrc51/3, near the 3/8 value

obtained for the van der Waals gas. Equation~A8! is an
expression of a law of corresponding states valid across
ferent spatial dimensions.

Now, let us show that a similar law can be obtained wh
the variables are rescaled through their ‘‘flash point’’ valu
At this point,

]p

]r U
r5r f

5p~r f !50. ~A10!

Imposing the above conditions on Eq.~A1! we find

r f5
a0

4a3
, kBTf5

ao
2

8a3
, pf50, ~A11!

with

a05
2kBTf

r f
, a35

kBTf

2r f
2

, ~A12!

which when substituted back into Eqs.~A1! and ~A4! leads
to

p* 5r* 322r* 21r* T* ~A13!

and

K~T!

K~0!
5

1

2
@11A12T* 2T* #, ~A14!

where

p* 5p/kBr fTf , r* 5r/r f , T* 5T/Tf . ~A15!

Here,p* does not scale with the ‘‘flash’’ parameterpf which
is identically zero by construction, but withkBr fTf instead.

We can see in this case thatTc /Tf5
4
3 , a value close to the

1.3 found in the Walecka model. Equations~A9! and ~A14!
express the collapse of the incompressibility curves for
spatial dimensions mentioned in the text.
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