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Kinetics in sub-barrier fusion of spherical nuclei
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The semiclassical transport theory is applied to the description of heavy-ion fusion at energies below and
above the Coulomb barrier. The paths connecting entrance and exit fusion reaction channels are found as a
continuous solution of the Vlasov transport equation in classically allowed and forbidden regions associated
with suitably defined collective variables. The effects of nuclear deformation, neck formation, and nonlocality
are quantified on the basis of microscopic simulations and analyzed. The results of calculations give good fits
to experimental data for fusion of nearly symmetric oxygen and nickel isotope pairs.

PACS numbgs): 25.70.Jj, 25.60.Dz, 21.30x, 25.60.Je

I. INTRODUCTION process to fusion However, the fission systematics suggests
a large effective mass at small distances, up to an order of
The problem of the tunneling of a many-body system ap-magnitude larger than the reduced mésfs[16-18). This
pears in many branches of physics ranging from quanturﬂu?‘“t‘?‘t've dlffere_znc_e_ln fusion and f|s_S|0n _phenomena_l seems
(chemica) processes in molecules and solfd3to star evo- to |nd|catg the significance of nonad|aba§|c_ features in a fu-
lution (cf. [2,3]). Detailed information regarding such an ef- sion reaction, often Pfesume" to be negligitde [19]).
fect is provided by studies of heavy-ion sub-barrier fusion In this paper we discuss some attempts towards a better

h For h lei th ) tal understanding of specific properties of sub-barrier fusion
phenomena. For heéavy nuclel the experimental MeasulGgiin the framework of a mean-field transport theory. Sig-

ments commonly yield a surpnsmgly large fusion cross S€Chificant progress towards the realization of such a treatment
tion, several orders of magnitude larger as compared 10 res; ahove-harrier energies has been made by applying the
spective evaluations obtained Wlth the WKB approxmanontransport equations of the time-dependent Hartree-Fock
(see[4-7] and references therginConsequently, a number (TpHF) type and its semiclassical counterparts based, e.g.,
of models based on a macroscopic parametrization of heavysn the Wigner formalism for nuclear dynamik20—24. As

ion collision processes have been proposed for the descrigr matter of fact this type of approach represents the semi-
tion of such a dramatic reinforcement of the fusion channetlassical limit of collective nuclear dynamics. Making use of
at sub-barrier energies. Such models usually account for ghis feature the mean-field treatment can be extended by em-
coupling of translational motion of nuclei to the degrees ofploying the Feynman path-integral technique in order to de-
freedom associated with other competing reaction channelsgribe, e.g., sub-barrier fusion reactions. For instance, within
like excitations of target and/or projectile, nucleon transferthe framework of recently proposed metH@%—27 the path
nucleus polarization and deformation, and multidimensionatonnecting, e.g., the entrance and exit fusion reaction chan-
tunneling. The applications of the coupled-channel treatmeniéels is found as a continuous solution of the Vlasov mean-
have been very successful in understanding some mech#eld equation of motion in classically allowed and forbidden
nisms of experimentally observed enhancement for light anegions of suitably defined collective subspace. Such a mi-
asymmetric systems in the vicinity of the barrier {@g7—9.  Croscopic description of the sub-barrier fusion permits the
The difficulty of coupled channel calculations of fusion crossCOMPpeting reaction mechanisms to be analyzed in a self-
sections increases in a dramatic way for the cases of heafiPnSistent and unified way. In a recent pa28] it is found
systems and at deeply sub-barrier collisions because of Qat the ?bO\;]e-Ter_moned specific behavior O]f the r:]]ass pa-
arge rumber and the complety of possile chamnes, AT o e 1 eacton s oramatng o e pr
beam energies much below the barrier the experlmental_l resent paper considers further development and justification
observed enhancement can be properly reproduced by i

cluding nonlocal effect$10—13 and considering thereby a f the method25-27. In the next section we give a general

. . . ._outline of the problem and a hierarchy of approximations
distance dependent effective mass of translational mouonaading to the mean-field reduction of the many-body tunnel-
[14]. The models with a nonlocal nucleus-nucleus interactio

: i . r]ng problem. In Sec. lll we describe a numerical method for
are successfully applied for the description of other reaction, & <olution of mean-field nuclear dynamics within the path
channels as wellcf. [15]). Starting from the reduced mass

) . _integral framework in a subspace of collective variables and
for well-separated nuclei the effective mass decreases wit

decreasing internuclear distance within such a model. It i pply it for microscopic calculations of sub-barrier fusion
9 X g . . - ! I¥ross sections. Our conclusions are presented in Sec. IV.
worth noticing that introducing an effective mass is a famil-
iar procedure in studies of nuclear fiSSi(jre., an inverted II. MEAN-FIELD APPROACH TO MANY-BODY
TUNNELING

*On leave from Institute for Nuclear Research, 47, Pr. Nauki, 1he complete microscopic description of Aa many-body
Kiev 262028, Ukraine. system is provided by thE-body density matrixpy , which
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satisfies the quantal Liouville equation of moti¢ef., e.g.,

[21])

and the collective momentuffﬁ=MEC§’tll5k can be naturally
chosen to correspond to the Hermitiésee the Appendix
single-particle operators
dp

Gl —+ ILNpN 0 (1) ~ ~ 1 ~ ~

dt R=s(2-20)(z=Z0), P=5[P;5(z—Zo)+5(z=Zo)P,,

. . ()
where Ly=%"1Hy, ] is the quantal Liouville operator
with the HamiltonianHy=T+Uy[{r;}]. HereT is the ki-  where theZ axis denotes the reaction axis,
netic energy, and th&l-body potential energyJ[{ri}] is
determined by nucleon-nucleon interaction which is assumed —(An)~t forx<0, Ap=[ -z drn(r),
to be local in time and configuration space. Equatibncan s(x)= 1 .
be thought to describe a stochastic process of nuclear colli- (Ag) forx>0,  Ag=Jzz,drn(r).
sion, where theN-body density matrixpy is treated as a
stochastic quantity fluctuating with respect to the collision
events. An exact solution of EqL) might generally provide
a basis for an analysis of sub-barrier fusion. It is worth n
ticing, however, that to describe a process occurring with
probability of, say, 10° one has to generate more than '€ reduced masg.=AxAg/Ag=(1-7 2)Awdd is mea-
10°—10 events, a number far beyond the most Optlmlstlcsured in units of the nucleon mass One can easily obtain
expectations of computer possibilities. It is, therefore, advan(see the Appendixthe commutation relatloﬁR P]_lﬁ[l
tageous, e.g., to consider the average properties of a systemO(7?)] which suggests that the operatdﬁs and P are
with respect to the features of quantum tunneling. The mearconjugate with an accuracy af> and can be adopted for a
field reduction of a quantum many-body problem representsase of nearly symmetri@.g., 7<0.1) configurations.
a useful framework for such a consideration. It is well For the well-separated nuclei the expectation value
known, indeed, that in the cases of low energetic nuclear
scattering the Hartree mean-field approximation yields a re- A A
alistic picture of the collision process. The effect of correla- RZ(R)ZSF’(RP)ZJ drs(z—Zo)zn(r) (5
tions at these conditions can be incorporated in a perturbative
way using, e.g., a Boltzmann and/or Langevee, for ex-  gives the distance between the centers of mass of two collid-
ample,[29] and references thergitype of approximation. ing nuclei, while the expectation value
Within such an approach the equation of motion for the
many-body density matrix, Eq1), is reduced to the fluctu- P=(P)/n=SpPp) (6)
ating one-body density matrix,

(4)

Here A, andAg give the mass numbers of “each nucleus,”
the parameteiZ, characterizes the position of a dividing
o plane and defines the mass asymmetry degree of freedom
&= (Ag— Ap)/ A, Aie=Ap+ Ag, along a fusion path, and

corresponds to the momentum of relative motion per
A nucleon. Everywhere below we refer for the valBeas a
p +ilp=1(p)+ SK(t), (2)  collective momentum. The equations of motion for these ex-
t pectation values provide a basis to study the fusion reaction
channel. In the case of a nearly symmetric system we find

N - . that the mass asymmetry parameter plays a minor role since
_z-1 . . m _ . . .
whereL =4 ""[h(p), -] denotes the one-body quantum Liou the related corrections iR, P} evolution are of order of?.

ville operator corresponding 1o the seIf-consi§tenE eVOIUtionl'hus neglecting these terms it is straightforward to obtain for
Of a SyStem W|th a One'body Hamlltonldﬂ(p)=p2/2m the Co”ective Coordinate
+U[n], and the mean fieltJ[n] is related to a long-range
part of the nuclear interaction and will be defined in next - o ~»> ,_4 B AT e BN o
section[see Eq.(23)] through spatial nucleon densityr) R=SpRp)=A""Sp(—IR[H,p])~Sp(Pp)/m=P/m. @
=(r|p|r). The quantityl (p) on the right-hand-sidé&RHS) of
Eq. (2) corresponds, in general, to a memory-dependent bi- To derive an equation of motion for the expectation value
nary collision term that simulates the short-range two-bodyof the collective momentum we note that the applications of
nucleon-nucleon correlation effects during the evolution. Thea mean-field treatment to the studies{BfP} collective dy-
higher-order correlation effects are indicated in B).by an  namics for intermediate-energy nuclear reactions, like quasi-
additional termsK(t) corresponding to a fluctuating part of fission, deep-inelastic scattering, and damped and dissipative
the short-range correlations. collisions, have shown the importance of the nucleon ex-
Some reaction channels of a nuclear collision can be idenchange channeffor a review sed30]). When the system
tified and analyzed with the help of associated collectivestays at the overlapping regime for a long tithe as com-
variables. For SImp'ICIty we consider here the fusion reactiorpared to the nuclear response t|mere|evant for nucleon
in a head on collision of nearly symmetric pair of nuclei A capture one is able to apply the “randomization hypothesis”
and B. Then the associated collective vanaﬁlerE Prot Rk and obtain the well-known “window formula.” This consid-

dt
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eration yields a realistic picture of the internal nuclear exci-tum P. In contrast to the “randomization hypothesis” ap-
tation and damping of the collective motion. An analysis ofproximation(i.e., zero nuclear response timé&q. (9) does
experimental dat#cf. [30,31]) indicates that such a nuclear not contain the frictional force. This is a consequence of the
response time can be revealed to he=(1-2)x10 ?'s.  time-reversible mean-field dynami¢&1] given by Eq.(2)

The theoretical estimates give up to an order of magnitud&ith omitted RHS terms. Note that a similar expression is
larger values for the nucleon capture tirfod. [32]). also obtained within the semiclassical treatment based on the
It is the approaching stage of a nuclear collision at dis-Vlasov transport equatior28]. As is pointed out above such
tances corresponding to the barrier top that determines the mean-field treatment can be thought to represent the aver-
barrier penetration probabilities, the principal quantitiesage collision dynamics at energies well above and below the

characterizing nuclear fusion in the vicinity as well as belowbarrier top. In this sense Eqg) and(9) have classical prop-
the barrier height. In particular, at sub-barrier energies therties and are well suited to describe the various features of
barrier penetrabilities are defined by the properties of a sydheavy-ion collisions in classically allowed domains of col-
tem in the classically forbidden region. The time scale cordective variables(see[20] and references therginFor ex-
responding to an evolution in this regidire., the imaginary ample, in the case of a head-on collision we can calculate the
time evolution; see discussion belpsan be estimated in a potential barrier corresponding to thsatic interaction be-
general way through the barrier characteristic frequdney, tween two nuclei as

the curvature at the tom) as A7~w ™. Since typically

hw~3-5 MeV (cf. [28]), the related time intervalAr _ B Y

~(1-2)x10 ??s is considerably smaller than the nuclear Vin(R) UR dR-F ‘ (0
response time for nucleon capture. As is shown in Sec. lll

such an estimate is also supported by the results of micrdt is worth pointing out that within such a definition one
scopic calculations. Consequently, within this time scale théakes into consideration the coupling of translational motion
collision of initially spherical nuclei can be well described of nuclei to other degrees of freeddieg., nuclear deforma-
omitting the effects of correlations and fluctuatiofie.,  tion and polarization, neck formatiprduring the collision
RHS of Eq.(2)]. Then neglecting the nuclear response withdynamics. This property gives rise to, e.g., the dependence of

respect to transferred nucleon capture we parametrize tH8e interaction potential on the incident enefgge next sec-
one_body density matrix in a genera| form as thﬂ). In the followmg we will also consider the effective
potential barrier

(rlplr"y=(r|palr"yexpli(r—r")P(1+ 7)/2}
+(r|pgrYexp{—i(r—r")P(1— )2}, (8)

with P={0,0P}, pa andpg are generally distorted one-body &ccounting for the nonlocal components of the collective
density matrices of nuclei A and B with the centers of masdorce caused by the dynamical effect.

at rest. Using this parametrization we obtain the following _Eduations(7) and(9) provide the basis for the description
equation of motion for the collective momentum: of the quantum effects related to the collective nuclear phe-

nomenale.g., fusion, fissionin the energy region below the
Coulomb barrier. The quantum features with respect to the
collective variables result in a finite value of the energy-

Veﬁ(R)Z‘ f:dRF‘ (11

P=2"1Sp(s(2— Zo) s+ P2S(2— Z0)1p)

=(2ih) 1SN s(2—Z0)P,+ P,S(z—Zo)]- [P, p dependent barrier penetration probabiliiy(E), at partiall
(2i%) "SA(S(z=Zo)P,PoS(2=Zo)]- [.p]) wave for the beam energl. Then the sub-barrier fusion
=F~F'+F", cross section is written 483,34
I E)= Wﬁzi 21+ 1)T/(E 12
F—fdr[—aZU[n]-n(r)s(z—Zo) a( )_2MmE|=o( )TI(E). (12)
+8(z=Zo) A1)/ (nm)], Since for the nuclei of medium and large mass numbers

many values of partidl waves contribute to the sum in Eq.

(12), we can replace that sum by an integral. Furthermore,
we assume that thiedependence of the transmission prob-
ability at a given energy can be approximated by simply

wherell, (1) = Sp(8(r — o) p2p) denotes the diagonal com- shifting the energy35,36
ponent of the statifi.e., the c.m. systertc.m.s) of A and B

nuclei are at regtpressure tensor. The first term on the RHS TI(E)PNVTO( E—
of Eq. (9) gives the local partK') of the collective force,

while the time-reversible nonlocal pai€{) of the collective

force caused by the preequilibrium nucleon exchange is revhereJ_=(Am(R?) ) characterizes an effective moment
lated to the distance dependent collective mds<8, since of inertia, which is a slowly varying function of the energy
this part represents a bilinear form of the collective momen{28,37,38, <R2)E:((r—RC_m)2>t2, t, is the time when the

PZ

FnI=
4um

J’drﬁ(z—zo)n(r), 9

3 (13

E

I(I+1)h2)
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distance between the centers of mass of two nuclei has tha some cases, like nonspherical nu¢t@9], the action fluc-
value of barrier top position, arid; ,,= <r)t is the position tuations may enhance considerably the fusion cross section

of the center of mass of a dinuclear system. Then we calct@S compared to the average description.
late the total cross section according[ 85| as
Ill. PATH INTEGRALS VERSUS MICROSCOPIC

J E
U(E)NWM—EJ dE'To(E"). (14) EVOLUTION

A. Imaginary time kinetics

To obtain the penetration probability at the energies above In the samples of calculations below we further simplify
the Coulomb barrier we use the Hill-Wheller formulef.  the nuclear many-body problem by employing a semiclassi-
[34) cal treatment for intrinsic degrees of freedom. Within this

treatment, the principal quantity is the Wigner phase-space
To(E)=(1+exp{— muPy v l2hw}) "t (19  distribution functionf(r,p;t) which is related to the one-

body density matrix through the Wigner transfof&1,40
wherePt2 andvt2 refer to the collective momentum and the

velocity v =dR/dt for the dynamics in th& direction(e.qg., f(r ot =(2mh fsf dada. exd —i(q— /%
the beam axiscalculated at time stefy (see above (r.pit)=(2m#) ada, exd —1(q—a,)p/f]
In the energy region below the barrier we employ the

Feynman path-integration technique within the microscopic ><<q|;,(t)|ql>5( r_q+q1). (18)
treatment. For a given path connecting the entrance and exit 2
channels of a fusion reaction the probability for a sub-barrier
process is obtained from the equations The expectation value of an observablg,p) is represented
as
To(E)=(1+exp2uS/h}) 1, Szf |P'|dR!, (16)
<A>=fdr dpA(r,p)f(r,p;t). (19

where the actiors corresponds to the self-consistent evolu-
tion along a path in classically forbidden region and is deter{in the Wigner representation the quantum mean-field Liou-
mined by the respective collective coordindé and mo-  ville equation[i.e., Eq.(2) with the RHS put to zerpis given

mentumP'. by
The classically forbidden region for the collective vari-
ables becomes accessible after the so-called Wick transfor- of -
mation,t—i 7, wherer is real. Changing simultaneousl o —Lwf, (20

——iP'in Egs.(7) and(9) we get the following equation of

i I ph : ; Y. .
motion for {R',P} imaginary time evolution: where the quantum Liouville operatbs, has the form

drR' P dP' - 0
dr —m' dr o FAFL (17) Cu=Co+la L=, 21)
From these equations we see that the path leading to a sub-
barrier fusion is associated with the dynamics in an inverted - dadp; . [(p—p1)q
potential barriefi.e., the negative sign of the local collective q'= j h(2mh)® 7 [U(r—a/2)
force; see Eq(10)], while the nonlocal component remains
unchanged. This feature of a fusion path can be also obtained —U(r+g/2)]f(q,ps;t)
going through the standard steps of WKB approximation ap- .
plied to the collective degrees of freedom when accounting (=" 2n <2 ont1
for the variation of the respective inertia parameftéd]. Z 2n+1 2 Un](drdp) f. (22

Such a property results in the lower and thinner effective

barrier for the imaginary time propagatifice., Vi given by We use the following parametrization of the time-dependent
Eq. (1) with the collective force== —F' from Eq.(17)]as  mean fieldU[n] in our calculations:
compared to the associated potential barrier and therefore in

an enhancement of the fusion cross sectei. n(r) n(r)\?”

It is worth noticing that the fluctuation effects are ex- U[n]=a n_)+b ——| +cr3(ny—np)
pected to give rise to an additional enhancement of the pen- 0
etration probability at sub-barrier energies. For instance, as- exp{—|r—rq|/r .}
suming small Gaussian fluctuations of actiaigf around its f dr1< = n(ry)

average value the enhancement factor can be estimated to

— 2
give F o= expl u?8S?/72}, where an overbar denotes an en- e ; )) 23)
semble averaging with respect to the collision events. Thus [r—r4q .
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where n,, n,, and n are the neutron, proton, and total ~ TABLE I. Binding energies per nucleofMeV) and root mean
nuclear densityn,~0.15 fm 3; r _.=#/m_c~1.4 fmandr;  square radiifm).
is the isospin projection operator. The set of parameters fot

the nucleon-nucleon interaction corresponds to the com- 0 “Ca *Ni *Zr “%Pb

pressibilityK =200 MeV of an infinite nuclear matter at nor- ;5 expt. 7.08 855 8.73 871 787
mal density, i.e., a=a+4mngr3v, =—-356MeV, b  \jasov 8.8 877 -918 -9.00  -8.23
=303 MeV, andy=7/6, and the constant relevant for the ;g expt. 2.73 3.49 3.82 4.27 55
symmetry potential c=32 MeV/n,. The value V_~ Viasov 2.75 3.50 3.99 4.50 5.75

—6.43 MeV is chosen in order to reprodue below and

Ref. [27]) the (*0+'%0) fusion barrier derived from the
fusion data[36]. We note that this value is consistent with 1M
the contribution of one-pion exchange to the nucleon- f(r,p;t):_z [T, |T))y=8(r—ri(t)d(p—pi(t)),
nucleon interaction41]. In many cases of a many-body N =1

problem(e.g. systems at high entropgne can assume con- (26)
vergence of the series in E@2) [42,43 and consider quan-

tum correction terms as a perturbation to the classical mo- ori=+otp;/m, op;=—6tdU(ry),

tion, which is governed by the gradient part of the quantum

Liouville operator given by Eq22). Thus the quantal effects i=1,... M=N(Ar+Ap), 27

can be included in a perturbative way by using, e.g., the

quantum test particléQTP) method[23]. This method has \yhereN is an integer large enough to ensure numerical con-
been applied24] to a description of various type perturba- yergency and is associated with a number of TPs per
tive quantum effects in a semiclassical nuclear mean-fielgy,cjeon.

dynamics, like nucleon tunneling phenomena, coherence ef- s the initial conditions we distribute the TPs of the col-
fects, etc. In this paper we focus on the semiclassical featurﬁding nuclei in configuration space according to the
and neglept the quantum perturbation with respect to the inthomas-Fermi density associated with the Woods-Saxon po-
ternal motion. , , _ tential: p(r)~[Eg—Uws(r)]¥% The self-consistent mean
The collective quantum phenomena in certain collectiveg)qg [i.e., Eq.(23)] is determined in each cube of the size
subspace, on the other hand, can be treated by making use Pff3 in configuration space. The TP distribution in momen-
the Feynman path-integral techniqliee., Eq. (17)]. The = gpace is given by the Thomas-Fermi relation regarding
Wick transformation can be incorporated into the mean-fielqne respective mean field. Approximately stationary solutions
transport equations replacing the one-body Liouville operay the viasov equation are found with the parameters of the
tor by Woods-Saxon potential given ii22] (for more details see
also, e.g.,[23,24)). From Table | we see that the present
(iy LoL'=C+in t[2F(z=20)s(2—2Zy),-] (29) procedure reproduces the experimental results for the bind-
ing energies and the root mean squames) radii of spherical
nuclei within the same quality as other methddf [21,22
and references therginWe would like to remark that the
application of the TP method requires an accurate stability of
(i) Lw—Lw=Lw+i-2F's(z=Zp)-d,, (25  the solution especially with respect to the energy conserva-
tion when propagating in time with Eq&6) and(27). Such
a requirement can be achieved by using relatively small time
steps and a large number of TRge, for example, the analy-
sis given in Refs[24,44]). In our experience we find that for
—Ag/Ay forx<O, nuclei of medium mass numbers the proper accuracy of en-
Si(x)= AplAg forx>0, ergy conse_rvatio_mto bt_atter than 1% from the yalue of po-
tential barrier height with respect to the collective degrees of
_ _ . freedom[45]) is obtained at, e.g., the total number of TPs of
ensues, by a consistency with E47) and the condition of 155 44 varied time stepsit~0.2 fmic at relatively large

zero force acting on the c.m. of a system, i.e., vanishingjistances when the Coulomb contribution to the potential
averaged value of an additional term in E¢&4) and (25). barrier [i.e., Eq. (10)] is dominant, andst~0.05 fmk at
small distances where the nuclear part plays a major role.
B. Numerical method By using the TP method it is simple to specify further the

. . . . equation of motion for the collective degrees of freedom.
A straightforward way to realize the semiclassical Concepinserting Eq.(26) into Eq. (19) for expectation valueR and

presented above is provided by using the test-partith P we write the collective coordinate and momentum as
ansat421-24, where one considers the phase-space Wigner

distribution functionf (r,p;t) [see Eq(18)] as a collection of R Na Ng
the _phase-space celE;)) (TP), which behave like classical _ N;12 fil NB_lE i . 28)
particles, P Y Y

in the TDHF formulation or

in the Wigner formulation. Here the form
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Here and below the indices A and B indicate that the respec:
tive sums are taken over the total numbgyandNg of TPS  umewy
belonging to the nuclei A and B, respectively. The variation .5

of this relation at small time intervalt reads 430
{m’ 5t§rpi/m ] &%E:[pi/m ]
8P Na ¥ |-9U(r)] Ng 4 [—aU(r) 93, ;;%;;;iﬁ;;;;;,,,,,;;z, 76,7, ;35:677777,;;,”722’
MNas (9] MNea (0 UIMeV) "f"’v'u’{Wﬂ’@f" ':'(;""lllfl""l,llffszz'
. NA+ NB E - 2 15 \“'!’\‘"‘l[’ -15 \“",/I“ il
NaNg i Pi [ pi) )’ 9 30 \ve ’!/A\‘ "4 30 \‘!"'A\‘Q‘:@/
i i E $F 25 . > 9.

where the sum in the third term of the RHS of this equation
is running over the TPs which are transferred from nucleus A FIG. 1. Snapshots from the mean-field simulation of the fusion

:9 r]luc[?#.s ? ONa—s) agd frton:hB to '?‘ (5NB*Ag' reSpt?]C_ beaction for a head-otfO+ %0 collision at the energy 8 MeV. The
Ively. 1Nis term arises due (o the nucieon exchange trougy, ¢y ceq represent the neutron mean field. The contours iKZhe

the neck region. . plane show the neutron density at 0.015 fim(dotted lines,
The local part of the collective forde' can be calculated 0.03 fm 2 (solid lines, and 0.05 fr 3 (dashed lines The numbers
according to the relation indicate the relative distancghe first number measured in fm
1 M " between the c.rgznz.s. of two nuclei and the tiftliee second number
0 measured in 10°“ s) during the evolution along the fusion path.
Fi~ N Z [=dU(r)Is(zi=2Zo) + n27 =0 corresponds to the outer turning point.
can be expected that similar properties hold at the energies
Xf dr8(z=Zo)[n(r)]*", (30) near the Cpoulomb barrie{ﬂ0,33p,36?39,4]5 For heavier sys-
tems this might not be the case and one possibly needs to
where the constantlly=(37%2)??*:%/5m~50 MeV fn?  introduce additional degrees of freedom as an explicit tun-
corresponds to the static pressure tensor of the Fermi liquideling variable.
at zero temperature, amg denotes a unity vector indicating
the Z direction. On the basis of this equation we choose the Deformation, neck, and nonlocality in nuclear fusion
position of a dividing planeZ, in order to minimize the
potential barrier, Eq(10), along the fusion path. This condi- )
tion corresponds to the minima of the second term on the The snapshots from the sample of calculations oo
RHS of Eq.(30). We note that for the cases considered be-+ O sub-barrier fusion reaction are given in Fig. 1. The

low the mass asymmetry parametgremains small during relati\_/e distan(_:es betweer_1 11.5 and 7.6 fm represent the
the evolution. classically forbidden domain. To access these distances we

It is straightforward now to apply the Feynman method inMake use of the method discu;sed qbove for a s_ub—bqrrier
order to find in a self-consistent manner the path for a chancollision. We switch on the imaginary time propagation with
nel of sub-barrier fusion reaction. We simulate the semiclast€sPect to the collective subspaaee Eqs(17), (25), and
sical imaginary time evolution in collective subspgéeP}  (3D] at the outer classical turing pointR{11.5 fm),
[i.e., the Wick transformation; see Eq&7) and(25)] replac- where the nuclei stop because the relative motion inRhe

energetics

ing the equations of motion, E¢R7), by dirgction is slowed down by Co'ulomb repulsion..The contri—
bution of the Coulomb interaction to the collective force is
sri=étpl/m, 8pl=—6t(a,U(r])+2F's|(z—Z,)), turned on to be attractive after this time step and the centers

(31)  of mass of the nuclei are accelerated towards each other until
the nuclear forces start to grow in importance. Since along

wherep] andr| denote the imaginary time coordinate andthe fusion path in the classically forbidden domain the
momentum ofith TP. We would like to stress that within nuclear forces contribute repulsively to the collective force
such a description also other collective degrees of freedomwith respect to the motion in the direction, the nuclei stop
remain unfrozen along the fusion path. This feature is preagain at the inner classical turning poinR+£7.6 fm).
served due to a self-consistent treatment employed for th8witching from the imaginary time evolution to the real one
evolution in classically forbidden region. It should be noted,at this point, it is possible to analyze the dynamics and the
however, that some specific cases may require in general groperties of the evaporative residue. In Fig. 1 one sees that
explicit consideration of the tunneling in a direction of someduring the evolution in classically forbidden regire., the
additional collective degrees of freedom other tfRaandP  imaginary time evolutioh light nuclei overlap negligibly
(cf. [14)]), for instance, the neck region and mass asymmetryeven in the vicinity of inner turning point, displaying thereby
The previous studie&f. [20,21]) have shown, indeed, that an applicability of models based on the picture of nuclear
the collective degrees of freedomandP adopted here are proximity energy(cf. [47,48)). Within such a picture the fu-
sufficient to describe the fusion dynamics above the barriesion barrier is given as contributions of the Coulomb repul-
especially for light and medium nearly symmetric systems. Itsion and the attractive nuclear interaction between the
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FIG. 2. The same as Fig. 1 for Ni+Ni collision at the FIG. 3. The phase-space diagrdia upper part of the left
energy 93 MeVv. panel for the collective variable$R,P} and the valueg, [I=1,

(b) upper part of the right panel=2, (d) bottom part of the right
nuclear surfaces which is related to the long-range compgpanel; and =3, (c) bottom part of the left pangtorresponding to
nent of nuclear forces. Since the effects of nuclear polarizaa head-orP®Ni+ 5Ni collision at the beam energies 90 Me¥olid
tion and deformation as well as nonlocality in sub-barrierline), 93 MeV (dotted ling, and 145 MeV(dashed ling In the
fusion of a light system are small, the long-range componentases of 90 MeV and 93 MeV plotted is the collective momenum
of the nuclear interaction can be revealed from the fusiorthat is multiplied by a factor of 3.
data(see Fig. 4 and discussion thergin

In Fig. 2 we show the snapshots from the simulations fordipole mode. The low-frequency octupole degree of freedom
the sub-barrier fusion ofNi+ °®Ni) system. In contrastto a [see Fig. &)] is released to a large amplitude especially at
light system, for such nuclei of medium mass numbers th&nergies near to the barrier. Since the translational motion of
formation of a neck can be considered as the predominarituclei is very slow in such a case, this degree of freedom has
mechanism leading to the creation of a united residue duringufficient time to be excited. The progressive growth of oc-
the imaginary time evolution. tupole deformation along the fusion path is related to the

As it is seen in Figs. 1 and 2 for nuclei of relatively small creation of the nuclear density in the neck region and the
and medium mass numbers the obtained time intefwval hucleon exchange. This mechanism leads to the formation of
corresponding to the noticeable nucleon exchaiige pro- an intermediate dinuclear system during the fusion reaction
nounced nuclear density in the neck regiin good agree- (see also Fig. 2 This stage of the evolution proceeds until
ment with an estimate based on the barrier curvature parantb€ inner turning point and thereafter before the two nuclei
eter(see Sec. )l actually fuse. The intermediate-frequency quadrupole defor-

To analyze the role of nuclear deformation in the nuclearmation componenfsee Fig. &)] shows a change in the
fusion process we consider the behavior of multipole mo-huclear shape at the approaching stage from an oblate con-

ments of colliding nuclei using the quantities figuration at relatively large distances where the repulsive
Coulomb interaction is dominant to a prolate shape at

(f'-P|(F))A+(—1)'<f'~P|(F)>B smaller R when the attractive nuclear interaction becomes

Bi=(21+1) | , (32 noticeable. This feature is also shown by the results of cal-
(Mat(re culations[47] based on the liquid drop model. However, the

dynamical effects smear out a sharp change in the nuclear
for quadrupole (=2) and octupole I(=3) components. ghane transition. The quadrupole deformation displays pro-
Here P, are the Legendre polynomials, aeh, and(-)s  nounced oscillations at sub-barrier energies, resulting
denote an average with respect to the nuclei A and B. Th‘fhereby in an oscillating behavior of the neck size.

dipole moment is characterized by the normalized proton g i pointed out above the long-range component of the

polarization distance, i.e., the quantity nuclear interaction can be extracted from the data on sub-
barrier fusion of light spherical nuclei. Within the parametri-
R,—R (33) zation given by Eq(23) this component is determined by the

P 3<r)A+<r)B’ strength of a long-range one-pion exchange contribution to
the nucleon-nucleon interactiqd1]. Figure 4a) shows the
whereR, is the distance between the centers of masses of thgotential barriers evaluated according to H4O) for a
protons belonging to the nuclei A and B, respectively. head-on t%0+1%0) collision at the fixed valueV,=

The quantitiesB, are shown in Fig. 3 together with the —6.43 MeV in Eq.(23). The cases of an incident energy
{R,P} phase-space diagrams. One sees that at beam energiesow and well above the barrier are displayed to yield very
well above the Coulomb barrier only a high-frequency dipolesimilar interaction barriers, being in a good agreement with
component of the nuclear deformation has sufficient time tdhe one extracted from experimental dg@&]. For nuclei of
be excited. The excitation amplitude of this component ismedium mass numbers the dependence of an amplitude of
however, rather small because of the large stiffness of théhe nuclear deformation on the beam energy gives rise to a
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FIG. 4. The potentials for the fusion reactiof@) Left panel T T T
represents®0+ %0 system: the solid line shows the empirical po- 100 L © [ 100
tential [36], the dashed and dash-dotted lines are the results of the y
Vlasov simulations at the energies 8 MeV and 16 MeV, respec-
tively, and the thin dashed line denotes the Bass parametrization g 10 ¢ 3 10
[49]. (b) Right panel shows the results of the Vlasov simulations for
a 5&Ni + %8N reaction at the energies 90 Me¥olid ling), 93 MeV 2 1|, 4 1
(dash-dotted ling and 145 MeV(dashed ling The thick lines in- § ] %
dicate the potential barriers, while the thin lines represent the effec- g 0.1 b 1 o1 L]
tive barriers. The thin dotted lines give the values of the Coulomb © ¥
interaction between the pointlike charges. ]
0.01 ¢ i 001
variation of the potential barrier with the incident energy. It
is a general feature of the nuclear collision that the neck % 95 100 105 % 95 100 105
formation results in a lowering of the potential barrief. Energy [MeV] Energy [MeV]

[50]). As is seen from Fig. @) such a barrier lowering is the

most significant at beam energies near to the barrier height. FIG. 5. The fusion excitation functions. Pde) represents the
Since at this condition the deformation degrees of freedom O+ '°0 system with the experimental data from Ref7]. Parts
are released at an early stage of the colligiee Fig. 3 the ~ (D)—(d) display the resuits for the isotope paifb) *Ni+ %N (c)
process of neck formation occurs at larger relative distancesNi+*Ni; and (d) ®Ni-+*Ni. The circles show the experimental
as compared to an overbarrier collision. This feature of théesults of Refs[10,51 while the squares are taken from RE52].
excitation of the collective degrees of freedom in nuclear' "€ solid lines denote the results of the Vlasov simulations; the
tunneling contributes to an enhancement of the fusion crosiotted and dashed lines are obtained with the WKB approximation
section and can be thought to represent the semiclassicar 9 _the potential barriers of Fig(B) corresponding to the beam
counterpart of the coupled-channel treatm@ft[5,7]). energies 90 Me\(dotted curvg and 145 MeV(dashed curje

We finally Q|scuss Fhe effects of nonlocahty in puplear barrier collision, the nonlocal effects are more important as
fusion energetics. As is demonstrated in Sec. Il within the

. compared to the overbarrier scattering. With decreasing the
mean-field transport theory these effects can be understo ’ g g

: g llision energy below the barrier the effects of nonlocality
In terms (_)f the preequilibrium nucleon e_xchange _through th(fn the nucleus-nucleus interaction become more pronounced,
neck region. In the cases of overbarrier energies such

. . . ; ziﬂelding an additional enhancement of the fusion cross sec-
effect gives rise to a larger value of the effective barrier, E

(11), as compared to the potential barrieee Fig. 4b)], tion, a property which is generally not included explicitly

. Iy within a coupled-channel treatment.
representing thereby a feature similar to an “extrapush ef- P

fect” (cf. [48] and references therginWhen the beam en-
ergy is very close to the potential barrier height the collective
momentumP approaches zero at the distances corresponding The total fusion cross section versus the beam energy is
to the barrier top. As a consequence, the nonlocal componeagtven in Fig. 5. As we have seen above the maximum of the
of collective force[see Eq(9)] and, respectively, the differ- interaction barrier between relatively light nuclei is located
ence between effective and potential barriers almost vanisat large relative distancksee Figs. 1 and(4)]. Therefore,

at these energies. For instance, for®i-+>®Ni collision at  the nonlocal component of the collective force does not give
the energy 93 MeV the potential and effective barrigms.,  any noticeable contribution. Consequently, a simple barrier
dash-dotted line in Fig.(®)] practically coincide. For a sub- penetration model based on the WKB approximation pro-
barrier fusion process the nonlocal effects make the effectiveides a realistic picture of the sub-barrier fusion for such a
barrier thinner and lower than the potential one. Furthersystem. The height of the potential barrier in this case is
more, since the neck appears at an early stage for the sutletermined by competition between the nuclear surface term

D. Nuclear fusion cross section: The scaling properties
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independent barrier height. The barrier has been obtained
from a fit to experimental data. Presented in Fidp)6s such
a scaling which displays an enhancement for an asymmetric
system when only one of the colliding nuclei contains extra
neutrons. In the Ref52] this property has been attributed to
the coupling of the translational motion ton2exchange
channel. Figure @ presents the results using the barrier
heights obtained from the simulations at collision energy
near to the barrier top. This scaling indicates that an en-
hancement in the fusion excitation function can be consid-
ered as a general feature for the neutron-rich system. These
0.01 properties seem to point out that nonadiabatic effects related
0.96 1.02 106 0.96 1.02 to preequilibrium nucleon flux in the neck region play a sig-
Elvy MVexp nificant role in such an enhancement of the cross section.

100

10

normalized cross section

0.1

FIG. 6. The normalized fusion excitation functions for the iso-
tope pairs®Ni+ %8Ni (solid lines; the circles are the data from Refs.

[10,5T), **Ni+®Ni (dotted lines; the solid diamonds are the data  \we have discussed a unified treatment for the microscopic
from Refs.[10,51]; the open diamonds and triangles are the datagegcription of nuclear fusion phenomena at the beam ener-
from Ref.[52]), and *Ni +*Ni (dashed line; the solid squares are yies ahove as well as below the Coulomb barrier. Within the

Ehe]data from Ref410,51; the open squares are the data from Ref. ¢.o ya\york of this approach the fusion problem is treated by
52]). The fusion cross sections are scaled using the empirical val- . 3 - 6 .
UES Vexpir Re) Given in Ref.[10] [(b), right pane], and the bar- using the self-consistent mean-field evolution of a system

. > 2 . and including the channel of the sub-barrier fusion reaction
rier heightsV, and the valugR®) extracted from the numerical . . T . .
simulations at near to the barrier energ[éa), left panel. The as .a semlclassmgl propagation '!" the CIQSSIC{iIIy forbidden
scaled cross sections are multiplied by the factor&@® (a) and region of a collective §ubspace: Since the t!mg interval of the
1G? (b) for simplicity of presentation. evolution in the cla_lssmally forbidden domain is shown to pe
an order of magnitude less than the nuclear response time
and the Coulomb interaction. The present parametrization ofvith respect to the nucleon capture, the treatment of the
the nuclear interaction yields rather good agreement of théme-reversible nuclear dynamics is justified within this time
calculated cross section and the experimental data shown &tale. The preequilibrium nucleon exchange through the
Fig. 5a). Some discrepancy at low energies is associatetieck region at an approaching stage of the nuclear collision
with the rough approximation of the continuously changingis found to give rise to the nonlocality of the nucleus-nucleus
angular momentum made in E¢l4) because the depen- interaction. These nonlocal effects can be considered in
dence of the transmission coefficient on angular momenturterms of an effective mass for the translational motion,
is relatively sharp for the case of light nuclei. which shows a decrease with decreasing relative distance.
For heavier nuclei the effects of deformation, neck forma- The microscopic simulations indicate that the simple bar-
tion, and nonlocality grow in importance affecting consider-rier penetration model yields realistic picture of nuclear fu-
ably the fusion cross secti¢@8]. From Fig. %b) we see that sion for light spherical nuclei. Therefore, the fusion data pro-
the experimentally observed sub-barrier enhancement can bvide information regarding the barrier properties. This
understood as a barrier lowering property caused by polainformation allows one to obtain the surface component of a
ization and deformation effects. At beam energies above theucleus-nucleus interaction, which we describe in terms of a
barrier height the fusion cross section obtained in the Vlasolong-range one-pion exchange contribution to the nucleon-
simulations is systematically lower than the simple WKB nucleon interaction. The strength of this contribution is ex-
barrier penetration prediction. Such a suppression is due twacted to bevV .~ —6.43 MeV, in good agreement with an
the nonlocality giving rise to the higher effective barrier asestimate of Ref[41].
compared to the potential barrigsee Fig. 4b)]. On the con- For heavier nuclei of medium mass numbers the effects of
trary, the effective barrier is suppressed at the sub-barriemuclear deformation, neck formation, and nucleon exchange
energies. Consequently, in this energy range the fusion croggow in importance, modifying thereby the results of the
section is enhanced due to the nonlocal effects which be/WVKB approximation considerably. We have seen that
come more pronounced with decreasing collision energy. Asuclear deformation and neck formation give rise to a beam
it is seen in Figs. @)-5(d) such a property of nonlocality energy dependence of the potential barrier. As is displayed in
regarding the nonadiabatic features of the dynamics in clag=ig. 4 such a barrier variation shows the same order of mag-
sically forbidden region is essential for a good fit to data. nitude as respective barrier fluctuations obtained within a
An analysis of the scaling properties of the cross sectiorcoupled-channel model, thus representing a semiclassical
(see Fig. 6 for the various isotope pairs allows one to obtainpicture of the coupled-channel property. This feature can be
further information regarding the mechanisms of the fusiorregarded as a predominant mechanism of the nuclear fusion
excitation function enhancement. Such an analysis has be@noss section enhancement at energies in the vicinity of the
already employed, e.g., in Refgl,6,10,52 where the scal- barrier top.
ing has been discussed with respect to fixed energy- An analysis of the scaling properties in the fusion cross

IV. CONCLUSION
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section for different isotope pairs indicates that the fusion Inserting Eq.(Al) into Eq. (A3) we find for the second
excitation function for nuclei containing extra neutrons dis-term of the RHS of Eq(A3),
plays in the low-energy region an enhancement as compared

to the neutron-poor system. This enhancement can be attrib- {erfla(z—Zo)] - nra(z—2o)
uted to nonadiabatic effects in the collective motion due to 2 2 2
I Xexpl —a“(z—2Zgy)<H 2 =
the preequilibrium nucleon exchange through the neck re- A ( o (\/; #)la
gion. (A4)
Therefore, the uncertainty commutation relation corresponds
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APPENDIX: UNCERTAINTY COMMUTATION RELATION =0(7%). (A5)

FOR OPERATORS R AND P In the derivation of Eq(A5) it is taken into account that in a

space of square integrable functions the operator
At Me{erf a(zy— Zg) 112 — 1)a=0. It is worth no-
ticing here that an expectation value of the RHS of &bp)
s(x)=[erf(a-X)|am— 71/ (21), (A1) vanishes since the terr(rAt;tl{EkzlAtoterf[a(zk—ZO)]}aHm)

= 7 represents mass asymmetry operator.

To demonstrate that the operafris Hermitian we con-
sider the difference

To calculate the commutatdrk,P] we represent the
function s(x) defined by Eq(4) as

with the error function erf) = (2/\/7) [ sexp{—u?}du. Since
[Ri,P;]1=0 fori+#j, we have

o Aot . .
(RP1=n 2 Ryl #2) o= axa Proot- | aPanoT oo,
R . (AB)
Using the definitions, Eq.3), of the operator®k andP it is ) ) )
straightforward to obtain the relation whereg(x) andf(x) are square integrable functions imply-
ing that g(x), f(x)|,_+-=0. Making use of Eq(3) and
(i) YR, P1={s(z—Z)}2+ (2~ Zo)S(z2— Zo)S' (2~ Z), integrating by parts in, e.g., the first term of the difference,
(A3) Eqg. (A6), we obtain the Hermitian equality
where a prime denotes the derivative. D=—if[g(x)*s(x)f(x)]ZZ=0. (A7)
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