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Antisymmetric distorted wave impulse approximation calculations of spin transfer cross sections
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A formalism is presented for the calculation of spin transfer cross section for intermediate energy charge
exchangeF(H_)e, f) [and (5,5)] reactions to the continuum. The nuclear structure part of the formalism is based
on the continuum Tamm-Dancoff method and the nuclear reaction part is treated within the distorted wave
impulse approximation. In the nuclear structure part, we thus include particle-hole correlations and continuum
effects on the excited particle. The knockon-exchange effect and the damping of the particle through an
imaginary potential added to the single particle real potential are also taken into account. Results of numerical
calculations are presented for the inclusive cross secti¢fS) and thespin transfer coefficient®,,,(0°) for
forward scattering, for the intermediate enerdki¢,t) and (p,n) reactions ont?C and °°Zr targets leading to
Gamow-Teller resonances in the continuum. It is shown Ehgf{0°) for this case takes a value ef1/3,
regardless of the details of nuclear structure and reaction mechanisms, if the reaction is assumed to proceed as
an orbital angular momentum transfe+=0 process, and that deviations froml/3 come from admixture of
I;=2 components. A simple closed form of the expression is derived which can be used to understand a subtle
dependence of thB,,, values on nuclear structure and effective interaction.

PACS numbsd(s): 24.70+s, 24.10-i, 25.40.Kv, 25.55.Kr

I. INTRODUCTION LAMPF [2-13], using the NTOF facilities. A similar facility
has been recently built at RCNP, Osaka and has started to
The charge-exchange(n) and GHeyt) reactions at in- produce datg13—15. No measurement has been reported

termediate energies have successfully been used to stuglyys far of the zqg,{) reaction; however, a facility for the
spin-isospin excitation modes in nuc[di]l. The most exten-  measurement is now under construction and thus data will be
sive studies have been made of the Gamow-TeGdm reso-  taken in the near futurfl6]. Because of the strong absorp-
nance with quantum numbets=0, s;=1, t,=1, j7=1"  tive nature of the projectile and ejectile involved in the reac-
as observed in 0°g,n) spectra. The spectra at higher scat-tions, the data are expected to reveal different features of the
tering angles ¢=0°) show evidence for spin-flip dipole modes apart from those disclosed by tipen) reaction, and
(=1, st=1, t;=1, j7=07,1",27) and spin-flip quadru- in this sense it is important to study both reactions simulta-
pole (=2, s,=1, t,=1, j{=1",2",3") resonances in the neously.

excitation energy region d&,=5~40 MeV. The resonances  The primary aim of the present paper is to present a for-
are generally broad and strongly overlapping. Therefore, ongwlation of the spin transfer cross secti@nd coefficient

has to decompose the spectra into various multipole compaalculations for the YHe, t) reaction. Such a formulation is
nents in order to determine the strength functions of stategresented in Sec. Il. In formulating the expressions to be
with differentj;. With only inclusive spectra, however, it is calculated, we keep in mind the application of the formalism

often difficult to achieve this separation, particularly for vari- tg the (ﬁ,ﬁ) reaction. For this purpose, we follow closely our
ousj{” components with the sanievalue. previous work[17], in which a formulation was presented
Additional data that are sensitive not only to thezalue  for fully microscopic calculations of the inclusiveHet)

but also to thej;” value are thus needed in order to achieveand (p,n) reaction cross sections including a knockon-
this decomposition. The spifpolarization) transfer cross exchange effect, within the usual framework of the distorted
sections or equivalently the spipolarization) transfer coef- \yave impulse approximatiofDWIA). In the present work,
ficient data are useful for this purpose. These can be exye extend the formulation to handle the spin transfer cross
tracted by measuring the polarization of the outgoing particlesections. A significant improvement is made in this formula-
from the reaction induced by the pOIarized incident beam. Ation, especia”y in the way the continuum effects are taken
large amount of effort has recently been put forth to measurgto account. For this purpose, we incorporate the continuum
such coefficients, particularly tHe,,(6) value at¢=0°, for  Tamm-Dancoff approximation method into the formalism.
the (5,5) reactions. The measurements were made athe Pauli blocking effects on the excited particle are also
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included. In Ref[17], the knockon-exchange effect was cal- o

culated exactly, but in the present study a plane wave ap- 0y=7(1=DyxtDyy=Dyy),

proximation (PWA) is introduced, particularly in dealing

with recoil effects. Further, we ignore, as was done in Ref. o

[17], the spin-orbit force in the distorting potentials. This is 0,=7(1=Dy,—Dyy+D,). (2.1
made since it has been shojr8,19 that the force gives rise 4

almost no effect, particularly, on th2,, value, in which we
are primarily interested. Here they andz axes are chosen to be parallelpipx p, and

In Sec. Ill, we show results of numerical calculations of Pat Po: Pa @ndpj, being the momenta of the incident and

the exclusive cross sectiong0°) and thespin transfer co- ©utgoing particles. The axis is then fixed from thy andz
- R . . e o axes as an axis in the right-handed Cartesian coordinate sys-
eficientsD,,,(0°), of the intermediate energy°He,t) and

- \ 1 ) tem. o; with i=x, y, and z are usually called the spin
(p,n) reactions on'’C and *°Zr targets, leading to GT™L  transfer cross sections.

resonances in the continuum region. The results are com- |y the present formulationg, (a=0, X, y, and2) is

pared with available experimental data. Details of somesgiculated as follows. First of all, use is made of the general

physical effects on th@.“”(oc) valug;, particglarly gffects form of the transition operatoF for the reaction, namely
of thel,=2 component in the transition, are investigated. It ' '

is shown that th® ,,(0°) value for this case takes a value of 3
—1/3, regardless of details of nuclear structure and reaction T= 2 ?a(}a, (2.2
mechanisms, if the reaction is assumed to proceed as an or- a=0

bital angular momentum transfé/=0 process. The devia- . L ~

tions from —1/3 come from the admixture of dp=2 com- whereo,=1, andoy, o, and o, are the Pauli spin op-
ponent. A simple closed form of the expression is derivedgrators for the nucleon in the projectil€He) interacting
which can be used conveniently to understand the results afith another nucleon in the target, whﬁ'el is the operator
the complicated numerical calculations. operating on all other degrees of freedom associated with
these two interacting nucleons. The details of this operator
will be discussed in the next subsection. At this stage, we
only note that the spin transfer coefficidhyf can be given in

The charge exchange reaction process considered in thisrms of'T'a as
paper may be symbolically written ast+A—b+B where
a(b) and A(B) represent, respectively, the projectikgec-
tile) and the targetresidua) nuclei. The notationa, b, A, Tr
andB will also be used to stand collectively for all quantum Dji=
qumbers of the. intrinsi.c degrees of freedom of these par- 2 Tr['T'a'T'Lé(H—E)]
ticles. We restrict our interest to the cases where the spin @
s, (sp) of the projectile(ejectilg is 1/2 (s,=s,=1/2), such (2.3
as GHejt) and (p,n) reactions. We also assume that the , , .
target nucleudA is a doubly closed-shell nucleus. Thus the Where the trace is taken over final nuclear statéss the
spin parityl "A=0" . Hamiltonian, ancE the excitation energy. i

A The next step is to calculate the external operatpas

II. FORMULATION

3
ToTo+ >, (26— 1)?1»?}] S(H— E)]
=1

A. Spin transfer coefficients and spin transfer cross sections pa=(boxt [ Talpaxi), (2.9

In the spin(polarization transfer measurements, the inci- ) () ) )
dent particle is polarized and the spin polarization of theWhere ¢a (¢y) and gz (xp ’) are, respectively, the in-
outgoing particle is measured. From such measurements, offésic and distorted wave functions of the incideatitgo-
first deduces the so-called syjpolarization transfer coeffi-  ing) particlea(b). As remarked in the Introduction, we ig-
cientsD;, which can then be used to decompose the inclusivé&iore the spin-orbit force in generating® andx{ ™. Also,
Ccross sectionso into four component cross sections we ignore theD-state admixture in the projectile intrinsic
09, 0x, 0y, ando,, whereoy is the cross section involv- functions ¢, and ¢, p. defined by Eq(2.4) serves as an
ing no spin transferg=0) while o, oy, ando, are the external operator which produces excitation of the target
cross sections involving the spin transfeg= 1) along the nucleus. Further we define the strength funci&nas
directions of thex, y, andz axes, respectivel{20,21],

Sazlm[_<pa|\l,a>/77]v (25)
g
70=7 (14 Dyt Dyy+ Dy, where
1pay=Pal o), (2.6)
o
gx:Z(1+DXX—Dyy—DZZ), |W,)=Glp,). (2.7
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In Eqg. (2.6), |®g) is the target ground state, whi@= 1/(E ~ % x V=t (%) /). 21
—H-+ie) is the propagator of the final excited nucleys,) Pr(p (X1 Xi) = Yrcey(X) ey (%) 213
is the excited state created by operating vithon |®y) and In order to handle the spin transfer of the projectile ex-

is often referred to as a doorway state. The state is furthaplicitly, we single out the spin part of the projectile density
propagated by the full propagatGrof the system to develop operator. For this purpose, we write the field operator for the
into the final continuum statel’ ,). Finally, the spin transfer projectile, p(x,), as

cross sectionr, can be given in terms of the strength func-
tion S, as

?/fp<x2>=%cicmcmi(rz)sm(zm(zx (2.12

Sa 2.8 where ¢(r), &, and n denote the spatial, spin, and isospin

parts of the single particle wave function, respectively, and

where u, (up) andk, (k,) are, respectively, the reduced ¢; (cl), ¢, (ch), andc, (c!) are the corresponding parts
mass and wave number of the projectitgectile. of the single particle annihilatiofcreation operators. Using

The evaluation of| ¥ ,) is performed by fpllovymg the Eq. (2.12, ;’P(XZiXé) may be expressed as
continuum Tamm-Dancoff methof®2,23, taking into ac-
count Pauli blocking effects on the excited particles. The . R .
latter effects are treated by means of an orthogonalization pp(X2,X0)= 20 Peym,(X2,X2) Teymyy (2.13
method as employed earlier in RE24]. Further, the exter- S2Mz

nal operatorp,, is calculated by following the method de- where
scribed in Ref[17], the details of which will be discussed in

_ dza'a )_ Maty Kal
7el T dEdQy) (27422 ko 2

the following subsections. ;’szmz(XZiXé)
B. Transition operators 1 _
I ’ A%
The transition operator we use in the present study is the 2 2 [1,(r2) 1,(r2)Jod £(2)£(27)" Is,m,
effective interaction of Love and FrandiF) [25] that in- B N
cludes a knockon-exchange contribution. In second quan- ><[77(2)1;(2’)*]tzVZ[cf‘ZCTZ]OO[CTC]t2V2 (2.149

tized form, it is given a$17,26|
and
T:f dxldXZ[vD(XlvX2)PT(leX1)PP(X2!X2) A i~
Os,m,= \/E[C C:lszmz- (2.19

+0E(Xq, %) pr(Xq X)) pp(Xs,X5) 1, 2.9 _ _
00X, Xo) pr(Xa X1 pe(X2,Xo) ] 29 In Egs.(2.14) and(2.15 we have introduced the notation

wherex;=(r;,o;,7;) stands for the spatial, spin, and isospin

coordinates of the two interacting nucleons in the target ( AB 1= CmeiomalimA: - B 21
=1) and the projectilei=2). The primed coordinates are LA3,B3,lim m%wz“l 112Mel M)Ay By (216
those used after the exchange of the nucleons in the target

and projectile has taken place®® in Eq (2.9 denotes the where(---|---) stands for the Clebsch-Gordan coefficient
direct (exchangg part of the effective two-body interaction andEjm=(—1)i+mBj_m (time reversal phageAs is clear,
and can explicitly be written as Ts,m, IS the operator describing the spin transfer of the pro-
jectile with the magnituds, and its projectiorm,. s, takes
vPE(x,%0) =2 ; (2 Skq :q(Q)>VsDt(kE)(r)Pst! the values of 0 and 1.
! K (2.10 Inserting Eq.(2.13 into (2.9), T may be rewritten as

where thek sum is taken ovek=0 (centra) andk=2 (ten- Fo 2 i o5 (217
son terms, whileSy,=1 andS,, is the usual tensor operator. gm, 2MenS2me? ’
P is the projection operator projecting onto the spin-isospin

subspace with quantum numberandt. The corresponding where

radial parts of the effective interaction are denoted by
V2(E)(r). The quantitiespr(x1,x;) and pp(X,,x3) in Eq.
(2.9) are the nonlocal density operators for the target and
projectile systems, respectivelyThe corresponding local
operators ar@(X;,X;) andpp(X,,X,), appearing in the di-
rect term in Eq.(2.9).] These density operators can be ex- -
pressed in terms of the nucleon field creation and annihilaNote thatTs , given by the above equation is simply related

tion operatorsyfp,(x) and g(py(X), as to T, in Eq. (2.2 by

i—szmzzf XmdXZ[UD(XlrXZ)E’T(Xlvxl);’szmz(XZiXZ)

+05(Xg, %) p1(Xe XD poym, (X2 X5)]. (218
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. . H,=T,+U,, (2.29
To= 2 Fasym, Tsmy (2.19 PopeT
52m2 whereT, is the kinetic energy operator att),=V,+iW, is
where a complex one-body potential. '
Using the Hamiltonian of Eq.2.21), we can derive from
Fooo—=1, Fo11=0, Fg1=0, Fg11=0, Eq. (2.7) the following integral equation for the continuum
wave function:
F,00=0, F,..=—12, F,.,=0, F,, =12,
- = "IN P a-t=1h2 [Wa)=Golpa) + GoVpn ), (2.29
Fy,00=0, Fy,llzi/\/i Fy10=0, Fyylflzi/\/z whereG is the unperturbed Green'’s function defined by
Fz00=0, Fz11=0, F;10=1, F;;1=0. (220 s 1 -
0 o—Hotie 229

Further, 8—0:(}00, and the relations betweerfn(,c}y,frz)
and oy, are well known. Equatior(2.2) with (2.19 now  To solve Eqg.(2.25 we first transform the integral equation
defines our transition operatdrfor the reaction. Note, how- into an equivalent integral equati¢@2,23

ever, that details of the target density operaﬁie(xl,xi)
have not yet been given. It will be described later in Sec.

IID. so that

|Aa>:|pa>+vthO|Aa>1 (227)

C. The correlated source function method |V )=Gg|A,). (2.289

The most involved parts of our calculations are those of,\I
the doorway stateép,) and the continuum wave function
|¥,) given by Eqs(2.6) and(2.7), respectively. In this sub-
section, we describe the details of the calculation®f,).
The calculation ofp,) will be discussed in the next subsec-
tion.

For the calculation of¥ ,), use is made of the correlated
source function method previously developed and used b
us, e.g., in Refd.22] and[23]. The method makes use of the
fact that the Hamiltoniamd of the target system is given by

ote that/A ) thus defined in Eq2.28 plays a similar role
as|p,) in Eq.(2.7). We call|A ,) the correlated source func-
tion since it includes the correlations due\gy,.

Equation(2.27) is now solved by first integrating over all
coordinates, except the radial coordinate of paricl this
way the equation is reduced to a set of coupled-channels
(CCs9 equations for the radial wave functions of partigle
¥ order to achieve this we first expand both,) and|p,,) in
terms of the channel wave functions

H:HO+Vph- (2_2]) |[ypq)h]jm>:2mpmh<jpmpjhmh|jm>|yvpjpmp®vhjhmh>!
(2.29

wherey, is the wave function of the single-particle state
nd®, is the hole nucleus wave function of E@.23). Note

whereH, is the single particle Hamiltonian and,, is the
residual particle-holegh) interaction. As remarked before,

we assume that the target is a double magic nucleus wit
i itvl A= 0" Eurth imate the t tt at (the quantum numbgip excludes the quantum number
spin parityl ,7=0 . Furthermore we approximate the larget ¢ i, 5qjq motionp thus represents the total angular mo-

ground state wave function by a single Slate_:r determinant "Pnentumj ., its projectionmy,, and the isospin projection, .
terms of the mdepende_nt partlclg modeI: This means that wey, notationy, ; m (@thhmh), instead ofy, (®p), is used
choose{®,) to be an eigenfunction dfi, instead oft, in the right-ha?lé gideéRHS) of Eq. (2.29. This is done in
Hol®a)=Ea|®,) (EA=0). (2.22 ordgr to show explicitly the dependence' i (Pn) on
(vpipMp) [(vnjnmp)]. The channel expansions [of ,) and
The above approximation neglects the effectd/gf on the  |p.) are then given by
ground state wave function. The effects\4f, are included,

however, in the wave function of the excited states. This IA)= s S Na,pn(r) IYo®nlim )
. a ) yp hljm; /»
different treatment oV, for the ground state and the ex- jtmjph r B
cited states is known as the Tamm-Dancoff approximation.
To proceed we splitl, into Hy=H,+H, whereH,, is the P ph(T)
Hamiltonian of the hole nucleus artd, is the Hamiltonian pa)= 2 2 r |[ypq)h]jtmjt>u (2.30
of the excited particl@. The hole state functiofib,,) is then Jemj, PR
defined by

wherej, andmjt are the total angular momenta transferred in
Hp| @) =Ep|®p), (2.23  the reaction and its projection, respectively. The quantities

No,pn(r) and p, on(r) are the correlated and uncorrelated
whereE, is the hole energy. Finally, the Hamiltonian of the radial source functions, respectively. Note that both source
excited particlep is given by functions depend on the quantum numbﬁmjt. These in-
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dices are not shown explicitly. The sum involved in Eq.

(2.30 is taken over alph pairs.
Inserting the expansions of E(.30 into Eq.(2.27), we
obtain a set of CC equations far, ,(r),

)\“'ph(r):pa,ph(r)+zp’h’J dr’dr”Vthh,p/h,(r,r’)QEJTr:,

(2.3)

X (1 DN (1),

where theph matrix eIementS/Lt (r,r') are defined by

h,p’h’

V:Jth,p/h’(r’r,):rr ,([yp’q)h']it|vph|[ypq)h]jt)-

(2.32

Here the round brackets denote an integration over the chan-
nel variables. Introducing column vectors of dimension 1

X N¢, whereN, is the number oph pairs

Napyhy

)= .. |, (2.33

pa,plhl

b= - |, (2.34

we can write the CC equations in matrix form as

|)\a>:|pa>+VGO|)\a>! (235)
whereV is the interaction matrix
Vpnprnr (1= (1) (2.36

of dimensionN X N, and G, is the diagonal Green’s func-
tion matrix defined by

(2.3

In the last equatiorgg};) is the radial optical model Green’s
function. Note that the operation ¢§ (and)) onto|\,) in
Eqg. (2.35 involves a radial integration in addition to the
matrix multiplication. Further we note that in practical cal-
culations, we replace the simple free Green’s functigrby

(go)ph,p/h':géﬁmph,p'h' :

Gb, which includes the effects of the Pauli blocking due to

the occupied particles. The explicit expressionggrmay be
found in Ref.[24]. Equation(2.35 is the final equation to be
solved. The source functions, ,,(r) can be calculated in a

PHYSICAL REVIEW C 61 044611

and is represented by a column vector

l/’a,ph
)= (2.39
It is then easy to see thég,) can be obtained as
|¢a>:g0|)\a>' (24(»

D. Source functions

The essential ingredients in our basic .35 to be
solved are the source functioms, ,n(r) which have been
introduced in the channel expansion of the doorway state
lp.) [see Eq(2.30]. In the present subsection, we evaluate
Papn(r). Using Eq.(2.30, together with Egs(2.4) and
(2.6), pypn(r) can be given as

Papn(1) =r{[aN(1)aR]; m Poxb | T ol daxi Do),
(2.41)

whereag(r) is the creation operator that creates a nucleon in
the spin-isospin-angular stayg at the radial distancg, and

ay, is the annihilation operator for the single hole staté is

the time reversed state correspondinghtoNote that the
quantum number labéi includes all those numbers neces-
sary for specifying the single hole state, including the radial
guantum number. This is not the case, however, for the par-
ticle statep, which specifies the spin, isospin, and angular
parts of the single particle state as remarked above.
[ag(r)aﬁ]jtmt creates gh state with total angular momen-
tum j, and projectiormjt.

In order to calculate the RHS of E¢.41), we now ex-
presspr(x1,x}) in T, in terms ofal(r) anda,. For this
purpose, i} and i are expanded in terms ¢/(r)} and
{an} as

?14<X1)=§p) yrah(r),

straightforward manner. Since the details of the calculation

have already been describgzR,23, we shall not reproduce
them here.

Once|\,) is obtained, it is easy to calculafd ). In
partial wave expansiof\V ) is given by

|‘I’ >:2 z 'ﬁa,ph(r)

jtm;, ph r

|[ypq)h]jtmjt>, (2.39

Pr(xy) = Eh: Yhun(r)ap, (2.42

whereuy(r) is the radial wave function of the single hole
stateh. Use of the above expansions now leads to

044611-5



B. T. KIM, D. P. KNOBLES, S. A. STOTTS, AND T. UDAGAWA PHYSICAL REVIEW &1 044611

reduced amplitudeé®®) can be obtained by following the

pr(X1,X1) = > (lamy simyljm; ) method presented in RgfL7] for calculatingT®(®.
PR, S1Matvalem, The second remark is that in the present formalism, we
1 1 introduce an approximation in dealing with the recoil effect
X<§Vp§ Vh t1V1> in the exchange ternF, as remarked above. The approxima-
tion may be explained by considering the exchange form
L, 12 |, factor FtElsﬂlk”mlt(r,p) defined by Eq.(15b) of Ref. [17],
X]pth1§1 I, 1/2 j, which is a portion oftE. The well known no-recoilNR)
| . approximation ofFE that neglects completely the recoil ef-
1S fect is

XUR(NDLYp(T)YR(TD T m [EDEDL)* I m _
h plr)YnlTa) Jiym, 1My Fi’gﬁkltmlt(r,p)mf{\'l'gﬂlk“mlt(l’)ﬁ(p),

X)) ] lap)alm . (243

whereY, , are spherical harmonics and the large parenthe- f{\llslllkltmh(r):f dpFEslllkltm|t(r’p)' (2.47
sis denotes the §-symbol. Using Eq(2.43), the evaluation

of pg,pn(r) is now straightforward. In carrying out the cal- In the PWA, the recoil effect is described byracoil) factor
culations, however, we introduce the plane wave approximae~'*a'#2 A possible improvement of the above NR ap-
tion (PWA) in dealing with the recoil effect of the knockon- proximation is then to replacg'R by the following f”" that
exchange process, as will be discussed later. The result of thekes into account the recoil factor within the PWA:
calculation can be written in the following form:

FtEliSZY\llkhmh(l’,P)%ffl\évﬂlk“ml‘(r)é(p),
pa,ph(r): E Favszmz

SoMol¢my

PW _ E —iaky-pla
ftlslllkltm|t(r)_f dthlslllkIlmh(rvP)e HarPs,

X {S,majm; [1;m ko
< 2Ma )t jt|t |t>tlszlllk tys914kl; (2.48)
D E . . .
X [tont syt okim (P F Tones i kim (M1, Here we introduced a parameterin the recoil factor. We
t t

treat it as an adjustable parameter and fit it such that the
(2.44  resultant approximate cross section reproduces the exact
cross sectiow® as closely as possible. It has turned out that

D E H
Wheretphtlslllkhmu(r) andtphtlslllkltmlt(r) are theradial de- a close fit is obtained witlx~1.

pendent reducetransition amplitudes while With such an approximation®® can be given as
jtstrr RPN P
atlslﬁk“_w(slltstl11]tk)tl (tovpllc C]tlvl|ta7/a>- ttDlslllkltmI (r)
(2.45 !
The Racah coefficient/ involved in Eq.(2.45 describes the =(— 1)'1?;1,):31(” f dp pZVPlslk(p)YBHlJtml (r,p),
coupling of various angular momenta, while !
<thb|[CTE]tlyl|taVa> is a projectile isospin matrix element. (2.49

Before writing down the explicit expressions foFP and
TE, two remarks are given here: The first is thaandt® are  tes;1kim, ()
the portions of the direct and exchange DWIA transition am-
pI|tudesTtlsl|lkItmlt anthlSlllk“mI‘ already evaluated in Ref. _ \/EmflE S (SRR,
[17]. In facttP®) is related toTP(® by N Xl
X (N 10N 50| NOYW( A (Nol 113N
TtDlgsllzl)lkItml :Eh Cphj drrzunp(r)tglg!czl)slllkltml (r), (110 OO WA2A2 1AMpA
CP ' X (— 1)1 %I kONO|1, 0 kAT T, W(INIk;141,)

(2.4
v_vhereunp(r) is the_ radial wave function of the single par- X<Im||r0||tmt>f dp PZVtElslk(P)J'lr(r,P)
ticle statenp, n being the radial quantum number. In Ref.
[17], continuum effects were neglected so that the excited E
- . . . Y)\ 1" I.m (r,P), (25@
particle is assumed to occupy a bound single particle state 2llp My

(np). Cyh is the spectroscopic amplitude ofpdn configu-
ration in the final state. Equatiof2.46) indicates that the where
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D(E) D(E) TABLE |. Calculatedo(0°) values in comparison with the ex-
Y”z”{,:'tm“(r’p):J df'thlt(r')d}\zué(”'p), perimental data.
(251 Target @,b) E/a(MeV) Cal. Exp. Ref.
- 2c (p,n) 200 7.5 71 [27]
r — - ’ il ’ ’
Xim, (1 )_f X * (EOXE ()N (7)A€ 300 62 61 [14]
(2.52 (h,t) 200 28 235  [28]
D) 300 21 25 [29]
Xim is the distortion factor, Wh'laszul’)(” p) originates %05, (o.n) 200 a3 29 2]
from the density of the projectile and is given as 300 67 68-1 [13]
(h,t) 200 143 149 [28]
2 -
DE) s \_ ' 300 140 130 [30]
Aoy (P =557 % [(101/m|x,m)
% D(E) /.’ "y, Ill. RESULTS OF NUMERICAL CALCULATIONS
fdx (rzp)szm(M )Ylpm(M)dM’ AND DISCUSSIONS
(2.53 Using the formalism and also the computer code de-
o o scribed above, numerical calculations of the inclusive cross
whereu=cosf#=r'-r andu’'=cos¢'=r’-r;. Note thatr’  section,o(0°), and thespin transfer coefficientD,,(0°),

(relative coordinate between the projectile agd the target \were performed for bothp,n) and @He,t) reactions at in-
and r, are related byr,=r—r’. Further dy(r;p) and cident energies oE,=200 and 300 MeV/nucleon. Specific

dy(rzp) are defined by calculations were made fo’C and °°Zr targets leading to
the GT 1" resonance state. In what follows, we first present
B(ra,r2)=[1,(r2) d1(r2)loo the results foro(0°), together with some details and a dis-
cussion of various aspects of the calculations. Finally, we
= dP(rh ) (= MY, (FH)Ys (5 ’ present the_ results fob,,(0°) values and discuss some
)\22 (222 (= DY (F2)Y,(P) oo characteristic features of the resullts.
(2.59
A. Inclusive cross sections
B(ra,12)=[1,(r2)¢1,(r2) oo Table | presents the calculated cross sections in compari-
son to experimental daf&,13,14,27—-3D The reaction part
=D dE (12, ) (=DM, () Yy.(p) oo of the calculations was carried out using the LF interaction
oo 2l M2t 2l A 00 [25] (210 MeV parameters foE,=200 MeV case and 325

(2.55 MeV parameters for th&,= 300 MeV casgwhich includes
the knockon-exchange contribution. The distorted waves for

where ¢(ry,r,=ro+p) [H(r2.r5)] is the spatial nonlocal the °C target were generated by using the optical potentials

; ot : btained in Ref[31] for the 200 MeV case and in Rgi32]
(local) density of the projectile that was already introduced® .
before in Eq(2.14. The details were presented in RE7] for the 300 MeV case. We ignored, however, both real and

. (E) D(E) imaginary spin orbit terms included in the potentials of Refs.
of the method of the calculations dﬁz anddlelg' [31,32. Such neglect of the spin-orbit part of the potential

We have already developed as described in REf] a  was made for all the calculations performed in this work.
computer codecp1in order to carry out the calculation of Because of this we slightly modified the strength of the
TP®), The code has recently been modified for the calculaimaginary part of the potential; particularly, we reduced the
tion of tP® and Papn(r). The resultantp, ,(r) are then strength by 20% for the 300 MeV case. The potential param-
used as inputs for the continuum TDA calculations. eters for the®’Zr target case were taken from RER3] for

The formalism presented here fd’ﬂ?()e’ f) can be app“ed the 200 MeV case. Those for the 300 MeV were not known
experimentally and thus generated from those of 200 MeV
by taking into account the systematics of the energy depen-
dence of the potential suggested, e.g., by Hamal. [34],

i.e., by reducing the strength of the real potential to 1/3 and
increasing the strength of the imaginary potential by 5%.
, The potentials for the3He,t) reactions were generated by
P(rz,13)— (1), (256 ysing the single folding procedure based on those used for
the (p,n) calculations, except for the case of the 200 MeV
the resultant source functions are reduced to the corresponé°zr(3He t)Nb reaction. In that case, the straightforward

ing source functions for thep(n) reaction. single folding procedure does not yield satisfactory results,

to the (p,n) reaction as well, if a certain limit is taken for the
projectile density. In fact, if we adopt the following limits:

D(ry,rp)—0(ry),
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as demonstrated by Yamagataal.[35]. The simple folding TABLE II. CalculatedD,,(0°) values in comparison with the
procedure introduces too strong an absorption. In fact, in ougxperimental values.
previous study of®°Zr(®Het) reaction at 600 MeV in Ref.

[17] use was made of the single folding procedure, and wd &'9¢t  E (p.n) (PHe,t)
found that the resultanffet) reaction cross sections were (MeV) Cal Exp Ref.  Cal
underestimated by about 48% relative to tpen) cross sec-  1z¢ 200 D=0 _0.33 — 033
tions at 200 MeV. In order to avoid this difficulty, we de- DI=0200TE _( 57 —0.23
gided to reduce the strength of the imaginary potentials for B‘L?o,z ~025 —0.26+0.07 [2] -0.20
He andt by 30% 300 DI:O —-0.33 —-0.33
In the structure part of the calculations, use was made of D|:0“,2noTE 027 _0.24

a residual particle-hole interaction, which is a simple zero- " 02 ' '
, . D!-%2  —-0.23 —0.22+0.02 [13] -0.19

range interaction of the&:-o)(r- 7) type. The strength of

the interaction was adjusted so that the calculated resonanézy 200 DY -033 —0.33
energy reproduces the experimental value. The single par- D!-02M0TE _( 28 -0.21
ticle potentials foip and the hole statie were taken from our D!-02  _030 —0.30£0.06 [2] -0.24
previous studies of Ref$22,36. Finally, we remark that in 300 D=0 _0.33 ~0.33
obtaining the final calculated cross sections, we introduced D!=0200TE _( 2@ ~0.16

. - - nn - :
overall normalization factors of 0.20 and 0.84, respectively, DI-02  _(23 —0.20+0.03 [14] —0.13

for the 12C and °%Zr target cases. The significant reduction of
0.20 is needed for thé*C target case, since our calculation
assumes?C to be aps, closed shell nucleug7]. The nor-
malization constant 0.84 fof°Zr may be ascribed to the
spreading of the GT strength to higher excitation energie
[14]. We note that this introduction of rather artificial overall . X

normalization factors fortunately does not affect g, val- 1€ clazlgglatech:nongOng ¥§1Iues folr:tgese three different cases
ues to be presented in the next subsection: In fact we co®@SDy, ~» Dy, "~ , andD | ~, respectively. The ex-
firmed that the use of the more realistic Cohen-Kurath waveyerimental datd2,13,14 are available for the{,n) reac-
functions[38] for the initial and final states for th&C target  tions for both targets and energies and are included in Table
case leads to a cross section which in fact agrees well with, The data are, however, not available at present for the
the experimental data, and also predicts essentially the sarr@eﬁgy {) reaction. It is seen that the calculated fida),(0°)

D,, value as obtained in the present study. vr';\lues[D"zo‘Z

The cross sections thus calculated are tabulated in Table an (07)] for th? (p.,n) react|oqs fit the. d?‘ta very
- e\NeII for both targets and incident energies. A similar agree-

above choice of parameters, the experimental cross sectio ent has also been reported earl|e'r by Walaisal. [13,14).
e now discuss some of characteristic features of the results.

are fairly well reproduced by the calculations. We note, how-""~ " 120 .

ever, that there are still fairly large uncertainties involved in ~ First of all, we note that th® | (0°) values obtained by

the experimental cross sections; cross sections reported taking into account only thg=0 contribution takes always

other references than those cited thighe references cited in the value of —1/3 (=—0.33), the value previously pre-

Table | are the most recent onedo not necessarily agree, dicted by PWIA result$39,4(. As the present results show,

even within the experimental uncertainties given in the tablethe value remains the same even if distortion is included in
As is well known, there are two orbital angular momen-the calculation. We shall show in what follows that the result

tum transferd,=0 and 2 possible for thg"=1" transition IS a rather general consequence of the assumption that the

and these two contribute incoherently to the cross section. feaction proceeds as a singje=0 process. The result is thus

is remarkable that the contribution from the=2 component  independent of the details of the reaction mechanism and
is almost negligible in thef{,n) cross section, but definitely nuclear structure.

non-negligible in the {He,t) cross section. This enhanced  In order to see this, we first reduce the expressiorbigy
contribution from thel,=2 transition in the {Het) reaction ~ given by Eq.(2.3) to a more usual form of DWIA. This is
was understood as arising from the stronger absorptive néichieved, if one retains only the contribution from one par-
ture of the He,t) reaction compared to thep(n) reaction  ticular final state mvolvgd in the suftrace in Eq. (2.3). The
[17]. As will be discussed later, tHe=2 component plays a resultantD,, may be given a$41]

crucial role in the deviation of th®,,(0°) value from the
—1/3 that is obtained when only the=0 component is
taken into account in the calculation.

both are taken into account but the tensor exchange effect is
eglected, and onl{4=0 is taken into account in the calcu-
ation. For the purpose of later discussions, we shall denote

e
T+ T2 TR

(3.9

nn—

B. D,,n(0°) values
Table Il summarizes the calculat@i,(0°) values. The whereT; is the transition amplitude and is explicitly given as
n .

calculated values are shown for three different cases, whert={®jm #uXp | Ti|Podaxa ). Here®; , describes the fi-
both ;=0 and 2 are taken into accouffull calculation), nal resonance state. Note that in obtaining the above expres-
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sion, use was made of the fact that the final s@peﬂ is an
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Equation (3.5 is exactly the same as that derived before,

unnatural parity state and hence the transition amplififle Pased on a PWIA39,40 and also predicts th®,, values

vanishes.

The transition amplitud@&; can be expressed in terms of a transitions as-1,

more conventional DWIA transition amplitud‘é,lml speci-
t

fied by the transferred orbital angular momeri'qar@t) [see
Eq. (2.46] as

:T Em [(1- 1J'tmjt||tm|t)T|tm|1

- (1ljtmjt||tmlt)Tltmh]1

I -
Ty=ﬁl2 [(L=2jemy [lemy) T,

My,

+(11j,m |1 (M) Ty, 1.

(3.2

t»M

TZZIE (10jtmj[||tmll)Tllm|t-
t

At 6=0°, only the component witm; =0 is nonvanishing.
The expressions foF; are then simplified and their resultant

squares can be expressed as

3

=Ty S (- 2521007,
t

2

|T,|>= (3.3

2 (10j,0[10)Ti 0
t

Inserting the above expression into BE&.1), D,(0°) is
rewritten as

Dnn(0°)

2 2

2|20 (1-1jdll0)Tio +| 2 (10j:0[10)To
t t
(3.9
If one then keeps only the contribution from eithes j,
—1 orl;=j;+1, the above equation is reduced to
Dpa(0°)=— I jo=1+1
nn 2jt+1, Jt t ’
o tl 11 3
——th—+1, Ji=hem 4 (3.5

from which it follows for the GT transition withj,=1 and
;=0 case that

D,n(0°)=—1/3. (3.6

for other spin flip, e.g., I¢j{)=(107), (127), and (23)
—2/5, and—3/7, respectively. Any de-
viation from these values is then ascribed to admixture of
otherl; components. Note that for the Ostate, there exists
only one possiblé,=1. Therefore in this case, th2,,(0°)
value always takes the value efl, indicating that the spin
flip probability is unity.

Let us now turn to DL‘:O’Z (full calculation and

D!1=%2 " TE "hoth including the contributions frorh=2
processes. It is seen that both deviate significantly from the
—1/3 1,=0 value; the absolute magnitudes are smaller by

10-60 % (though the sign remains negatjvdt is also re-
markable that the deviation is much larger for tﬁe_@,f)

reaction than in §,n). Using Eq.(3.4), we now derive a
theoretical expression fdp,,(0°) that includes the contri-
bution from thel (=2 component.

In doing this, use may be made of the fact that the ratio
| T2d/|Tog is much smaller than unity and thd$,/Tog can
be treated as a small parameter. It is easy then to find that up
to the first order inT,¢/Tog, Dpn(0°) is given as

1
Dnn(0+al+;0=0°)=—§+ADnn, (3.7
where
. 2V2 [Ty 2\/_|T20|
AD,,(0 )NT RE{T_OJ 3 |T00| cosdy

To
=0.9 cosd. (3.8

T00|

Here 9 is the phase angle betwe@i, and T,,. Equations
(3.7 and (3.8 tell us indeed that the deviation of the
D,n(0°) value from—1/3 is caused by the=2 component
and thatAD,,(0°) is avery good signature of thg=2
component in the excitation of the GT resonance.

It is worthwhile to remark here that the above results are
valid if one includes the spin-orbit force in the distorting
potentials. As has been shoyt8,19, theD,,(0°) value is
little affected by the spin-orbit force. We may understand the
reason for this in the results obtained above that the value is
essentially determined by the relative value of kfve0 and
2 components of the transition amplitudes, which are ex-
pected to be rather insensitive to the spin-orbit force.

Before proceeding, we note that the dire€h¢) and ex-
change (knockon-exchange(TEO) terms often contribute
comparatively toT,5. We may thus writel 5o as Tog= TEO
+T5,. Further thes@ >, andT5, include contributions com-
ing from the central and tensor parts of the effective interac-
tion. For the later purpose of discussion, we denote here the
contribution from the tensor interaction T, as T15

Sometime ago Wakasat al. [13,14 and others[7]
pointed out that the tensor exchange amplitfrég plays a
crucial role in explaining the observdal,,(0°) values. We
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TABLE Ill. CalculatedAD[=, ADPYCE, andAD,, values.

Target E/a(MeV) (p.n) (3He,t)
ADJ;  ADR/f  AD,,  ADJE  ADR/®  AD,
¢ 200 0.02 0.06 0.08 0.03 0.10 0.13
300 0.04 0.06 0.10 0.05 0.09 0.14
90zr 200 —-0.02 0.05 0.03 —-0.03 0.12 0.09
300 0.03 0.07 0.10 0.03 0.17 0.20

may extract the contributiodDE, from this tensor ex- lead toD,,(0°) values that are notably different from one

nn?

change amplitudd 55 to the totalAD,,(0°) by taking the ~ @nother. In Ref[41], we present a detailed study bo
difference betweerD',;O'z and DInTwOZ noTEin Table II, i.e., values, demonstrating that' thg subtlg dependence on the
as ADTE=D!=02_pl=02 "0 TE Tha contribution from the Nuclear structure and effective interaction re_sult_s in as a con-
rest ofn?he ;r%plitudgg, the direct and central exchange anrcdquénce of a cancellation involved in a rad"’?“ integration of
plitudes, which we shall denote a2 CE(0°), mayalso essgnually a p_roduct of the hole wave function and the ef-
be estimated aADEVrCE:DL‘T‘OZ nOTE_DI”T‘O' To see the fechitwé?r?:rig?lkable feature seen in Table Il is that the
size of the contributions from the tensor exchange and the — . .

direct + central exchange, we summarize in Table Il the2Pnn values for the {He,t) reactions are considerably

extracted AD'E(0°) and AD2/CE(0°) values. We also larger than for the §,n) reaction. This feature may be un-
present the sum, i.e., the total deviatia®,,(0°). Asseen derstood frg)m the fact trlaz the=2 contribution becomes
from Table 1ll, ADJE(0°) explains a large portiofil5— larger in GHe,t) than in (p,n), due to the stronger absorp-
409%) of the total AD,,(0°), butalways contributes less tion involved in the £He t) reaction as already remarked
than 50% for the reactions considered in the present study. lgarlier. A tendency of increase afD,,, values is also seen
our previous study41], we investigated the relative contri- as the incident energy per nucleon increases. This tendency
butions from the direct and exchange processes, particulariypay be understood similarly due to the increasing absorption
the Q dependence. It was observed that the direct contribuwith increasing incident energy, which in turn enhances the
tion depends very strongly on th@ value; it is small for  contribution from the,=2 process.
small Q, but almost linearly increases witQ. Therefore in
the smallQ region, the exchange contribution dominates, but
the situation is reversed in the lar@eregion.

Another remark that we wish to make here is that the V. CONCLUDING REMARKS
deviationsAD] = and ADR."F are positive for most of the o _ ,
cases considered, thus contributing to a reduction of the ab- A formalism is presented for the calculation of the spin
solute magnitude of the resultabt, (0°) value. The posi- transfer cross section, or equivalently the spln_t)rapsfer coef-
tive value implies that the phase differengeof the ampli- ~ ficient, of intermediate energy charge exchantiee(t) and
tudesTq, and T, is less than 90°. The nonvanishing phase(p,n) reactions to the continuum, based on the continuum
difference comes from the complex character of the LF ef-Tamm-Dancoff method. Explicit account is taken of the
fective interaction and the distortion effect. In Rpf1] we  knockon-exchange effect and damping of the particle
have also studied the complex character resulting from thénrough the imaginary part of the complex optical potential
effective interaction and distortion: it was found that the ef-for the excited patrticle.
fective interaction is dominated by its real part, so that effec- Numerical calculations were performed of the exclusive
tive interactions do not result in a large imaginary part, ex-cross section,o(0°), and the spin transfer coefficient,
cept fqr thg tensor exchangg interaction, WhICh is dommate@)nn(oo), for the (5,5) and (3%,{) reactions on*2C and
by its imaginary part. The distortion certainly introduces anooz, targets, leading to the GT *1resonance states. The
imaginary part, but it makes equal contributionsTig and  p  (0°) values calculated by using the parameters that are
Too, so that the effect is cancelled out in the ratio. Thereforeyetermined by fitting the calculated{0°) to experiment are
T20/Too tends to a real number, either positive or negativesond to agree with the experimental data very well. Some of
As seen in Table Ill, botlAD;5(0°) andADR, “5(0°) are  the characteristic features of tie, -values were studied. It
positive, except fon D/ for the 200 MeV %Zr target case  was shown thab,,,(0°) takes a value of 1/3, regardless of
where we find negative values 6f0.02 and—0.03, respec- the details of nuclear structure and reaction mechanisms, if
tively for both (p,n) and GHe) reactions. The sign is, the reaction is assumed to proceed as an orbital angular mo-
however, reversed at 300 MeV, implying that there is amentum transferl;=0 process and that the deviation,
subtle dependence @D/ >(0°) onsome nuclear structure AD,,(0°), from —1/3 comes from the admixture of=2
and reaction factors. For the reaction factor, Waketsal. = component. A simple closed form of the expression was de-
[13] found a rather subtle sensitivity a‘fDIE(O") on the rived, which clearly and directly shows that the deviation of
effective interaction; the LF interactions at 270 and 325 MeVthe D,,,(0°) value from—1/3 comes from the effect of the
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| =2 component of the transition. The deviatiaiD ,,(0°)
may thus represent a good signature of lthe® component
in the GT transition.

Studies were also made of effects of the knockon-
exchange processes mediated by the tensor component in the

effective interaction om\D,,(0°), and wefound that the
effect generally reduces the absolute magnitud® gf(0°)

PHYSICAL REVIEW C 61 044611

theoretical prediction; however, it is expected that data will

be available in the near futufé6].
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