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A formalism is presented for the calculation of spin transfer cross section for intermediate energy charge

exchange (3HeW, tW) @and (pW ,nW )] reactions to the continuum. The nuclear structure part of the formalism is based
on the continuum Tamm-Dancoff method and the nuclear reaction part is treated within the distorted wave
impulse approximation. In the nuclear structure part, we thus include particle-hole correlations and continuum
effects on the excited particle. The knockon-exchange effect and the damping of the particle through an
imaginary potential added to the single particle real potential are also taken into account. Results of numerical
calculations are presented for the inclusive cross sectionss(0°) and thespin transfer coefficientsDnn(0°) for

forward scattering, for the intermediate energy (3HeW, tW) and (pW ,nW ) reactions on12C and 90Zr targets leading to
Gamow-Teller resonances in the continuum. It is shown thatDnn(0°) for this case takes a value of21/3,
regardless of the details of nuclear structure and reaction mechanisms, if the reaction is assumed to proceed as
an orbital angular momentum transferl t50 process, and that deviations from21/3 come from admixture of
l t52 components. A simple closed form of the expression is derived which can be used to understand a subtle
dependence of theDnn values on nuclear structure and effective interaction.

PACS number~s!: 24.70.1s, 24.10.2i, 25.40.Kv, 25.55.Kr
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I. INTRODUCTION

The charge-exchange (p,n) and (3He,t) reactions at in-
termediate energies have successfully been used to s
spin-isospin excitation modes in nuclei@1#. The most exten-
sive studies have been made of the Gamow-Teller~GT! reso-
nance with quantum numbersl t50, st51, t t51, j t

p511

as observed in 0° (p,n) spectra. The spectra at higher sc
tering angles (u>0°) show evidence for spin-flip dipole
( l t51, st51, t t51, j t

p502,12,22) and spin-flip quadru-
pole (l t52, st51, t t51, j t

p511,21,31) resonances in the
excitation energy region ofEx55;40 MeV. The resonance
are generally broad and strongly overlapping. Therefore,
has to decompose the spectra into various multipole com
nents in order to determine the strength functions of sta
with different j t

p . With only inclusive spectra, however, it i
often difficult to achieve this separation, particularly for va
ous j t

p components with the samel t value.
Additional data that are sensitive not only to thel t value

but also to thej t
p value are thus needed in order to achie

this decomposition. The spin~polarization! transfer cross
sections or equivalently the spin~polarization! transfer coef-
ficient data are useful for this purpose. These can be
tracted by measuring the polarization of the outgoing part
from the reaction induced by the polarized incident beam
large amount of effort has recently been put forth to meas
such coefficients, particularly theDnn(u) value atu50°, for
the (pW ,nW ) reactions. The measurements were made
0556-2813/2000/61~4!/044611~11!/$15.00 61 0446
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LAMPF @2–13#, using the NTOF facilities. A similar facility
has been recently built at RCNP, Osaka and has starte
produce data@13–15#. No measurement has been report

thus far of the (3HeW, tW) reaction; however, a facility for the
measurement is now under construction and thus data wi
taken in the near future@16#. Because of the strong absorp
tive nature of the projectile and ejectile involved in the rea
tions, the data are expected to reveal different features of
modes apart from those disclosed by the (p,n) reaction, and
in this sense it is important to study both reactions simu
neously.

The primary aim of the present paper is to present a
mulation of the spin transfer cross section~and coefficient!

calculations for the (3HeW, tW) reaction. Such a formulation is
presented in Sec. II. In formulating the expressions to
calculated, we keep in mind the application of the formalis

to the (pW ,nW ) reaction. For this purpose, we follow closely o
previous work@17#, in which a formulation was presente
for fully microscopic calculations of the inclusive (3He,t)
and (p,n) reaction cross sections including a knocko
exchange effect, within the usual framework of the distor
wave impulse approximation~DWIA !. In the present work,
we extend the formulation to handle the spin transfer cr
sections. A significant improvement is made in this formu
tion, especially in the way the continuum effects are tak
into account. For this purpose, we incorporate the continu
Tamm-Dancoff approximation method into the formalism
The Pauli blocking effects on the excited particle are a
©2000 The American Physical Society11-1
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included. In Ref.@17#, the knockon-exchange effect was ca
culated exactly, but in the present study a plane wave
proximation ~PWA! is introduced, particularly in dealing
with recoil effects. Further, we ignore, as was done in R
@17#, the spin-orbit force in the distorting potentials. This
made since it has been shown@18,19# that the force gives rise
almost no effect, particularly, on theDnn value, in which we
are primarily interested.

In Sec. III, we show results of numerical calculations
the exclusive cross sectionss(0°) and thespin transfer co-
eficientsDnn(0°), of the intermediate energy (3HeW, tW) and
(pW ,nW ) reactions on12C and 90Zr targets, leading to GT 11

resonances in the continuum region. The results are c
pared with available experimental data. Details of so
physical effects on theDnn(0°) values, particularly effects
of the l t52 component in the transition, are investigated
is shown that theDnn(0°) value for this case takes a value
21/3, regardless of details of nuclear structure and reac
mechanisms, if the reaction is assumed to proceed as a
bital angular momentum transferl t50 process. The devia
tions from21/3 come from the admixture of anl t52 com-
ponent. A simple closed form of the expression is deriv
which can be used conveniently to understand the result
the complicated numerical calculations.

II. FORMULATION

The charge exchange reaction process considered in
paper may be symbolically written asa1A→b1B where
a(b) and A(B) represent, respectively, the projectile~ejec-
tile! and the target~residual! nuclei. The notationsa, b, A,
andB will also be used to stand collectively for all quantu
numbers of the intrinsic degrees of freedom of these p
ticles. We restrict our interest to the cases where the s
sa (sb) of the projectile~ejectile! is 1/2 (sa5sb51/2), such
as (3He,t) and (p,n) reactions. We also assume that t
target nucleusA is a doubly closed-shell nucleus. Thus t
spin parityI A

pA501.

A. Spin transfer coefficients and spin transfer cross sections

In the spin~polarization! transfer measurements, the inc
dent particle is polarized and the spin polarization of
outgoing particle is measured. From such measurements
first deduces the so-called spin~polarization! transfer coeffi-
cientsDii which can then be used to decompose the inclus
cross sectionss into four component cross section
s0 , sx , sy , andsz , wheres0 is the cross section involv
ing no spin transfer (st50) while sx , sy , andsz are the
cross sections involving the spin transfer (st51) along the
directions of thex, y, andz axes, respectively@20,21#,

s05
s

4
~11Dxx1Dyy1Dzz!,

sx5
s

4
~11Dxx2Dyy2Dzz!,
04461
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sy5
s

4
~12Dxx1Dyy2Dzz!,

sz5
s

4
~12Dxx2Dyy1Dzz!. ~2.1!

Here they andz axes are chosen to be parallel topa3pb and
pa1pb , pa and pb being the momenta of the incident an
outgoing particles. Thex axis is then fixed from they andz
axes as an axis in the right-handed Cartesian coordinate
tem. s i with i 5x, y, and z are usually called the spin
transfer cross sections.

In the present formulation,sa (a50, x, y, and z! is
calculated as follows. First of all, use is made of the gene
form of the transition operatorT̂ for the reaction, namely,

T̂5 (
a50

3

T̂aŝa , ~2.2!

where ŝ051, andŝx , ŝy , and ŝz are the Pauli spin op-
erators for the nucleon in the projectile (3He) interacting
with another nucleon in the target, whileT̂a is the operator
operating on all other degrees of freedom associated w
these two interacting nucleons. The details of this opera
will be discussed in the next subsection. At this stage,
only note that the spin transfer coefficientDii can be given in
terms ofT̂a as

Dii 5

TrH F T̂0T̂0
†1(

j 51

3

~2d j ,i21!T̂j T̂ j
†Gd~H2E!J

(
a

Tr@ T̂aT̂a
†d~H2E!#

,

~2.3!

where the trace is taken over final nuclear states,H is the
Hamiltonian, andE the excitation energy.

The next step is to calculate the external operatorr̂a as

r̂a5~fbxb
(2)uT̂aufaxa

(1)!, ~2.4!

where fa (fb) and xa
(1) (xb

(2)) are, respectively, the in
trinsic and distorted wave functions of the incident~outgo-
ing! particle a(b). As remarked in the Introduction, we ig
nore the spin-orbit force in generatingxa

(1) andxb
(2) . Also,

we ignore theD-state admixture in the projectile intrinsi
functionsfa andfb . r̂a defined by Eq.~2.4! serves as an
external operator which produces excitation of the tar
nucleus. Further we define the strength functionSa as

Sa5Im@2^rauCa&/p#, ~2.5!

where

ura&5 r̂auF0&, ~2.6!

uCa&5Gura&. ~2.7!
1-2
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In Eq. ~2.6!, uF0& is the target ground state, whileG51/(E
2H1 i e) is the propagator of the final excited nucleus.ura&
is the excited state created by operating withr̂a on uF0& and
is often referred to as a doorway state. The state is fur
propagated by the full propagatorG of the system to develop
into the final continuum stateuCa&. Finally, the spin transfer
cross sectionsa can be given in terms of the strength fun
tion Sa as

saS [
d2sa

dEbdVb
D5

mamb

~2p\2!2

ka

kb

1

2
Sa , ~2.8!

wherema (mb) and ka (kb) are, respectively, the reduce
mass and wave number of the projectile~ejectile!.

The evaluation ofuCa& is performed by following the
continuum Tamm-Dancoff method@22,23#, taking into ac-
count Pauli blocking effects on the excited particles. T
latter effects are treated by means of an orthogonaliza
method as employed earlier in Ref.@24#. Further, the exter-
nal operatorr̂a is calculated by following the method de
scribed in Ref.@17#, the details of which will be discussed i
the following subsections.

B. Transition operators

The transition operator we use in the present study is
effective interaction of Love and Franey~LF! @25# that in-
cludes a knockon-exchange contribution. In second qu
tized form, it is given as@17,26#

T̂5E dx1dx2@vD~x1 ,x2!r̂T~x1 ,x1!r̂P~x2 ,x2!

1vE~x1 ,x2!r̂T~x1 ,x18!r̂P~x2 ,x28!#, ~2.9!

wherexi[(r i ,s i ,t i) stands for the spatial, spin, and isosp
coordinates of the two interacting nucleons in the targei
51) and the projectile (i 52). The primed coordinates ar
those used after the exchange of the nucleons in the ta
and projectile has taken place.vD(E) in Eq ~2.9! denotes the
direct ~exchange! part of the effective two-body interactio
and can explicitly be written as

vD(E)~x1 ,x2!5(
st

(
k

S (
q

SkqYkq* ~V! DVstk
D(E)~r !Pst ,

~2.10!

where thek sum is taken overk50 ~central! andk52 ~ten-
sor! terms, whileS0051 andS2q is the usual tensor operato
Pst is the projection operator projecting onto the spin-isos
subspace with quantum numberss and t. The corresponding
radial parts of the effective interaction are denoted
Vstk

D(E)(r ). The quantitiesr̂T(x1 ,x18) and r̂P(x2 ,x28) in Eq.
~2.9! are the nonlocal density operators for the target a
projectile systems, respectively.@The corresponding loca
operators arer̂T(x1 ,x1) and r̂P(x2 ,x2), appearing in the di-
rect term in Eq.~2.9!.# These density operators can be e
pressed in terms of the nucleon field creation and annih
tion operators,ĉT(P)

† (x) and ĉT(P)(x), as
04461
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r̂T(P)~xi ,xi8!5ĉT(P)
† ~xi !ĉT(P)~xi8!. ~2.11!

In order to handle the spin transfer of the projectile e
plicitly, we single out the spin part of the projectile densi
operator. For this purpose, we write the field operator for
projectile,ĉP(x2), as

ĉP~x2!5(
imn

cicmcnf i~r2!jm~2!hn~2!, ~2.12!

wheref(r ), j, andh denote the spatial, spin, and isosp
parts of the single particle wave function, respectively, a
ci (ci

†), cm (cm
† ), andcn (cn

†) are the corresponding part
of the single particle annihilation~creation! operators. Using
Eq. ~2.12!, r̂P(x2 ,x28) may be expressed as

r̂P~x2 ,x28!5 (
s2m2

r̂s2m2
~x2 ,x28!ŝs2m2

, ~2.13!

where

r̂s2m2
~x2 ,x28!

5
1

A2
( @f l 2

~r2!f l 2
~r28!#00@j~2!j̃~28!* #s2m2

3@h~2!h̃~28!* # t2n2
@cl 2

† cl̃ 2
#00@c†c̃# t2n2

~2.14!

and

ŝs2m2
[A2@c†c̃#s2m2

. ~2.15!

In Eqs.~2.14! and ~2.15! we have introduced the notation

@Aj 1
B̃j 2

# jm5 (
m1m2

^ j 1m1 j 2m2u jm&Aj 1m1
B̃j 2m2

, ~2.16!

where ^•••u•••& stands for the Clebsch-Gordan coefficie
and B̃jm5(21) j 1mBj 2m ~time reversal phase!. As is clear,
ŝs2m2

is the operator describing the spin transfer of the p

jectile with the magnitudes2 and its projectionm2 . s2 takes
the values of 0 and 1.

Inserting Eq.~2.13! into ~2.9!, T̂ may be rewritten as

T̂5 (
s2m2

T̂s2m2
ŝs2m2

, ~2.17!

where

T̂s2m2
5E dx1dx2@vD~x1 ,x2!r̂T~x1 ,x1!r̂s2m2

~x2 ,x2!

1vE~x1 ,x2!r̂T~x1 ,x18!r̂s2m2
~x2 ,x28!#. ~2.18!

Note thatT̂s2m2
given by the above equation is simply relate

to T̂a in Eq. ~2.2! by
1-3
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T̂a5 (
s2m2

Fa,s2m2
T̂s2m2

, ~2.19!

where

F0,0051, F0,1150, F0,1050, F0,12150,

Fx,0050, Fx,11521/A2, Fx,1050, Fx,12151/A2,

Fy,0050, Fy,115 i /A2, Fy,1050, Fy,1215 i /A2,

Fz,0050, Fz,1150, Fz,1051, Fz,12150. ~2.20!

Further, ŝ05ŝ00, and the relations between (ŝx ,ŝy ,ŝz)
and ŝ1m are well known. Equation~2.2! with ~2.19! now
defines our transition operatorT̂ for the reaction. Note, how
ever, that details of the target density operatorr̂T(x1 ,x18)
have not yet been given. It will be described later in S
II D.

C. The correlated source function method

The most involved parts of our calculations are those
the doorway stateura& and the continuum wave functio
uCa& given by Eqs.~2.6! and~2.7!, respectively. In this sub
section, we describe the details of the calculation ofuCa&.
The calculation ofura& will be discussed in the next subse
tion.

For the calculation ofuCa&, use is made of the correlate
source function method previously developed and used
us, e.g., in Refs.@22# and@23#. The method makes use of th
fact that the HamiltonianH of the target system is given b

H5H01Vph , ~2.21!

whereH0 is the single particle Hamiltonian andVph is the
residual particle-hole (ph) interaction. As remarked before
we assume that the target is a double magic nucleus
spin parityI A

pA501. Furthermore we approximate the targ
ground state wave function by a single Slater determinan
terms of the independent particle model. This means tha
chooseuFA& to be an eigenfunction ofH0 instead ofH,

H0uFA&5EAuFA& ~EA50!. ~2.22!

The above approximation neglects the effects ofVph on the
ground state wave function. The effects ofVph are included,
however, in the wave function of the excited states. T
different treatment ofVph for the ground state and the ex
cited states is known as the Tamm-Dancoff approximati
To proceed we splitH0 into H05Hh1Hp whereHh is the
Hamiltonian of the hole nucleus andHp is the Hamiltonian
of the excited particlep. The hole state functionuFh& is then
defined by

HhuFh&5EhuFh&, ~2.23!

whereEh is the hole energy. Finally, the Hamiltonian of th
excited particlep is given by
04461
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Hp5Tp1Up , ~2.24!

whereTp is the kinetic energy operator andUp5Vp1 iWp is
a complex one-body potential.

Using the Hamiltonian of Eq.~2.21!, we can derive from
Eq. ~2.7! the following integral equation for the continuum
wave function:

uCa&5G0ura&1G0VphuCa&, ~2.25!

whereG0 is the unperturbed Green’s function defined by

G05
1

v2H01 i e
. ~2.26!

To solve Eq.~2.25! we first transform the integral equatio
into an equivalent integral equation@22,23#

uLa&5ura&1VphG0uLa&, ~2.27!

so that

uCa&[G0uLa&. ~2.28!

Note thatuLa& thus defined in Eq.~2.28! plays a similar role
asura& in Eq. ~2.7!. We calluLa& the correlated source func
tion since it includes the correlations due toVph .

Equation~2.27! is now solved by first integrating over a
coordinates, except the radial coordinate of particlep. In this
way the equation is reduced to a set of coupled-chan
~CCs! equations for the radial wave functions of particlep.
In order to achieve this we first expand bothuLa& andura& in
terms of the channel wave functions

u@ypFh# jm&5Smpmh
^ j pmpj hmhu jm&uynpj pmp

Fnhj hmh
&,
~2.29!

whereyp is the wave function of the single-particle statep
andFh is the hole nucleus wave function of Eq.~2.23!. Note
that ~the quantum number! p excludes the quantum numbe
of the radial motion;p thus represents the total angular m
mentumj p , its projectionmp , and the isospin projectionnp .
The notationynpj pmp

(Fnhj hmh
), instead ofyp (Fh), is used

in the right-hand side~RHS! of Eq. ~2.29!. This is done in
order to show explicitly the dependence ofyp (Fh) on
(npj pmp) @(nhj hmh)#. The channel expansions ofuLa& and
ura& are then given by

uLa&5 (
j tmj t

(
ph

la,ph~r !

r
u@ypFh# j tmj t

&,

ura&5 (
j tmj t

(
ph

ra,ph~r !

r
u@ypFh# j tmj t

&, ~2.30!

wherej t andmj t
are the total angular momenta transferred

the reaction and its projection, respectively. The quanti
la,ph(r ) and ra,ph(r ) are the correlated and uncorrelate
radial source functions, respectively. Note that both sou
functions depend on the quantum numbersj tmj t

. These in-
1-4
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dices are not shown explicitly. The sum involved in E
~2.30! is taken over allph pairs.

Inserting the expansions of Eq.~2.30! into Eq. ~2.27!, we
obtain a set of CC equations forla,ph(r ),

la,ph~r !5ra,ph~r !1Sp8h8E dr8dr9V
ph,p8h8

j t ~r ,r 8!gp8h8
(1)

3~r 8,r 9!la,p8h8~r 9!, ~2.31!

where theph matrix elementsV
ph,p8h8

j t (r ,r 8) are defined by

V
ph,p8h8

j t ~r ,r 8!5rr 8~@yp8Fh8# j t
uVphu@ypFh# j t

!.
~2.32!

Here the round brackets denote an integration over the c
nel variables. Introducing column vectors of dimension
3Nc , whereNc is the number ofph pairs

ula&5S la,p1h1

. . .

. . .
D , ~2.33!

ura&5S ra,p1h1

. . .

. . .
D , ~2.34!

we can write the CC equations in matrix form as

ula&5ura&1VG0ula&, ~2.35!

whereV is the interaction matrix

~V!ph,p8h8~r ,r 8!5V
ph,p8h8

j t ~r ,r 8! ~2.36!

of dimensionNc3Nc and G0 is the diagonal Green’s func
tion matrix defined by

~G0!ph,p8h85gph
(1)dph,p8h8 . ~2.37!

In the last equation,gph
(1) is the radial optical model Green’

function. Note that the operation ofG0 ~andV) onto ula& in
Eq. ~2.35! involves a radial integration in addition to th
matrix multiplication. Further we note that in practical ca
culations, we replace the simple free Green’s functionG0 by
G 0

p , which includes the effects of the Pauli blocking due
the occupied particles. The explicit expression forG 0

p may be
found in Ref.@24#. Equation~2.35! is the final equation to be
solved. The source functionsra,ph(r ) can be calculated in a
straightforward manner. Since the details of the calculat
have already been described@22,23#, we shall not reproduce
them here.

Once ula& is obtained, it is easy to calculateuCa&. In
partial wave expansionuCa& is given by

uCa&5 (
j tmj t

(
ph

ca,ph~r !

r
u@ypFh# j tmj t

&, ~2.38!
04461
.
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and is represented by a column vector

uca&5S ca,ph

. . .

. . .
D . ~2.39!

It is then easy to see thatuca& can be obtained as

uca&5G0ula&. ~2.40!

D. Source functions

The essential ingredients in our basic Eq.~2.35! to be
solved are the source functionsra,ph(r ) which have been
introduced in the channel expansion of the doorway s
ura& @see Eq.~2.30!#. In the present subsection, we evalua
ra,ph(r ). Using Eq. ~2.30!, together with Eqs.~2.4! and
~2.6!, ra,ph(r ) can be given as

ra,ph~r !5r ^@ap
†~r !ah̃# j tmt

fbxb
(2)uT̂aufaxa

(1)F0&,
~2.41!

whereap
†(r ) is the creation operator that creates a nucleon

the spin-isospin-angular stateyp at the radial distancer, and

ah is the annihilation operator for the single hole stateh. h̃ is
the time reversed state corresponding toh. Note that the
quantum number labelh includes all those numbers nece
sary for specifying the single hole state, including the rad
quantum number. This is not the case, however, for the p
ticle statep, which specifies the spin, isospin, and angu
parts of the single particle state as remarked abo
@ap

†(r )ah̃# j tmt
creates aph state with total angular momen

tum j t and projectionmj t
.

In order to calculate the RHS of Eq.~2.41!, we now ex-

pressr̂T(x1 ,x18) in T̂a in terms of ap
†(r ) and ah . For this

purpose,ĉT
† and ĉT are expanded in terms of$ap

†(r )% and
$ah% as

ĉT
†~x1!5(

p
yp* ap

†~r !,

ĉT~x1!5(
h

yhuh~r !ah , ~2.42!

whereuh(r ) is the radial wave function of the single ho
stateh. Use of the above expansions now leads to
1-5
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r̂T~x1 ,x18!5 (
phl1ml 1

s1m1t1n1 j tmj t

^ l 1ml 1
s1m1u j tmj t

&

3K 1

2
np

1

2
nhUt1n1L

3 ĵ p ĵ hl̂ 1ŝ1S l p 1/2 j p

l h 1/2 j h

l 1 s1 j t

D
3uh~r !@Yp~ r̂1!Yh~ r̂18!# l 1ml 1

@j~1!j̃~18!* #s1m1

3@h~1!h̃~18!* # t1n1
@ap

†~r !ah̃# j tmj t
, ~2.43!

whereYl pmp
are spherical harmonics and the large parent

sis denotes the 9-j symbol. Using Eq.~2.43!, the evaluation
of ra,ph(r ) is now straightforward. In carrying out the ca
culations, however, we introduce the plane wave approxi
tion ~PWA! in dealing with the recoil effect of the knockon
exchange process, as will be discussed later. The result o
calculation can be written in the following form:

ra,ph~r !5 (
s2m2l tml t

Fa,s2m2

3^s2m2 j tmj t
u l tml t

& (
t1s1l 1k

a t1s1l 1klt

j tstn1

3@ tpht1s1l 1kltml t

D ~r !1tpht1s1l 1kltml t

E ~r !#,

~2.44!

wheretpht1s1l 1kltml t

D (r ) and tpht1s1l 1kltml t

E (r ) are theradial de-

pendent reducedtransition amplitudes while

a t1s1l 1klt

j tstn1 5W~s1l tstl 1 ; j tk! t̂1
21^tbnbu@c†c̃# t1n1

utana&.

~2.45!

The Racah coefficientW involved in Eq.~2.45! describes the
coupling of various angular momenta, whi

^tbnbu@c†c̃# t1n1
utana& is a projectile isospin matrix element

Before writing down the explicit expressions forTD and
TE, two remarks are given here: The first is thattD andtE are
the portions of the direct and exchange DWIA transition a
plitudesTt1s1l 1kltml t

D andTt1s1l 1kltml t

E already evaluated in Ref

@17#. In fact tD(E) is related toTD(E) by

Tt1s1l 1kltml t

D(E) 5(
ph

CphE dr r 2unp~r !tpht1s1l 1kltml t

D(E) ~r !,

~2.46!

whereunp(r ) is the radial wave function of the single pa
ticle statenp, n being the radial quantum number. In Re
@17#, continuum effects were neglected so that the exc
particle is assumed to occupy a bound single particle s
(np). Cph is the spectroscopic amplitude of aph configu-
ration in the final state. Equation~2.46! indicates that the
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reduced amplitudetD(E) can be obtained by following the
method presented in Ref.@17# for calculatingTD(E).

The second remark is that in the present formalism,
introduce an approximation in dealing with the recoil effe
in the exchange termtE, as remarked above. The approxim
tion may be explained by considering the exchange fo
factor Ft1s1l 1kltml t

E (r ,r) defined by Eq.~15b! of Ref. @17#,

which is a portion oftE. The well known no-recoil~NR!
approximation ofFE that neglects completely the recoil e
fect is

Ft1s1l 1kltml t

E;NR ~r ,r!' f t1s1l 1kltml t

NR ~r !d~r!,

f t1s1l 1kltml t

NR ~r !5E drFt1s1l 1kltml t

E ~r ,r!. ~2.47!

In the PWA, the recoil effect is described by a~recoil! factor
e2 iaka•r/a. A possible improvement of the above NR a
proximation is then to replacef NR by the following f PW that
takes into account the recoil factor within the PWA:

Ft1s1l 1kltml t

E;PW ~r ,r!' f t1s1l 1kltml t

PW ~r !d~r!,

f t1s1l 1kltml t

PW ~r !5E drFt1s1l 1kltml t

E ~r ,r!e2 iaka•r/a.

~2.48!

Here we introduced a parametera in the recoil factor. We
treat it as an adjustable parameter and fit it such that
resultant approximate cross section reproduces the e
cross sectionsE as closely as possible. It has turned out th
a close fit is obtained witha'1.

With such an approximation,tD(E) can be given as

t t1s1l 1kltml t

D ~r !

5~21! l 1 l̂ t
21r l 1

D~r !E dr r2Vt1s1k
D ~r!Ykltl 1 ,l tml t

D ~r ,r!,

~2.49!

t t1s1l 1kltml t

E ~r !

5A4p l̂ 1 l̂ t
21(

l r ll
(

l1l2l p8
~21! l l̂1l̂2

3^l10l20ul0&W~l1l2l 1l ;l l p8!

3~21! l 11k2 l t^k0l0u l r0& k̂l̂ l̂ 1 l̂ rW~ ll l tk; l 1l r !

3^ lml l r0u l tmt&E dr r2Vt1s1k
E ~r! j l r

~r ,r!

3Y
l2l l

p8 ,l tml t

E
~r ,r!, ~2.50!

where
1-6
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Y
l2l l

p8 ,l tml t

D(E)
~r ,r!5E dr8Xl tml t

~r 8!dl2l l
p8

D(E)
~rr 8r!,

~2.51!

Xl tml t
~r 8!5E xb

(2)* ~r 8!xa
(1)~r 8!i l tYl tml t

~ r̂ 8!dV r 8 .

~2.52!

Xlm is the distortion factor, whiled
l2l l

p8
D(E)

(rr 8r) originates

from the density of the projectile and is given as

d
l2l l

p8
D(E)

~rr 8r!5
2p

2l211 (
m

l̂ ^ l0l p8mul2m&

3E dl
D(E)~r 28r!Yl2m~m8!Yl

p8m~m!dm,

~2.53!

wherem[cosu5r̂ 8• r̂ andm8[cosu85r̂ 8• r̂28 . Note thatr 8
~relative coordinate between the projectile and the targe!, r
and r2 are related byr285r2r 8. Further dl

D(r 28r) and
dl

E(r 28r) are defined by

f~r2 ,r2![@f l 2
~r2!f l 2

~r2!#00

5(
l2

dl2

D ~r 28 ,r!~21!l2@Yl2
~ r̂28!Yl2

~ r̂ !#00,

~2.54!

f~r2 ,r28![@f l 2
~r2!f l 2

~r28!#00

5(
l2

dl2

E ~r 28 ,r!~21!l2@Yl2
~ r̂28!Yl2

~ r̂ !#00,

~2.55!

where f(r2 ,r285r21r) @f(r2 ,r2)# is the spatial nonloca
~local! density of the projectile that was already introduc
before in Eq.~2.14!. The details were presented in Ref.@17#

of the method of the calculations ofdl2

D(E) andd
l2l l

p8
D(E)

.

We have already developed as described in Ref.@17# a
computer codeDCP1 in order to carry out the calculation o
TD(E). The code has recently been modified for the calcu
tion of tD(E) and ra,ph(r ). The resultantra,ph(r ) are then
used as inputs for the continuum TDA calculations.

The formalism presented here for (3HeW, tW) can be applied
to the (pW ,nW ) reaction as well, if a certain limit is taken for th
projectile density. In fact, if we adopt the following limits:

f~r2 ,r2!→d~r2!,

f~r2 ,r28!→d~r2!, ~2.56!

the resultant source functions are reduced to the corresp
ing source functions for the (pW ,nW ) reaction.
04461
-
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III. RESULTS OF NUMERICAL CALCULATIONS
AND DISCUSSIONS

Using the formalism and also the computer code
scribed above, numerical calculations of the inclusive cr
section,s(0°), and thespin transfer coefficient,Dnn(0°),
were performed for both (pW ,nW ) and (3HeW, tW) reactions at in-
cident energies ofEa5200 and 300 MeV/nucleon. Specifi
calculations were made for12C and 90Zr targets leading to
the GT 11 resonance state. In what follows, we first prese
the results fors(0°), together with some details and a di
cussion of various aspects of the calculations. Finally,
present the results forDnn(0°) values and discuss som
characteristic features of the results.

A. Inclusive cross sections

Table I presents the calculated cross sections in comp
son to experimental data@2,13,14,27–30#. The reaction part
of the calculations was carried out using the LF interact
@25# ~210 MeV parameters forEa5200 MeV case and 325
MeV parameters for theEa5300 MeV case! which includes
the knockon-exchange contribution. The distorted waves
the 12C target were generated by using the optical potent
obtained in Ref.@31# for the 200 MeV case and in Ref.@32#
for the 300 MeV case. We ignored, however, both real a
imaginary spin orbit terms included in the potentials of Re
@31,32#. Such neglect of the spin-orbit part of the potent
was made for all the calculations performed in this wo
Because of this we slightly modified the strength of t
imaginary part of the potential; particularly, we reduced t
strength by 20% for the 300 MeV case. The potential para
eters for the90Zr target case were taken from Ref.@33# for
the 200 MeV case. Those for the 300 MeV were not kno
experimentally and thus generated from those of 200 M
by taking into account the systematics of the energy dep
dence of the potential suggested, e.g., by Hamaet al. @34#,
i.e., by reducing the strength of the real potential to 1/3 a
increasing the strength of the imaginary potential by 5%.

The potentials for the (3He,t) reactions were generated b
using the single folding procedure based on those used
the (p,n) calculations, except for the case of the 200 Me
90Zr(3He,t)90Nb reaction. In that case, the straightforwa
single folding procedure does not yield satisfactory resu

TABLE I. Calculateds(0°) values in comparison with the ex
perimental data.

Target (a,b) E/a(MeV) Cal. Exp. Ref.

12C (p,n) 200 7.5 761 @27#

300 6.2 661 @14#

(h,t) 200 28 2365 @28#

300 21 25 @29#

90Zr (p,n) 200 83 79 @2#

300 67 6861 @13#

(h,t) 200 143 149 @28#

300 140 130 @30#
1-7
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as demonstrated by Yamagataet al. @35#. The simple folding
procedure introduces too strong an absorption. In fact, in
previous study of90Zr(3He,t) reaction at 600 MeV in Ref.
@17# use was made of the single folding procedure, and
found that the resultant (3He,t) reaction cross sections wer
underestimated by about 48% relative to the (p,n) cross sec-
tions at 200 MeV. In order to avoid this difficulty, we de
cided to reduce the strength of the imaginary potentials
3He andt by 30%.

In the structure part of the calculations, use was made
a residual particle-hole interaction, which is a simple ze
range interaction of the (s•s)(t•t) type. The strength of
the interaction was adjusted so that the calculated reson
energy reproduces the experimental value. The single
ticle potentials forp and the hole stateh were taken from our
previous studies of Refs.@22,36#. Finally, we remark that in
obtaining the final calculated cross sections, we introdu
overall normalization factors of 0.20 and 0.84, respective
for the 12C and90Zr target cases. The significant reduction
0.20 is needed for the12C target case, since our calculatio
assumes12C to be ap3/2 closed shell nucleus@37#. The nor-
malization constant 0.84 for90Zr may be ascribed to the
spreading of the GT strength to higher excitation energ
@14#. We note that this introduction of rather artificial overa
normalization factors fortunately does not affect theDnn val-
ues to be presented in the next subsection: In fact we c
firmed that the use of the more realistic Cohen-Kurath w
functions@38# for the initial and final states for the12C target
case leads to a cross section which in fact agrees well
the experimental data, and also predicts essentially the s
Dnn value as obtained in the present study.

The cross sections thus calculated are tabulated in Ta
together with the experimental data. As is seen, with
above choice of parameters, the experimental cross sec
are fairly well reproduced by the calculations. We note, ho
ever, that there are still fairly large uncertainties involved
the experimental cross sections; cross sections reporte
other references than those cited there~the references cited in
Table I are the most recent ones! do not necessarily agree
even within the experimental uncertainties given in the tab

As is well known, there are two orbital angular mome
tum transfersl t50 and 2 possible for thej t

p511 transition
and these two contribute incoherently to the cross sectio
is remarkable that the contribution from thel t52 component
is almost negligible in the (p,n) cross section, but definitely
non-negligible in the (3He,t) cross section. This enhance
contribution from thel t52 transition in the (3He,t) reaction
was understood as arising from the stronger absorptive
ture of the (3He,t) reaction compared to the (p,n) reaction
@17#. As will be discussed later, thel t52 component plays a
crucial role in the deviation of theDnn(0°) value from the
21/3 that is obtained when only thel t50 component is
taken into account in the calculation.

B. Dnn„0°… values

Table II summarizes the calculatedDnn(0°) values. The
calculated values are shown for three different cases, w
both l t50 and 2 are taken into account~full calculation!,
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both are taken into account but the tensor exchange effe
neglected, and onlyl t50 is taken into account in the calcu
lation. For the purpose of later discussions, we shall den
the calculatedDnn(0°) values for these three different cas
asDnn

l t50,2, Dnn
l t50,2, no TE, andDnn

l t50 , respectively. The ex-

perimental data@2,13,14# are available for the (pW ,nW ) reac-
tions for both targets and energies and are included in Ta
II. The data are, however, not available at present for
(3HeW, tW) reaction. It is seen that the calculated finalDnn(0°)
values@Dnn

l t50,2(0°)# for the (pW ,nW ) reactions fit the data very
well for both targets and incident energies. A similar agre
ment has also been reported earlier by Wakasaet al. @13,14#.
We now discuss some of characteristic features of the res

First of all, we note that theDnn
l t50(0°) values obtained by

taking into account only thel t50 contribution takes always
the value of21/3 (520.33), the value previously pre
dicted by PWIA results@39,40#. As the present results show
the value remains the same even if distortion is included
the calculation. We shall show in what follows that the res
is a rather general consequence of the assumption tha
reaction proceeds as a singlel t50 process. The result is thu
independent of the details of the reaction mechanism
nuclear structure.

In order to see this, we first reduce the expression forDnn
given by Eq.~2.3! to a more usual form of DWIA. This is
achieved, if one retains only the contribution from one p
ticular final state involved in the sum~trace! in Eq. ~2.3!. The
resultantDnn may be given as@41#

Dnn52
uTzu2

uTxu21uTyu21uTzu2
, ~3.1!

whereTi is the transition amplitude and is explicitly given a
Ti5^F j tmt

fbxb
2uT̂i uF0faxa

1&. Here F j tmt
describes the fi-

nal resonance state. Note that in obtaining the above exp

TABLE II. CalculatedDnn(0°) values in comparison with the
experimental values.

Target E (pW ,nW ) (3HeW, tW)
~MeV! Cal Exp Ref. Cal

12C 200 Dnn
l 50 20.33 20.33

Dnn
l 50,2no TE 20.27 20.23
Dnn

l 50,2 20.25 20.2660.07 @2# 20.20
300 Dnn

l 50 20.33 20.33
Dnn

l 50,2no TE 20.27 20.24
Dnn

l 50,2 20.23 20.2260.02 @13# 20.19

90Zr 200 Dnn
l 50 20.33 20.33

Dnn
l 50,2no TE 20.28 20.21
Dnn

l 50,2 20.30 20.3060.06 @2# 20.24
300 Dnn

l 50 20.33 20.33
Dnn

l 50,2no TE 20.26 20.16
Dnn

l 50,2 20.23 20.2060.03 @14# 20.13
1-8



a

nt

re,

of

the
by

tio

t up

e

are
g

the
e is

ex-

ac-
the

ANTISYMMETRIC DISTORTED WAVE IMPULSE . . . PHYSICAL REVIEW C 61 044611
sion, use was made of the fact that the final stateF j tmt
is an

unnatural parity state and hence the transition amplitudeT0
vanishes.

The transition amplitudeTi can be expressed in terms of
more conventional DWIA transition amplitudeTl tml t

speci-

fied by the transferred orbital angular momenta (l t ,ml t
) @see

Eq. ~2.46!# as

Tx5
1

A2
(

l t ,ml t

@~121 j tmj t
u l tml t

!Tl tml t

2~11j tmj t
u l tml t

!Tl tml t
#,

Ty5
2 i

A2
(

l t ,ml t

@~121 j tmj t
u l tml t

!Tl tml t

1~11j tmj t
u l tml t

!Tl tml t
#,

Tz5 (
l t ,ml t

~10j tmj t
u l tml t

!Tl tml t
. ~3.2!

At u50°, only the component withml t
50 is nonvanishing.

The expressions forTi are then simplified and their resulta
squares can be expressed as

uTxu25uTyu25U(
l t

~121 j t1u l t0!Tl t0Uu2,

uTzu25U(
l t

~10j t0u l t0!Tl t0U2

. ~3.3!

Inserting the above expression into Eq.~3.1!, Dnn(0°) is
rewritten as

Dnn~0°!

52

U(
l t

~10j t0u l t0!Tl t0U2

2U(
l t

~121 j t1u l t0!Tl t0U2

1U(
l t

~10j t0u l t0!Tl t0U2 .

~3.4!

If one then keeps only the contribution from eitherl t5 j t
21 or l t5 j t11, the above equation is reduced to

Dnn~0°!52
j t

2 j t11
, j t5 l t11,

52
j t11

2 j t11
, j t5 l t21, ~3.5!

from which it follows for the GT transition withj t51 and
l t50 case that

Dnn~0°!521/3. ~3.6!
04461
Equation ~3.5! is exactly the same as that derived befo
based on a PWIA@39,40# and also predicts theDnn values
for other spin flip, e.g., (l t j t

p)5(102), (122), and (231)
transitions as21, 22/5, and23/7, respectively. Any de-
viation from these values is then ascribed to admixture
other l t components. Note that for the 02 state, there exists
only one possiblel t51. Therefore in this case, theDnn(0°)
value always takes the value of21, indicating that the spin
flip probability is unity.

Let us now turn to Dnn
l t50,2

~full calculation! and

Dnn
l t50,2 no TE, both including the contributions froml t52

processes. It is seen that both deviate significantly from
21/3 l t50 value; the absolute magnitudes are smaller
10–60 %~though the sign remains negative!. It is also re-
markable that the deviation is much larger for the (3HeW, tW)
reaction than in (pW ,nW ). Using Eq. ~3.4!, we now derive a
theoretical expression forDnn(0°) that includes the contri-
bution from thel t52 component.

In doing this, use may be made of the fact that the ra
uT20u/uT00u is much smaller than unity and thusT20/T00 can
be treated as a small parameter. It is easy then to find tha
to the first order inT20/T00, Dnn(0°) is given as

Dnn~01→11;u50o!52
1

3
1DDnn , ~3.7!

where

DDnn~0°!'
2A2

3
ReFT20

T00
G5

2A2

3

uT20u
uT00u

cosq

50.94
uT20u
uT00u

cosq. ~3.8!

Here q is the phase angle betweenT00 and T20. Equations
~3.7! and ~3.8! tell us indeed that the deviation of th
Dnn(0°) value from21/3 is caused by thel t52 component
and thatDDnn(0°) is a very good signature of thel t52
component in the excitation of the GT resonance.

It is worthwhile to remark here that the above results
valid if one includes the spin-orbit force in the distortin
potentials. As has been shown@18,19#, theDnn(0°) value is
little affected by the spin-orbit force. We may understand
reason for this in the results obtained above that the valu
essentially determined by the relative value of thel t50 and
2 components of the transition amplitudes, which are
pected to be rather insensitive to the spin-orbit force.

Before proceeding, we note that the direct (T20
D ) and ex-

change ~knockon-exchange! (T20
E ) terms often contribute

comparatively toT20. We may thus writeT20 as T205T20
D

1T20
E . Further theseT20

D andT20
E include contributions com-

ing from the central and tensor parts of the effective inter
tion. For the later purpose of discussion, we denote here
contribution from the tensor interaction toT20

E asT20
TE .

Sometime ago Wakasaet al. @13,14# and others @7#
pointed out that the tensor exchange amplitudeT20

TE plays a
crucial role in explaining the observedDnn(0°) values. We
1-9
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TABLE III. CalculatedDDnn
TE , DDnn

D1CE, andDDnn values.

Target E/a~MeV! (pW ,nW ) (3HeW, tW)
DDnn

TE DDnn
D1CE DDnn DDnn

TE DDnn
D1CE DDnn

12C 200 0.02 0.06 0.08 0.03 0.10 0.13
300 0.04 0.06 0.10 0.05 0.09 0.14

90Zr 200 20.02 0.05 0.03 20.03 0.12 0.09
300 0.03 0.07 0.10 0.03 0.17 0.20
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may extract the contributionDDnn
TE , from this tensor ex-

change amplitudeT20
TE to the totalDDnn(0°) by taking the

difference betweenDnn
l 50,2 and Dnn

l 50,2 no TE in Table II, i.e.,
as DDnn

TE5Dnn
l 50,22Dnn

l 50,2 no TE. The contribution from the
rest of the amplitudes, the direct and central exchange
plitudes, which we shall denote asDDnn

D1CE(0°), mayalso
be estimated asDDnn

D1CE5Dnn
l 50,2 no TE2Dnn

l 50 . To see the
size of the contributions from the tensor exchange and
direct 1 central exchange, we summarize in Table III t
extracted DDnn

TE(0°) and DDnn
D1CE(0°) values. We also

present the sum, i.e., the total deviationDDnn(0°). As seen
from Table III, DDnn

TE(0°) explains a large portion~15–
40 %! of the total DDnn(0°), but always contributes les
than 50% for the reactions considered in the present stud
our previous study@41#, we investigated the relative contr
butions from the direct and exchange processes, particu
the Q dependence. It was observed that the direct contr
tion depends very strongly on theQ value; it is small for
small Q, but almost linearly increases withQ. Therefore in
the smallQ region, the exchange contribution dominates,
the situation is reversed in the largeQ region.

Another remark that we wish to make here is that
deviationsDDnn

TE and DDnn
D1CE are positive for most of the

cases considered, thus contributing to a reduction of the
solute magnitude of the resultantDnn(0°) value. The posi-
tive value implies that the phase differenceq of the ampli-
tudesT00 andT20 is less than 90°. The nonvanishing pha
difference comes from the complex character of the LF
fective interaction and the distortion effect. In Ref.@41# we
have also studied the complex character resulting from
effective interaction and distortion: it was found that the
fective interaction is dominated by its real part, so that eff
tive interactions do not result in a large imaginary part, e
cept for the tensor exchange interaction, which is domina
by its imaginary part. The distortion certainly introduces
imaginary part, but it makes equal contributions toT00 and
T20, so that the effect is cancelled out in the ratio. Therefo
T20/T00 tends to a real number, either positive or negati
As seen in Table III, bothDDnn

TE(0°) andDDnn
D1CE(0°) are

positive, except forDDnn
TE for the 200 MeV 90Zr target case

where we find negative values of20.02 and20.03, respec-
tively for both (p,n) and (3He,t) reactions. The sign is
however, reversed at 300 MeV, implying that there is
subtle dependence ofDDnn

TE(0°) on some nuclear structur
and reaction factors. For the reaction factor, Wakasaet al.
@13# found a rather subtle sensitivity ofDDnn

TE(0°) on the
effective interaction; the LF interactions at 270 and 325 M
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lead toDnn(0°) values that are notably different from on
another. In Ref.@41#, we present a detailed study ofT20

TE

values, demonstrating that the subtle dependence on
nuclear structure and effective interaction results in as a c
sequence of a cancellation involved in a radial integration
essentially a product of the hole wave function and the
fective interaction.

Another remarkable feature seen in Table II is that
DDnn values for the (3HeW,t) reactions are considerabl
larger than for the (pW ,nW ) reaction. This feature may be un
derstood from the fact that thel t52 contribution becomes
larger in (3HeW,t) than in (pW ,nW ), due to the stronger absorp
tion involved in the (3HeW,t) reaction as already remarke
earlier. A tendency of increase ofDDnn values is also seen
as the incident energy per nucleon increases. This tende
may be understood similarly due to the increasing absorp
with increasing incident energy, which in turn enhances
contribution from thel t52 process.

IV. CONCLUDING REMARKS

A formalism is presented for the calculation of the sp
transfer cross section, or equivalently the spin transfer co
ficient, of intermediate energy charge exchange (3HeW, tW) and
(pW ,nW ) reactions to the continuum, based on the continu
Tamm-Dancoff method. Explicit account is taken of th
knockon-exchange effect and damping of the parti
through the imaginary part of the complex optical potent
for the excited particle.

Numerical calculations were performed of the exclus
cross section,s(0°), and the spin transfer coefficient,
Dnn(0°), for the (pW ,nW ) and (3HeW, tW) reactions on12C and
90Zr targets, leading to the GT 11 resonance states. Th
Dnn(0°) values calculated by using the parameters that
determined by fitting the calculateds(0°) to experiment are
found to agree with the experimental data very well. Some
the characteristic features of theDnn-values were studied. I
was shown thatDnn(0°) takes a value of21/3, regardless of
the details of nuclear structure and reaction mechanism
the reaction is assumed to proceed as an orbital angular
mentum transferl t50 process and that the deviatio
DDnn(0°), from 21/3 comes from the admixture ofl t52
component. A simple closed form of the expression was
rived, which clearly and directly shows that the deviation
the Dnn(0°) value from21/3 comes from the effect of the
1-10
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l 52 component of the transition. The deviationDDnn(0°)
may thus represent a good signature of thel 52 component
in the GT transition.

Studies were also made of effects of the knocko
exchange processes mediated by the tensor component
effective interaction onDDnn(0°), and wefound that the
effect generally reduces the absolute magnitude ofDnn(0°)
by 15–40 %. The studies also revealed that the devia
DDnn(0°) is significantly larger for the (3HeW, tW) reaction
than for the (pW ,nW ) reaction. Unfortunately, experimental da
for (3HeW, tW) are not available at this moment for testing th
s-

n

er
T
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A.

S
od

ka
M

tio

04461
-
the

n

theoretical prediction; however, it is expected that data w
be available in the near future@16#.
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