
PHYSICAL REVIEW C, VOLUME 61, 044607
Coulomb interaction between spherical and deformed nuclei

Noboru Takigawa,* Tamanna Rumin,† and Naoki Ihara‡

Department of Physics, Tohoku University, Sendai 980-8578, Japan
~Received 24 August 1999; published 14 March 2000!

We present analytic expressions of the Coulomb interaction between spherical and deformed nuclei which
are valid for all separation distances. We demonstrate their significant deviations from commonly used formu-
las in the region inside the Coulomb radius, and show that they remove various shortcomings of the conven-
tional formulas.

PACS number~s!: 25.70.Jj, 21.60.Ev, 24.10.Eq, 23.20.Js
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I. INTRODUCTION

The Coulomb interaction between two extended object
a fundamental quantity in many problems of physics. O
example is a heavy-ion collision, where the standard pro
dure is to approximate the Coulomb interaction between
projectile and target nuclei by simply replacing the targ
radius by the sum of the projectile and target radii or by
so-called Coulomb radius in the formula for the Coulom
interaction between a point charge and an extended ta
nucleus@1#. This approximation works well as long as th
physically relevant region is outside the Coulomb radi
However, one definitely needs to improve the formulas if
region inside the Coulomb radius begins to play an import
role.

In this paper, we present analytic expressions of the C
lomb interaction between a spherical projectile and a
formed target which are valid for any separation distan
between them, and remove various shortcomings in the s
dard formulas. Since the formulas would have general v
ues, here we mainly concentrate on a derivation of the a
lytic expressions and a comparison with commonly us
formulas. The application to actual problems will be repor
in separate papers.

In Sec. II, we explain the basic idea of the method.
gives various components of the Coulomb interaction s
as the bare Coulomb interaction or inelastic scattering fo
factors in the linear or higher-order couplings in terms o
one-dimensional Fourier integral. In Sec. III, we present th
analytic expressions obtained by computer-assisted pe
mance of the Fourier integrals. In Sec. IV, we compare
bare potential and the linear as well as the second-order
pling form factors calculated by our formulas with those
commonly used formulas by taking the reaction of16O with
238U as an example. We summarize the paper in Sec
where we briefly mention some possible systems where
improved formulas will become important.

II. COULOMB INTERACTION IN THE FOURIER-
TRANSFORM REPRESENTATION

Denoting the densities of the projectile and target byrP
andrT , the Coulomb interaction between them is given b
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V~RW ,a!5E drW1E drW2

1

uRW 1rW22rW1u
rP~rW2!rT~rW1!, ~1!

whereRW is the position vector of the center of mass of t
projectile measured from that of the target nucleus and
scribes their relative motion.a represents the ensemble
intrinsic coordinates, which are implicit inrP andrT . They
are the deformation parameters in the collective model wh
we adopt in the following. The key idea is to express t
same quantity by the following Fourier transform represe
tation @2,3#:

V~RW ,a!5
1

2p2E0

`

dk

3E dVkE drW1E drW2rP~rW2!rT~rW1!eikW (RW 1rW22rW1).

~2!

For simplicity we assume a uniformly charged object w
a sharp surface for both projectile and target, i.e.,

r i~rW !5r i
(0)Q„Ri~V!2r …, ~3!

whereQ(x) is a step function, and the indexi refers to either
the projectile or the target. The angle-dependent radiu
given in terms of the deformation parameters as

Ri~V!5Ri
(0)F11(

l,m
al,mYl,m* ~u,f!G . ~4!

The normalization condition then gives

r i
(0)5

3Zie

4pRi
3

Ni~a!, ~5!

with

Ni~a!5F11
3

A4p
a00

( i )1
3

4p (
lm

ualm
( i ) u21O@~a ( i )!3#G21

.

~6!

One usually choosesa00 to conserve the volume. In tha
case,Ni is 1. In the following, we consider a spherical pr
jectile and a deformed target. Accordingly, we remove
©2000 The American Physical Society07-1
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index i to distinguish the projectile or target from the defo
mation parameters, and denoteRP

(0) and RT
(0) simply by RP

and RT . The integration overrW2 in Eq. ~2! can be easily
performed, and one obtains

V~RW ,a!532prP
(0)RP

3(
lm

Ylm* ~VR!

3E
0

`

dk jl~kR!
j 1~kRP!

kRP
Mlm

(T)~k!, ~7!

where

Mlm
(T)~k!5E drW j l~kr !Ylm~V r !rT~rW ! ~8!

5
rT

(0)

k3 E dV rYlm~V r !E
0

kR(Vr )

x2 j l~x!dx.

~9!

By expanding with respect to the deformation paramet
one obtains

Mlm
(T)~k!5

rT
(0)

k3 Fdl0A4pE
0

x

x2 j 0~x!dx1x3 j l~x!alm

1x2H x jl~x!1
x2

2

d jl~x!

dx J al1m1
al2m2

3E dVYlmYl1m1

! Yl2m2

! 1•••G , ~10!

where x5kRT . The first, second, and third terms in th
square brackets of Eq.~10! give the bare Coulomb interac
tion, the linear Coulomb coupling, and the second-or
Coulomb coupling, respectively. We thus represent the t
Coulomb interaction as

V~RW ,a!5V(0)~R!1V(1)~RW ,a!1V(2)~RW ,a!1•••,
~11!

where the first three terms are given by

V(0)~R!5ZPZTe2F (0)~R!, ~12!

V(1)~RW ,a!5ZPZTe2(
l,m

Fl
(1)~R!Ylm* ~VR!alm , ~13!

V(2)~RW ,a!5ZPZTe2 (
l1 ,m1 ,l2 ,m2

(
l,m

3Fl
(2)~R!Ylm* ~VR!al1 ,m1

al2 ,m2

3E dVYlmYl1m1

! Yl2m2

! , ~14!

with the form factors defined by
04460
s,

r
al

F (0)~R!5
18

p E
0

`

j 0~kR!
j 1~kRP!

kRP

j 1~kRT!

kRT
dk, ~15!

Fl
(1)~R!5

18

p E
0

`

dk jl~kR!
j 1~kRP!

kRP
j l~kRT!, ~16!

Fl
(2)~R!5

18

p E
0

`

j l~kR!
j 1~kRP!

kRP
H j l~kRT!

1
kRT

2

d jl~kRT!

d~kRT! J dk. ~17!

If we take the rotating frame where thez axis is chosen to be
parallel to the coordinate of the relative motionRW , as is often
done in the studies of heavy ion fusion reactions, and if
assume an axially symmetric quadrupole deformation for
target nucleus, then the angular momentum algebra ca
explicitly carried out, and we obtain the following expre
sions for the linear and the leading second-order Coulo
couplings:

V(1)~R,b2 ,u!5ZPZTe2 (
l52,4,6

Fl
(1)~R!blYl0~u,0!,

~18!

V(2)~R,b2 ,u!5ZPZTe2FFl52
(2) ~R!

A5

7

1

Ap
Y20~u,0!

1Fl54
(2) ~R!

3

7

1

Ap
Y40~u,0!Gb2

2 , ~19!

where b2 is the quadrupole deformation parameter of t
target nucleus, andu the Euler angle to specify the orienta
tion of its axially symmetric axis in the rotating frame.

The important achievement of the Fourier transfo
method is that one needs to perform only one dimensio
integral, whose results we will present in Sec. III. Befo
moving on, we wish to comment that one can easily exte
the same procedure to incorporate the surface diffusenes
the colliding nuclei by smearing the sharp surface in Eq.~3!
with a Yukawa function@2,3#. The change is simply that th
integrand of the Fourier-transform representation of e
form factor ~15!–~17! receives two additional factors corre
sponding to the Fourier transforms of the Yukawa functio
which specify the surface properties of the projectile a
target nuclei.

III. ANALYTIC EXPRESSIONS OF THE BARE COULOMB
POTENTIAL AND COUPLING FORM FACTORS

The Fourier integrals on the right-hand sides of E
~15!–~17! are tedious but still doable analytically by hand
principle, since the integrands are given only by polynomi
and trigonometric functions. However, it is practically a
most impossible to pursue this program to systematically
tain the analytic expressions of both the bare Coulomb in
7-2
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action and coupling form factors, which are valid not only in the most external region but in whole region. Here we re
computer-assisted analytic integration to do so. We assume that the radius of the deformed target is larger than th
spherical projectile. Introducing the parametersRC andRCC by RC5RT1RP andRCC5RT2RP , the results read as follows

~1! For the bare Coulomb interaction,

V(0)~R!5ZPZTe2H 1/R ~R.RC!

@1/R2$~R2RP2RT!4
„R214R~RP1RT!25~RP

2 24RPRT1RT
2!…/~160RRP

3RT
3!%# ~RC.R.RCC!

$25R213~2RP
2 15RT

2!%/~10RT
3! ~RCC.R.0!.

~20!

These formulas agree with those derived in Ref.@4# and used in Ref.@5#.
~2! For the quadrupole Coulomb coupling form factor of linear order,

Fl52
(1) ~R!55

3RT
2/~5R3! ~R.RC!

[3R2/~10RT
3!1$3R5212R3~3RP

2 1RT
2!118R~23RP

4 12RP
2RT

21RT
4!%/~256RP

3RT
3!

13~RP
6 23RP

4RT
213RP

2RT
42RT

6!/~64RRP
3RT

3!

13~23RP
8 120RP

6RT
2290RP

4RT
41128RP

3RT
5260RP

2RT
615RT

8!/~1280R3RP
3RT

3!] ~RC.R.RCC!

3R2/~5RT
3! ~RCC.R.0!.

~21!

~3! For the hexadecapole Coulomb coupling form factor of linear order,

Fl54
(1) ~R!5

¦

RT
4/(3R5) (R.RC)

[R4/~6RT
5!1$7R7218R5~7RP

2 1RT
2!19R3~235RP

4 110RP
2RT

21RT
4!

14R~35RP
6 245RP

4RT
219RP

2RT
41RT

6!%/(2048RP
3RT

5)

19(27RP
8 120RP

6RT
2218RP

4RT
414RP

2RT
61RT

8)/(2048RRP
3RT

5)

19~RP
1025RP

8RT
2110RP

6RT
4210RP

4RT
615RP

2RT
82RT

10!/~1024R3RP
3RT

5!

1(27RP
12154RP

10RT
22189RP

8RT
41420RP

6RT
62945RP

4RT
811024RP

3RT
9

2378RP
2RT

10121RT
12)/~6144R5RP

3RT
5!] (RC.R.RCC)

R4/~3RT
5! (RCC.R.0).

~22!

~4! For the hexacontatetrapole Coulomb coupling form factor of linear order,

Fl56
(1) ~R!5

¦

3RT
6/~13R7! ~R.RC!

[3R6/~26RT
7!1$99R92216R7~11RP

2 1RT
2!184R5~299RP

4 118RP
2RT

21RT
4!

124R3~231RP
6 2189RP

4RT
2121RP

2RT
41RT

6!118R(2231RP
8 1420RP

6RT
2

2210RP
4RT

4120RP
2RT

61RT
8)%/~65536RP

3RT
7!

13~99RP
102315RP

8RT
21350RP

6RT
42150RP

4RT
6115RP

2RT
81RT

10!/~8192RRP
3RT

7!

121~211RP
12154RP

10RT
22105RP

8RT
41100RP

6RT
6245RP

4RT
816RP

2RT
101RT

12!/~16384R3RP
3RT

7!

127~RP
1427RP

12RT
2121RP

10RT
4235RP

8RT
6135RP

6RT
8221RP

4RT
1017RP

2RT
122RT

14!/~8192R5RP
3RT

7!

13(299RP
161936RP

14RT
224004RP

12RT
4110296RP

10RT
6218018RP

8RT
8124024RP

6RT
10

236036RP
4RT

12132768RP
3RT

13210296RP
2RT

141429RT
16)/~851968R7RP

3RT
7!] ~RC.R.RCC!

3R6/~13RT
7! ~RCC.R.0!.

~23!

~5! For the quadrupole Coulomb coupling form factor of second order,
044607-3
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Fl52
(2) ~R!55

6RT
2/~5R3! ~R.RC!

[ 23R2/~20RT
3!2$3R5212R3~3RP

2 2RT
2!218R~3RP

4 12RP
2RT

213RT
4!%/~512RP

3RT
3!

13~2RP
6 23RP

4RT
219RP

2RT
425RT

6!/~128RRP
3RT

3!

13~3RP
8 120RP

6RT
22270RP

4RT
41512RP

3RT
52300RP

2RT
6135RT

8!/~2560R3RP
3RT

3!] ~RC.R.RCC!

23R2/~10RT
3! ~RCC.R.0!.

~24!

~6! For the hexadecapole Coulomb coupling form factor of second order,

Fl54
(2) ~R!5

¦

RT
4/~R5! ~R.RC!

[ 2R4/~4RT
5!2$21R7218R5~21RP

2 1RT
2!29R3~105RP

4 210RP
2RT

21RT
4!

212R~235RP
6 115RP

4RT
213RP

2RT
41RT

6!%/~4096RP
3RT

5!

19~21RP
8 220RP

6RT
2218RP

4RT
4112RP

2RT
615RT

8!/~4096RRP
3RT

5!

19~23RP
1015RP

8RT
2110RP

6RT
4230RP

4RT
6125RP

2RT
827RT

10!/~2048R3RP
3RT

5!

1(7RP
12218RP

10RT
2263RP

8RT
41420RP

6RT
621575RP

4RT
812048RP

3RT
92882RP

2RT
10

163RT
12)/~4096R5RP

3RT
5! ~RC.R.RCC!

2R4/~2RT
5!, ~RCC.R.0!.

~25!
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IV. COMPARISON WITH COMMONLY USED FORMULAS

We now compare our formulas with three commonly us
models, which are given by

~a! model I ~point projectile model!,

V(0)~R!5
ZPZTe2

R
, ~26!

Fl
(1)~R!5

3

2l11

RT
l

Rl11
, ~27!

Fl
(2)~R!5

6

2l11

RT
l

Rl11
, ~28!

~b! model II ~uniform charge model 1!,

V(0)~R!5ZPZTe2H 1/R ~R.RC!

1/~2RC!F32S R

RC
D 2G ~R,RC!,

~29!

Fl
(1)~R!5bl

c̃ 3

~2l11! H RC
l /Rl11 ~R.RC!

Rl/~RC!l11 ~R,RC!,
~30!

with

bl
c̃5

RT
lbl

c

RC
l

, ~31!

and ~c! model III ~uniform charge model 2!,
04460
d V(0)~R!5ZPZTe2H 1/R ~R.RT!

1/~2RT!F32S R

RT
D 2G ~R,RT!,

~32!

Fl
(1)~R!5

3

~2l11! H RT
l/Rl11 ~R.RT!

Rl/~RT!l11 ~R,RT!.
~33!

Model I is used in almost all analyses of heavy-ion fusi
reactions at energies near and below the Coulomb bar
Model II can often be found in textbooks on heavy-ion co
lisions @1#. Models I and II can be too crude concerning t
bare potential. Models II and III have a shortcoming th
each coupling form factor has a cusp at the separation
tance, where the asymptotic formulas are matched to the
mulas in the short-distance region. The derivative of the c
pling form factor is discontinuous at that distance. In writin
Eqs.~30! and ~31!, we have assumed that the target nucle
has an axially symmetric static deformation with the Co
lomb deformation parameterbl

c . Equation~31! is the scaling
condition of the deformation parameter to guarantee the
rect coupling in the asymptotic region.

Figures 1–3 compare the bare Coulomb potential and
linear and quadratic coupling form factorsFl52,4,6

(1) (R) and
Fl52,4

(2) (R) calculated by these formulas and by our improv
formulas. The form factors have been multiplied wi
ZPZTe2 to make the ordinates of all figures have the dime
sion of energy. They have been calculated for the scatte
of 16O with 238U. The Coulomb radius parameter has be
chosen to be 1.06 fm. These figures clearly show the sh
comings of all three commonly used simple models, wh
are solved by our new formulas.
7-4
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The important question is whether the deviations of
conventional models from our improved formulas play so
significant roles in actual problems of physics, e.g., in a
lyzing heavy-ion fusion reactions at energies near and be
the Coulomb barrier. In order to gain some insight into t
question, we again consider the fusion reaction of a sphe
projectile 16O with an axially symmetric deformed targe
238U. It is now well known that the excitation of the ground
state rotational band of238U plays an important role in en
hancing the fusion cross section in this reaction. Instead
performing full coupled-channel calculations to take this
fect into account, one often describes this reaction base
the no-Coriolis and sudden tunneling~i.e., degenerate spec
trum limit! approximations. In this case, the fusion probab
ity for each partial waveJ is given by first calculating the

FIG. 1. Comparison of the bare Coulomb interaction. The so
dotted, dashed, and dot-dashed lines have been calculated bas
our improved formulas, models I through III, respectively.

FIG. 2. Comparison of the linear Coulomb coupling form fac
plotted in the energy scale~see text!. The notation is the same as i
Fig. 1. ~a! Quadrupole coupling.~b! Hexadecapole coupling.~c!
Hexacontatetrapole coupling.
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fusion probabilityPJ(E,u) for a fixed orientation of the tar-
get nucleusu, and then taking the average overu:

PJ~E!5
1

2E0

p

PJ~E,u!sin udu. ~34!

The effective potential for each orientationu is given by

VJ~R,b2 ,u!5VN~R,b2 ,u!1
\2

2mR2
J~J11!

1ZPZTe2@F (0)~R!1b2Fl52
(1) ~R!Y20~u,0!#,

~35!

where VN(R,b2 ,u) is the nuclear potential andm the re-
duced mass between the projectile and the target. Since
aim is not to perform quantitative analyses, but to illustra
under what circumstances our improved formulas show th
power, we took a simple model which considers only qua
rupole deformationb250.289 @6# for 238U and linear cou-
pling. The Gauss integral in Eq.~34! is replaced by the
Jmax12 points Gauss quadrature if the rotational excitat
is truncated atJmax @7#,

,
d on

FIG. 3. Comparison of the second-order Coulomb coupl
form factor plotted in the energy scale. The solid and dotted li
are for our improved formulas and model I.
7-5
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PJ~E!5
1

2 (
i

wi PJ~E,u i !, ~36!

where u i are the angles, where the Legendre polynom
PJmax12(u) becomes zero.

The active angles are the zeros ofP4(cosu),which are
about 30.55° and 70.12°, ifJmax52. In Fig. 4 we show the
effectives-wave potentials for these two angles calculated
our improved formulas~the solid line! and by three conven
tional models~the dotted, dashed, and dot-dashed lines!. We
assumed a Woods-Saxon potential for the nuclear poten
where the radius parameter has been chosen such thaRN

5RN
(0)1RTb2Y20(u,0), with RN

(0)5RP1RT51.06(AP
1/3

1AT
1/3). The sharp decrease of the effective potential at sh

distances for 70° in model I is caused by the unphys
radial dependence of the coupling form factors in this mod
and the fact thatY20(u,0) becomes negative for this angle

We see clear differences among four models. Howe
these differences do not have any physical significance
16O1 238U fusion reactions at low energies, since the dev
tion is localized well inside the barrier region, while the f
sion probability is governed by the barrier property, which
the same for all four calculations. A similar situation w
hold in general for medium weight heavy-ion collisions. Th
is a natural consequence of taking the same values for

FIG. 4. Comparison of the effectives-wave barrier calculated
based on Eq.~35! with our improved formulas and three conve
tional models. The results are shown for two orientations, 30.6°
70.1°. The lower and the upper barriers correspond to the for
and the latter, respectively.
,

J.

. C

04460
l

y

al,

rt
l
l,

r,
or
-

he

nuclear and Coulomb radii. We can, however, think of so
cases where the difference plays an important role, as wil
mentioned below.

V. SUMMARY AND DISCUSSIONS

We derived analytic expressions of the static Coulo
interaction and of the form factors of the Coulomb excitati
in collisions between a spherical projectile and a deform
target, which are valid for any separation distance betw
them. We demonstrated their significant deviations fro
commonly used models in the overlap region. Our new f
mulas solve the cusp and discontinuity problems in the fo
factors of the Coulomb excitation and in their derivatives
conventional models, and thus may be used in much w
problems.

We argued that these deviations will not cause any s
nificant effects on the fusion reactions between two he
nuclei such as the16O1 238U fusion reactions at energie
near and below the Coulomb barrier, which have been v
popular subjects of nuclear physics in the past decades@8#.
However, this conclusion has been drawn by assuming
same values for the nuclear and Coulomb radii. It is th
natural that the deviation of the conventional models fro
our improved formulas takes place well inside the barr
region and does not cause any significant effect. One in
esting system, where our new formulas will show th
power to describe a novel phenomenon, will be the sys
where the Coulomb radius is larger than the nuclear rad
One such example could be heavy-ion collisions induced
unstable neutron-deficient isotopes. Other interesting pr
lems to be studied with our new formulas will be the fusi
as well as elastic and inelastic scatterings between l
heavy ions, where the absorption in the internal region is
so strong. In this case, the differences among four mode
short distances which we discussed in Sec. IV will lead
quite different cross sections from each other. Another in
esting application of our new formulas is the semiclassi
analysis of heavy-ion collisions and the scattering ofa par-
ticles from nuclei, where the analyticity of the Hamiltonia
is crucial@9#. We plan to address ourselves to these proble
in forthcoming papers.
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