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Coulomb interaction between spherical and deformed nuclei
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We present analytic expressions of the Coulomb interaction between spherical and deformed nuclei which
are valid for all separation distances. We demonstrate their significant deviations from commonly used formu-
las in the region inside the Coulomb radius, and show that they remove various shortcomings of the conven-
tional formulas.

PACS numbgs): 25.70.Jj, 21.60.Ev, 24.10.Eq, 23.20.Js

I. INTRODUCTION
V0= [ o, | 0Fs ez pe(on(, 0

The Coulomb interaction between two extended objects is R+1,— 1
a fundamental quantlty in many problems of physics. One
example is a heavy-ion collision, where the standard procewhereR is the position vector of the center of mass of the
dure is to approximate the Coulomb interaction between th@rojectile measured from that of the target nucleus and de-
projectile and target nuclei by simply replacing the targetscribes their relative motiornr represents the ensemble of
radius by the sum of the projectile and target radii or by thentrinsic coordinates, which are implicit ipp andpt. They
so-called Coulomb radius in the formula for the Coulombare the deformation parameters in the collective model which
interaction between a point charge and an extended targele adopt in the following. The key idea is to express the

nucleus[1]. This approximation works well as long as the same quantity by the following Fourier transform represen-
physically relevant region is outside the Coulomb radIUSta“on[z 3:

However, one definitely needs to improve the formulas if the

region inside the Coulomb radius begins to play an important 1
role. V(R a)—— dk

In this paper, we present analytic expressions of the Cou- 27
lomb interaction between a spherical projectile and a de- L
formed target which are valid for any separation distance Xf kof dFlf dropp(ro)pr(ry)eKR r2=r1),
between them, and remove various shortcomings in the stan-
dard formulas. Since the formulas would have general val- )

ues, here we mainly concentrate on a derivation of the ana-
lytic expressions and a comparison with commonly used For simplicity we assume a uniformly charged object with
formulas. The application to actual problems will be reporteda sharp surface for both projectile and target, i.e.,
in separate papers.

In Sec. Il, we explain the basic idea of the method. It pi(N=pPOR;(Q)-T), 3
gives various components of the Coulomb interaction such
as the bare Coulomb interaction or inelastic scattering fornmwhere® (x) is a step function, and the indéxefers to either
factors in the linear or higher-order couplings in terms of athe projectile or the target. The angle-dependent radius is
one-dimensional Fourier integral. In Sec. I, we present theirgiven in terms of the deformation parameters as
analytic expressions obtained by computer-assisted perfor-
mance of the Fourier integrals. In Sec. IV, we compare the
bare potential and the linear as well as the second-order cou- Ri()= Ri(o) 1+% “in,u(H"ﬁ) : 4
pling form factors calculated by our formulas with those by '
commonly used formulas by taking the reaction’® with  The normalization condition then gives
239y as an example. We summarize the paper in Sec. V,
where we briefly mention some possible systems where the 3Ze

. . . 0)_
improved formulas will become important. P|( )=

Ni(a), ®

IIl. COULOMB INTERACTION IN THE FOURIER-

TRANSFORM REPRESENTATION with
-1
Denoting the densities of the projectile and targe 3 3 i ;
9 proj 9oty N (a)=|1+ ol 4_; a2+ O[ (al))3]

andp, the Coulomb interaction between them is given by 4 °
(6)
*Electronic address: takigawa@nucl.phys.tohoku.ac.jp One usually choosegq, to conserve the volume. In that
Electronic address: rumin@nucl.phys.tohoku.ac.jp case,N; is 1. In the following, we consider a spherical pro-
*Electronic address: ihara@nucl.phys.tohoku.ac.jp jectile and a deformed target. Accordingly, we remove the
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indexi to distinguish the projectile or target from the defor-
mation parameters, and dend®f’ and R{”) simply by Rp

and Ry. The integration over, in Eq. (2) can be easily
performed, and one obtains

V( Ii, a)= 327Tp§30)R3,5)\E Y:M(QR)
"

“ . Jl(kRP) (M
Xfo ko)‘(kR)k—RpMW(k)' (7)
where
M(AT;Z(k)Zf dFj)\(kr)Y)\,u(Qr)PT(F) 8
(0) KR(Q,)
p 0o,
:% erY“‘(Q’)L X2jy(x)dx.

9

By expanding with respect to the deformation parameters;

one obtains
) x
M&B(k)zF 5A0\/47Tf0 X2j () dx+ X3\ (X) ay ,
. x? djy(x)
+X2[XJ}\(X)+ E T QN g O\

X f dQY\ Y5 u Ya, st | (10

where x=kR;. The first, second, and third terms in the
square brackets of Eq10) give the bare Coulomb interac-

tion, the linear Coulomb coupling, and the second-orde
Coulomb coupling, respectively. We thus represent the totaltlI

Coulomb interaction as

V(R,a)=VO(R)+ V(R a) + VAR, a)+ - - -,
(11)

where the first three terms are given by

VOYR)=Z,Z1e2FO)(R), (12)

v<1><ﬁ,a>=zpzTe2§ FORYE QR ay,, (13
z

IR

N1sMq, M0, 00 N

X F§\2)( R)Y:M(QR) a)\l,p.la)\z N

VO(R,a)=ZpZ,€?

X J dQYy YR L Yoy (14

with the form factors defined by

PHYSICAL REVIEW C 61 044607

FO(R) = 1?8 f: jo(kR)hS(RRPP) jlf('::T) dk, (19
FOR)=— J:dkimkm%mmﬂ, (16
FOR= [ kR e {jukRT)

% OI;}(‘L—II(::;)]dk. (17)

If we take the rotating frame where ta@xis is chosen to be

parallel to the coordinate of the relative motiBnas is often
done in the studies of heavy ion fusion reactions, and if we
assume an axially symmetric quadrupole deformation for the
target nucleus, then the angular momentum algebra can be
explicitly carried out, and we obtain the following expres-
sions for the linear and the leading second-order Coulomb
couplings:

VO(R,B,,6) =zpzTe2A§4 . FM(R)BLY0(6,0),

(18
51
VAR, B,,0) =ZpZ€2 F%(R)# \/—_YZO( 6,0)
n
+F?3 (R)Eiv o(6,0) |3 (19
N=4 7 \/; 4 ) 2

where B, is the quadrupole deformation parameter of the
jarget nucleus, and the Euler angle to specify the orienta-
ion of its axially symmetric axis in the rotating frame.

The important achievement of the Fourier transform
method is that one needs to perform only one dimensional
integral, whose results we will present in Sec. lll. Before
moving on, we wish to comment that one can easily extend
the same procedure to incorporate the surface diffuseness of
the colliding nuclei by smearing the sharp surface in @j.
with a Yukawa functiori2,3]. The change is simply that the
integrand of the Fourier-transform representation of each
form factor (15)—(17) receives two additional factors corre-
sponding to the Fourier transforms of the Yukawa function,
which specify the surface properties of the projectile and
target nuclei.

I1l. ANALYTIC EXPRESSIONS OF THE BARE COULOMB
POTENTIAL AND COUPLING FORM FACTORS

The Fourier integrals on the right-hand sides of Egs.
(15—(17) are tedious but still doable analytically by hand in
principle, since the integrands are given only by polynomials
and trigonometric functions. However, it is practically al-
most impossible to pursue this program to systematically ob-
tain the analytic expressions of both the bare Coulomb inter-
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action and coupling form factors, which are valid not only in the most external region but in whole region. Here we resort to
computer-assisted analytic integration to do so. We assume that the radius of the deformed target is larger than that of the
spherical projectile. Introducing the parametBgsandRcc by Rc=R;+ Rp andR-c=R;—Rp, the results read as follows.

(1) For the bare Coulomb interaction,

1R (R>Rg)
VO(R)=Z,7:€%{ [1R—{(R—Rp—Rp)*R?*+4R(Rp+Ry) —5(RA—4RpR+R%))/(160RRERY)}]  (Rc>R>Rcc)

{—5R?+3(—R3+5R%)}/(10R3) (Rgc>R>0). 0
20

These formulas agree with those derived in Réf.and used in Refl5].
(2) For the quadrupole Coulomb coupling form factor of linear order,

( 3R3/(5R%) (R>Rc)

[3R?/(10R3) +{3R°— 12R3(3R2+ R2) + 18R(— 3R% + 2R2R2+ RH) 1/ (256R3RS)

FU,(R)=¢ +3(Rp—3RER7+3RaRT— R/ (64RRRY) (1)
+3(—3R%+20R5R2— 90RERT + 128R3RT— 60R3RS+ 5R%)/(128(R°R3R3)] (Rc>R>Rcc)

[ 3R?/(5R%) (Rcc>R>0).

(3) For the hexadecapole Coulomb coupling form factor of linear order,

RY/(3R% (R>Rc)

[RY(BR3)+{7R’—18R%(7R3+ R2) + 9R3(— 35R%+ 10RZR2+ R})

+4R(35R5— 45RER2+ 9R2RT + R%)}/ (204&R3R3)

FO (R + 9(—;R§,+ 820F22E,R$— ;Lszzé,R$+ jR§R$+ 2R$l/(201482 RER2) - .
+9(RY—5RER2+ 10RERT— 10RERS+ 5R2RE— R/ (102R°R3R3)

+(— 7R+ 54RR2 — 18 RERT+ 420RSRS — 945RERE + 1024R3RY

—378R2R¥+ 21RYY)/(614R°R3RY)] (Rc>R>Rcc)

RY(3R2) (Rcc>R>0).

(4) For the hexacontatetrapole Coulomb coupling form factor of linear order,

[ 3R8/(13R7) (R>Rg)

[3R®/(26R7) +{99R%— 216R"(11R3+ R2) + 84R>(— 99R4 + 18R2R2+ R1)

+24R3(231RS — 18RHR2 + 21RAR}+ R$) + 18R(— 231RE + 420RSR2

— 210RER}+ 20R2RS+ R%) 1/(65536R3RY)

+3(99RF’— 315RERZ+ 350RERT — 150RARS + 15R3RT+ R19) /(819 RRERY)

+21(— 11RF+ 54RYR2 — 105RERT + 100RERS — 45RERE + 6RERY+ R1%)/(1638R°R3RY)
+ 27(RY— 7TRER2+ 21RPR} — 35RERS + 35RERE — 21RARI%+ 7R2RY— R1%)/(819R°R3RY)
+3(— 99RE+ 936RY'R2— 400RERT + 1029RRE — 1801RERS + 2402RERT°
—36036RERY2+ 3276 RRE— 10296R2RM+ 429R1%) /(85196 R'R3RT)] (Re>R>Rcc)

\ 3R®(13R})  (Rcc>R>0).

Fo(R)= @3

(5) For the quadrupole Coulomb coupling form factor of second order,
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( 6R?/(5R%) (R>Rc)
[—3R?(20R3) — {3R°— 12R3(3R3— R%) — 18R(3Rp+ 2R3R%+ 3R] }/(512R3R3)
+3(—R8—3RPR2+9R3RT—5R%)/(128RRER?) (24)
+3(3R%+20R5R2 — 270RER} + 512R3RT — 300R3RS+ 35R%) /(256 (R°R3R3)] (Rc>R>Rcc)

[ —3R%(10R3) (Rcc>R>0).

FZ2(R) =4

(6) For the hexadecapole Coulomb coupling form factor of second order,

RY/(R®) (R>Rc)

[—RY(4R3)—{21R"— 18R5(21R3+ R%) — 9R3(105R: — 10R3R2+ R})
—12R(—35R8+ 15RHR2 + 3R2RT+ RS) 1/ (4096R3R3)

+9(21R%— 20RSR2— 18RpRT+ 12RARS+ 5RE)/ (409RRER3)

Fi24(R)= +9(—3RE+ 5RERZ+ 10R3R} — 30RpRE + 25R3RY — 7RI/ (204R3R3R3) @9
P pRT phT pRT pRT T pRT
+ (7RE— 18RR2— 63RERT+ 420RSRS — 157RERE + 204&R3 R — 882RART°
+63R1)/(409&R°R3R}) (Rc>R>Rcc)
—RY(2R3), (Rec>R>0).
|
IV. COMPARISON WITH COMMONLY USED FORMULAS 1R (R>Ry)
We now compare our formulas with three commonly used ~ VO(R)=Z,Z€e? R\?
models, which are given by 1/(2Ry)| 3~ R; (R<Ry),
(@) model I (point projectile mods| (32)
ZpZ1€?
VOR)= ——, (26) FO(R)— 3 [(RVRM! (R>Ry) -
A (20 1) | RY(ROMY (R<Ry).
R)\
FIO(R) = — 27 . . . .
2 +1 gt Model | is used in almost all analyses of heavy-ion fusion
reactions at energies near and below the Coulomb barrier.
R: Model Il can often be found in textbooks on heavy-ion col-
FOR)= T (28) lisions[1]. Models | and Il can be too crude concerning the
A 2N +1 gL bare potential. Models Il and Il have a shortcoming that

(b) model Il (uniform charge model)l

1R (R>Rc)
VO(R)=ZpZ1e? R\?
1/(2R¢)|[3—| =— (R<Ro),
Rc
(29
- 3 R)\/R)\+l (R>R )
FOR) =85 5 f A1 - (30
(2 +1) | RM(Re) (R<Ro),
with
~ R
C
€= , (31
Re

and(c) model Il (uniform charge model)2

each coupling form factor has a cusp at the separation dis-
tance, where the asymptotic formulas are matched to the for-
mulas in the short-distance region. The derivative of the cou-
pling form factor is discontinuous at that distance. In writing
Egs.(30) and(31), we have assumed that the target nucleus
has an axially symmetric static deformation with the Cou-
lomb deformation parametg@s . Equation(31) is the scaling
condition of the deformation parameter to guarantee the cor-
rect coupling in the asymptotic region.

Figures 1-3 compare the bare Coulomb potential and the
linear and quadratic coupling form factoFékl:)ZAG(R) and
F§\2:) 24 R) calculated by these formulas and by our improved
formulas. The form factors have been multiplied with
ZpZ€? to make the ordinates of all figures have the dimen-
sion of energy. They have been calculated for the scattering
of %0 with 8. The Coulomb radius parameter has been
chosen to be 1.06 fm. These figures clearly show the short-
comings of all three commonly used simple models, which
are solved by our new formulas.
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FIG. 1. Comparison of the bare Coulomb interaction. The solid,
dotted, dashed, and dot-dashed lines have been calculated based on
our improved formulas, models | through 1lI, respectively.

The important question is whether the deviations of the
conventional models from our improved formulas play some
significant roles in actual problems of physics, e.g., in ana-
lyzing heavy-ion fusion reactions at energies near and below
the Coulomb barrier. In order to gain some insight into this
guestion, we again consider the fusion reaction of a spherical
projectile %0 with an axially symmetric deformed target
239, It is now well known that the excitation of the ground-
state rotational band of*® plays an important role in en-
hancing the fusion cross section in this reaction. Instead of
performing full coupled-channel calculations to take this ef-

fect into account, one often describes this reaction based on FIG. 3. Comparison of the second-order Coulomb coupling
the no-Coriolis and sudden tunnelifige., degenerate spec- form factor plotted in the energy scale. The solid and dotted lines

F®, ,(R) (MeV)

F@,_(R) (MeV)
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trum limit) approximations. In this case, the fusion probabil-are for our improved formulas and model I.

ity for each partial wave) is given by first calculating the

fusion probabilityP;(E, 8) for a fixed orientation of the tar-

100 1 g & P get nucleusd, and then taking the average ow&r
" Model Il ---: 50 £ Model || ---
. 80 IV Modellll —— —_ f Model lll -
% ( ) i \\ improved — % w0 (b) "“ improved — 1 -
2 eof® Al = ! _t .
= A=2 z » j A =4 P;(E) 2[0 P;(E, #)sin 6dé.
A:E “© Al 20 ,‘l
- R / The effective potential for each orientatighis given b
; p g y
00 5 10 15 20 00 5/ 10 15 20 2
R (fm) R (fm) f
Vi(R,B2,0)=V\(R,B;,0)+ 5J(J+1)
40 2uR
35 ¢ Model | -
wf e +ZpZ7 e’ [FOR) + B2FL25(R) Yol 0,0)],
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Fig. 1. (8 Quadrupole coupling(b) Hexadecapole couplingc)
Hexacontatetrapole coupling.
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where Vy(R,8,,6) is the nuclear potential ang the re-
duced mass between the projectile and the target. Since our
aim is not to perform quantitative analyses, but to illustrate
under what circumstances our improved formulas show their
power, we took a simple model which considers only quad-
FIG. 2. Comparison of the linear Coulomb coupling form factor 'upole deformations,=0.289[6] for 2% and linear cou-

plotted in the energy scalsee text The notation is the same asin Pling. The Gauss integral in Ed34) is replaced by the
Jmaxt 2 points Gauss quadrature if the rotational excitation

is truncated af,, [7],
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FIG. 4. Comparison of the effectivewave barrier calculated
based on Eq(35) with our improved formulas and three conven-

PHYSICAL REVIEW C 61 044607

nuclear and Coulomb radii. We can, however, think of some
cases where the difference plays an important role, as will be
mentioned below.

V. SUMMARY AND DISCUSSIONS

We derived analytic expressions of the static Coulomb
interaction and of the form factors of the Coulomb excitation
in collisions between a spherical projectile and a deformed
target, which are valid for any separation distance between
them. We demonstrated their significant deviations from
commonly used models in the overlap region. Our new for-
mulas solve the cusp and discontinuity problems in the form
factors of the Coulomb excitation and in their derivatives in
conventional models, and thus may be used in much wider
problems.

We argued that these deviations will not cause any sig-
nificant effects on the fusion reactions between two heavy

tional models. The results are shown for two orientations, 30.6° andiuclei such as thé®0+ 238U fusion reactions at energies
70.1°. The lower and the upper barriers correspond to the formenear and below the Coulomb barrier, which have been very

and the latter, respectively.

1
Py(E)=5 2 WiPy(E,6), (36)

where 6, are the angles, where the Legendre polynomia
P;,max+2(0) becomes zero.

The active angles are the zeros Bj(cosé),which are

popular subjects of nuclear physics in the past decg8les
However, this conclusion has been drawn by assuming the
same values for the nuclear and Coulomb radii. It is then
natural that the deviation of the conventional models from
our improved formulas takes place well inside the barrier
|region and does not cause any significant effect. One inter-
esting system, where our new formulas will show their
power to describe a novel phenomenon, will be the system
where the Coulomb radius is larger than the nuclear radius.

about 30.55° and 70.12°, &;,,,=2. In Fig. 4 we show the One such example could be heavy-ion collisions induced by
effectives-wave potentials for these two angles calculated byunstable neutron-deficient isotopes. Other interesting prob-
our improved formulagthe solid ling and by three conven- lems to be studied with our new formulas will be the fusion

tional models(the dotted, dashed, and dot-dashed lindge  as well as elastic and inelastic scatterings between light
assumed a Woods-Saxon potential for the nuclear potentiaieavy ions, where the absorption in the internal region is not

where the radius parameter has been chosen suctRfhat SO strong. In this case, the differences among four models at
=RO+RB,Y(0,0), with RO=Rp+R;=1.06A%  short distances which we discussed in Sec. IV will lead to

+A¥3). The sharp decrease of the effective potential at shorfuite different cross sections from each other. Another inter-
distances for 70° in model | is caused by the unphysicafeStIng _appllcatlon .Of our new formulas is the gemmlassmal
radial dependence of the coupling form factors in this model2nalysis of heavy-ion collisions and the scatteringropar-

and the fact that,o( #,0) becomes negative for this angle. ticles from nuclei, where the analyticity of the Hamiltonian
We see clear differences among four models. However'S crucial[9]. We plan to address ourselves to these problems

these differences do not have any physical significance foll forthcoming papers.

180+ 234 fusion reactions at low energies, since the devia-
tion is localized well inside the barrier region, while the fu-
sion probability is governed by the barrier property, whichis  N.T. wishes to thank Dr. H. J. Krappe for useful discus-
the same for all four calculations. A similar situation will sions, and Professor J. Eichler and his colleagues at the Hahn
hold in general for medium weight heavy-ion collisions. This Meiner Institute, Berlin, for many discussions and for the
is a natural consequence of taking the same values for thdnd hospitality.
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