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Nuclear matter on a lattice
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We investigate nuclear matter on a cubic lattice. An exact thermal formalism is applied to nucleons with a
Hamiltonian that accommodates on-site and next-neighbor parts of the central, spin-, and isospin-exchange
interactions. We describe the nuclear matter Monte Carlo methods which contain elements from shell model
Monte Carlo methods and from numerical simulations of the Hubbard model. We show that energy and basic
saturation properties of nuclear matter can be reproduced. Evidence of a first-order phase transition from an
uncorrelated Fermi gas to a clustered system is observed by computing mechanical and thermodynamical
guantities such as compressibility, heat capacity, entropy, and grand potential. We compare symmetry energy
and first sound velocities with literature and find reasonable agreement.

PACS numbegps): 21.65+f, 21.60.Ka

[. INTRODUCTION centrates on the evaluation of thermal averages of observ-
ables. This would be the main purpose of a nuclear matter
Properties of nuclear matter have been deduced from difinvestigation too: Not focusing on obtaining a wave function,
ferent approaches. The volume term of the semiempiricak thermal formalism is useful for a study of nuclear matter,
mass formulg1,2] predicts a binding energy of 16 MeV, because the equation of state is of main interest, which
and calculations of finite nuclei estimate the equilibrium den-clearly depends on density and temperature. Moreover, the
S|ty to bepO: 0.16 fm_3_ However, properties of finite nu- consideration of a Iarge piece of infinite nuclear matter in
clei are strongly influenced by finite size effects like the sur-coordinatespace reduces finite size effects that appear after
face effect, and it is therefore difficult to estimate energiedmposing periodic boundary conditions. A formalism written
and saturation density of nuclear matter from nuclei. Manydn momentum space has the disadvantage that two- or many-
body calculations of nuclear matter are based on sophistPody correlations cannot be calculated directly: Clustering
cated potentialg¢such as the Argonne AV14 and AV18 and (and therefore a possible liquid-gas transiji@not as easily
Urbana UV14 potentia)s and use Bethe-Brueckner- calculated and observed as in the coordinate space represen-
Goldstone theonf3-5] and hypernetted chain approxima- tation.
tions [6,7] to calculateground stateproperties. Lattice gas  The following concept is pursued for our nuclear matter
calculationg8—10] attempt athermaldescription of nuclear ~calculation: The quantum mechanical and exact treatment
matter. They work with much Simp|er Hamiltonians, incor- with the full Hamiltonian, kinetic, and potential term, should
porating isospin-1 or Hubbard-like interactions. These calcube a prerequisite for a successful description of the physical
lations aim at the investigation of a liquid-gas phase transisystem. In a coordinate representation nucleons shall interact
tion of nuclear matter expected to take place at subnuclea¥ith a potential that eventually comes as close to a realistic
densities and low temperatures. They agsical not quan- nuclear interaCtior‘(like AV18) as pOSSible. The partition
tum mechanicaL putt”']g in kinetic terms by hand or Sam_fUnCtion along with observables of interest shall be calcu-
pling them from a Maxwell-Boltzmann distribution. These lated in the grand canonical ensemble, in order to control
types of calculations use Monte-Carlo-like algorithms andtemperaturel and densityp. The latter is to be adjusted on
show that the inclusion of a kinetic term is crucial to observeaverage via the chemical potentjal The many-body prob-
a phase transition. lem shall be solved exactly using Monte Carlo methods simi-
This paper describes first results of a calculation of infi-lar to those used in the SMMC applications. At the same
nite nuclear matter that combines both the usage of a moréme, realizing that the emerging equations eventually have
realistic Hamiltonian and the exact, thermal treatment of thdo be solved on a computer, one should take into account that
many-body problem on a lattice. In the past few years, thé&pace will be discretized, and advantage should be taken of
shell model Monte Carl6SMMC) method has been success- the available technology that has been employed for the
fully developed[11-15 to give a powerful alternative to Hubbard and other models in condensed matter physics. This
direct diagonalization procedures which suffer from the factPaper is to be viewed as a first step of a full thermal descrip-
that the many-body space scales so unfavorab|y with théon of nuclear matter in which we constrain our potential
number of single-body states considered. Direct diagonalizaP@rameters to a reasonable shape of the energy as a function
tion methods can only address very light nuclei or nucleiof density, including the correct saturation point.
with a closed shell and only a few valence nucleons. The
SMMC avoids this combinatorial scalingn storage and | e oRy OF NUCLEONIC MATTER ON A LATTICE
computation timgand makes it possible to investigate struc-
tural properties of nuclei far beyond the few-nucleon system. The general concept of the nuclear matter calculation con-
The SMMC enforces the Pauli-principle exactly, and con-sists of nucleons interacting via a variety of components of
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the nuclear tWO'bOdy pOten.tial. Whlle it should be the ulti- The fermion operatowj;T()Z) creates a nucleon of Spin and
mate goal to use a potential that fits the nucleon-nucleo

scattering data be$l6], at the first stage we concentrate onr!%o.?ﬁ;g gq’J;t%rﬁgaéliggét\ggéeAf t?g?;:%‘gé? t(rjwisg%smet-
few parts of the interactions, namely central, spin-, an ic 3-point formula for the second derivative, and the integral
isospin-exchange. The degrees of freedom of the nucleon ae replaced by a finite sum, which results in
its spin, isospin, as well as the spatial coordinate. '
Subnuclear degrees of freedom are not explicitly incorpo-
rated. The lightest meson, the pion, facilitates an interactionc= —t,> a3 >, iﬁZT()Zn)['ﬁm()ZnﬂL ae)— 2y, (X,
3

with a range ofr~1.4 fm which is of same order as the o7 xni=1...
lattice spacing of the applications in this paper. Since the R R
system is ultimately regularized on a lattice, the argument  + ¥, (Xp,—ae)], (6)

can be made that all subnuclear degrees of freedom are inte-
grated out, resulting in a strong on-site and weaker nextwith
neighbor interaction. The lattice spacing, here an additional

fitting parameter like the potential parameters, is chosen to 52

be ofa=1.842 fm. This particular lattice spacing sets the to= > (7)

half-filling of the lattice atp=2p,=0.32 frmi 3. Other set- 2mya

tings of fillings have been tried, but turned out to reproduce R

the saturation curve less well. Here, the orthogonal unit vector§e;} span the three-
In this section we specify the Hamiltonian of the systemdimensional space.

and describe the nuclear matter Monte Carlo metivadied While the form of the nuclear potential is generally given,

NMMC hereaftey, which consists of the thermal formalism we here are limited by current computational constraints.
to express the grand canonical partition function as an intefhe treatment of a full Hamiltonian, as it is represented in
gral over single-body evolution operators. At its centerthe Argonne potential, for example, is computationally im-
stands the Hubbard-Stratonovitch transformation, which ipossible with currently available computer power, but may
used to reduce the many-body problem to an effective onese feasible in a few years. We chose

body problem. The details of the Monte Carlo procedure,

which is used to evaluate the resulting multi-dimensional DD 11

integral, are explained. V=Ver Ve ®

The first part is the central potential{), followed by the

i . . i i ~ spin-exchangel{,). The general form for the scalar poten-
We consider a three-dimensional cubic lattice of spacing;g|

a and assume periodic boundary conditions, which result in a
three-dimensional toroidal configuration. The coordinate

A. Hamiltonian

1
- y > orgt ooy T o
and the momenturp are discretized as Ve=35 E , dxf AX i (X) g o (X)
X—am=xn, @ XVe(X=X ) gt (X ) (%), )
2 . . .
el  k=h can be written in terms of the density
P—|Na) k=P )
such that PX=2 o X)=2 Y1 (e (X). (10
- . 27
X-p= - XInteger, (3 The purpose of doing so is to cast the potential in linear and

quadratic terms, as the Hubbard-Stratonovitch transforma-
whereN is the number of lattice points in each spatial direc-tion can only be performed on quadratic terms. Using the
tion, andm andK are vectors with integer components. fermion anticommutation relation, the potential then be-
The nucleons have mass,, spinoc=+3 and isospinr ~ COMes
==+1 . The Hamiltonian,

~ 1 - - e e A e s
7:[:]%4‘1’\), (4) chif de dx'Ve(x=x")p(X)p(x")

is expressed in second quantization and contains kinetic and _ E - ~ =
potential operators. The kinetic term is written as 2 dxV(0)p(x). (1D
2
= — h_ 2 f dx lﬂT ()g)V*zw ()g)_ (5) The last term is the self-energy and is a consequence of the
2my o7 T o7 Pauli principle. The discretized version of this equation is
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ea @
= Z Ve(Xn=Xn) p(Xn) p(X0) =

Xp X

> Ve(0)p(Xp).
n (12

n

We assume a Skyrme-like on-site and next-neighbor interac-

tion

" i " i 2 " i
V(X = Xp) =V 80x0 = X0) + VIV 8(x0— X)),

(13
whose discretized form is
VO v 3
VC()ZH n)_ 5)2 X! + 2 {5x +ag x/ 25)?”92;'
+6% —aq ,;r;}- (14

The parentheses in E(@L3) indicate that the Laplace opera-
tor only acts on thes-function, but not on any following
parts. Inserting Eq(14) into Eq. (12) gives

V(O)
= Z a%p(xy)?

V(Z)a 3

2 2 (p(Xn+a&) — p(Xp))>?

1 v
—5| V-6 )E p(X). (15)

Here, we applied periodic boundary conditions.
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. VO .
Vo= E a[p0(x0) 2+ 2(p ) (x0) + p§ ) (%0))?]

V(Z)a 3
> 2 [Ox,+ae)—pP(xy)?
Xn i=1

+2(p5") (%o +a8) +pl (X0 +aé) = pl (%)

(18

(2)
V(O)_ 6V_)

> p(Xn).

Xn

-l ><xn>)2]— =

Other components of the potential can be included in a simi-
lar way.

B. Nuclear matter Monte Carlo method

In order to study thermal properties of nuclear matter, the
grand canonical partition function at a given temperaflire
=1 needs to be determined,

ex%_ﬂ< 7:(_ 2 IU‘TNU'T
Wlth Narzzin‘/’jn()zn) wa'f()_()n) and Mz

dependent chemical potentiél. is called the imaginary-time
evolution operator of the system and is a many-body opera-

tor. In the present study the Hamiltoniahcontains one- and
two-body operators as described in Sec. Il A, and the trace is
taken over all many-body states as indicated by a caret. The
partition functionZ is an exponential over all one- and two-
body operatorgsand therefore interactioppresent in the sys-
tem. It is impossible to deal with the partition functi@nn

this form, because the number of many-body correlations
that have to be kept track of grows rapidly with system size.
We therefore seek an expression forthat is based on a
single-particle representation, and we will replace the many-

Z=Tr T U],

(19

as the isospin-

The spin-exchange part of the potential is handled in &ody problem with that of noninteracting nucleons that are

very similar way. Starting from

~ 1 E
2 nglTl
RN

x| @ L0 w5

K’)\’l//K’)\’()_()’)l//K)\()Z)v
(16)

XVU.(X_X,)O'gTK)\' O-.f’q"

we write the potential in the form of spin densities

(a) X)_ 2 '/lgr(x)o'gm)\'/’x)\(x) C(:O,+,_, (17)

coupled to a heat bath of auxiliary fields. This involves re-
writing Z as a multidimensional integral.
We start by dividing the evolution operator intp time

slices:
ozexp(—/a(ﬂ—; w))
eX[(—A,B(":f—;T " Ngf))rt,

with A 8n,= 8. The Trotter approximatiofiL7,18 is used to
separate one-bodkinetic energy and chemical potenjiah

S=K-=%, .u.N,, and two-body termgpotentia) in H:

o -sal i

(20

where affifd are the elements of a generalized Pauli spin-

isospin matrix, which acts on a 4-vector representing all

spin/isospin states of a nucleon. We assume the same spatial

dependencé¢l3) as for the central part, and finally arrive at
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Equation(22) is valid to orderA 8, but becomes exact in the The «;=ABV;/2, Ve[V V@ v 1 are the
limit AB—0. interaction-specific coupling strengths of auxiliary fields to
The propagator of each time slice for the potential,nucleons, and the indéxenumerates all fields at a particular
exp(~ABY), is manipulated by applying the Hubbard- Site. The Gaussian fact@ is given by
Stratonovitch(HS) transformation 19,20 on each term, re- o
lacing it with a multidimensional integral over t of aux-
ﬁi:r(; f?elds. a multidimensional integral over a set of au G(X):ngl H H qu_lai|X§1jn'i)a 26
As an example, we describe the transformation by taking Xn
the on-site part of), at one particular site?m. Using and the one-body propagator is
=ApBVY/2 and defining
U, (B,0=U(Bn)U(Bn,-1)---U(B1). (27)

*i if >0
S,= . (22 _ o
+1 if <0, Note that Eqg.(24) only becomes exact in the limit of an
o _ o i infinite number of time slicesp,—. For a finiten,, the
the propagator for this single interaction is written as Hubbard-Stratonovitch approximation is valid only to order
AU(im)Eexy{ —AB c f)z()zm)) In the practical .implementation_ of _Eq23), a discrete
2 Hubbard-Stratonovitch transformation is used instead of the

Tal continuous form because it turns out to use much fewer
63 ® ~ N . .
— J' dy exp(— ap?(Xy) decorrelation sweeps, as e>.<pla|ned below.

- A thermal observabléO) is expressed gd2,21]

—|a|[x+ Sup(Xm)1?)

A 1. N .
| | <O>:ZTr Oexf{_ﬁ(H_z ILLTNO'T)):|
(¢4 * ~A o o, T
= \/7f_wdx exp(—|a|[x*+2S,xp(Xm) ).
23 ) f DIx]IG(x){(O(x))&(x) 8
The last line of Eq(23) reveals that the evolution operator is f DIx1G(x)€&(x)

now expressed in terms of the exponential of a one-body

operator and an integration over the auxiliary figldit has_ and has the integration measure of E5) and Gaussian
become a one-body propagator that corresponds to nonintegeior of Eq.(26). The expectation value of any operator in

acting nucleons coupled to this field. Since the integral is;gcong quantization can be obtained with the help of Wick’s
calculated with Monte Carlo methods, the field fluctuateseorem. and the resulting one-body densities| 228

according to a weight that is to be specified, hence the pic-

ture of a heat bath. . . <¢L(>zn)%'r'(>zm)>x
It has to be emphasized thatx,,) here represents a one- .
body operator for a subseV{ in this case of the full inter- ={[1+U,(B.0)] UX(B'O)}(U'T'|>Zm)v(07v>zn) ' (29)

action. Each quadratic term in Eq4d5) and (18) has to be
replaced by an integral. At a given lattice Sﬁﬁ there are
twelve auxiliary fields to form the full interaction, four foi,
and eight forf/_(,_. Nupleons are now (_:oupled_to a bi_g en- iha energy.

semble of auxiliary fields through which the interaction of The integrals in Eq(28) are evaluated using the Metropo-

the nucleons is mediated. Thel)’s are then multiplied to- s algorithm[22]. The basic idea involves sampling the in-
gether to form the evolution operator for one time slicetegrand of Eq(29),

U(B,) at B,=mAS, which is expressed only in terms of
single-body matrices, and ultimately, all time slices are mul- . T OU (8,0)]

tiplied together to forniJ: (O(x))= 080 (30)
B

The bold faceU,(8,0) is the single-body matrix representa-

tion of UX(,B,O). Observables of the system are chosen to be
the number of neutrons and protons and all components of

U=[exp —ABH)]"= f Dx]1G(x)U(B,0), (24  within the boundaries of the integration volume according to
X a positive-definite weight

with the integration measure IG(x)&(x)|  for continuous HS

W(x)= .
ng i |&(x)| for discrete HS,
Pixl= 11 11 1T dxms, s \/@. (25

with

(31)
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=T 0 (8.0)]=def1+U.(B.0)]. 32 technique for kinetic and spin-exchange parts, we use the
§X) [U(£.0)] { ((B.O)] (32 Green’s function algorithm described j25] to reduce the

The last equality can be proven by expanding the determicOmPutational burden.

nant[21]. Samples are taken by a random walker that travels
throughx-space, taking a new valyg,,, from the previous IIl. NUMERICAL RESULTS

one y,q if the ratio
We now show that for symmetric nuclear mat{&NM)

W( Xnew the energy per particle can be reproduced quite well over a
r=w (33  wide range of densities, and the energy for pure neutron
Xold matter(PNM) for the same potential is discussed. Then, sev-
eral observations are presented that give evidence of a first-
order phase transition from a Fermi gas to a clustered system
at a critical temperaturel .~15 MeV. Furthermore, the

is larger than one, or else, ik 1, taking ony e, With prob-
ability r. It can be show23] that the sequence of values the
walker takes is distributed according to the weight function ) .
W(x), which is typically chosen to be as close to the inte_symmetry energy and f|rs_t sound are dlscusse(_j.

grand as possible to increase the efficiency of the procedure. The extensive search in the space of potential paramgters
Since the consecutive steps are correlated, the walker has %cluded all components of the central_ part anq spin-
travel several steps before another sample is taken to decog_g(change. The effort focused on reproducing saturation den-

. . sity and energy correctly. The project is considered to be a
relate them. The average of an observal is then simply first step towards a realistic calculation as indicated earlier. A

more realistic calculation has to contain more parts of the
2 <@>i(bi nuclear potential and the spatial resolution has to improve; a
N perfect fit over a wide range of densities should not be ex-
(0)= (34 pected at this point. The fit has been performed in such a
Z ; manner that the saturation energy and density is reproduced,
and that the overall energy curve has a reasonable form: for
) o X subsaturation densities, the matter should be unstable, while
in terms of itsith Monte Carlo sample0); and for p>p, SNM should evolve in an unbound state/f
>0 MeV for p=0.4 fm 3).

G(x)é(x) for continuous HS The sign problem unfortunately forces the use of a

W(x) nuclear potential that might contradict the usual physical un-

= £(x) (39 derstanding and intuition based on few-nucleon potential

7 for discrete HS. models. It is generally known that the central potential has a
W(x) strong repulsion for short distances and features a long-range

attraction. Here, the desire to avoid the sign problem gener-

Note that®, which is just the sign of the weightV, can  ates the opposite: on-site attraction and next-neighbor repul-
generally be negative or even complex. sion. On the other hand, an on-site attraction and next-

The numerical determination of E¢34), which is the  npeighbor repulsion may not be unreasonable given the fact
Monte Carlo equivalent of the integrals in E@8), can be  that there have been several mean-field calculations of
difficult in certain Situations, even with Monte Carlo meth- nuclear matter with the Skyrme forces. Skyrme forces simu-
ods: If S,= =i [which generally corresponds to a repulsive ate the interaction with a-like attraction and & 25-like
on-site and an attractive next-neighbor interaction, cf. Edrepulsion. In the lattice discretization of this investigation,
(22)], propagators for the potentidEq. (23)] contribute  the position of the nucleons at the same site is only deter-
negative or complex elementslih (3,0) [see Eq(32)]. The  mined up to a cube of siz& Therefore, the on-site potential
integrands in both numerator and denominator are oscillaparameter can be seen as an average potential within that
tory, and the integrals can add up to small numbers. A nueube, and by tuning the lattice spacing accordingly, it could
merical evaluation with Monte Carlo methods causes largde possible that this parameter is negative. The exact defini-
uncertainties because the methods are of a stochastic natutien of the parameter depends on a regularization scheme. In
and the number of samples in a computation remains finitesuch a scheme the Schlinger equation has to be solved on
This is a complication associated with these methods whea lattice, and by identifying scattering amplitudes, one could
the Hubbard-Stratonovitch transformation is used. It is re-determine the potential parameters from scattering lengths
ferred to as the Monte Carlo sign problem. A pragmatic so-and effective rangg24]. With respect to the lattice spaciiag
lution has been used for the shell model Monte Carlo methodiwo approaches can be taken: First, we constrain ourselves to
to handle this complicatiofil5]. a description with a fixed number of lattice sites. Then

There has been significant effort in stabilizing and opti-becomes a free fitting parameter like the potential param-
mizing the Metropolis algorithm for lattice calculations, as eters, and the latter would have to be interpreted as an aver-
they have been heavily used for models of interacting elecage potential, as noted above. In the second appreaisha
trons in condensed matter physics. Many of the techniquegiscretization parameter for the potential, and the ultimate
have directly been applied to NMMC, because the modelgoal would be to increase the number of lattice points with
are similar. Besides using the checkerboard bredidi)  decreasing, getting a smooth parametrization of the poten-
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el AR LA N A L m We are also restricted by the fact that the Monte Carlo
20 o 50 Mev simulations cannot be extended to arbitrarily low tempera-
5 \ NP tures. Even though the numerical routines are quite stable, it

% + 100 MeV ] is not possible to add an arbitrary number of time slices,

0 . 350Mey since it involves more and more matrix multiplications
5 P E which become increasingly numerically unstable. In the
0 - - / E present case we takes=0.01 MeV ! and were able to go

down to a value of8=30xAB=0.3 MeV ! without run-
ning into numerical instabilities. Thus, the temperature range
of the investigation is

E/A [MeV]

pliawod 3.0 MeV=T=<100 MeV. (42

3 4 4
p [fm™] Figure 1 shows the best fit we obtained. With decreasing

. , temperature, the system develops a minimum mt
FIG. 1. E/A for symmetric nuclear matter as a function of den-zo.32 fr 3 first, which is most pronounced between

sity p and for different temperatures. The purpose of the lines is to : . -
quide the eye. 10-14 MeV, before it shifts to lower densities. At

=3.3 MeV andT=5.9 MeV the minimum is very broad,
dmaking matter softefsee also compressibility, Fig. 4 belpw

tial. If, in that case, a positive on-site parameter is use Eor hiah dor hiah densi he simulati
emulating a hard core repulsion, one has to deal with oscil=°" !9 temperatures and/or high density, the simulation

latory integrands and commensurately large error bars.  Suffers from the fact that it runs out of model space:TAt
The following potential parameters were obtained: =50 MeV the system behaves almost like a Fermi gas and

the energy per particle should behave likep?®. Yet, the

(36) curve bends down. Also, for all other temperatures, the
curves converge to the energy of the full lattice st&f\

=5.96 MeV, as density increases. For subsaturation densi-

v®=-181.5 MeV fn?,

V£2):37'8 MeV fnt, (37) ties the model gives more binding if compared to other cal-
culations(see, for example, Reffs] and[7]), and the energy
V0=—-3125 MeV fn?, (38 is not as high for densities beyond saturation. At
=0.32 fm 3, E/A as a function of temperature has a
V{2=0.0 MeV fn?. (399 minimum atT~10 MeV which means that at even lower

_ _ _ temperature&/A increases again. This contradicts intuition
All calculations were done with this set of parameters. Thebecause it would mean that the system is in an unphysical

lattice has a spacing of state.
The last issue needs further explanation. The energy per
a=1.842 fm, (40)  particle is not the correct quantity in order to address the

- . . question of stability. Particles fluctuate in and out of the
tuned such that quarter filling of the lattice is at saturationgystem diferently at different temperature, leaving the aver-
densitypo=0.16 fm ~. In this paper, the lattice spacing is age number of particles unchanged, but contributing to the

an additional fitting parameter, and several other SettingﬁNo-body part of the Hamiltonian. If, however, the grand
have been tested. However, quarter- and half-filling at satusgtential is plottedsee Fig. 2 ' ’

ration density have a special significance because certain lat-
tice occupations of the nucleons result in an energetically QB ) =—TINZ(B,w), (43)
favored configuration.

Because of limited CPU time, the calculation is restrictedwith
to 4xX4X 4 lattices for the moment. This lattice comprises
10°® many-body states, and 11520 auxiliary fields are used B
for this set of parameters. All calculations are prepared by a InZ(B,u) =InZ(0,u)=— JO dg'E(B".w), (44
prethermalization of the system for 100 steps before we took
measurement samples. Between measurement samples, il furns out to actually be a monotonic function of tempera-
decorrelation steps have been taken to guarantee statistiqgke, with a slight deviation a=11.0 MeV where the
independence of the samples. The autocorrelatiok @in-  negative slope of}, the entropy
secutive samplel23]

90
O N—((O )2 S=—|—= , 45
cguer A,

Co(k)=

becomes zero between 10 MeV and 14 MeV and positive
with i being the summation index over samples, has beeagain for even lower temperatures. This is a slight anomaly
monitored for all observable® and was held below 10%. (see also Fig. Bwhich may have been caused by the onset of
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0 T T T T
-2 | -2 F p
fo‘ é; .
E -4 [ 3 -4 [ ]
= b = b 1
i -6 .i -6
¢ 8l G 8L m=45Mev 3
-10 -10 L L L L ; ;
10 2 " v]ao 40 50 FIG. 2. Grand canonical potential of symmet-
e’ . . .
ric nuclear matter for different chemical poten-
o o : : : : tials u. The solid lines represent the potential for
a noninteracting Fermi gas in continuous space.
— _2 F o~ _2 F ]
22 ?2 —te
x-4r E-4r ]
G gL m=-84Mev ] © _8f m=110Mev ]
-10 1 1 1 1 -10 1 1 1 1
0 10 40 50 0 10 40 50

* wof® * orf®
numerical instabilities at low temperatures or the fact that ther=14.3 MeV andu~—8 MeV, while they are low foiT
lattice spacing is so big and the number of sites so small that 3.3 MeV andT=100 MeV. The phase transition seems
the discretization of space is not accurate enough. to occur somewhere betwedi=8 MeV andT=20 MeV.

We now introduce several observations which indicate Another quantity that suggests the existence of a transi-
that the system may undergo a first-order phase transitiofion is the compressibility which is given by
towards a clustered system when the temperature is lowered.

First, we investigate changes in density with respect to the 02 777
chemical potential. It is well known that they are propor- C

tional to particle fluctuations 0.1
(N J
0',2\‘=T¥ -~ a—p . (46)
Ll 8V Mty

—=e— 100 MeV

f=p = (atby*u) [fm™)]
s S
- o
T T
hY

Such fluctuations are typical for first-order phase transitions e F
and indicate that particles move between the two phases N G 143 Mev ]
without energy cost. For an infinite system, the fluctuations :Lf:_/ }/‘ o uev ]
should diverge, but not for a finite system. In the present PP T T pe e ]
case, we expect particles building clusters and breaking them “_40 —-20 0 20 40
up again, so one phase—the gas phase—would be that of w [MeV]
independent particles, the other one that of clusters. Since we
observe the single particle densityﬁ, describes the fluctua- 0.20 ————1———————————
tions in the gas phase in which is linear in u. At T C 1
=100 MeV, we are in the gas phase with nucleons behaving 0.15 | .
like a Fermi gas. Therefore, to simplify the graphs, we have = f ]
first fitted the data aT =100 MeV to a linear function, g 9O ——esie—— _,'_-'j—:
Pit=afit T DX e, (47) é‘ 005 p AR
. . : S 000 [ = .
and then subtracted this function from all data points of all pal : ]
temperatures, defining a function of temperature and chemi- —0.05 E ]
cal potential :
-0.10 L——! L
F(T.w)=p(T,) ~ psr- (49 T e P

The upper panel of Fig. 3 shows the outcome of this proce- FiG. 3. Density fluctuations in symmetric nuclear matter. The
dure. We then take the derivative tfT,u) with respect to  upper panel displays the modified densfitwhile the lower panel

w and multiply with T, and this is shown in the lower panel shows the derivatives off with respect to chemical potential

of Fig. 3. The fluctuations show a pronounced maximum forwhich are proportional to the fluctuations.
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Finally, we present the heat capacity and entropy of the
system. For a first-order phase transition, the continuous and
infinite system shows a divergence in the heat capacity

2 51
CV_&'_T Va ( )

and a discontinuity for the entropvith an infinite deriva-
tive atT,.),

S(B,u)=InZ+B(H(B, 1))~ Bu(N(B,n)).  (52)

For a finite system only a maximum in the heat capacity is
expected, and a relatively sharp drop in entropy with de-

FIG. 4. Compressibility of symmetric nuclear matter. The creasing temperature. Both facts can be verified in Fig. 5:

minima of the energy curves have been fit to a parabola wjii a
<1.5 per degree of freedom.

k=9p?

P~ Psat

(49

The heat capacity suggests a critical temperatureT of
=15 MeV, as does the entropy. For the graphs of entropy
one has to keep in mind that the system investigated is quite
small (it is a 4X4X 4 lattice only, but two levels,S~75
from T=5 MeV to T=12 MeV and S=175 from T
=20 MeVtoT=30 MeV with a steep decrease in between,
can definitely be identified. To show that this is indeed a

where pgy is the saturation density. We have fitted thefirst-order phase transition, the calculation has to be repeated
minima of each energy curve to a quadratic function

A

fit

(p)=a+bX(p—psa)?®,

(50

and determined the compressibility s 18p2,< b. All data

points in Fig. 4 were obtained with g per degree of free-

for a larger number of lattice sites, and then it has to be
demonstrated that the drop between the two levels becomes
steeper and steeper, finally resulting in a steplike function.
This will have to be left for a future project. Studies of a
lattice gas mode]l26] have shown that finite size effects do
induce anomalies in physical quantities, and a first-order
phase transition rather appears as a second-order one. The

dom of less than 1.5. Again, a maximum in compressibilityanomaly belowT=10 MeV has been addressed when dis-
(which is in fact an incompressibilityis observed aftT
~14 MeV: The clusters that form repel each other throughshows a qualitative behavior at=11 MeV that is expected
the next-neighbor interaction which is repulsive. At
<14 MeV, matter becomes softer again due to a broadeningink (the derivative is not continuou# the grand potential

of the minima inE/A. This can be explained if one assumesat the critical temperature. Consequently, all quantities con-
that the system becomes more dilute. Note that the values sfstently suggest a phase transition at a critical temperature

psat Change with temperature.

350 T T T
300 f E
250 | LI E
200 F E
kd
[&]
150 R E
100 } E
50 F i E
o P YU W NN W SO Y [N ST SN N T [T S ST ST n
5 10 5 20 30
T [Mev]
250 T T T
200 | 3
w150 F 3
R
o'100 £ 3
:ﬂé E §o0g 0 ’ 3
50 5t
o - -
-50 Il Il 1
5 10 15 20 30
T [MeV]

350
300
250
200
150
100

50

250

cussing the grand potential. However, the latter quantity

for a phase transitioicf. Fig. 2. The infinite system has a

of T.~15 MeV.

3 FIG. 5. Heat capacity and entropy for a finite
NI piece of symmetrical nuclear matter. The two

graphs on the left show the cage=0.0 MeV,
the right ones fow=4.0 MeV. The heat capac-

T ity (upper panelsshows a distinct maximum; the
o] entropy (lower panels a relatively sharp drop
with decreasing temperatures.

5 20 5 30
T [Mev]
Exhll‘?ﬂieﬁiii‘ e
1 1 1 1
5 10 5 30

15 20
T [MeV]
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FIG. 6. E/A for pure neutron matter as a function of dengity

FIG. 8. First sound velocity for symmetric nuclear matter. The
and for different temperatures. The lines guide the eye.

temperature dependence of the speed corresponds to the compress-
ibilities as shown in Fig. 4.

In Fig. 6 we show the energy per particle for pure neutron
matter. The uncertainties for this case are much larger tha@vail. It is likely that a phase transition occurs at lower tem-
for symmetrical nuclear matter. As a potential, we used théerature.
parameters obtained from the fit to symmetric nuclear matter, We finally calculate two additional observables and com-
even though we could have fitted the potential parameters fgpare them with other calculations found in the literature. The
this case anew, including an isospin-exchange potentiasymmetry energy, which appears as a coefficept, in the
Therefore we view the results for pure neutron matter moresemiempirical mass formula
as a test to see how well the given potential already repro-
duces the energy. Note that the slopes of the curves at high Esym
temperatures are not negative as it is for symmetrical nuclear A
matter. But clearly, we cannot conclude that the energies at
T=3.3 MeV have converged to that of the ground stateis plotted in Fig. 7. We used the energy per particle of pure
because the curve differs quite a bit from that o neutron mattetPNM) and SNM, subtracted them and inter-
=5.9 MeV. At the lowest temperature they are 4-5 MeV polated the result on a mesh. Since the error bars for pure
higher than those of the ground state as calculated in Refieutron matter are larger for low temperatures, the graphs
[6], but the general shape of the curve is very similar. This isshould be viewed with caution. Nevertheless it appears that
no surprise, since pure neutron matter is like a Fermi gashe symmetry energy is increasing with density and decreas-
with attractive forces between neutrons lowering the energiefhg with temperature, as one would expect. Indeed, at high
with respect to the noninteracting system. The search for anjemperature SNM and PNM both are more like a Fermi gas,
kind of phase transition in the range of 5-50 MeV was to noand only at low temperatures do they become different. The
observed dependence on density can be explained by the fact

(N=2)?
AZ

Esym _
— “sym

; (53

18 prerswrErm TR 50 [ that a dilute system is barely interacting while the probability
o of clustering increases with density. At saturation density
40 [ mawer 1 and low temperature, we obtain a coefficient of
— — 255 MeV
- =" agym~38+3 MeV, (54)
5 %30 - >
I 0]
& Z which is not too different from the generally accepted value
z NELE e [27] of agym=28.1 MeV. This discrepancy is in part due to
= ) Tz ~A the fact that the calculations for pure neutron matter have not
w0 L 1 converged completely.
iy ] The first sound velocity has been calculated using the for-
-~ ) ?/ ‘ ‘ ] malism of relativistic fluid dynamics:
00 0 10 TZO[M3%]40 50 0.00 .04 [.fos 73]12 .16 70
© poLm u/c= ~el (55)
FIG. 7. Symmetry energy for symmetric nuclear matter as a S
function of density and temperature. Shown is the coefficigpt
of the semiempirical mass formula. The left panel shows a (:ontouWhere
plot; the right one shows one-dimensional cross sections of it at
Qiﬁergnt temperatures,, is increasing with density and decreas- e=pXx mch+ - (56)
ing with temperature.
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and exchanges are only simulated indirectly through the choice
of potential and its parameters, very much like in AV18 or
other potentials. Realizing that the auxiliary fields behave
like massless bosons, one could ponder how a Monte Carlo
procedure would look like that includes meson exchange di-
In general, the first sound we obtain is too low compared taectly. Such a procedure could be quite similar to already
Refs.[6,28], but the velocities are of the same order of mag-established auxiliary field Monte Carlo procedures.
nitude. Several calculatiori$,28] show a violation of cau- It is known that three-body and perhaps higher-order
sality at a few multiples of the saturation density, and so danany-body forces are important to describe saturation prop-
ours. Our resultgFig. 8 show the correct temperature de- erties of nuclear matter correctly. However, incorporating
pendence in the sense that it conforms with the compressibithese forces in a Monte Carlo calculation is currently impos-
ity: higher sound speed for intermediate temperatdnggh  sible, basically because there is no scheme to reduce higher-
incompressibility and lower speeds for both low and high  order forces to the single particle formalism. Such a scheme
could lie in a multiple application of the Hubbard-
IV. DISCUSSION AND CONCLUSION Stratonovitch transformation for a single many-body interac-
. S ] tion. But as long as such a scheme is not available, an ap-
The model considered in this paper is an exact treatmenfyoximation could be established on top of this two-body
taking first steps towards a more realistic Hamiltonian, and ia|culation that incorporates higher-order effects. A first at-
is an improvement compared to previous calculations. Neviempt would be to calculate the three-body contribution to
ertheless it can be extended to include more physics, ange energy obtained from the one-body densities of this

details in the algorithm can be improved. First of all, morepjonte Carlo calculation and a given three-body Hamil-
computer power is necessary to reduce finite size effects. fynian.

imaginary time dimension could be pushed further. This reyhich should be viewed as a starting point to an exact solu-
quires stable matrix techniques. The present code can handign of infinite nuclear matter. In a model with a relatively
30 time slices comfortably using commonly known sparsesimple Hamiltonian, and further limited by a very small lat-
matrix techniques. But, as the lattice spacing decreases, Ofge, we were able to reproduce saturation properties of sym-
needs to go to larger imaginary time to separate the grounghetric nuclear matter. The energy of pure neutron matter,
state from excited states. At the same time it is not possiblg,sing the same potential, gave reasonable results, even
to increasel B as it would induce finite time effects. There- thoygh it had not yet converged. Furthermore, we presented
fore, an improved effective matrix algorithm would be eyidgence in the form of mechanical and thermodynamical
needed to allow for more matrices to be multiplied. Along gpservables which support the existence of a phase transition
with a bigger lattice, the resolution of the potential could befrom a Fermi gas to a clustered system. Particle fluctuations
increased, resulting in next-to-nearest-neighbor and furthegs the gas phase seem to reach a maximuifi-al4 MeV.
interactions. This extension of the spatial dependence of thene heat capacity and compressibility also have a maximum
potential can easily be accomplished and is only restricted byt around this temperature. Entropy and grand potential show
computational power. _ _ a behavior as it is expected for a first-order phase transition.
Another big hurdle is the sign problem. The solution to other quantities like symmetry energy and first sound veloc-

this obstacle will result in a huge advancement in many areagy show reasonable agreement with other calculations.
of computational physics and chemistry. Raghal. [29]

have made some progress which could prove beneficial for

the model described h(_—:t_re too: It pasically con;ists_ of shi_fting ACKNOWLEDGMENTS

the contour of the auxiliary field integrals, which is equiva-

lent to subtracting a mean-field from the problem. We planto This work was supported in part by the National Science

investigate this method and its application to nuclear matteFoundation, Grants No. PHY97-22428 and PHY94-20470.

more rigorously in the future. The calculations were performed on a HP Exemplar X-class
The physics of nuclear matter itself is certainly more in-supercomputer with 256 nodes, operated by the Center for

volved than the current model can account for. Mesons arddvanced Computing Research at the California Institute of

not included as explicit degree of freedom, and the variougechnology.

_LIEIA -
PG|

[1] C. F. von Weizseker, Z. Phys96, 431 (1935. [7] A. Akmal and V. R. Pandharipande, Phys. Rev56 2261
[2] H. A. Bethe and R. F. Bacher, Rev. Mod. Ph§s82 (1936 (1997.
[3] K. A. Brueckner, Phys. Re\@7, 1353(1955. [8] T. T. S. Kuo, S. Ray, J. Shamanna, and R. K. Su, Int. J. Mod.
[4] H. A. Bethe and J. Goldstone, Proc. R. Soc. London, Ser. A Phys. E5, 303(1996.
238 551 (1957. [9] X. Campi and H. Krivine, Nucl. PhysA620, 46 (1997).

[5] J. Goldstone, Proc. R. Soc. London, Ser229, 267 (1957). [10] J. Pan and S. Das Gupta, Phys. Re\6 - 1839(1998.
[6] R. B. Wiringa, V. Fiks, and A. Fabrocini, Phys. Rev. 3B, [11] C. W. Johnson, S. E. Koonin, G. H. Lang, and W. E. Ormand,
1010(1988. Phys. Rev. Lett69, 3157(1992.

044320-10



NUCLEAR MATTER ON A LATTICE PHYSICAL REVIEW C 61 044320

[12] G. H. Lang, C. W. Johnson, S. E. Koonin, and W. E. Ormand, New York, 1992.

Phys. Rev. (48, 1518(1993. [22] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
[13] W. E. Ormand, D. J. Dean, C. W. Johnson, and S. E. Koonin, Teller, and E. Teller, J. Chem. Phy&l, 1087 (1953.
Phys. Rev. 49, 1422(1994). [23] S. E. Koonin and D. C. MeredithComputational Physics
[14] Y. Alhassid, D. J. Dean, S. E. Koonin, G. H. Lang, and W. E. (Addison-Wesley, Reading, MA, 1990
Ormand, Phys. Rev. Let?.2, 613 (1994). [24] H.-M. Muller and R. Seki, inNuclear Physics with Effective
[15] S. E. Koonin, D. J. Dean, and K. Langanke, Phys. R&18 1 Field Theory edited by R. Seki, U. van Kolck, and M. J.
(1997. Savage(World Scientific, Singapore, 1998
[16] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C[25] S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E.
51, 38(1995. Gubernatis, and R. T. Scalettar, Phys. Revi@® 506 (1989.
[17] H. F. Trotter, Proc. Am. Math. Sod.0, 545 (1959. [26] F. Gulminelli and P. Chomaz, Phys. Rev. Le®2, 1402
[18] M. Suzuki, Commun. Math. Phy&1, 183(1976. (1999.
[19] J. Hubbard, Phys. Rev. LeB, 77 (1959. [27] P. Ring and P. SchuckThe Nuclear Many-Body Problem
[20] R. D. Stratonovitch, Dokl. Akad. NaukSSSR 115 1097 (Springer-Verlag, Heidelberg, 198@. 4.
(1957 [Sov. Phys. Dokl8, 416(1958]. [28] E. Osnes and D. Strottman, Phys. La66B, 5 (1986.
[21] E. Y. Loh, Jr. and J. E. Gubernatis, Biectronic Phase Tran- [29] N. Rom, D. M. Charutz, and D. Neuhauser, Chem. Phys. Lett.
sitions edited by W. Hanke and Yu. V. KopaeiElsevier, 270, 382(1997.

044320-11



