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Nuclear matter on a lattice
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~Received 18 October 1999; published 15 March 2000!

We investigate nuclear matter on a cubic lattice. An exact thermal formalism is applied to nucleons with a
Hamiltonian that accommodates on-site and next-neighbor parts of the central, spin-, and isospin-exchange
interactions. We describe the nuclear matter Monte Carlo methods which contain elements from shell model
Monte Carlo methods and from numerical simulations of the Hubbard model. We show that energy and basic
saturation properties of nuclear matter can be reproduced. Evidence of a first-order phase transition from an
uncorrelated Fermi gas to a clustered system is observed by computing mechanical and thermodynamical
quantities such as compressibility, heat capacity, entropy, and grand potential. We compare symmetry energy
and first sound velocities with literature and find reasonable agreement.

PACS number~s!: 21.65.1f, 21.60.Ka
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I. INTRODUCTION

Properties of nuclear matter have been deduced from
ferent approaches. The volume term of the semiempir
mass formula@1,2# predicts a binding energy of 16 MeV
and calculations of finite nuclei estimate the equilibrium de
sity to ber050.16 fm23. However, properties of finite nu
clei are strongly influenced by finite size effects like the s
face effect, and it is therefore difficult to estimate energ
and saturation density of nuclear matter from nuclei. Ma
body calculations of nuclear matter are based on soph
cated potentials~such as the Argonne AV14 and AV18 an
Urbana UV14 potentials! and use Bethe-Brueckne
Goldstone theory@3–5# and hypernetted chain approxim
tions @6,7# to calculateground stateproperties. Lattice gas
calculations@8–10# attempt athermaldescription of nuclear
matter. They work with much simpler Hamiltonians, inco
porating isospin-1 or Hubbard-like interactions. These cal
lations aim at the investigation of a liquid-gas phase tran
tion of nuclear matter expected to take place at subnuc
densities and low temperatures. They areclassical, not quan-
tum mechanical, putting in kinetic terms by hand or sa
pling them from a Maxwell-Boltzmann distribution. Thes
types of calculations use Monte-Carlo-like algorithms a
show that the inclusion of a kinetic term is crucial to obse
a phase transition.

This paper describes first results of a calculation of in
nite nuclear matter that combines both the usage of a m
realistic Hamiltonian and the exact, thermal treatment of
many-body problem on a lattice. In the past few years,
shell model Monte Carlo~SMMC! method has been succes
fully developed@11–15# to give a powerful alternative to
direct diagonalization procedures which suffer from the f
that the many-body space scales so unfavorably with
number of single-body states considered. Direct diagonal
tion methods can only address very light nuclei or nuc
with a closed shell and only a few valence nucleons. T
SMMC avoids this combinatorial scaling~in storage and
computation time! and makes it possible to investigate stru
tural properties of nuclei far beyond the few-nucleon syste
The SMMC enforces the Pauli-principle exactly, and co
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centrates on the evaluation of thermal averages of obs
ables. This would be the main purpose of a nuclear ma
investigation too: Not focusing on obtaining a wave functio
a thermal formalism is useful for a study of nuclear matt
because the equation of state is of main interest, wh
clearly depends on density and temperature. Moreover,
consideration of a large piece of infinite nuclear matter
coordinatespace reduces finite size effects that appear a
imposing periodic boundary conditions. A formalism writte
in momentum space has the disadvantage that two- or m
body correlations cannot be calculated directly: Cluster
~and therefore a possible liquid-gas transition! is not as easily
calculated and observed as in the coordinate space repre
tation.

The following concept is pursued for our nuclear mat
calculation: The quantum mechanical and exact treatm
with the full Hamiltonian, kinetic, and potential term, shou
be a prerequisite for a successful description of the phys
system. In a coordinate representation nucleons shall inte
with a potential that eventually comes as close to a reali
nuclear interaction~like AV18! as possible. The partition
function along with observables of interest shall be cal
lated in the grand canonical ensemble, in order to con
temperatureT and densityr. The latter is to be adjusted o
average via the chemical potentialm. The many-body prob-
lem shall be solved exactly using Monte Carlo methods si
lar to those used in the SMMC applications. At the sa
time, realizing that the emerging equations eventually h
to be solved on a computer, one should take into account
space will be discretized, and advantage should be take
the available technology that has been employed for
Hubbard and other models in condensed matter physics.
paper is to be viewed as a first step of a full thermal desc
tion of nuclear matter in which we constrain our potent
parameters to a reasonable shape of the energy as a fun
of density, including the correct saturation point.

II. THEORY OF NUCLEONIC MATTER ON A LATTICE

The general concept of the nuclear matter calculation c
sists of nucleons interacting via a variety of components
©2000 The American Physical Society20-1
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the nuclear two-body potential. While it should be the u
mate goal to use a potential that fits the nucleon-nucl
scattering data best@16#, at the first stage we concentrate o
few parts of the interactions, namely central, spin-, a
isospin-exchange. The degrees of freedom of the nucleon
its spin, isospin, as well as the spatial coordinate.

Subnuclear degrees of freedom are not explicitly incor
rated. The lightest meson, the pion, facilitates an interac
with a range ofr'1.4 fm which is of same order as th
lattice spacing of the applications in this paper. Since
system is ultimately regularized on a lattice, the argum
can be made that all subnuclear degrees of freedom are
grated out, resulting in a strong on-site and weaker ne
neighbor interaction. The lattice spacing, here an additio
fitting parameter like the potential parameters, is chosen
be of a51.842 fm. This particular lattice spacing sets t
half-filling of the lattice atr52r050.32 fm23. Other set-
tings of fillings have been tried, but turned out to reprodu
the saturation curve less well.

In this section we specify the Hamiltonian of the syste
and describe the nuclear matter Monte Carlo method~called
NMMC hereafter!, which consists of the thermal formalism
to express the grand canonical partition function as an i
gral over single-body evolution operators. At its cen
stands the Hubbard-Stratonovitch transformation, which
used to reduce the many-body problem to an effective o
body problem. The details of the Monte Carlo procedu
which is used to evaluate the resulting multi-dimensio
integral, are explained.

A. Hamiltonian

We consider a three-dimensional cubic lattice of spac
a and assume periodic boundary conditions, which result
three-dimensional toroidal configuration. The coordinatexW

and the momentumpW are discretized as

xW→amW [xWm , ~1!

pW→S 2p

NaD kW[pW k , ~2!

such that

xW•pW 5
2p

N
3 integer, ~3!

whereN is the number of lattice points in each spatial dire
tion, andmW andkW are vectors with integer components.

The nucleons have massmN , spin s56 1
2 and isospint

56 1
2 . The Hamiltonian,

Ĥ5K̂1V̂, ~4!

is expressed in second quantization and contains kinetic
potential operators. The kinetic term is written as

K̂52
\2

2mN
(
st

E dxW cst
† ~xW !¹W 2cst~xW !. ~5!
04432
n

d
re

-
n

e
t

te-
t-
al
to

e

e-
r
is
e-
,
l

g
a

-

nd

The fermion operatorcst
† (xW ) creates a nucleon of spin an

isospin (s,t) at locationxW , while its adjointcst(xW ) destroys
it. This equation is discretized on the lattice by the symm
ric 3-point formula for the second derivative, and the integ
is replaced by a finite sum, which results in

K̂52t0(
st

a3 (
xWn ,i 51 . . . 3

cst
† ~xWn!@cst~xWn1aeW i !22cst~xWn!

1cst~xWn2aeW i !#, ~6!

with

t05
\2

2mNa2
. ~7!

Here, the orthogonal unit vectors$eW i% span the three-
dimensional space.

While the form of the nuclear potential is generally give
we here are limited by current computational constrain
The treatment of a full Hamiltonian, as it is represented
the Argonne potential, for example, is computationally im
possible with currently available computer power, but m
be feasible in a few years. We chose

V̂5V̂c1V̂s . ~8!

The first part is the central potential (V̂c), followed by the
spin-exchange (V̂s). The general form for the scalar poten
tial,

V̂c5
1

2 (
sts8t8

E dxWE dxW8cst
† ~xW !cs8t8

†
~xW8!

3Vc~xW2xW8!cs8t8~xW8!cst~xW !, ~9!

can be written in terms of the density

r̂~xW !5(
st

r̂st~xW !5(
st

cst
† ~xW !cst~xW !. ~10!

The purpose of doing so is to cast the potential in linear a
quadratic terms, as the Hubbard-Stratonovitch transfor
tion can only be performed on quadratic terms. Using
fermion anticommutation relation, the potential then b
comes

V̂c5
1

2E dxWE dxW8Vc~xW2xW8!r̂~xW !r̂~xW8!

2
1

2E dxW Vc~0!r̂~xW !. ~11!

The last term is the self-energy and is a consequence o
Pauli principle. The discretized version of this equation is
0-2
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V̂c5
a6

2 (
xWn ,xWn8

Vc~xWn2xWn8!r̂~xWn!r̂~xWn8!2
a3

2 (
xWn

Vc~0!r̂~xWn!.

~12!

We assume a Skyrme-like on-site and next-neighbor inte
tion

Vc~xWn2xWn8!5Vc
(0)d~xWn2xWn8!1Vc

(2)
„¹xWn

2 d~xWn2xWn8!…,

~13!

whose discretized form is

Vc~xWn2xWn8!5
Vc

(0)

a3
dxWn ,xW

n8
1

Vc
(2)

a5 (
i 51

3

$dxWn1aeW i ,xW
n8
22dxWn ,xW

n8

1dxWn2aeW i ,xW
n8
%. ~14!

The parentheses in Eq.~13! indicate that the Laplace opera
tor only acts on thed-function, but not on any following
parts. Inserting Eq.~14! into Eq. ~12! gives

V̂c5
Vc

(0)

2 (
xWn

a3r̂~xWn!2

2
Vc

(2)a

2 (
xWn

(
i 51

3

„r̂~xWn1aeW i !2 r̂~xWn!…2

2
1

2 S Vc
(0)26

Vc
(2)

a2 D(
xWn

r̂~xWn!. ~15!

Here, we applied periodic boundary conditions.
The spin-exchange part of the potential is handled i

very similar way. Starting from

V̂s5
1

2 (
jtj8t8
klk8l8

E dxWE dxW8cjt
† ~xW !cj8t8

†
~xW8!

3Vs~xW2xW8!sW jtkl•sW j8t8k8l8ck8l8~xW8!ckl~xW !,

~16!

we write the potential in the form of spin densities

r̂s
(a)~xW !5 (

jtkl
cjt

† ~xW !sjtkl
(a) ckl~xW !, a50,1,2, ~17!

where sjtkl
(a) are the elements of a generalized Pauli sp

isospin matrix, which acts on a 4-vector representing
spin/isospin states of a nucleon. We assume the same sp
dependence~13! as for the central part, and finally arrive a
04432
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V̂s5
Vs

(0)

2 (
xWn

a3@ r̂s
(0)~xWn!212„r̂s

(1)~xWn!1 r̂s
(2)~xWn!…2#

2
Vs

(2)a

2 (
xWn

(
i 51

3

@„r̂s
(0)~xWn1aeW i !2 r̂s

(0)~xWn!…2

12„r̂s
(1)~xWn1aeW i !1 r̂s

(2)~xWn1aeW i !2 r̂s
(1)~xWn!

2 r̂s
(2)~xWn!…2#2

3

2 S Vs
(0)26

Vs
(2)

a2 D(
xWn

r̂~xWn!. ~18!

Other components of the potential can be included in a si
lar way.

B. Nuclear matter Monte Carlo method

In order to study thermal properties of nuclear matter,
grand canonical partition function at a given temperatureT
5b21 needs to be determined,

Z5Tr̂FexpX2bS Ĥ2(
st

mtN̂stD CG[Tr̂@Û#, ~19!

with N̂st5(xWn
cst

† (xWn)cst(xWn) and mt as the isospin-

dependent chemical potential.Û is called the imaginary-time
evolution operator of the system and is a many-body ope
tor. In the present study the HamiltonianĤ contains one- and
two-body operators as described in Sec. II A, and the trac
taken over all many-body states as indicated by a caret.
partition functionZ is an exponential over all one- and two
body operators~and therefore interactions! present in the sys-
tem. It is impossible to deal with the partition functionZ in
this form, because the number of many-body correlatio
that have to be kept track of grows rapidly with system si
We therefore seek an expression forZ that is based on a
single-particle representation, and we will replace the ma
body problem with that of noninteracting nucleons that a
coupled to a heat bath of auxiliary fields. This involves r
writing Z as a multidimensional integral.

We start by dividing the evolution operator intont time
slices:

Û5expX2bS Ĥ2(
s,t

mtN̂stD C
5FexpX2DbS Ĥ2(

s,t
mt N̂stD CGnt

, ~20!

with Dbnt5b. The Trotter approximation@17,18# is used to
separate one-body~kinetic energy and chemical potential! in
Ŝ[K̂2(s,tmtN̂st and two-body terms~potential! in Ĥ:

expX2DbS Ĥ2(
s,t

mt N̂stD C
5exp„2Db~ Ŝ1V̂!…

'exp~2DbŜ!exp~2DbV̂!. ~21!
0-3
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Equation~21! is valid to orderDb, but becomes exact in th
limit Db→0.

The propagator of each time slice for the potenti
exp(2DbV̂), is manipulated by applying the Hubbard
Stratonovitch~HS! transformation@19,20# on each term, re-
placing it with a multidimensional integral over a set of au
iliary fields.

As an example, we describe the transformation by tak
the on-site part ofV̂c at one particular sitexWm . Using a
[DbVc

(0)/2 and defining

Sa5H 6 i if a.0

61 if a,0,
~22!

the propagator for this single interaction is written as

DÛ~xWm![expS 2Db
Vc

(0)

2
r̂2~xWm! D

5Auau
p E

2`

`

dx exp„2ar̂2~xWm!

2uau@x1Sar̂~xWm!#2
…

5Auau
p E

2`

`

dx exp„2uau@x212Saxr̂~xWm!#….

~23!

The last line of Eq.~23! reveals that the evolution operator
now expressed in terms of the exponential of a one-b
operator and an integration over the auxiliary fieldx. It has
become a one-body propagator that corresponds to noni
acting nucleons coupled to this field. Since the integra
calculated with Monte Carlo methods, the field fluctua
according to a weight that is to be specified, hence the
ture of a heat bath.

It has to be emphasized thatr̂(xWm) here represents a one
body operator for a subset (V̂c in this case! of the full inter-
action. Each quadratic term in Eqs.~15! and ~18! has to be
replaced by an integral. At a given lattice sitexWm , there are
twelve auxiliary fields to form the full interaction, four forV̂c

and eight forV̂s . Nucleons are now coupled to a big e
semble of auxiliary fields through which the interaction
the nucleons is mediated. TheDÛ ’s are then multiplied to-
gether to form the evolution operator for one time sli
Û(bm) at bm5mDb, which is expressed only in terms o
single-body matrices, and ultimately, all time slices are m
tiplied together to formÛ:

Û5@exp~2DbĤ!#nt5E D@x#G~x!Ûx~b,0!, ~24!

with the integration measure

D@x#5 )
m51

nt

)
xWn

)
i

dxm,xWn ,iAua i u
p

. ~25!
04432
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The a i5DbVi /2, ViP@Vc
(0) ,Vc

(2) ,Vs
(0) , . . . #, are the

interaction-specific coupling strengths of auxiliary fields
nucleons, and the indexi enumerates all fields at a particula
site. The Gaussian factorG is given by

G~x!5 )
m51

nt

)
xWn

)
i

exp~2ua i uxm,xWn ,i
2

!, ~26!

and the one-body propagator is

Ûx~b,0!5Û~bnt
!Û~bnt21!•••Û~b1!. ~27!

Note that Eq.~24! only becomes exact in the limit of a
infinite number of time slices,nt→`. For a finitent , the
Hubbard-Stratonovitch approximation is valid only to ord
Db.

In the practical implementation of Eq.~23!, a discrete
Hubbard-Stratonovitch transformation is used instead of
continuous form because it turns out to use much few
decorrelation sweeps, as explained below.

A thermal observablêÔ& is expressed as@12,21#

^Ô&5
1

Z
Tr̂F Ô expX2bS Ĥ2(

s,t
mt N̂stD CG

5

E D@x#G~x!^Ô~x!&j~x!

E D@x#G~x!j~x!

~28!

and has the integration measure of Eq.~25! and Gaussian
factor of Eq.~26!. The expectation value of any operator
second quantization can be obtained with the help of Wic
theorem, and the resulting one-body densities are@12#

^cst
† ~xWn!cs8t8~xWm!&x

5$@11Ux~b,0!#21Ux~b,0!%(s8t8,xWm),(st,xWn) . ~29!

The bold faceUx(b,0) is the single-body matrix represent
tion of Ûx(b,0). Observables of the system are chosen to
the number of neutrons and protons and all component
the energy.

The integrals in Eq.~28! are evaluated using the Metropo
lis algorithm @22#. The basic idea involves sampling the in
tegrand of Eq.~28!,

^Ô~x!&5
Tr̂@ÔÛx~b,0!#

Tr̂@Ûx~b,0!#
, ~30!

within the boundaries of the integration volume according
a positive-definite weight

W~x!5H uG~x!j~x!u for continuous HS

uj~x!u for discrete HS,
~31!

with
0-4
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j~x!5Tr̂@Ûx~b,0!#5det@11Ux~b,0!#. ~32!

The last equality can be proven by expanding the deter
nant@21#. Samples are taken by a random walker that trav
throughx-space, taking a new valuexnew from the previous
onexold if the ratio

r 5
W~xnew!

W~xold!
~33!

is larger than one, or else, ifr ,1, taking onxnew with prob-
ability r. It can be shown@23# that the sequence of values th
walker takes is distributed according to the weight funct
W(x), which is typically chosen to be as close to the in
grand as possible to increase the efficiency of the proced
Since the consecutive steps are correlated, the walker h
travel several steps before another sample is taken to de
relate them. The average of an observable~28! is then simply

^Ô&5

(
i

^Ô& iF i

(
i

F i

~34!

in terms of itsi th Monte Carlo samplêÔ& i and

F5H G~x!j~x!

W~x!
for continuous HS

j~x!

W~x!
for discrete HS.

~35!

Note thatF, which is just the sign of the weightW, can
generally be negative or even complex.

The numerical determination of Eq.~34!, which is the
Monte Carlo equivalent of the integrals in Eq.~28!, can be
difficult in certain situations, even with Monte Carlo met
ods: If Sa56 i @which generally corresponds to a repulsi
on-site and an attractive next-neighbor interaction, cf.
~22!#, propagators for the potential@Eq. ~23!# contribute
negative or complex elements toÛx(b,0) @see Eq.~32!#. The
integrands in both numerator and denominator are osc
tory, and the integrals can add up to small numbers. A
merical evaluation with Monte Carlo methods causes la
uncertainties because the methods are of a stochastic na
and the number of samples in a computation remains fin
This is a complication associated with these methods w
the Hubbard-Stratonovitch transformation is used. It is
ferred to as the Monte Carlo sign problem. A pragmatic
lution has been used for the shell model Monte Carlo met
to handle this complication@15#.

There has been significant effort in stabilizing and op
mizing the Metropolis algorithm for lattice calculations,
they have been heavily used for models of interacting e
trons in condensed matter physics. Many of the techniq
have directly been applied to NMMC, because the mod
are similar. Besides using the checkerboard breakup@21#
04432
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technique for kinetic and spin-exchange parts, we use
Green’s function algorithm described in@25# to reduce the
computational burden.

III. NUMERICAL RESULTS

We now show that for symmetric nuclear matter~SNM!
the energy per particle can be reproduced quite well ove
wide range of densities, and the energy for pure neut
matter~PNM! for the same potential is discussed. Then, s
eral observations are presented that give evidence of a
order phase transition from a Fermi gas to a clustered sys
at a critical temperatureTc;15 MeV. Furthermore, the
symmetry energy and first sound are discussed.

The extensive search in the space of potential parame
included all components of the central part and sp
exchange. The effort focused on reproducing saturation d
sity and energy correctly. The project is considered to b
first step towards a realistic calculation as indicated earlie
more realistic calculation has to contain more parts of
nuclear potential and the spatial resolution has to improv
perfect fit over a wide range of densities should not be
pected at this point. The fit has been performed in suc
manner that the saturation energy and density is reprodu
and that the overall energy curve has a reasonable form
subsaturation densities, the matter should be unstable, w
for r.r0 SNM should evolve in an unbound state (E/A
.0 MeV for r>0.4 fm23).

The sign problem unfortunately forces the use of
nuclear potential that might contradict the usual physical
derstanding and intuition based on few-nucleon poten
models. It is generally known that the central potential ha
strong repulsion for short distances and features a long-ra
attraction. Here, the desire to avoid the sign problem gen
ates the opposite: on-site attraction and next-neighbor re
sion. On the other hand, an on-site attraction and ne
neighbor repulsion may not be unreasonable given the
that there have been several mean-field calculations
nuclear matter with the Skyrme forces. Skyrme forces sim
late the interaction with ad-like attraction and a¹2d-like
repulsion. In the lattice discretization of this investigatio
the position of the nucleons at the same site is only de
mined up to a cube of sizea. Therefore, the on-site potentia
parameter can be seen as an average potential within
cube, and by tuning the lattice spacing accordingly, it co
be possible that this parameter is negative. The exact de
tion of the parameter depends on a regularization schem
such a scheme the Schro¨dinger equation has to be solved o
a lattice, and by identifying scattering amplitudes, one co
determine the potential parameters from scattering leng
and effective range@24#. With respect to the lattice spacinga
two approaches can be taken: First, we constrain ourselve
a description with a fixed number of lattice sites. Thena
becomes a free fitting parameter like the potential para
eters, and the latter would have to be interpreted as an a
age potential, as noted above. In the second approach,a is a
discretization parameter for the potential, and the ultim
goal would be to increase the number of lattice points w
decreasinga, getting a smooth parametrization of the pote
0-5
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tial. If, in that case, a positive on-site parameter is us
emulating a hard core repulsion, one has to deal with os
latory integrands and commensurately large error bars.

The following potential parameters were obtained:

Vc
(0)52181.5 MeV fm3, ~36!

Vc
(2)537.8 MeV fm5, ~37!

Vs
(0)5231.25 MeV fm3, ~38!

Vs
(2)50.0 MeV fm5. ~39!

All calculations were done with this set of parameters. T
lattice has a spacing of

a51.842 fm, ~40!

tuned such that quarter filling of the lattice is at saturat
densityr050.16 fm23. In this paper, the lattice spacing
an additional fitting parameter, and several other setti
have been tested. However, quarter- and half-filling at s
ration density have a special significance because certain
tice occupations of the nucleons result in an energetic
favored configuration.

Because of limited CPU time, the calculation is restrict
to 43434 lattices for the moment. This lattice compris
1038 many-body states, and 11520 auxiliary fields are u
for this set of parameters. All calculations are prepared b
prethermalization of the system for 100 steps before we t
measurement samples. Between measurement sample
decorrelation steps have been taken to guarantee stati
independence of the samples. The autocorrelation ofk con-
secutive samples@23#

CO~k!5
^OiOi 1k&2^O i&

2

^O i
2&2^O i&

2
, ~41!

with i being the summation index over samples, has b
monitored for all observablesO and was held below 10%.

FIG. 1. E/A for symmetric nuclear matter as a function of de
sity r and for different temperatures. The purpose of the lines i
guide the eye.
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We are also restricted by the fact that the Monte Ca
simulations cannot be extended to arbitrarily low tempe
tures. Even though the numerical routines are quite stabl
is not possible to add an arbitrary number of time slic
since it involves more and more matrix multiplication
which become increasingly numerically unstable. In t
present case we takeDb50.01 MeV21 and were able to go
down to a value ofb5303Db50.3 MeV21 without run-
ning into numerical instabilities. Thus, the temperature ran
of the investigation is

3.0 MeV<T<100 MeV. ~42!

Figure 1 shows the best fit we obtained. With decreas
temperature, the system develops a minimum atr
50.32 fm23 first, which is most pronounced betwee
10–14 MeV, before it shifts to lower densities. AtT
53.3 MeV andT55.9 MeV the minimum is very broad
making matter softer~see also compressibility, Fig. 4 below!.
For high temperatures and/or high density, the simulat
suffers from the fact that it runs out of model space: AtT
550 MeV the system behaves almost like a Fermi gas
the energy per particle should behave like;r2/3. Yet, the
curve bends down. Also, for all other temperatures,
curves converge to the energy of the full lattice state,E/A
55.96 MeV, as density increases. For subsaturation de
ties the model gives more binding if compared to other c
culations~see, for example, Refs.@6# and@7#!, and the energy
is not as high for densities beyond saturation. Atr
50.32 fm23, E/A as a function of temperature has
minimum at T'10 MeV which means that at even lowe
temperaturesE/A increases again. This contradicts intuitio
because it would mean that the system is in an unphys
state.

The last issue needs further explanation. The energy
particle is not the correct quantity in order to address
question of stability. Particles fluctuate in and out of t
system differently at different temperature, leaving the av
age number of particles unchanged, but contributing to
two-body part of the Hamiltonian. If, however, the gran
potential is plotted~see Fig. 2!,

V~b,m!52T ln Z~b,m!, ~43!

with

ln Z~b,m!2 ln Z~0,m!52E
0

b

db8E~b8,m!, ~44!

it turns out to actually be a monotonic function of tempe
ture, with a slight deviation atm511.0 MeV where the
negative slope ofV, the entropy

S52S ]V

]T D
m,V

, ~45!

becomes zero between 10 MeV and 14 MeV and posi
again for even lower temperatures. This is a slight anom
~see also Fig. 5! which may have been caused by the onse

o
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FIG. 2. Grand canonical potential of symme
ric nuclear matter for different chemical poten
tials m. The solid lines represent the potential fo
a noninteracting Fermi gas in continuous spac
th
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numerical instabilities at low temperatures or the fact that
lattice spacing is so big and the number of sites so small
the discretization of space is not accurate enough.

We now introduce several observations which indic
that the system may undergo a first-order phase trans
towards a clustered system when the temperature is lowe
First, we investigate changes in density with respect to
chemical potentialm. It is well known that they are propor
tional to particle fluctuations

sN
2 5T

]^N&
]m U

T,V

;T
]r

]mU
T,V

. ~46!

Such fluctuations are typical for first-order phase transiti
and indicate that particles move between the two pha
without energy cost. For an infinite system, the fluctuatio
should diverge, but not for a finite system. In the pres
case, we expect particles building clusters and breaking t
up again, so one phase—the gas phase—would be tha
independent particles, the other one that of clusters. Since
observe the single particle density,sN

2 describes the fluctua
tions in the gas phase in whichr is linear in m. At T
5100 MeV, we are in the gas phase with nucleons behav
like a Fermi gas. Therefore, to simplify the graphs, we ha
first fitted the data atT5100 MeV to a linear function,

rfit5afit1bfit3m, ~47!

and then subtracted this function from all data points of
temperatures, defining a function of temperature and che
cal potential

f ~T,m!5r~T,m!2rfit . ~48!

The upper panel of Fig. 3 shows the outcome of this pro
dure. We then take the derivative off (T,m) with respect to
m and multiply withT, and this is shown in the lower pane
of Fig. 3. The fluctuations show a pronounced maximum
04432
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T514.3 MeV andm'28 MeV, while they are low forT
53.3 MeV andT5100 MeV. The phase transition seem
to occur somewhere betweenT58 MeV andT520 MeV.

Another quantity that suggests the existence of a tra
tion is the compressibility which is given by

FIG. 3. Density fluctuations in symmetric nuclear matter. T
upper panel displays the modified densityf while the lower panel
shows the derivatives off with respect to chemical potentialm
which are proportional to the fluctuations.
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k59r2
]2E/A

]r2 U
r5rsat

, ~49!

where rsat is the saturation density. We have fitted t
minima of each energy curve to a quadratic function

E

A U
fit

~r!5a1b3~r2rsat!
2, ~50!

and determined the compressibility ask518rsat
2 3b. All data

points in Fig. 4 were obtained with ax2 per degree of free-
dom of less than 1.5. Again, a maximum in compressibi
~which is in fact an incompressibility! is observed atT
'14 MeV: The clusters that form repel each other throu
the next-neighbor interaction which is repulsive. AtT
,14 MeV, matter becomes softer again due to a broaden
of the minima inE/A. This can be explained if one assum
that the system becomes more dilute. Note that the value
rsat change with temperature.

FIG. 4. Compressibility of symmetric nuclear matter. T
minima of the energy curves have been fit to a parabola with ax2

<1.5 per degree of freedom.
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Finally, we present the heat capacity and entropy of
system. For a first-order phase transition, the continuous
infinite system shows a divergence in the heat capacity

cV5
]E

]T U
V

, ~51!

and a discontinuity for the entropy~with an infinite deriva-
tive at Tc),

S~b,m!5 ln Z1b^H~b,m!&2bm^N~b,m!&. ~52!

For a finite system only a maximum in the heat capacity
expected, and a relatively sharp drop in entropy with d
creasing temperature. Both facts can be verified in Fig
The heat capacity suggests a critical temperature ofTc
515 MeV, as does the entropy. For the graphs of entro
one has to keep in mind that the system investigated is q
small ~it is a 43434 lattice only!, but two levels,S'75
from T55 MeV to T512 MeV and S5175 from T
520 MeV toT530 MeV with a steep decrease in betwee
can definitely be identified. To show that this is indeed
first-order phase transition, the calculation has to be repe
for a larger number of lattice sites, and then it has to
demonstrated that the drop between the two levels beco
steeper and steeper, finally resulting in a steplike functi
This will have to be left for a future project. Studies of
lattice gas model@26# have shown that finite size effects d
induce anomalies in physical quantities, and a first-or
phase transition rather appears as a second-order one
anomaly belowT510 MeV has been addressed when d
cussing the grand potential. However, the latter quan
shows a qualitative behavior atm511 MeV that is expected
for a phase transition~cf. Fig. 2!. The infinite system has a
kink ~the derivative is not continuous! in the grand potential
at the critical temperature. Consequently, all quantities c
sistently suggest a phase transition at a critical tempera
of Tc'15 MeV.
e
o

-

FIG. 5. Heat capacity and entropy for a finit
piece of symmetrical nuclear matter. The tw
graphs on the left show the casem50.0 MeV,
the right ones form54.0 MeV. The heat capac
ity ~upper panels! shows a distinct maximum; the
entropy ~lower panels! a relatively sharp drop
with decreasing temperatures.
0-8



o
h
th
tte

f
tia
or
r

hi
le
s
at

V
Re
s i
a

gi
a
n

m-

m-
he

ure
r-
ure
phs
that
as-
igh
as,
he
fact

lity
ity

lue
to
not

for-

s

to
it
s-

he
press-

NUCLEAR MATTER ON A LATTICE PHYSICAL REVIEW C 61 044320
In Fig. 6 we show the energy per particle for pure neutr
matter. The uncertainties for this case are much larger t
for symmetrical nuclear matter. As a potential, we used
parameters obtained from the fit to symmetric nuclear ma
even though we could have fitted the potential parameters
this case anew, including an isospin-exchange poten
Therefore we view the results for pure neutron matter m
as a test to see how well the given potential already rep
duces the energy. Note that the slopes of the curves at
temperatures are not negative as it is for symmetrical nuc
matter. But clearly, we cannot conclude that the energie
T53.3 MeV have converged to that of the ground st
because the curve differs quite a bit from that ofT
55.9 MeV. At the lowest temperature they are 4–5 Me
higher than those of the ground state as calculated in
@6#, but the general shape of the curve is very similar. Thi
no surprise, since pure neutron matter is like a Fermi g
with attractive forces between neutrons lowering the ener
with respect to the noninteracting system. The search for
kind of phase transition in the range of 5–50 MeV was to

FIG. 6. E/A for pure neutron matter as a function of densityr
and for different temperatures. The lines guide the eye.

FIG. 7. Symmetry energy for symmetric nuclear matter a
function of density and temperature. Shown is the coefficientasym

of the semiempirical mass formula. The left panel shows a con
plot; the right one shows one-dimensional cross sections of
different temperatures.asym is increasing with density and decrea
ing with temperature.
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avail. It is likely that a phase transition occurs at lower te
perature.

We finally calculate two additional observables and co
pare them with other calculations found in the literature. T
symmetry energy, which appears as a coefficientasym in the
semiempirical mass formula

Esym

A
5asym

~N2Z!2

A2
, ~53!

is plotted in Fig. 7. We used the energy per particle of p
neutron matter~PNM! and SNM, subtracted them and inte
polated the result on a mesh. Since the error bars for p
neutron matter are larger for low temperatures, the gra
should be viewed with caution. Nevertheless it appears
the symmetry energy is increasing with density and decre
ing with temperature, as one would expect. Indeed, at h
temperature SNM and PNM both are more like a Fermi g
and only at low temperatures do they become different. T
observed dependence on density can be explained by the
that a dilute system is barely interacting while the probabi
of clustering increases with density. At saturation dens
and low temperature, we obtain a coefficient of

asym'3863 MeV, ~54!

which is not too different from the generally accepted va
@27# of asym528.1 MeV. This discrepancy is in part due
the fact that the calculations for pure neutron matter have
converged completely.

The first sound velocity has been calculated using the
malism of relativistic fluid dynamics:

u/c5A]p

]eU
S

, ~55!

where

e5r3S mNc21
E

AD ~56!

a

ur
at

FIG. 8. First sound velocity for symmetric nuclear matter. T
temperature dependence of the speed corresponds to the com
ibilities as shown in Fig. 4.
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and

p5r2
]E/A

]r U
S

. ~57!

In general, the first sound we obtain is too low compared
Refs.@6,28#, but the velocities are of the same order of ma
nitude. Several calculations@6,28# show a violation of cau-
sality at a few multiples of the saturation density, and so
ours. Our results~Fig. 8! show the correct temperature d
pendence in the sense that it conforms with the compress
ity: higher sound speed for intermediate temperatures~high
incompressibility! and lower speeds for both low and highT.

IV. DISCUSSION AND CONCLUSION

The model considered in this paper is an exact treatm
taking first steps towards a more realistic Hamiltonian, an
is an improvement compared to previous calculations. N
ertheless it can be extended to include more physics,
details in the algorithm can be improved. First of all, mo
computer power is necessary to reduce finite size effect
lattice of 10310310 points would be desirable, and also t
imaginary time dimension could be pushed further. This
quires stable matrix techniques. The present code can ha
30 time slices comfortably using commonly known spa
matrix techniques. But, as the lattice spacing decreases,
needs to go to larger imaginary time to separate the gro
state from excited states. At the same time it is not poss
to increaseDb as it would induce finite time effects. There
fore, an improved effective matrix algorithm would b
needed to allow for more matrices to be multiplied. Alo
with a bigger lattice, the resolution of the potential could
increased, resulting in next-to-nearest-neighbor and fur
interactions. This extension of the spatial dependence of
potential can easily be accomplished and is only restricted
computational power.

Another big hurdle is the sign problem. The solution
this obstacle will result in a huge advancement in many ar
of computational physics and chemistry. Romet al. @29#
have made some progress which could prove beneficia
the model described here too: It basically consists of shift
the contour of the auxiliary field integrals, which is equiv
lent to subtracting a mean-field from the problem. We plan
investigate this method and its application to nuclear ma
more rigorously in the future.

The physics of nuclear matter itself is certainly more
volved than the current model can account for. Mesons
not included as explicit degree of freedom, and the vari
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exchanges are only simulated indirectly through the cho
of potential and its parameters, very much like in AV18
other potentials. Realizing that the auxiliary fields beh
like massless bosons, one could ponder how a Monte C
procedure would look like that includes meson exchange
rectly. Such a procedure could be quite similar to alre
established auxiliary field Monte Carlo procedures.

It is known that three-body and perhaps higher-or
many-body forces are important to describe saturation p
erties of nuclear matter correctly. However, incorporat
these forces in a Monte Carlo calculation is currently imp
sible, basically because there is no scheme to reduce hi
order forces to the single particle formalism. Such a sch
could lie in a multiple application of the Hubbard
Stratonovitch transformation for a single many-body inter
tion. But as long as such a scheme is not available, an
proximation could be established on top of this two-bo
calculation that incorporates higher-order effects. A first
tempt would be to calculate the three-body contribution
the energy obtained from the one-body densities of
Monte Carlo calculation and a given three-body Ham
tonian.

In conclusion, this project has produced promising res
which should be viewed as a starting point to an exact s
tion of infinite nuclear matter. In a model with a relative
simple Hamiltonian, and further limited by a very small la
tice, we were able to reproduce saturation properties of s
metric nuclear matter. The energy of pure neutron ma
using the same potential, gave reasonable results,
though it had not yet converged. Furthermore, we prese
evidence in the form of mechanical and thermodynam
observables which support the existence of a phase trans
from a Fermi gas to a clustered system. Particle fluctuat
of the gas phase seem to reach a maximum atT'14 MeV.
The heat capacity and compressibility also have a maxim
at around this temperature. Entropy and grand potential s
a behavior as it is expected for a first-order phase transi
Other quantities like symmetry energy and first sound ve
ity show reasonable agreement with other calculations.
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