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Quasiparticle random phase approximation with inclusion of the Pauli exclusion principle
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Limitations of the quasiparticle random phase approximat@RPA) are studied within an exactly solvable
model, with a two body interaction of Fermi type. A special attention is paid to the violation of the Pauli
exclusion principlgPEPB in solving the QRPA equation. A comparison of the exact solution, obtained by the
diagonalization of a schematic nuclear Hamiltonian and those obtained within the standard QRPA, the renor-
malized QRPA, the QRPA with pertubative treatment of the PEP, and the QRPA with exact consideration of
the PEP, is presented. The agreement quality is judged in terms of the quasiparticle number operator matrix
elements in the ground state and in the first excited states, ¢@f ttensition amplitudes, of the Ikeda sum rule,
and of the nuclear matrix element for the douBléecay. We have found that by restoring the PEP, the QRPA
solutions are considerably stabilized and a better agreement with the exact solution is obtained.

PACS numbd(s): 21.60.Jz, 23.40.Hc, 23.40.Bw

I. INTRODUCTION Recently, the instability of the QRPA solution, caused by
The quasiparticle random phase approximati@RPA)  the PEP violation received much attention from the experts
has been found to be a powerful method for describingn the field. In order to improve the reliability of the standard
many-body systems. Due to its simplicity, the proton-neutrolQRPA description of the nuclear transitions, the renormal-
QRPA is the nuclear structure method which has been mosted version of the QRPARQRPA), which take into ac-
frequently used to interpret some nuclear structure aspects ebunt the PEP in an approximate way, has been formulated
the beta 3) and double beta4B) decay for open shell [11,12 and applied to thg8 and 88 decay problem$13—
systemg1-10. The QRPA provides a description of excited 15]. Indeed, the RQRPA does not collapse within the physi-
states by including some nucleon-nucleon correlations in theal range of the interaction strength parameters. However,
ground state. avoiding the collapse in the RQRPA a price had to be paid,
The QRPA equations are derived directly from the equanamely the violation of the Ikeda sum rul&6,17.
tion of motion. In deriving the QRPA equations two basic  There is a constant interest in studying the physical con-
approximations are adoptetl) The operator, which deter- sequences of violating the PEP by the QRPA solutions.
mines the excited state, is taken as linear superposition @ome definite conclusions can be drawn by using solvable
two creation and two annihilation quasiparticle operators bymodels, such as, for example, the extensiphg, 1§ to
considering the BCS basis as referen@.The commutator  proton-neutron systems of Lipkin or Moszkowski models
of bifermion operators is replaced by its expectation value irf19,20, as they simulate the realistic cases either by analyti-
the BCS ground state. This is usually called the “quasibosormal solutions or by a minimal computational effort. It is
approximation” (QBA). The QBA violates the Pauli exclu- worthwhile mentioning that the study of different many-body
sion principle(PEP and this affects severely the theory. The approximations within schematic models was always of great
terms which are left out by the QBA become more and morénterest and moreover it is currently considered of major im-
important when the ground state correlations are increasegobrtance17,21-29,31
which results in a collapse of the QRPA solution. The ap- The improvement of the PEP obedience, within the
proach based on the two approximations mentioned abov@RPA, can be achieved in two way. By a mapping tech-
will be conventionally called “the standard QRPA ap- nique the whole theory can be formulated in a boson picture.
proach.” Such an approach has been outlined for the proton-neutron
monopole Lipkin model in Refd.22-24. (ii) One can re-
main within the fermionic space and derive the elements of
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within the proton-neutron monqpt_)le Lipkin model and point a:m:uTaim_UTaTm, aTm:vTa:m_,_u;éTm’ (2.4
out some implications for realistic calculations. The newly

introduced approximations will be compared with the exaciyhich defines the quasiparticle representation, and neglect-

results, revealing, in this way, the limits of the approxima-j,g the scattering terma;an and a;ap, the model Hamil-
tions. Our work completes the discussion of Réfs7,22— tonian acquires the form

26] in which the same schematic model was considered. In-
deed, for the first time, the QRPA solution with an exact He=€eC+ N ATA+ N, (ATAT+AA), (2.5
consideration of the PEP is presented.

The paper is organized as follows. In Sec. I, we describavith
the solvable model and specify the corresponding solution.
Section Il describes the standard QRPA and RQRPA within
the chosen solvable model. In addition, new extensions of
the standard QRPA approach, which take into account the

_ T t ot =
C—% apmapm-i-% Apmnm > AT—[apan]J 0

PEP in an approximate way and exactly are introduced, re- )\1=4Q[X(u,2)vﬁ+v‘;uﬁ)—K(uf,uﬁJrvf,vﬁ)] (2.6)
spectively. In Sec. IV, the results obtained within the QRPA
approa(_:hes are presented and compared with the exact re- No=4Q(x+ K)Upv pUnv -
sults. Finally in Sec. V, we summarize the results and draw
some conclusions. For the sake of simplicity we used a single level case
=]jn=] and G,=G,=G which implies equal energies for
Il. NUCLEAR HAMILTONIAN protons and neutrons quasiparticles: e,=e,=G/2 and

i=VNi/2Q, uj=+1-N;/2Q with i=p,n (N, andN, are
umber of protons and neutrons, respectively denotes the
emidegeneracy of the considered single level.

The model Hamiltonian in Eq$2.5) and(2.6), resembles
the Hamiltonian of the Lipkin moddll9], when\ is taken

We assume a model Hamiltonian which includes a single?
particle term, proton-proton and neutron-neutron pairing, and
a charge-dependent two-body interaction with particle-holeS
and particle-particle channels included:

H=H,+H,+Hes (2.1  equal to zero. We note that operat¢rs AT,C} are genera-
P tors for an SW2) algebra. Indeed their mutual commutators
where are
t + t c T t
H.=e, >, a,mdm—G,S,S, (7=p,n), [AAT]=1- 20" [C,AT]=2A", [A,C]=2A.
m
(2.7)
He=2xB B"—2kP P™, 2.2
e~ 2XB B @32 This model Hamiltonian is expected to account qualitatively
with for some features of realistign-QRPA calculations. Due to

these expectations, it has been used to study the standard
N QRPA, renormalized QRPA as well as the higher order
ST_E = &rmrm QRPA approximations for the many-body system, Refs.
[17,22. The salient feature of this Hamiltonian is that the
stability of the approximate solutions can be discussed in
B =2 abmanm, BT=(87)", (2.3 comparison with the exact solution determined by diagonal-
m izing Hg in the space of states
_ ~ . =(AM" =n=<2(). .
p :% a;maxm’ pr=(P)T [n)=(A")"0), 0=n=<2Q (2.9
Here |0) denotes the vacuum state for the quasiparticle op-
a' (a) being the particle creatiofannihilation operator and erators. The matrix to be diagonalized can be easily calcu-
~ indicaing the tme reversed statesal, lated with the result
=(—-1)~mal .
The schematic Hamiltonian, given by Eq2.1)—(2.3), (n|Hg[nY=2enm,+\q| My, —my+
reproduces well the QRPA results of the realistic Hamil-
tonian containings-matrix elements of the Bonn-OBEP po-
tential for the 8 and BB decay transitiond32—34. The (n—=2[Hg[n)=A,m,, (2.9
strengthy («) of the particle-holdparticle-particle interac-

nm,
Q 1

tion corresponds to the well-known parametgy, (9,,) where

commonly used in literaturgl—4] to parametrize the realis- (201

tic ph (pp) interaction. mnE<O|An(AT)n|O>:L)' (n<2Q).
Performing the Bogolyubov transformation for protons (2Q—n)r20)"

(7=p) and neutrons£=n) (2.10
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For n>2(), the norm overlapsn, are vanishing. The standard QRPAThe simplest approximation scheme
to calculate ofA, B, andl/ is the quasiboson approximation
Ill. QUASIPARTICLE RANDOM PHASE (QBA), which assume$A,AT]~(|[A,AT]|)=1, i.e., A and
APPROXIMATION AT are considered to be boson operators. Hémenotes the

] . _uncorrelated BCS ground state. In this case, one finds the
Another way to find an excited state for the model Hamil- gy pressions

tonian (2.5), is to solve the corresponding QRPA equation.
In what follows we shall briefly describe the basic ideas un- A=2e+N,, B=2\,, U=1, (3.8
derlying this method for our solvable model.

Within the QRPA, an excited sta®) is created by ap- which determine the excited state eigenenergy and wave
plying a phonon creation ()pera_t@fr on a statéRPA} hav- function with normalizationX?—Y?=1. The drawback of

ing the properties: this approximation scheme is the collapse of the standard
QRPA solution within the physically acceptable interval for
|Q)=Q|RPA), Q|RPA)=0. (3.)  the nucleon-nucleon interaction strength.

. ) .. The renormalized QRPAThe renormalized QRPA
The smplest form for the phonon operator, in the ferm'on'C(RQRPA) approach avoids the collapse of the QRPA solu-
space, Is tion for physical parameters of the nuclear Hamiltonian.
Qf=XAT-YA (3.2 Within _the RQRPA_ the Commutz_itm[,A,AT] is replaced
with its expectation value in the ground state
whereX andY are called forward- and backward-going free D=(RPA[A,A']|RPA) (renormalized QBA This modifies
variational amplitudes and satisfy the QRPA equation the matricesA, B, U in the following way[13,14:

A B X U 0 X ) ) 72 -1
A I e P [ (3.3 A=2eD+\,D?  B=2\,D% U=D=|1+
(3.9
where
Note that the fermionic structure of the, AT operators is
A=(RPAA[He AT]]|RPA), taken into account only in an approximate way. In the limit
of D=1, i.e., theRPA) ground state is replaced by the BCS
B=—(RPA[A,[HE A]][RPA), (34 one|), one gets the standard QRPA approach.

It is worth remarking that in both the standard QRPA and
the RQRPA, the element4, B, andl/ are evaluated by using
some approximate schemes for the commutafai']. If
the commutator is exactly considerdce., the PEP is ful-

3.5 filled, the matricesA, B3, and/ take the form

U=(RPA[AAT]|RPA).
It is useful to introduce the notation

X=UYX, Y=u'?,

— — RPA|/C|RP
A=U"12Au2, B=u Ry, (3.6) A=(2e+ )\1)—(5+)\1)—< NQ| a.
lhen tﬁe QRPA eigenenerdiyrpa and the new amplitudes (RPA/CC|RPA) (RPA/ATA|RPA)
X andY are given by A 202 M Q
EQRPAZ(ZZ_?)UZ; <RPA|ATAT|RPA>
_ —2\; Q , (3.10
e A+ Eqrea 37
= = ' 1 1\ (RPAIC|RPA)
V(A+ Eqppn?— B =Ny 2= S| A 2 o |
( QrRPA) B )\2(2 Q) )\2(2 20) Q
— -B RPA CC|RPA RPAATA|RPA
v _ 2, FPACCIRPA | (RPARIAIRPA
V(A+Eqrpa)®— B 20
From the definition of the QRPA ground staRPA) (3.1), it _MW (3.1
follows that elementsd, B, andi{ of the QRPA equation are Q ’
functions of theX and Y amplitudes. Due to this fact this
nonlinear eigenvalue problem could be solved only numeri- _ (RPAC|RPA)

cally by an iteration process. The functional dependence of u=1 20 ' (3.12

A, B, U on X andY is specific to the approximation scheme
and influences crucially the final results. Below, we shallThe calculation of the involved matrix elements requires the
discuss, separately, several approaches. knowledge of the|RPA) ground state, determined by the
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condition in Eg.(3.1). The analytical form for|RPA) is )
known within QBA and renormalized QBA. For the phonon oea{RPAATA[RPA) gga=—n
operator given by Eq.3.2), one obtains

1
2 (2—6)dh2(d)

d2
+2¢ ha(d)

3

\%
_Aqatat
|RPA)gga=ne 44 A1), d:—ﬁ, (3.13

L where the following n ions hav n :
wheren stands for the normalization factor. ere the following notations have been used

In general, it is not possible to find an explicit expression

for |RPA) unless some additional approximation is adopted. h (d)E<|e—dAAe—dATAT|>: i
Fortunately, this can be achieved in the case of the solvable 0 n2’
model considered in the present paper. By solving(Bd), 0 A
one obtain d? ) d*
:2 : 2m2j%m0+d m2+_m4, (317)
=o (i 4

|
;) (ATADT), (314

Q
[RPA)ec=N2, 5 ) at
- hy(d)=(|e” M ATATe dA AT,

with ‘o d¥ —d d®

= My o~ —dmMy— My,
(20 Ql (20-2) N‘2—§ 2( )2| =0 (jn2ij+1 2j+2 27 5 4
A=Y o ia—nr N T Ak ma- (3.18
(3.15
—/|a—dA 4,—dATAT
We note that if the ground state correlations are neglected ha(d)=(le”**N(AD)e .
in the calculation of4, B, andi/ in Egs.(3.10—(3.12), i.e., Q-2 42 d2 d2
the RPA vacuunRPA) is replaced with BCS vacuur), => — - - Myj 44~ 5 My.
one getsA=(2e+\,), B=\,(2—1/Q), and {=1. Obvi- =0 (jH2(+2)(+1) 2
ously, the standard QRPA equation is recovered in the limit (3.19
Q—w, ie., the bifermion operatora® and A behave as
bosons. We hope that this approach can be applied also for realistic

By using the approximat¢RPA)qsa (3.13 and exact calculations and within a large model space. Note that know-
|IRPA)eyc (3.15 solutions for the QRPA ground state, one ing |RPA)qsa, the QRPA matrices can be evaluated without
achieves, in fact, new extensions of the standard QRPA aphe PEP violation, at least perturbatively with respect to the
proach, namely, the QRPA with the PEPP QRPA in-  factord. If the pertubative series is truncated to the quadratic
cluded in an approximate manner and the QRPA with thaerms ind, the resulting approach will be hereafter labeled by
PEP(EPP QRPA fully fulfilled, respectively. Both methods the abbreviation PP2 QRPA.
go beyond the renormalized QRPA approach and require to The QRPA with exact PEPThis method can be formu-
evaluate ground state expectations values of @eCC,  |ated only for a solvable model for which the exact QRPA
ATAT, andATA operators entering the expression f&r B,  ground state can be analytically found. Within the EPP
andl/ as shown in Eq93.10—(3.12. This is performed free  QRPA there is no violation of the PEP. However, one can
of any approximation. not expect that the EPP QRPA solution coincides with the

The QRPA with PEPThere is an important difference exact solution for the first excited state of the nuclear Hamil-
between this method and the RQRPA one, although botkonian(2.5). The difference is caused by the approximations
methods use the same ground state wave funcfie®s Eq.  incorporated in the construction of the opera@drdetermin-
(3.12]. Indeed, within the RQRPA, the commutator of the ing the excited statgsee Eq.(3.1)]. Therefore, from the di-
two bifermion operator#\ and A" is considered in approxi- rect comparison with the exact solution one may conclude
mate way while the PP QRPA takes it exactly. Indeed, thenow far the approximate description, with the phonon opera-

operators of interest have the expectation values: tor of a simple structure, is from the exact pict(8el). The
) following expressions are used in elaborating the above de-
ea(RPAIC|RPA) gga= —4n“dhy(d), fined procedure:
1812 2
QBA(RPNCC|RPA>QBA_ 16nTdhy(d) =d%hy(d)], oxd RPA/AA|RPA) o= exc<RPAIATAT|RPA>exc
(316 Q-1 21+1
oea{RPAATATIRPA) gga=NZh,(d), :N2|=20 ,3|,3|+1(§) My 42,

0-1

2l
IAfter the present paper was completed we learned that this equa- RPAAATIRPA) .. =N?2 2(_) m
tion has been derived also by other auti@®,31,25. exd Al | Vexc |20 hi X A+L
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Q 21 '
Y n
exc(RPA|C|RPA>exc: Nzlzl ,8|2(4|)<§) My, 257 , g;g;gl;A |
(3.20 =00 T Raee |
2 — QRPA | |
—-—-- EPP QRPA
Q Y 2l -
exc(RPA|CC|RPA>exc: szl ,8|2(4|)2(§) my, % 15 1
S
82
RPA|/C|RPA Ly
oxd RPAIATA|RPA) o= — 1+ exd Nz Q' Jex
05 |
+ exd RPAAATIRPA) .
IV. RESULTS AND DISCUSSIONS 0
In what follows we shall present the numerical results for 5 5 | | I H, disg. |
the QRPA approaches described in the previous section an ' , ~——— PP QRPA
compare them with the values provided by diagonalizihg X'=05 T ;‘;1?,‘;"‘*
(2.5. In order to continue and complete the discussion of 2t ——— QRPA ||
—-—-- EPPQRPA

this Hamiltonian given in Ref417,22], we have chosen the

same set of parameters as there: S\
[ 1.5 B
j=9/2, Z=4, N=6, e=1 MeV, (4.1) )
@
which determine the BCS amplitudes entering the, pa-
rameters of the model Hamiltonidh: . Also we redefine the
parametersc and y as in Refs[17,22: 05 |
k—k'=20k, x—x'=20x. 4.2 OO
The valuesy’=0 and x'=0.5 were adopted while the
part'de'rpart'de strengtk’ was allowed to vary in the inter- FIG. 1. Comparison of the lowest excitation energies resulting
val O<«'<2. Comparing tbe schemath cqlculatlons with thefrom the diagonalization ofi¢ (bold solid line,Hr diag) with the
realistic ones, a value fot’ close to unity is expected. standard QRPA(solid line, QRPA, the renormalized QRPA

(dashed line, RQRPAthe QRPA with the Pauli exlusion principle
up to second order id (bold dashed line, PP2 QRPAhe QRPA
with Pauli exclusion principlébold dotted line, PP QRPAand the

] ~ QRPA with exact consideration of Pauli exclusion princigbeld
In Fig. 1 we plotted the dependence of the QRPA eXcitayot-dashed line, EPP QRPAalues.

tion energy and the first excitation energy obtained by diago-
nalizing Hg (bold solid line on «’, for x'=0 (upper figure

and x'=0.5 (lower figure, respectively. Note that the stan- ('=0.5), respectively. This indicates that a real phase tran-
dard QRPA breaks down fot’~1. The RQRPA excitation sjtion could take place in the region beyort=2.5.

energy remains real within the whole interval#f although

it deviates significantly from the exact solution beyond the

breaking down point of the standard QRPA. The effect is g Egypectation values of the quasiparticle number operator
more evident fory’=0.5. The PP2 QRPA and, especially,

the PP QRPA energies reproduce quite well thosed pf In order to get additional information about the quality of
except for the values of’ approaching their minimum. The different approximations, we calculate the expectation values

EPP QRPA, which take into account the PEP exactly, Sysg)f the quasiparticle number qperator in the ground and first
tematically overestimates the results obtained through the dfxcited states. These are defined as follows:

agonalization ofH. This difference migr;Tht be attributed to
the simple form of the phonon operat@r (3.2). From this C C

figure one remarks that the collapse is shifted to a large value No=(RPA Pl |RPA), ANE(RPNQEQ” RPA)—No.
of " when the PEP is satisfied to a larger extent. For ex- 4.3
ample for the PP2 QRPA, PP QRPA, and EPP QRPA, the

collapse appear at about=1.80, '=2.50, and«x’'=2.55  For the situations defined before, the results are

A. Excitation energies
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N2 > _2d’m, e
0=Y* (QRPA), =Y° (RQRPA, =——— (PP2 QRPA, =n%(—-2d)hy(d) (PP QRPA,
1+d’m,
:exc<RPAlC|RPA>exc, (EPP QRPA; (4.4

AN=1+2Y2 (QRPA), =1+2Y2 (RQRPA),

X2+ Y2\ oga(RPAC|RPA 0gp  X2—Y?
= X4 Y2) | X2 Y21 = )Q 5 B 5 osa(RPAICCIRPAYGe, (PP QRPA,
X2+ Y2\ o { RPAIC|RPA X2-Y2
=(X2+Y2)+| X2—Y2-1— 9 )ex°< A|2| erc 10 e{RPACCIRPA)c; (EPP QRPA. (4.5

The expressions corresponding to the standard QRPA and In Figs. 2 and 3Ny and AN, given by the above listed
RQRPA have been obtained by replacing the oper@i@  approximation schemes as well as the exact calculation, are
with its boson image, respectively. As for the remaining cas@resented. One sees that the standard QRPA overestimates
we stay in the fermionic space and use the commutatiothe ground state correlations near the collapse point, which
algebra given by Eq2.7).

lll'
. : T V4
H, ding. 1.6 - E
PP QRPA
15 | |=-=---- PP2 QRPA = H,diag.
———- RQRPA PP QRPA
——— QRPA wawt Nyl | PP2 QRPA |
—-—-- EPP QRPA . ———- RQRPA
QRPA
—-—-- EPP QRPA
L z
ZO < 1.2 r T
X'=0.0
0.5 | 11
0.8 L L
0 1 1 T 7
T ,'
H;, diag. L6 '/' ]
PP QRPA —
1.5+ |----- PP2 QRPA . x=0.5 H, diag.
———- RQRPA PP QRPA
—— QRPA I N A A 7 PP2 QRPA| _
—-—-- EPPQRPA : ———- RQRPA
——— QRPA
—-=-- EPP QRPA
a z
Zo < 1.2 1
X '=0.5
05 r 1
= 0.8 — — —— .
0 : ‘ ‘ 0 0.5 1 1.5 2
0 0.5 1 15 2 x’

FIG. 3. Differences between the expectation valueghaf)
FIG. 2. The expectation values @falf) the quasiparticle total quasiparticle number operat@?2 in the first excited state and in
number operato€/2 in the ground state, versus . Conventions the ground state as function &f. Conventions are the same as in
are the same as in Fig. 1. Fig. 1.
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reflects itself in a sudden increase of the average quasipartiavior of other curve$22]. This is an indication that a more

cle number. The RQRPA does not collapse at all and overeomplex form for the phonon operator might be necessary.

estimates the exact result both fiNg and AN. A distinct

situation is produced by the QRPA approaches with PEP. C. Fermi B transition amplitudes

fons and the values i, are amalle than those corrogpond- ., Ve U our attention now to ransitons induced by the

ing to the exact solutign Practically, there is no difference':ermI B operators. Neglecting the scattering term, as we
' ’ —did for the nuclear Hamiltoniahi- (see Sec. )| the Fermi

between the PP2 QRPA and the PP QRPA up to the p0|r‘%+ operators, in the quasiparticle basis, take the form

where the former one collapses. The EPP QRPA, with a P ' q b '

exact treatment of the PEP, provides the best agreement with B—:@(u v Ao uA), BT =(B7). (4.6

the exact results obtained by diagonalizidg. We notice PN T

that none of the considered QRPA methods is able to reproFhe matrix elements o3~ operator between ground and

duce the exact result fakN which, after a certain point in first excited states corresponding to different versions of the

the regionk’=1.0—1.1, is falling down, contrary to the be- QRPA, are given as follows:

(07|87 IRPA) = 2Q(Xupu + Yuu ) (QRPA),  =12Q(Xupu,+ Yu,u,)D¥2 (RQRPA),

2
1+d? 1—5> m,

=2Q(XUyv s+ Yo oup) 5 (PP2 QRPA,
1+dm,

= ZQnZ(Xupvn+vaun)<ho(d)+2%h2(d)>(PP QRPA,

- m(xUpvnvaun)( 1— eX&RPNZ?)'RPA%XC)(EPP QRPA. 4.7

Expressions fo3™ are obtainable from the above equationsFor a ground state preserving the proton and neutron num-

by interchanging thei’'s andv’s. bers in average, the two strengths are satisfying the Ikeda
In Figs. 4 and 5 we examine the behavior of fBe and  sum rule

B+ amplitudes, respectively, as functions «ffor two val-

ues fory’ (=0, 0.5. One notes a rapid increase 8f and

decrease of3" transition strengths for the standard QRPA

and the PP2 QRPA, close to their collapse point. In generat{égireeclt\il\/:g/d Z are the numbers of neutrons and protons,

the PP2 QRPA, PP QRPA, and EPP QRPA methods repro-- i i \ye|i known that the Ikeda sum rule is automatically
dgce better the trends of the exact resu_lts comparing themyisiied in the standard QRPA and violated in the RQRPA
with the RQRPA. The best agreement with the exact valuegy g 17. According to Fig. 6, this is also true for the solvable
is achieved for the PP QRPA. Obviously these analyses denyodel of this work. This figure shows also numerical results
onstrate how important it is to have a correct treatment of thgor the Ikeda sum rule predicted by the methods described so
PEP, in describing the nuclegrtransitions. It is worth not-  far, and compare them with the exact results. One notices
ing the sensitivity of thes™ amplitude to the details of that the exact results fot -, do not fulfill the Ikeda sum rule
nuclear structure wave functions. Indeed, by increasing thand show a large deviation from the value df Z) for «’
the particle-particle interaction strengify the matrix ele- for '=1. The origin of this phenomenon is expected due to
ment of theB™ transition operator reaches a vanishing valueneglecting the scattering terms in the derivation of the as-
and therefore is no longer predictable. sumed HamiltonianHy [35]. We hope that discrepancies
concerning the lkeda sum rule are substantially diminished
by adding the contributions due to the quasiparticle operators

S -S"=N-2Z, 4.9

D. The Ikeda sum rule ala,, alal+a,a, involved in the particle number operators.
From the 8~ amplitudes one obtains, straightforwardly, Indeed these contributions have been omitted so far, al-
the B~ strengths though their average on the ground state is not vanishing.
One may conclude that the standard QRPA fails to reproduce
S =[(0;|B7|RPA)|%, S"=[(0;|BT|RPA)2. the exact results for the chosen Hamiltonian. All other modi-

(4.8 fications of the QRPARQRPA, PP2 QRPA, PP QRPA, EPP
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FIG. 5. The FermjB™* transition amplitudes between the ground

FIG. 4. The Fermj3~ transition amplitudes between the ground and first excited states. Conventions are the same as in Fig. 1.

and first excited states. Conventions are the same as in Fig. 1. ] B .
Here, the states with subscripteandf are describing to the

QRPA reprod_uce the trend of the exact solution, albeit thelcn(;trl]aslid(eﬁéﬁi ?degn:;u(:iztg %)Isn:/lﬂ\e/l’ E;ﬁj psgrtmlgfgédwtf}e
ag,reem_ent with the exact results, for large value f‘éf calculations for the following set of parametéis]:
(k'=1) is rather poor. For nonvanishing the results lying
closest to the exact ones are those produced by PP QRPAj=19/2 (Z=6, N=14)—(Z+2=8, N—-2=12),
and FPP QRPA. A reason might be the influence of higher
excited states on the ground state induced by the diagonal- x'=0,0.5. (4.12
ization procedure. It is worthwhile to notice that improving
the treatment of the PEP in the QRPA, a better agreement of Results corresponding to the matrix eIemMﬁ”, calcu-
the Ikeda sum rule with theN-Z) value is achieved. lated with different approximations, are shown in Fig. 7, as
function of «". In addition we present also the exact results
of Hg, considering only the contribution coming from the
E. Double beta decay matrix element lowest intermediate state. One notices that the behaviors of
In this section we shall focus our attention on the two-the QRPA and the RQRPA curves are qualitatively similar to
neutrino double beta decay modey3B. Consequences of those found in the realistic calculations. The transition am-
the previously presented approaches on the@decay ma- plitude M;Z:V vanishes within the range 0'<1.5 for all
trix element will be discussed. Within the solvable modelcalculations, including the exact ones. The valuesVi@’
considered here there is only one QRPA excited state and thabtained by a better consideration of the Pauli exclusion
corresponding nuclear/BB-decay matrix element takes the principle (PP QRPA and EPP QRBAare significantly less
form sensitive to the particle-particle interaction strength Our
- o studies show that the behavior BF2”, as function ofx’, is
M2V = ((RPAB™|07)1i(01 |3~ |RPA); strongly influenced by thgg™ strength characterizing final
F EorratA '

(4.10

nucleus.
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FIG. 7. The 288 decay Fermi transition amplitude versus
FIG. 6. The Fermj3™ transition amplitudes between the ground The same notations as in Fig. 1 are used.
and first excited states. Conventions are the same as in Fig. 1.

tained from the PP QRPA by cutting the seriesliat second
order, the solution breakdown appears aroufied1.7. This

We have analyzed some limitations of the QRPA formal-suggests that a better consideration of the PEP, within the
ism in a solvable proton-neutron monopole Lipkin model. INnQRPA, shifts the instability strength to a larger value.
addition to the standard QRPA and RQRPA, we introduced To shed more light on this problem we commented on the
new extensions of the standard QRPA approach by improveorrections induced by the ground state correlations, by plot-
ing (PP QRPA and exactly(EPP QRPA considering the ting the average quasiparticle number vergusOur analysis
Pauli exclusion principlé.These approaches have been usedf the B~ transitions shows the sensitivity of thig" transi-
to study the behavior of different observables as function ofion to correlations, included in the ground state, which vio-
the particle-particle interaction strengih. late the PEP. Concerning the Ikeda sum rule we have found

Due to the collapse of its solution for'~1.0, the stan- that this is conserved neither by the exact solution of the
dard QRPA reproduces worse the exact results of the nuclegjuasiparticle nuclear Hamiltonian nor by the QRPA methods
Hamiltonian. Our studies show that the real collapse of theéncluding the PEP. This discrepancy is very likely due to the
QRPA, usually associated to a phase transition, appears forstructure of the model Hamiltonian. Also one expects, that
large value ofx’ (=2.5). For the PP2 QRPA, which is ob- including the contribution coming from the two quasiparticle
and quasiparticle scattering operators entering the expres-
sions of the particle number operators, the discrepancies are

V. SUMMARY AND CONCLUSIONS

2After the present work was completed we were made aware of Qecreased' . L
certain overlap of the method—EPP QRPA presented here and the 1€ 2/BB-decay matrix element, calculated within the
self-consistent QRPA approach proposed in R8t]. However, ~Solvable model, is changing the sign whehis increased,

there are also important differences suchiashe u andv coeffi- Sim”ar to what hzappens in realistic calculations. It was
cients are determined differentlfij) the model Hamiltonians are pointed out thatMg” calculated by the PP QRPA and EPP
different, (iii) our papers have distinct objectives. QRPA, is less sensitive to the details of nuclear structure

044319-9



éIMKOVIC, RADUTA, VESELSK\'(, AND FAESSLER PHYSICAL REVIEW (61 044319

than that predicted by the standard QRPA and RQRPA apef the PEP were presented. These formalisms yield a better
proaches. agreement with the exact results, obtained by diagonalizing
In discussing the results of the PP2 QRPA, PP QRPA, anthe model Hamiltonian, than the standard QRPA and the
EPP QRPA we should keep in mind that the first two methrenormalized QRPA approaches.
ods are just approximations of the last method. As expected, The EPP QRPA results show that the collapse of the first
the PP QRPA reproduces the EPP QRPA solution better tha@Xcited states is far from the place where the standard QRPA
the PP2 QRPA since it uses a complete pertubative expaf/€aks down, i.e., is achieved for larger values of the
sion. The difference between the EPP QRPA and exact sg@rticle-particle interaction strength. _
lution originates in the simple form of the phonon operator. 1€ comparison of the EPP QRPA results with those ob-
which ignores nonlinear terms similar to, for example, those{)a'nEd W'th_the exact elg_enstatesH)gE, points out the draw-
proportional to theA*A*A and A*AA operators. To our acks coming from the simple structure of t_he QRPA phonon
knowledge, we are the first to show the inaccuracy comin perator and suggests a range of applicability for this theory.

exclusively from a simple form of the widely used phonon learly, this analysis shows some limitations for the QRPA

operator in the QRPA. An interesting point is the connectionand RQRPA approaches.
The results of the present paper support our hope that the

of the EPP QRPA and the PP QRPA to the exact solutionpp RPA P oh K I I in th

We note that there is no principle reason which would deter: Q gp_proxmathns might work equally we n the

mine that the EPP QRPA results should reproduce the exalfse of realistic calculations for large model space, which are
pected to offer more reliable results for {86 decay tran-

ones better than the PP QRPA. It turns out that the combine®!
effect coming from the simple form of the phonon operators't'ons than the standard QRPA and the RQRPA ones. In-

and the simple RPA wave functions, derived within quasibo-deed' the PP QRPA is based on the approximate QRPA

son approximations, leads to a better agreement with exa@0und state wave functions, derived within the QBA, which
solution for PP QRPA in some cases, e.g., for the lowesfan be undoubtedly found also in realistic models. This sub-

excitation energyFig. 1) and8* transition amplitudeFig. ject seems to be very interesting and therefore deserves fur-

5) and worse for other observables. For example the EPIEher con;iderations. W? intend to apply the PP2 QRPA
QRPA reproduces the exact results better than PP QRPWethOd first for a realistic model with separable forfg2).

when the expectation values of the quasiparticle number op-
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