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Quasiparticle random phase approximation with inclusion of the Pauli exclusion principle
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Limitations of the quasiparticle random phase approximation~QRPA! are studied within an exactly solvable
model, with a two body interaction of Fermi type. A special attention is paid to the violation of the Pauli
exclusion principle~PEP! in solving the QRPA equation. A comparison of the exact solution, obtained by the
diagonalization of a schematic nuclear Hamiltonian and those obtained within the standard QRPA, the renor-
malized QRPA, the QRPA with pertubative treatment of the PEP, and the QRPA with exact consideration of
the PEP, is presented. The agreement quality is judged in terms of the quasiparticle number operator matrix
elements in the ground state and in the first excited states, of theb transition amplitudes, of the Ikeda sum rule,
and of the nuclear matrix element for the doubleb decay. We have found that by restoring the PEP, the QRPA
solutions are considerably stabilized and a better agreement with the exact solution is obtained.

PACS number~s!: 21.60.Jz, 23.40.Hc, 23.40.Bw
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I. INTRODUCTION

The quasiparticle random phase approximation~QRPA!
has been found to be a powerful method for describ
many-body systems. Due to its simplicity, the proton-neut
QRPA is the nuclear structure method which has been m
frequently used to interpret some nuclear structure aspec
the beta (b) and double beta (bb) decay for open shel
systems@1–10#. The QRPA provides a description of excite
states by including some nucleon-nucleon correlations in
ground state.

The QRPA equations are derived directly from the eq
tion of motion. In deriving the QRPA equations two bas
approximations are adopted.~i! The operator, which deter
mines the excited state, is taken as linear superpositio
two creation and two annihilation quasiparticle operators
considering the BCS basis as reference.~ii ! The commutator
of bifermion operators is replaced by its expectation value
the BCS ground state. This is usually called the ‘‘quasibo
approximation’’ ~QBA!. The QBA violates the Pauli exclu
sion principle~PEP! and this affects severely the theory. Th
terms which are left out by the QBA become more and m
important when the ground state correlations are increa
which results in a collapse of the QRPA solution. The a
proach based on the two approximations mentioned ab
will be conventionally called ‘‘the standard QRPA a
proach.’’

*On leave from: Department of Nuclear Physics, Comenius U
versity, SK-842 15 Bratislava, Slovakia. Electronic addre
simkovic@fmph.uniba.sk

†On leave from: Institute of Physics and Nuclear Engineeri
Bucharest, POB MG6, Romania and Dept. of Theoretical Phy
and Mathematics, Faculty of Physics, Bucharest University, P
MG 11, Romania. Electronic address:
raduta@theor1.theory.nipne.ro

‡On leave from: Institute of Physics of Slovak Academy of S
ences, SK-842 28 Bratislava, Slovakia. Electronic addre
fyzimarv@savba.sk

§Electronic address: amand.faessler@uni-tuebingen.de
0556-2813/2000/61~4!/044319~11!/$15.00 61 0443
g
n
st
of

e

-

of
y

n
n

e
ed
-
ve

Recently, the instability of the QRPA solution, caused
the PEP violation received much attention from the expe
in the field. In order to improve the reliability of the standa
QRPA description of the nuclear transitions, the renorm
ized version of the QRPA~RQRPA!, which take into ac-
count the PEP in an approximate way, has been formula
@11,12# and applied to theb and bb decay problems@13–
15#. Indeed, the RQRPA does not collapse within the phy
cal range of the interaction strength parameters. Howe
avoiding the collapse in the RQRPA a price had to be pa
namely the violation of the Ikeda sum rule@16,17#.

There is a constant interest in studying the physical c
sequences of violating the PEP by the QRPA solutio
Some definite conclusions can be drawn by using solva
models, such as, for example, the extensions@17,18# to
proton-neutron systems of Lipkin or Moszkowski mode
@19,20#, as they simulate the realistic cases either by anal
cal solutions or by a minimal computational effort. It
worthwhile mentioning that the study of different many-bo
approximations within schematic models was always of gr
interest and moreover it is currently considered of major i
portance@17,21–29,31#.

The improvement of the PEP obedience, within t
QRPA, can be achieved in two ways.~i! By a mapping tech-
nique the whole theory can be formulated in a boson pictu
Such an approach has been outlined for the proton-neu
monopole Lipkin model in Refs.@22–26#. ~ii ! One can re-
main within the fermionic space and derive the elements
the QRPA equation, at least, perturbatively. Usually appro
mations violating the PEP are tested for Fermi transit
since for this case the schematic models are simple and s
able@17,22–26,31#. Recently a more general solvable mod
appeared@27,28# that exploits the SO~8! symmetry to include
simultaneously the Fermi and Gamow-Teller transitio
Such a model is devoted to an extensive treatment of
proton-neutron pairing interaction.

The goal of this work is to discuss some limitations of t
standard QRPA approach, concerning the PEP violation.
shall follow the second possibility mentioned above and
troduce new extensions of the standard QRPA appro
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ŠIMKOVIC, RADUTA, VESELSKÝ, AND FAESSLER PHYSICAL REVIEW C61 044319
within the proton-neutron monopole Lipkin model and po
out some implications for realistic calculations. The new
introduced approximations will be compared with the ex
results, revealing, in this way, the limits of the approxim
tions. Our work completes the discussion of Refs.@17,22–
26# in which the same schematic model was considered.
deed, for the first time, the QRPA solution with an exa
consideration of the PEP is presented.

The paper is organized as follows. In Sec. II, we descr
the solvable model and specify the corresponding solut
Section III describes the standard QRPA and RQRPA wit
the chosen solvable model. In addition, new extensions
the standard QRPA approach, which take into account
PEP in an approximate way and exactly are introduced,
spectively. In Sec. IV, the results obtained within the QRP
approaches are presented and compared with the exac
sults. Finally in Sec. V, we summarize the results and dr
some conclusions.

II. NUCLEAR HAMILTONIAN

We assume a model Hamiltonian which includes a sing
particle term, proton-proton and neutron-neutron pairing,
a charge-dependent two-body interaction with particle-h
and particle-particle channels included:

H5Hp1Hn1H res, ~2.1!

where

Ht5et (
m

atm
† atm2GtSt

†St ~t5p,n!,

H res52xb2b122kP2P1, ~2.2!

with

St
†5

1

2 (
m

atm
† ãtm

† ,

b25(
m

apm
† anm , b15~b2!†, ~2.3!

P25(
m

apm
† ãnm

† , P15~P2!†,

a† (a) being the particle creation~annihilation! operator and
; indicating the time reversed states ãtm

†

5(21) j t2mat2m
† .

The schematic Hamiltonian, given by Eqs.~2.1!–~2.3!,
reproduces well the QRPA results of the realistic Ham
tonian containingG-matrix elements of the Bonn-OBEP po
tential for the b and bb decay transitions@32–34#. The
strengthx ~k! of the particle-hole~particle-particle! interac-
tion corresponds to the well-known parametergph (gpp)
commonly used in literature@1–4# to parametrize the realis
tic ph (pp) interaction.

Performing the Bogolyubov transformation for proto
(t5p) and neutrons (t5n)
04431
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atm
† 5utatm

† 2vtãtm , ãtm5vtatm
† 1utãtm , ~2.4!

which defines the quasiparticle representation, and neg
ing the scattering termsap

†an andan
†ap , the model Hamil-

tonian acquires the form

HF5eC1l1A†A1l2~A†A†1AA!, ~2.5!

with

C5(
m

apm
† apm1(

m
anm

† anm , A†5@ap
†an

†#J50,

l154V@x~up
2vn

21vp
2un

2!2k~up
2un

21vp
2vn

2!# ~2.6!

l254V~x1k!upvpunvn .

For the sake of simplicity we used a single level casej p
5 j n[ j and Gp5Gn[G which implies equal energies fo
protons and neutrons quasiparticles:e5ep5en5VG/2 and
v i5ANi /2V, ui5A12Ni /2V with i 5p,n (Np and Nn are
number of protons and neutrons, respectively!. V denotes the
semidegeneracy of the considered single level.

The model Hamiltonian in Eqs.~2.5! and~2.6!, resembles
the Hamiltonian of the Lipkin model@19#, whenl1 is taken
equal to zero. We note that operators$A,A†,C% are genera-
tors for an SU~2! algebra. Indeed their mutual commutato
are

@A,A†#512
C

2V
, @C,A†#52A†, @A,C#52A.

~2.7!

This model Hamiltonian is expected to account qualitativ
for some features of realisticpn-QRPA calculations. Due to
these expectations, it has been used to study the stan
QRPA, renormalized QRPA as well as the higher ord
QRPA approximations for the many-body system, Re
@17,22#. The salient feature of this Hamiltonian is that th
stability of the approximate solutions can be discussed
comparison with the exact solution determined by diagon
izing HF in the space of states

un&5~A1!nu0&, 0<n<2V. ~2.8!

Here u0& denotes the vacuum state for the quasiparticle
erators. The matrix to be diagonalized can be easily ca
lated with the result

^nuHFun&52enmn1l1S mn112mn1
n mn

V D ,

^n22uHFun&5l2mn , ~2.9!

where

mn[^0uAn~A†!nu0&5
n! ~2V!!

~2V2n!! ~2V!n
~n<2V!.

~2.10!
9-2
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QUASIPARTICLE RANDOM PHASE APPROXIMATION . . . PHYSICAL REVIEW C61 044319
For n.2V, the norm overlapsmn are vanishing.

III. QUASIPARTICLE RANDOM PHASE
APPROXIMATION

Another way to find an excited state for the model Ham
tonian ~2.5!, is to solve the corresponding QRPA equatio
In what follows we shall briefly describe the basic ideas u
derlying this method for our solvable model.

Within the QRPA, an excited stateuQ& is created by ap-
plying a phonon creation operatorQ† on a stateuRPA& hav-
ing the properties:

uQ&5Q†uRPA&, QuRPA&50. ~3.1!

The simplest form for the phonon operator, in the fermio
space, is

Q†5XA†2YA, ~3.2!

whereX andY are called forward- and backward-going fre
variational amplitudes and satisfy the QRPA equation

S A B
B AD S X

YD 5EQRPAS U 0

0 2UD S X

YD , ~3.3!

where

A5^RPA@A,@HF ,A†##uRPA&,

B52^RPAu@A,@HF ,A##uRPA&, ~3.4!

U5^RPAu@A,A†#uRPA&.

It is useful to introduce the notation

X̄5U 1/2X, Ȳ5U 1/2Y, ~3.5!

Ā5U 21/2AU 21/2, B̄5U 21/2BU 21/2. ~3.6!

Then the QRPA eigenenergyEQRPA and the new amplitude
X̄ and Ȳ are given by

EQRPA5~Ā22B̄2!1/2,

X̄5
Ā1EQRPA

A~Ā1EQRPA!
22B̄2

, ~3.7!

Ȳ5
2B̄

A~Ā1EQRPA!
22B̄2

.

From the definition of the QRPA ground stateuRPA& ~3.1!, it
follows that elementsA, B, andU of the QRPA equation are
functions of theX and Y amplitudes. Due to this fact thi
nonlinear eigenvalue problem could be solved only num
cally by an iteration process. The functional dependence
A, B, U on X andY is specific to the approximation schem
and influences crucially the final results. Below, we sh
discuss, separately, several approaches.
04431
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The standard QRPA. The simplest approximation schem
to calculate ofA, B, andU is the quasiboson approximatio
~QBA!, which assumes@A,A†#'^u@A,A†#u&51, i.e., A and
A† are considered to be boson operators. Hereu & denotes the
uncorrelated BCS ground state. In this case, one finds
expressions

A52e1l1 , B52l2 , U51, ~3.8!

which determine the excited state eigenenergy and w
function with normalizationX22Y251. The drawback of
this approximation scheme is the collapse of the stand
QRPA solution within the physically acceptable interval f
the nucleon-nucleon interaction strength.

The renormalized QRPA. The renormalized QRPA
~RQRPA! approach avoids the collapse of the QRPA so
tion for physical parameters of the nuclear Hamiltonia
Within the RQRPA the commutator,@A,A†# is replaced
with its expectation value in the ground sta
D5^RPAu@A,A†#uRPA& ~renormalized QBA!. This modifies
the matricesA, B, U in the following way@13,14#:

A52eD1l1D2, B52l2D2, U5D5S 11
Ȳ2

V
D 21

.

~3.9!

Note that the fermionic structure of theA, A† operators is
taken into account only in an approximate way. In the lim
of D51, i.e., theuRPA& ground state is replaced by the BC
one u &, one gets the standard QRPA approach.

It is worth remarking that in both the standard QRPA a
the RQRPA, the elementsA, B, andU are evaluated by using
some approximate schemes for the commutator@A,A†#. If
the commutator is exactly considered, i.e., the PEP is ful-
filled, the matricesA, B, andU take the form

A5~2e1l1!2~e1l1!
^RPAuCuRPA&

V

1l1

^RPAuCCuRPA&

4V2
2l1

^RPAuA†AuRPA&
V

22l2

^RPAuA†A†uRPA&
V

, ~3.10!

B5l2S 22
1

V D2l2S 22
1

2V D ^RPAuCuRPA&
V

1l2

^RPAuCCuRPA&

2V2
22l2

^RPAuA†AuRPA&
V

2l1

^RPAuAAuRPA&
V

, ~3.11!

U512
^RPAuCuRPA&

2V
. ~3.12!

The calculation of the involved matrix elements requires
knowledge of theuRPA& ground state, determined by th
9-3
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ŠIMKOVIC, RADUTA, VESELSKÝ, AND FAESSLER PHYSICAL REVIEW C61 044319
condition in Eq. ~3.1!. The analytical form foruRPA& is
known within QBA and renormalized QBA. For the phono
operator given by Eq.~3.2!, one obtains

uRPA&QBA5ne2dA†A†
u&, d52

Y

2X
, ~3.13!

wheren stands for the normalization factor.
In general, it is not possible to find an explicit expressi

for uRPA& unless some additional approximation is adopt
Fortunately, this can be achieved in the case of the solv
model considered in the present paper. By solving Eq.~3.1!,
one obtains1

uRPA&exc5N(
l 50

V

b l S Y

XD l

~A†A†! l u&, ~3.14!

with

b l5~2V! l
V!

~2V!!

~2V22l !!

l ! ~V2 l !!
, N225(

l 50

V

b l
2S Y

XD 2l

m2l .

~3.15!

We note that if the ground state correlations are neglec
in the calculation ofA, B, andU in Eqs.~3.10!–~3.12!, i.e.,
the RPA vacuumuRPA& is replaced with BCS vacuumu&,
one getsA5(2e1l1), B5l2(221/V), and U51. Obvi-
ously, the standard QRPA equation is recovered in the li
V→`, i.e., the bifermion operatorsA1 and A behave as
bosons.

By using the approximateuRPA&QBA ~3.13! and exact
uRPA&exc ~3.15! solutions for the QRPA ground state, on
achieves, in fact, new extensions of the standard QRPA
proach, namely, the QRPA with the PEP~PP QRPA! in-
cluded in an approximate manner and the QRPA with
PEP~EPP QRPA! fully fulfilled, respectively. Both methods
go beyond the renormalized QRPA approach and requir
evaluate ground state expectations values of theC, CC,
A†A†, andA†A operators entering the expression forA, B,
andU as shown in Eqs.~3.10!–~3.12!. This is performed free
of any approximation.

The QRPA with PEP. There is an important differenc
between this method and the RQRPA one, although b
methods use the same ground state wave functions@see Eq.
~3.12!#. Indeed, within the RQRPA, the commutator of th
two bifermion operatorsA andA† is considered in approxi
mate way while the PP QRPA takes it exactly. Indeed,
operators of interest have the expectation values:

QBA^RPAuCuRPA&QBA524n2dh2~d!,

QBA^RPAuCCuRPA&QBA5216n2@dh2~d!2d2h4~d!#,

~3.16!

QBA^RPAuA†A†uRPA&QBA5n2h2~d!,

1After the present paper was completed we learned that this e
tion has been derived also by other authors@30,31,25#.
04431
.
le

d

it

p-

e

to

th

e

QBA^RPAuA†AuRPA&QBA52n2F S 22
1

V Ddh2~d!

12
d2

V
h4~d!G ,

where the following notations have been used:

h0~d![^ue2dAAe2dA†A†
u&5

1

n2
,

5(
j 50

V
d2 j

~ j ! !2
m2 j'm01d2m21

d4

4
m4 , ~3.17!

h2~d![^ue2dAAA†A†e2dA†A†
u&,

5 (
j 50

V21
d2 j

~ j ! !2

2d

j 11
m2 j 12'2dm22

d3

2
m4 ,

~3.18!

h4~d![^ue2dAA~A†!4e2dA†A†
u&,

5 (
j 50

V22
d2 j

~ j ! !2

d2

~ j 12!~ j 11!
m2 j 14'

d2

2
m4 .

~3.19!

We hope that this approach can be applied also for real
calculations and within a large model space. Note that kno
ing uRPA&QBA , the QRPA matrices can be evaluated witho
the PEP violation, at least perturbatively with respect to
factord. If the pertubative series is truncated to the quadra
terms ind, the resulting approach will be hereafter labeled
the abbreviation PP2 QRPA.

The QRPA with exact PEP. This method can be formu
lated only for a solvable model for which the exact QRP
ground state can be analytically found. Within the EP
QRPA there is no violation of the PEP. However, one c
not expect that the EPP QRPA solution coincides with
exact solution for the first excited state of the nuclear Ham
tonian~2.5!. The difference is caused by the approximatio
incorporated in the construction of the operatorQ† determin-
ing the excited state@see Eq.~3.1!#. Therefore, from the di-
rect comparison with the exact solution one may conclu
how far the approximate description, with the phonon ope
tor of a simple structure, is from the exact picture~3.1!. The
following expressions are used in elaborating the above
fined procedure:

exĉ RPAuAAuRPA&exc5exĉ RPAuA†A†uRPA&exc

5N2 (
l 50

V21

b lb l 11S Y

XD 2l 11

m2l 12 ,

exĉ RPAuAA†uRPA&exc5N2 (
l 50

V21

b l
2S Y

XD 2l

m2l 11 ,a-
9-4



fo
a

o

-
he

ita
go

-

he
i

y,

y
d

o

alu
ex
th

an-

of
ues
rst

ing

QUASIPARTICLE RANDOM PHASE APPROXIMATION . . . PHYSICAL REVIEW C61 044319
exĉ RPAuCuRPA&exc5N2(
l 51

V

b l
2~4l !S Y

XD 2l

m2l ,

~3.20!

exĉ RPAuCCuRPA&exc5N2(
l 51

V

b l
2~4l !2S Y

XD 2l

m2l ,

exĉ RPAuA†AuRPA&exc5211
exĉ RPAuCuRPA&exc

2V

1exĉ RPAuAA†uRPA&exc.

IV. RESULTS AND DISCUSSIONS

In what follows we shall present the numerical results
the QRPA approaches described in the previous section
compare them with the values provided by diagonalizingHF
~2.5!. In order to continue and complete the discussion
this Hamiltonian given in Refs.@17,22#, we have chosen the
same set of parameters as there:

j 59/2, Z54, N56, e51 MeV, ~4.1!

which determine the BCS amplitudes entering thel1,2 pa-
rameters of the model HamiltonianHF . Also we redefine the
parametersk andx as in Refs.@17,22#:

k→k8[2Vk, x→x8[2Vx. ~4.2!

The valuesx850 and x850.5 were adopted while the
particle-particle strengthk8 was allowed to vary in the inter
val 0<k8<2. Comparing the schematic calculations with t
realistic ones, a value fork8 close to unity is expected.

A. Excitation energies

In Fig. 1 we plotted the dependence of the QRPA exc
tion energy and the first excitation energy obtained by dia
nalizing HF ~bold solid line! on k8, for x850 ~upper figure!
and x850.5 ~lower figure!, respectively. Note that the stan
dard QRPA breaks down fork8'1. The RQRPA excitation
energy remains real within the whole interval ofk8, although
it deviates significantly from the exact solution beyond t
breaking down point of the standard QRPA. The effect
more evident forx850.5. The PP2 QRPA and, especiall
the PP QRPA energies reproduce quite well those ofHF ,
except for the values ofk8 approaching their minimum. The
EPP QRPA, which take into account the PEP exactly, s
tematically overestimates the results obtained through the
agonalization ofHF . This difference might be attributed t
the simple form of the phonon operatorQ† ~3.2!. From this
figure one remarks that the collapse is shifted to a large v
of k8 when the PEP is satisfied to a larger extent. For
ample for the PP2 QRPA, PP QRPA, and EPP QRPA,
collapse appear at aboutk851.80, k852.50, andk852.55
04431
r
nd

f

-
-

s

s-
i-

e
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~x850.5!, respectively. This indicates that a real phase tr
sition could take place in the region beyondk852.5.

B. Expectation values of the quasiparticle number operator

In order to get additional information about the quality
different approximations, we calculate the expectation val
of the quasiparticle number operator in the ground and fi
excited states. These are defined as follows:

N0[^RPAu
C

2
uRPA&, DN[^RPAuQ

C

2
Q†uRPA&2N0 .

~4.3!

For the situations defined before, the results are

FIG. 1. Comparison of the lowest excitation energies result
from the diagonalization ofHF ~bold solid line,HF diag.! with the
standard QRPA~solid line, QRPA!, the renormalized QRPA
~dashed line, RQRPA!, the QRPA with the Pauli exlusion principle
up to second order ind ~bold dashed line, PP2 QRPA!, the QRPA
with Pauli exclusion principle~bold dotted line, PP QRPA!, and the
QRPA with exact consideration of Pauli exclusion principle~bold
dot-dashed line, EPP QRPA! values.
9-5



ŠIMKOVIC, RADUTA, VESELSKÝ, AND FAESSLER PHYSICAL REVIEW C61 044319
N05Y2 ~QRPA!, 5Ȳ2 ~RQRPA!, 5
2d2m2

11d2m2

~PP2 QRPA!, 5n2~22d!h2~d! ~PP QRPA!,

5exĉ RPAuCuRPA&exc, ~EPP QRPA!; ~4.4!

DN5112Y2 ~QRPA!, 5112Ȳ2 ~RQRPA!,

5~X21Y2!1S X22Y2212
X21Y2

V D QBA^RPAuCuRPA&QBA

2
2

X22Y2

4V QBA^RPAuCCuRPA&QBA ~PP QRPA!,

5~X21Y2!1S X22Y2212
X21Y2

V D exĉ RPAuCuRPA&exc

2
2

X22Y2

4V exĉ RPAuCCuRPA&exc ~EPP QRPA!. ~4.5!
a

as
tio

are
ates
ich

l
in
The expressions corresponding to the standard QRPA
RQRPA have been obtained by replacing the operatorC/2
with its boson image, respectively. As for the remaining c
we stay in the fermionic space and use the commuta
algebra given by Eq.~2.7!.

FIG. 2. The expectation values of~half! the quasiparticle tota
number operatorC/2 in the ground state, versusk8. Conventions
are the same as in Fig. 1.
04431
nd

e
n

In Figs. 2 and 3,N0 and DN, given by the above listed
approximation schemes as well as the exact calculation,
presented. One sees that the standard QRPA overestim
the ground state correlations near the collapse point, wh

FIG. 3. Differences between the expectation values of~half!
quasiparticle number operatorC/2 in the first excited state and in
the ground state as function ofk8. Conventions are the same as
Fig. 1.
9-6
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reflects itself in a sudden increase of the average quasip
cle number. The RQRPA does not collapse at all and ov
estimates the exact result both forN0 and DN. A distinct
situation is produced by the QRPA approaches with P
There occurs an underestimation of the ground state cor
tions and the values ofN0 are smaller than those correspon
ing to the exact solution. Practically, there is no differen
between the PP2 QRPA and the PP QRPA up to the p
where the former one collapses. The EPP QRPA, with
exact treatment of the PEP, provides the best agreement
the exact results obtained by diagonalizingHF . We notice
that none of the considered QRPA methods is able to re
duce the exact result forDN which, after a certain point in
the regionk881.021.1, is falling down, contrary to the be
ns
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havior of other curves@22#. This is an indication that a more
complex form for the phonon operator might be necessa

C. Fermi b transition amplitudes

We turn our attention now to transitions induced by t
Fermi b6 operators. Neglecting the scattering term, as
did for the nuclear HamiltonianHF ~see Sec. II!, the Fermi
b6 operators, in the quasiparticle basis, take the form

b25A2V~upvnA†1vpunA!, b15~b2!†. ~4.6!

The matrix elements ofb2 operator between ground an
first excited states corresponding to different versions of
QRPA, are given as follows:
^01
1ub2uRPA&5A2V~Xupvn1Yvpun!~QRPA!, 5A2V~X̄upvn1Ȳvpun!D1/2 ~RQRPA!,

5A2V~Xupvn1Yvpun!

11d2S 12
2

V Dm2

11d2m2

~PP2 QRPA!,

5A2Vn2~Xupvn1Yvpun!S h0~d!12
d

V
h2~d! D ~PP QRPA!,

5A2V~Xupvn1Yvpun!S 12
exĉ RPAuCuRPA&exc

2V D ~EPP QRPA!. ~4.7!
um-
eda

s,

lly
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to
as-
s
ed
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s.
al-

ing.
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di-
P

Expressions forb1 are obtainable from the above equatio
by interchanging theu’s andv ’s.

In Figs. 4 and 5 we examine the behavior of theb2 and
b1 amplitudes, respectively, as functions ofk8 for two val-
ues forx8 ~50, 0.5!. One notes a rapid increase ofb2 and
decrease ofb1 transition strengths for the standard QRP
and the PP2 QRPA, close to their collapse point. In gene
the PP2 QRPA, PP QRPA, and EPP QRPA methods re
duce better the trends of the exact results comparing t
with the RQRPA. The best agreement with the exact val
is achieved for the PP QRPA. Obviously these analyses d
onstrate how important it is to have a correct treatment of
PEP, in describing the nuclearb transitions. It is worth not-
ing the sensitivity of theb1 amplitude to the details o
nuclear structure wave functions. Indeed, by increasing
the particle-particle interaction strengthk, the matrix ele-
ment of theb1 transition operator reaches a vanishing va
and therefore is no longer predictable.

D. The Ikeda sum rule

From theb6 amplitudes one obtains, straightforwardl
the b6 strengths

S25u^01
1ub2uRPA&u2, S15u^01

1ub1uRPA&u2.
~4.8!
l,
o-
m
s

m-
e

e

e

For a ground state preserving the proton and neutron n
bers in average, the two strengths are satisfying the Ik
sum rule

S22S15N2Z, ~4.9!

where N and Z are the numbers of neutrons and proton
respectively.

It is well known that the Ikeda sum rule is automatica
fullfiled in the standard QRPA and violated in the RQRP
@16,17#. According to Fig. 6, this is also true for the solvab
model of this work. This figure shows also numerical resu
for the Ikeda sum rule predicted by the methods describe
far, and compare them with the exact results. One not
that the exact results forHF , do not fulfill the Ikeda sum rule
and show a large deviation from the value of (N2Z) for k8
for k8>1. The origin of this phenomenon is expected due
neglecting the scattering terms in the derivation of the
sumed HamiltonianHF @35#. We hope that discrepancie
concerning the Ikeda sum rule are substantially diminish
by adding the contributions due to the quasiparticle opera
at

†at , at
†at

†1atat involved in the particle number operator
Indeed these contributions have been omitted so far,
though their average on the ground state is not vanish
One may conclude that the standard QRPA fails to reprod
the exact results for the chosen Hamiltonian. All other mo
fications of the QRPA~RQRPA, PP2 QRPA, PP QRPA, EP
9-7



th

R
he
n
g
t

o
f

e
t

e

e

as
lts
e
s of
to
m-

ion

l

d
.

d
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QRPA! reproduce the trend of the exact solution, albeit
agreement with the exact results, for large value ofk8
~k8>1! is rather poor. For nonvanishingk8 the results lying
closest to the exact ones are those produced by PP Q
and FPP QRPA. A reason might be the influence of hig
excited states on the ground state induced by the diago
ization procedure. It is worthwhile to notice that improvin
the treatment of the PEP in the QRPA, a better agreemen
the Ikeda sum rule with the (N-Z) value is achieved.

E. Double beta decay matrix element

In this section we shall focus our attention on the tw
neutrino double beta decay mode, 2nbb. Consequences o
the previously presented approaches on the 2nbb-decay ma-
trix element will be discussed. Within the solvable mod
considered here there is only one QRPA excited state and
corresponding nuclear 2nbb-decay matrix element takes th
form

MF
2n5

f^RPAub2u01
1& f i^01

1ub2uRPA& i

EQRPA1D
. ~4.10!

FIG. 4. The Fermib2 transition amplitudes between the groun
and first excited states. Conventions are the same as in Fig. 1
04431
e

PA
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al-
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Here, the states with subscriptsi and f are describing to the
initial (A,Z) and final (A,Z12) nuclei, respectively. We
consideredD to be equal to 0.5 MeV and performed th
calculations for the following set of parameters@17#:

j 519/2 ~Z56, N514!→~Z1258, N22512!,

x850,0.5. ~4.11!

Results corresponding to the matrix elementMF
2n , calcu-

lated with different approximations, are shown in Fig. 7,
function of k8. In addition we present also the exact resu
of HF , considering only the contribution coming from th
lowest intermediate state. One notices that the behavior
the QRPA and the RQRPA curves are qualitatively similar
those found in the realistic calculations. The transition a
plitude MF

2n vanishes within the range 1.0<k8<1.5 for all
calculations, including the exact ones. The values ofMF

2n

obtained by a better consideration of the Pauli exclus
principle ~PP QRPA and EPP QRPA! are significantly less
sensitive to the particle-particle interaction strengthk8. Our
studies show that the behavior ofMF

2n , as function ofk8, is
strongly influenced by theb1 strength characterizing fina
nucleus.

FIG. 5. The Fermib1 transition amplitudes between the groun
and first excited states. Conventions are the same as in Fig. 1.
9-8
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V. SUMMARY AND CONCLUSIONS

We have analyzed some limitations of the QRPA form
ism in a solvable proton-neutron monopole Lipkin model.
addition to the standard QRPA and RQRPA, we introduc
new extensions of the standard QRPA approach by imp
ing ~PP QRPA! and exactly~EPP QRPA! considering the
Pauli exclusion principle.2 These approaches have been us
to study the behavior of different observables as function
the particle-particle interaction strengthk8.

Due to the collapse of its solution fork8'1.0, the stan-
dard QRPA reproduces worse the exact results of the nuc
Hamiltonian. Our studies show that the real collapse of
QRPA, usually associated to a phase transition, appears
large value ofk8 ~'2.5!. For the PP2 QRPA, which is ob

2After the present work was completed we were made aware
certain overlap of the method—EPP QRPA presented here and
self-consistent QRPA approach proposed in Ref.@31#. However,
there are also important differences such as~i! the u andv coeffi-
cients are determined differently,~ii ! the model Hamiltonians are
different, ~iii ! our papers have distinct objectives.

FIG. 6. The Fermib2 transition amplitudes between the groun
and first excited states. Conventions are the same as in Fig. 1
04431
-

d
v-

d
f

ar
e
r a

tained from the PP QRPA by cutting the series ind at second
order, the solution breakdown appears aroundk851.7. This
suggests that a better consideration of the PEP, within
QRPA, shifts the instability strength to a larger value.

To shed more light on this problem we commented on
corrections induced by the ground state correlations, by p
ting the average quasiparticle number versusk8. Our analysis
of the b6 transitions shows the sensitivity of theb1 transi-
tion to correlations, included in the ground state, which v
late the PEP. Concerning the Ikeda sum rule we have fo
that this is conserved neither by the exact solution of
quasiparticle nuclear Hamiltonian nor by the QRPA metho
including the PEP. This discrepancy is very likely due to t
structure of the model Hamiltonian. Also one expects, t
including the contribution coming from the two quasipartic
and quasiparticle scattering operators entering the exp
sions of the particle number operators, the discrepancies
decreased.

The 2nbb-decay matrix element, calculated within th
solvable model, is changing the sign whenk8 is increased,
similar to what happens in realistic calculations. It w
pointed out thatMF

2n calculated by the PP QRPA and EP
QRPA, is less sensitive to the details of nuclear struct

a
he

FIG. 7. The 2nbb decay Fermi transition amplitude versusk8.
The same notations as in Fig. 1 are used.
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than that predicted by the standard QRPA and RQRPA
proaches.

In discussing the results of the PP2 QRPA, PP QRPA,
EPP QRPA we should keep in mind that the first two me
ods are just approximations of the last method. As expec
the PP QRPA reproduces the EPP QRPA solution better
the PP2 QRPA since it uses a complete pertubative ex
sion. The difference between the EPP QRPA and exact
lution originates in the simple form of the phonon opera
which ignores nonlinear terms similar to, for example, tho
proportional to theA1A1A and A1AA operators. To our
knowledge, we are the first to show the inaccuracy com
exclusively from a simple form of the widely used phon
operator in the QRPA. An interesting point is the connect
of the EPP QRPA and the PP QRPA to the exact solut
We note that there is no principle reason which would de
mine that the EPP QRPA results should reproduce the e
ones better than the PP QRPA. It turns out that the comb
effect coming from the simple form of the phonon opera
and the simple RPA wave functions, derived within quasib
son approximations, leads to a better agreement with e
solution for PP QRPA in some cases, e.g., for the low
excitation energy~Fig. 1! andb1 transition amplitudes~Fig.
5! and worse for other observables. For example the E
QRPA reproduces the exact results better than PP QR
when the expectation values of the quasiparticle number
erators~Figs. 2 and 3! and Ikeda sum rule~Fig. 6! are cal-
culated.

The main conclusions of our analysis can be summari
as follows. New extensions of the standard QRPA with
proximate~PP QRPA! and exact~EPP QRPA! consideration
s

ys
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of the PEP were presented. These formalisms yield a be
agreement with the exact results, obtained by diagonaliz
the model Hamiltonian, than the standard QRPA and
renormalized QRPA approaches.

The EPP QRPA results show that the collapse of the fi
excited states is far from the place where the standard QR
breaks down, i.e., is achieved for larger values of
particle-particle interaction strength.

The comparison of the EPP QRPA results with those
tained with the exact eigenstates ofHF , points out the draw-
backs coming from the simple structure of the QRPA phon
operator and suggests a range of applicability for this theo
Clearly, this analysis shows some limitations for the QRP
and RQRPA approaches.

The results of the present paper support our hope that
PP QRPA approximations might work equally well in th
case of realistic calculations for large model space, which
expected to offer more reliable results for thebb decay tran-
sitions than the standard QRPA and the RQRPA ones.
deed, the PP QRPA is based on the approximate QR
ground state wave functions, derived within the QBA, whi
can be undoubtedly found also in realistic models. This s
ject seems to be very interesting and therefore deserves
ther considerations. We intend to apply the PP2 QR
method first for a realistic model with separable forces@32#.
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