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Single- and double-phonon giant monopole resonances in a nonlinear approach
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Isoscalar monopole density vibrations in spherical nuclei with a sharp surface are studied in a nonlinear
hydrodynamical approach. The frequency shift of the one- and two-phonon excitations due to nonlinear terms
is obtained. The frequencies of one-~two-! phonon giant isoscalar monopole resonances calculated in the
nonlinear hydrodynamic theory increase by'2%(8%) in heavy nuclei and by'14–18 % ~50%! in light
nuclei compared to the linear approximation. The frequency shift is a function of both the mass numberA and
the parameters of the nucleon-nucleon interaction.

PACS number~s!: 24.30.Cz, 21.60.Ev, 21.65.1f, 24.10.Nz
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I. INTRODUCTION

Giant dipole resonances were predicted@1# and experi-
mentally discovered@2# more than 50 years ago. Neverth
less, the giant resonances have been and still are a m
topic of research in nuclear physics@1–29#. Many different
types of giant resonances have been discovered@3–6#. The
isoscalar giant monopole resonance~GMR! is of particular
interest because its energy is directly related to the compr
ibility of nuclear matter @3–11#. The compressibility of
nuclear matter is one of the most important quantities,
cause it influences both the ground and excited state pro
ties of nuclei, heavy-ion reactions, properties of neut
stars, and supernova explosions@30,31#.

In order to extract the compressibility value it is necess
to know the experimental energies of the GMR over a w
range of atomic mass numberA @7–10#. From a macroscopic
analysis of theA dependence of the GMR energy it is po
sible to extract the compressibility of nuclear matter@9#. The
extracted value of the compressibility depends on the mo
applied in the analysis of the experimental data. Nonlin
effects may give contributions to the energy of the GM
@7,15,17,18#. Therefore nonlinear effects may change t
value of the compressibility obtained from an analysis
experimental GMR energies.

In the past few years two-phonon giant resonances h
also been studied both experimentally and theoretically@18–
29# The two-phonon giant dipole resonance has been
served at an energy about twice as large as that of the
phonon resonance@19–24#.

The one-phonon giant resonance is treated as an ex
state built on the ground state of the nucleus. In the fram
work of the harmonic oscillator model the two-phonon gia
resonance is treated as an excited state built on a one-ph
excitation. Decay schemes of the one- and two-phonon g
resonances confirm this origin of these resonances@19–24#.
However, the measured energies of the two-phonon iso
tor giant dipole resonances are slightly smaller than twice
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one-phonon resonance energy@19,20#. Such a reduction in
the excitation energy of the two-phonon state may be cau
by the anharmonicity of vibrations in nuclear matter.

The purpose of this paper is to study the frequency s
of the one- and two-phonon isoscalar GMR due to the anh
monicity of density oscillations in a spherical nucleus with
sharp surface in the framework of the nonlinear hydrod
namical model. We will obtain an analytical expression f
the frequency shift of the one- and two-phonon GMR cau
by nonlinearities. Therefore we consider giant resonance
a spherical nucleus with a sharp surface. It should be no
that various properties of giant resonances have been
cessfully described by the use of different linear hydrod
namical approximations@3,4,6,7,11,12,14#. The anharmo-
nicities of vibrations in a nuclear matter slab with sha
surfaces has been considered within a nonlinear hydro
namical model in Ref.@13#.

The nonlinearity of the one-phonon isoscalar GMR w
investigated in the quantized time-dependent Hartree-F
~QTDHF! model @15#, in a random phase approximatio
~RPA! based on the Hartree-Fock-Bogoliubov~HFB1RPA!
nuclear basis states@7#, in a relativistic mean-field~RMF!
theory @17#, and in an extended RPA~ERPA! model @18#.
The anharmonicity of the two-phonon giant resonances
estimated in the RPA models in@16,18,22#. These studies
require cumbersome numerical calculations and the link
tween the parameters of the nucleon-nucleon interaction
the shift of resonance energy caused by anharmonicity
only be obtained numerically. However, in@26# the anhar-
monicity of the two-phonon giant resonances was stud
analytically in a variational approach with a simplified inte
action.

The analytical expression derived in this paper confir
the direct and transparent connection between the shif
energy of the one- and two-phonon giant resonances du
anharmonicities. Also illustrated is the dependence of th
shifts on values of the constants of the Skyrme-ty
@4,32,33# energy density functional. The constants of the e
ergy density functional are related to the parameters of
nucleon-nucleon interaction@4,32–37#.

The nonlinear hydrodynamic model of density vibratio
in spherical nuclei is described in Sec. II. The results for
©2000 The American Physical Society18-1
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isoscalar GMR are presented in Sec. III. The summary
conclusions are presented in Sec. IV.

II. NONLINEAR DENSITY VIBRATIONS IN A SPHERICAL
NUCLEUS

Density oscillationsr(r ,t) in the hydrodynamic approxi
mation obey the continuity equation@4,38#

]r

]t
1div~rv!50 ~1!

and the Euler equation@4,38#

]v

]t
1~v¹!v1

1

m
“

dE~r!

dr
50, ~2!

where v(r ,t) is the velocity of nucleons,dE(r)/dr is the
variational derivative of the energy density functional, andm
is the nucleon mass.

Let us consider the following energy density functional
nuclear matter:

E~r!5rS E`1a0

~r2r`!2

2r`
2

1b0

~r2r`!3

6r`
3

1c0

~r2r`!4

12r`
4 D

1d0

~¹r!2

2r`
, ~3!

wherea05K/9, b0 , c0, andd0 are constants, andK is the
nuclear matter compression modulus@2–7#. We should note
that the form of realistic energy density functionals@32,33#
does not coincide exactly with Eq.~3!. However, any realis-
tic energy density functional per nucleon,E(r)/r, may be
expanded into a power series in the deviation of the den
from the equilibrium valuer` as in Eq.~3!, when there are
no gradient terms. The form of the gradient term in Eq.~3! is
the same as the gradient term of the energy density fu
tional of the Skyrme force in the Thomas-Fermi approa
@33#.

In the case of monopole vibrations in spherical nuc
Eqs.~1! and ~2! may be simplified,

]j

]t
1

1

r 2

]~r 2v !

]r
1

f

r 2

]~r 2jv !

]r
50, ~4!

]v
]t

1
a

m

]j

]r
2

d

m

]

]r F 1

r 2

]

]r S r 2
]j

]r D G1ev
]v
]r

1
b

m
j

]j

]r

1
c

m
j2

]j

]r
50, ~5!

where e and f are the auxiliary constants (e5 f 51), a
5a0 , b53a01b0 , c52b01c0 , d5d0, andj is the func-
tion describing the density vibrations:

r~r ,t !5r`@11j~r ,t !#. ~6!

We neglect fourth and higher order terms in Eq.~5!.
04431
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Equations~4! and ~5! are nonlinear. The nonlinear term
which contain the constantse and f in Eqs.~4! and ~5! arise
due to the nonlinear nature of the hydrodynamic equatio
The terms with constantsb and c in Eqs. ~4! and ~5! are
related to the anharmonic potential nature of the energy d
sity functional~3!.

Let us obtain the solution to the system of Eqs.~4! and~5!
in the form of a perturbation series, a treatment which
similar to the treatment of nonlinear oscillations in classi
mechanics@39#:

j5j01j11j21•••, ~7!

v5v01v11v21•••, ~8!

k5k01k11k21•••, ~9!

v5v01v11v21•••. ~10!

As a first approximation the system of equations~4! and
~5! can be easily transformed by an equation for density
brations:

]2j0

]t2
2

a

m

1

r 2

]

]r S r 2
]j0

]r D
1

d

m

1

r 2

]

]r H r 2
]

]r F 1

r 2

]

]r S r 2
]j0

]r D G J 50. ~11!

Let us consider the link between our hydrodynamic a
proach and microscopic theories of giant resonances. Mi
scopic theories of giant resonances are based on the RPA@4#.
The Landau-Vlasov equation is the semiclassical analog
the microscopic RPA equations@4#. The nuclear fluid dy-
namics model@4,14# can be derived by using the Landa
Vlasov equation. The density fluctuations in the nuclear fl
dynamics model also obey the continuity equation~1!. The
equations for monopole density fluctuations in a nuclear fl
dynamics model in the case of quadrupole distortions of
local Fermi sphere@14# are similar to Eqs.~4!, ~5!, and~11!.
Note that the monopole density oscillations are purely lon
tudinal. So the terms related to transversal motion are ab
in the fluid dynamic equations in this case. The differen
between Eq.~11! and the fluid dynamics density vibratio
equation is connected to the value of the constantsa andd in
Eq. ~11! ~see also@14#!. Therefore, a hydrodynamic model o
the GMR is an approximation to a microscopic theory bas
on the RPA. So it is reasonable to examine anharmonic
fects in the GMR by studying the density fluctuations in t
framework of a nonlinear hydrodynamics model.

The solution to Eqs.~4! and~5! in first order perturbation
theory is

j05a sin~v0t !
sin~k0r !

k0r
5a~ t !

sin~k0r !

k0r
, ~12!

v052a
v0

k0
cos~v0t !

sin~k0r !2k0r cos~k0r !

~k0r !2
. ~13!
8-2
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Here a is the amplitude, andv0 and k0 are the frequency
and wave number of oscillations, respectively. The soluti
obtained in first order perturbation theory are linear ina. The
frequency and wave number are connected by the disper
equation

v0
25

a

m
k0

21
d

m
k0

4 . ~14!

Note that we chose the solution~12! and~13! of Eqs.~4! and
~5!, because this solution and dispersion relation~14! are
also valid in the limitd→0, which limit is often considered
for giant monopole density resonances~see, for example
@3,4#!.

The density oscillation wave numberk0 is determinated
by kinematic and dynamic linear boundary conditions on
free surface of the nucleus.

The kinematic boundary condition is assumed to be
equality of the normal component of the nucleon velocity
the surface,v(R,t), to the surface velocityvS(t),

v~R,t !5vS~ t !, ~15!

wherevS(t)5]d(t)/]t, R is the nuclear radius, andd(t) is
the amplitude of surface oscillations. In the case of a sph
cal nucleusv(R,t) coincides with the radial velocity in the
linear approximation.

The dynamical boundary condition is the equality of t
normal component of the surface effective pressures(r ,t),
caused by the variation of the nucleon densityj(r ,t) in a
nucleus, to the pressureP(t) caused by both the surfac
tension and the shift of the surfaced(t) from the equilibrium
position,

s~R,t !5P~ t !. ~16!

We neglect the surface tensionP(t)50, because the influ
ence of the surface restoring force on the GMR energy
small @3,7,11#. Note that boundary conditions~15! and ~16!
are the same as used in Secs. 6A-3a and 6A-3b in@3# and in
@7,11,12#.

Let us substitute solutions~12! and~13! into the boundary
conditions~15! and~16! and obtain the equation for the wav
numberk0:

s~r ,t !ur 5R5r`

dE~r!

dr U
r 5R

5mr`S aj~r ,t !2d
]2j~r ,t !

]r 2 D U
r 5R

5ar`m~a1dk0
2!sin~v0t ! sin~k0r !ur 5R

}sin~k0R!50. ~17!

As a result of to the dispersion relation~14!, the fre-
quency of vibrationsv0 is also fixed by the boundary con
ditions. The amplitude of vibrations is obtained from t
condition of energy equality, evaluated by means of
quantum and classical expressions,
04431
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\v05Eclass. ~18!

The vibration energy calculated in the classical approach

Eclass5
1

2E dVmr`v0
21

1

2E dVr`@aj0
21d~¹j0!2#

5
1

2
B@a~ ṫ !#21

1

2
C@a~ t !#2. ~19!

By taking into account Eqs.~12! and~13!, the expression for
harmonic oscillator frequencyv05(C/B)1/2, and boundary
condition ~17! we find the vibration amplitude

a5S 2\

~BC!1/2D 1/2

5pS 2p\

3@mr0
2~a1p2dr0

22A22/3!#1/2D 1/2

A22/3, ~20!

whereA is the number of the nucleons in the nucleus and
useR5r 0A1/3.

Let us consider the next order of the perturbation appro
mation.

The nuclear interaction within the nucleus volume
much stronger than that on its surfaces. Therefore we m
consider that the nonlinear density vibration dynamics in
nucleus is determined by the dynamics within the volum
and that the oscillations of the surface are controlled by
volume dynamics. We shall ignore the nonlinearities in t
boundary conditions. One can see that we should take
account the\2 and\4 corrections to the Thomas-Fermi k
netic energy in order to describe the surface layer of nuc
matter accurately@33#. We have restricted ourselves to th
Thomas-Fermi approach to the kinetic energy functiona
Eq. ~3!. Therefore, the wave numberk is fixed in the next
orders of the perturbation theory to be the same as in
linear approximation, i.e.,k5k0.

The terms with coefficientsb, e, andf in Eqs.~4! and~5!
should be taken into account in the second order of per
bation analysis. The system of equations determiningj1 and
v1 is

]j1

]t
1

1

r 2

]~r 2v1!

]r
52

f

r 2

]~r 2j0v0!

]r
, ~21!

]v1

]t
1

a

m

]j1

]r
2

d

m

]

]r S 1

r 2

]

]r
r 2

]j1

]r D 52ev0

]v0

]r
2bj0

]j0

]r
.

~22!

By taking the time derivative of Eq.~21! and the divergency
of Eq. ~22!, and subtracting Eq.~22! from Eq. ~21!, we ob-
tain the equation forj1 as follows:
8-3
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S v0

v D 2 ]2j1

]t2
2

a

m

1

r 2

]

]r S r 2
]j1

]r D1
d

m

1

r 2

]

]r H r 2
]

]r F 1

r 2

]

]r S r 2
]j1

]r D G J
5F S v0

v D 2

21G]2j0

]t2
1g1~r ,t !'22

v1

v0

]2j0

]t2
1g1~r ,t !52v1v0j01g1~r ,t !, ~23!

where

g1~r ,t !5
1

r 2

]

]r F r 2S 2 f
]~j0v0!

]t
1ev0

]v0

]r
1

b

m
j0

]j0

]r D G . ~24!

The time dependence of functiong1(r ,t) can be presented as

g1~r ,t !5g10~r !1g12~r !cos~2v0t !, ~25!

whereg10(r ) andg12(r ) are functions ofr only. The expressions forg10(r ) andg12(r ) are presented in the Appendix. Th
condition that there be no resonance term@39# on the right-hand side of Eq.~23! leads tov150. Note that the resonance ter
condition is only discussed in the time dependence case in Ref.@39#. This consideration can be extended to the case of sp
dependence~see also@13#!. The finite solution of Eq.~23! at r 50 can be found by applying the general method of
nonhomogeneous differential equation solution@40# and has the form

j1~r ,t !5j10~r !1j12~r !cos~2v0t !, ~26!

wherej10(r ) andj12(r ) are functions ofr only:

j10~r !5c1

sinh~k0r !

k0r
1

m

dk0
2 S 1

r E0

r

dr8g10~r 8!r 822E
0

r

drg10~r 8!r 81
sinh~k0r !

k0r E
0

r

dr8g10~r 8!r 8 cosh~k0r 8!

2
cosh~k0r !

k0r E
0

r

dr8g10~r 8!r 8sinh~k0r 8! D , ~27!

j12~r !5c2

sin~k2r !

k2r
1c3

sinh~k2r !

k2r
1

m

d~k2
21k2

2!
S 2

sin~k2r !

k2r E
0

r

dr8g12~r 8!r 8 cos~k2r 8!1
cos~k2r !

k2r E
0

r

dr8g12~r 8!r 8sin~k2r 8!

1
sinh~k2r !

k2r E
0

r

dr8g12~r 8!r 8 cosh~k2r 8!2
cosh~k2r !

k2r E
0

r

dr8g12~r 8!r 8sinh~k2r 8! D . ~28!
Herec1 , c2, andc3 are constants,k0
25a/d, and the values of

k2 and k2 are related to the vibration frequencyv0 by the
dispersion relations

4v0
25

a

m
k2

21
d

m
k2

4 , ~29!

4v0
252

a

m
k2

21
d

m
k2

4 . ~30!
04431
Using the boundary condition~17!, we can determine the
constantc1 and the combination of the constantsc2 andc3.

By substituting Eqs.~12!, ~13!, and Eqs.~26!–~28! into
Eq. ~22! we find the velocityv1(r ,t) in the form

v1~r ,t !5v10~r !t1v12~r !sin~2v0t !/~2v0!. ~31!

Note that

1

r 2

]@r 2v10~r !#

]r
50,
8-4
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and as a result of the continuity equation~21!, there are no
density fluctuations related with the first term in Eq.~31!.
Therefore there is not any influence of this term on the in
gral properties of the density distribution. The expressio
for the radial functionsj10(r ), j12(r ), v10(r ), andv12(r ) are
too cumbersome and so we have not presented them.

By using the same method as before we may easily ob
the equation forj2(r ,t):

S v0

v D 2]2j2

]t2
2

a

m

1

r 2

]

]r S r 2
]j2

]r D
1

d

m

1

r 2

]

]r H r 2
]

]r F 1

r 2

]

]r S r 2
]j2

]r D G J
5F S v0

v D 2

21G]2j0

]t2
1g2~r ,t !

'22
v2

v0

]2j0

]t2
1g2~r ,t !52v2v0j01g2~r ,t !, ~32!

where

g2~r ,t !5
1

r 2

]

]r F r 2S 2 f
]~j1v01j0v1!

]t
1eS v1

]v0

]r

1v0

]v1

]r D1
b

m S j1

]j0

]r
1j0

]j1

]r D1
c

m
j0

2 ]j0

]r D G .

~33!

The right-hand side of Eq.~32! has a resonance term
which is proportional toj0(r ,t). The nonresonance term
condition @39# in this order of the perturbation theory lead
to the finite correction of the oscillation frequency:

v2[vshi f t~b,c,e, f !

5
a2

8

bk0@b1 f ~a1dk0
2!#

aAm~a1dk0
2!

5
p4

12

\b$b1 f @a1d~p/r 0!2A22/3#%

mar0
2@a1d~p/r 0!2A22/3#

A25/3. ~34!

The vibration frequency changes in third order of pertur
tion theory. This frequency shift of oscillationsvshi f t is pro-
portional to the square of the amplitude of vibrations; s
also @39#. Note that vshi f t(b,c,e, f )5vshi f t(b, f ), because
terms withc or f proportional to the resonance termj0(r ,t)
are absent on the right-hand side of Eq.~32!.

The energy of the one-phonon (1\v) giant resonance re
lated to the density vibrations in a nucleus is equal to

E1\v5\@v01vshi f t~b, f !#5\~v01v2!. ~35!

Here we have taken into account the semiclassical quan
tion rule for classical periodic motion.
04431
-
s

in

-

e

a-

TheN-phonon giant resonance in the nucleus is defined
a coherent excitation ofN one-phonon oscillations. The den
sity fluctuation of theN-phonon giant resonance in the ca
of small value ofN may be presented as

jN\v~r ,t !5Nj0~r ,t !5Nasin~v0t !
sin~k0r !

k0r
.

Thus, the vibration amplitude of theN-phonon excitation is
N times larger than the amplitude of the one-phonon st
The N-phonon density oscillations in a nucleus are also
scribed by the system of hydrodynamic expressions~4! and
~5!. The frequency shift of theN-phonon excitation due to
the anharmonicity can be easily obtained from the expr
sions for the one-phonon case by substituting constants
lated to nonlinear terms in Eqs.~4! and ~5!:

bN\v→Nb1\v , cN\v→N2c1\v , eN\v→Ne1\v5N,

f N\v→N f1\v5N. ~36!

Therefore the energy of theN-phonon excitation is given by

EN\v5\@Nv01vshi f t~Nb,N2c,Ne,N f !#5N\~v01Nv2!.
~37!

Let us define the ratios of energies,VN andWNM , as

VN5
EN\v2N\v0

\v0
5

vshi f t~Nb,N2c,Ne,N f !

v0
5N2

v2

v0
,

WNM5
EN\v2EM\v

EM\v
'

N2M

M S 11N
v2

v0
D . ~38!

The ratiosVN andWNM quantify the nonlinearity~or anhar-
monicity! of the N-phonon excitation and the relative anha
monicity of theN-phonon andM-phonon states, respectively
These ratios giveVN50 and WNM5(N2M )/M for har-
monic oscillations. Deviations from these limiting value
give us the quantitative characteristics of anharmonicity.

The ratio VN is a purely theoretical quantity. The rati
WNM can be derived from experimental data. Moreover,
data on the ratioW21 for electric giant isovector dipole an
isoscalar quadrupole resonances can be extracted from
perimental data@19–22#. The ratiosV1 andW21 will be ana-
lyzed in detail for isoscalar monopole vibrations in next se
tion.

III. ISOSCALAR MONOPOLE EXCITATION

The proton and neutron densities vibrate in phase in
case of isoscalar oscillations. These vibrations are descr
by Eqs. ~4! and ~5! and satisfy kinematical and dynamic
boundary conditions~15!–~17! on the free surface of a
nucleus. By using expressions obtained in the previous
tion we can easily evaluate the energy of the isoscalar GM
The resonance energy depends on the constantsa0 , b0, and
d0 of the energy density functional~3!.

For symmetrical nuclear matter and the realistic Skyr
8-5
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energy density functional, the constantsa0 , b0 , c0, andd0
are equal to

a05r`
2 ]2

]r2 S ESk

r U
¹rp(n)50

D
52

~18p4!1/3\2

30m
r`

2/31
t3

16
a0~a011!r`

a011

1
~18p4!1/3

48
@3t11t2~514x2!#r`

5/3, ~39!

b05r`
3 ]3

]r3 S ESk

r U
¹rp(n)50

D
5

2~18p4!1/3\2

45m
r`

2/31
t3

16
a0~a0

221!r`
a011

2
~18p4!1/3

144
@3t11t2~514x2!#r`

5/3, ~40!
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t
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c052r`
4 ]4

]r4 S ESk

r U¹rp(n)50D
52

28~18p4!1/3\2

135m
r`

2/31
t3

8
a0~a0

221!~a022!r`
a011

1
~18p4!1/3

54
@3t11t2~514x2!#r`

5/3, ~41!

d05
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Here we have taken into account that the protonrp and neu-
tron rn densities are connected with the total density by
expressionrp(r ,t)5rn(r ,t)5 1

2 r`@11j(r ,t)#. The realistic
Skyrme energy density functional is defined within t
Thomas-Fermi approach as@33#
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wherer5rp1rn and t0 , t1 , t2 , t3 , x0 , x1 , x2 , x3, anda0
are the Skyrme force parameters@32,33#.

The values of the constantsa0 , b0 , c0, and d0 and the
parameters of the most successful sets of Skyrme nucl
nucleon interactions@34–37# are shown in Table I. Note tha
the three-particle contribution related toa0 in Eq. ~44! has a
different density dependence for these sets of parameters~see
Table I!. The values of the excitation energies for isosca
density vibrations in the nucleus within the anharmonicE
and harmonic\v0 approximations and the ratiosV1 andW21
are presented in Table II. The theoretical and experime
@10# energies and ratios in Table II are calculated for nuc
with nucleon numberA540, A590, andA5208. The the-
oretical values are given for different parameter sets
Skyrme forces.

The values of the constantsa0 , b0 , c0, andd0 evaluated
for different sets of Skyrme forces are spread over wide
tervals ~see Table I!. We may shorten these intervals if w
know the experimental values of the ratioW21. Unfortu-
nately we do not have these data for the isoscalar GMR
n-

r

al
i

f

-

The values of excitation energies calculated in nuclei w
A540, 90, and 208 for different sets of Skyrme forces ov
estimate the experimental values of the isoscalar mono
resonance energy in40Ca, 90Zr, and 208Pb @10#, respectively
~see Table II!.

The energy of the isoscalar GMR is often described
@4,6–9#

E5S \2K

m^R2&
D 1/2

, ~44!

where^R2& is the mean square nuclear radius. Equation~44!
differs from our expression@see Eqs.~14! and ~35!# for the
evaluation of the GMR energy, because we take into acco
the term related tod in the harmonic approximation. Th
value of constantd5d0 is positive for all sets of Skyrme
forces ~see Table I!. Therefore the energy of the isoscal
GMR evaluated in our approach is somewhat higher th
that obtained by using Eq.~44! for the same value ofK. Note
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TABLE I. The parameters of Skyrme interactions and the constants of the energy density functiona~3!.

Sk3 @34# Ska @35# SkM* @36# RATP @37#

t0 (MeV fm3) 21128.75 1602.78 22645.00 22160
t1 (MeV fm5) 395.00 570.00 410.00 513.00
t2 (MeV fm5) 295.00 267.00 135.00 121.00
t3 (MeV fm313a0) 14000.00 8000.00 15595.00 11600.00
x0 0.45 20.02 0.09 0.418
x1 0.00 0.00 0.00 20.36
x2 0.00 0.00 0.00 22.29
x3 1.00 20.286 0.00 0.586
a0 1.00 1/3 1/6 1/5
r`53/(4pr 0

3) (fm23) 0.1453 0.1554 0.1603 0.1599

a05K/9 ~MeV! 355.5/9 263.4/9 216.6/9 239.6/9
b0 ~MeV! 3.76 211.1 214.3 213.0
c0 ~MeV! 211.2 12.5 21.8 17.9
d0 (MeV fm2) 9.15 13.3 10.9 12.8
ro
ls

th
a
re
to

in
lig
a
ne

es

tios
-

ets.

is
e

that the energy of the isoscalar GMR obtained in mic
scopic RPA theory for the same set of Skyrme forces is a
smaller than\v0 in Table II especially in light nuclei. Such
a discrepancy is connected with the approximation of
step density distribution used in our model. It is known th
the GMR energy evaluated in a hydrodynamic model is
duced if the finite thickness of the diffuse layer is taken in
account; for details see@40–43#.

The anharmonicity is stronger in the light nuclei than
the heavy ones because the vibration amplitudes in the
nuclei are larger than in the heavy ones. As a result of
harmonicity, the excitation energies of the isoscalar o
04431
-
o

e
t
-

ht
n-
-

phonon resonance,E1\v5\v0(11V1), rise by 2% for
heavy and by'14218 % for light nuclei compared to the
harmonic approach. We recall that the harmonic limit valu
for the ratios~39! and~40! areV150 andW2151. Different
sets of Skyrme interactions give various values for the ra
V1 andW21. The effect of the density vibration’s anharmo
nicity for the Sk3 set is largest compared to the other s
This is becauseVN}b25(3a01b0)2, and the value of the
parameterb0 is positive in the case of Sk3 forces and
negative for Ska, Skm* , and RATP parameter sets. Th
value of compressibilityK59a0 is the largest for the Sk3
parameter set, as we see in Table I.
MF,

heses.
TABLE II. The giant resonance energies evaluated in nonlinearE and linear\v0 approaches, and the
ratiosV1 andW21 for different sets of Skyrme forces in our hydrodynamical model and in QTDHF, R
and ERPA models. The energy values, amplitudes, and ratiosV1 andW21 are given for nuclei with nucleon
numbersA540, 90, and 208. The anharmonicity effects of the two strongest monopole states in208Pb are
studied in the ERPA. The quantities for the highest states obtained in the ERPA are given in parent

Sk3 Ska SkM* RATP RMF QTDHF HFB1RPA ERPA Expt.
@34# @35# @36# @37# @17# @15# @8# @18# @10#

A540
E ~MeV! 39.60 35.77 32.71 34.62 19.0 21.0 16.2 18.960.4
\v0 ~MeV! 33.66 31.47 28.91 30.58 21.5 26.1 21.3
V1 0.18 0.14 0.13 0.13 20.12 20.20 20.24
W21 1.35 1.27 1.26 1.26

A590
E ~MeV! 26.61 24.06 22.04 23.27 22.7 16.4460.07
\v0 ~MeV! 25.02 22.87 20.99 22.15 23.3
V1 0.06 0.05 0.05 0.05 20.026
W21 1.13 1.10 1.10 1.10

A5208
E ~MeV! 19.02 17.07 15.64 16.49 21.0 13.0 13.4~14.78! 13.9160.11
\v0 ~MeV! 18.61 16.76 15.37 16.20 21.1 13.5 13.6~15.0!
V1 0.022 0.018 0.018 0.01820.005 20.037 20.015(20.015)
W21 1.044 1.036 1.035 1.036 1.054~1.041!
8-7
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The ratiosVN and WMN are a quadratic function ofb
53a01b0 @see Eq.~34!#. The ratioVN(A) is proportional to
A24/3 for large values ofA, becausev0}A21/3 and v2
}A25/3. The sameA dependence, sign, and similar amplitu
of V2(A) are also obtained in@26#. Note that the nature o
anharmonicity in our paper is the same as in Ref.@26#. An-
other A dependence ofV2 as A22/3 is found in Ref.@25#,
which is related to the Pauli principle correction@24,25#.
Note thatV2}A22/3 in the slab of nuclear matter@13#. The
different A dependences ofV2 obtained within similar ap-
proaches for the slab and spherical space distribution
nuclear matter are related to the different geometries of
nuclear density distributions. Note that vibrations in the s
and spherical nuclei are described by different equati
@compare Eqs.~4! and ~5! in this paper and in@13##, and
have, therefore, differentA dependences ofv2.

The anharmonicity effects for the isoscalar GMR are
timated in the QTDHF@15#, RMF @17#, HFB1RPA @8# and
ERPA @18# approximations. The values ofE, \v0, and V1
obtained in these approximations are given in Table II. O
values ofV1 obtained for Sk3, Ska, SkM* , and RATP sets of
Skyrme forces are smaller than QTDHF and HFB1RPA pre-
dictions and larger than RMF result.

The dependence of the Hartree-Fock deformation ene
on the value of the mean square nuclear radius^R2& is evalu-
ated by using the constraint method in Refs.@15,17#. It is
shown in @15,17# that the dependence of the Hartree-Fo
energy on̂ R2& differs from that in the harmonic approxima
tion. This induces anharmonicity effects in Refs.@15,17#.
Note that the radial dependence of the transition density@the
difference between dynamicr(r ,t) and staticr` densities#
for the isoscalar monopole resonance~12! is not directly and
uniquely related to the variation of the mean square radi

The nonlinearity connected with pairing effects is stud
in Ref. @8# within the constrained Hartree-Fock-Bogoliubo
method. It is shown in Ref.@8# that the pairing interaction
gives an additional strong contribution to the dependenc
the Hartree-Fock-Bogoliubov energy on^R2& in 40Ca. The
coupling between phonons of different natures and multi
larities is taken into account in Ref.@18#.

The anharmonicity shifts of the resonance energy
higher in our hydrodynamical approach in contrast to
opposite effects in the microscopic QTDHF, HFB1RPA,
ERPA, and RMF theories. The nonlinearity obtained in o
approach is related to the bulk~volume! property of isoscalar
giant monopole vibrations due to nonlinear terms in Eqs.~4!
and~5!. However, nonlinear effects of other natures are c
sidered in Refs.@8,15,17,18#. Note that the finite thickness o
the nuclear diffuse surface, pairing effects, the coupling
tween phonons of different natures, and other effects
04431
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taken into account in microscopic approaches@8,15–18#.
These additional effects may cause the differences betw
various model predictions.

The energy of the two-phonon isoscalar GMR is a
changed due to anharmonicity, since the ratioW21 deviates
from the harmonic limit as we see in Table II. The values
W21 obtained for Ska, SkM* , and RATP sets of Skyrme
forces are similar. The values of anharmonicity for the tw
phonon monopole resonance obtained in@26# are close to our
values. The nonlinearity effect onV1 anW21 is the largest for
the Sk3 parameter set. The anharmonicity effect obtaine
ERPA theory is smaller than in our approach for the tw
phonon monopole excitations~see the valueW21 in Table II!.

Note that we consider anharmonicity by using perturb
tion theory. Therefore our model lost accuracy in the case
large anharmonicity. As a result of this, it is necessary
consider the anharmonicity of theN-phonon state numeri
cally at large values ofN.

IV. CONCLUSION

The anharmonic terms of the energy density functio
enlarged considerably the energy of the one- and tw
phonon excitations. Therefore the isoscalar GMR should
studied in the framework of nonlinear models especially
light nuclei. However, the anharmonicity of the two-phon
giant resonance should be taken into account even in he
nuclei.

Nonlinear effects are very important for the extraction
the nuclear compressibility from theA dependence of GMR
experimental energies, because the anharmonicity cha
energies of giant resonances.

The experimental study of theN-phonon giant resonance
of different multipolarities gives us information about bo
the value and theA dependence of the ratioWNM . The ad-
ditional experimental information may help to select sets
Skyrme forces and to reduce the variations of the const
a, b, andd. Note that only limited experimental informatio
about one-phonon and two-phonon isovector giant dip
resonances is available for analysis@19,20#.
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APPENDIX

The expressions forg10(r ) andg12(r ) are obtained by substituting~12! and ~13! to ~22!

g10~r !52a2@2bk4r 212bk5r 3sin~2kr !26ew2m1bk4r 2 cos~2kr !22bk6r 4 cos~2kr !16ew2m cos~2kr !

26ew2mk3r 3 sin~2kr !211ew2mk2r 2 cos~2kr !12ew2mk4r 4 cos~2kr !112ew2mkr sin~2kr !

2ew2mk2r 2#/~4k6r 6m!, ~A1!
8-8
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g12~r !52a2@26ew2m1bk4r 222bk5r 3 sin~2kr !12bk6r 4 cos~2kr !2bk4r 2 cos~2kr !22 f w2k2r 2m cos~2kr !

24 f w2k3r 3m sin~2kr !2ew2mk2r 212ew2mk4r 4 cos~2kr !16ew2m cos~2kr !14 f w2k4r 4m cos~2kr !

26ew2mk3r 3 sin~2kr !12 f w2k2r 2m211ew2mk2r 2 cos~2kr !112ew2mkr sin~2kr !#/~4k6r 6m!. ~A2!
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