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Single- and double-phonon giant monopole resonances in a nonlinear approach
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Isoscalar monopole density vibrations in spherical nuclei with a sharp surface are studied in a nonlinear
hydrodynamical approach. The frequency shift of the one- and two-phonon excitations due to nonlinear terms
is obtained. The frequencies of on@wo-) phonon giant isoscalar monopole resonances calculated in the
nonlinear hydrodynamic theory increase 2% (8%) inheavy nuclei and by=14-18 % (50%) in light
nuclei compared to the linear approximation. The frequency shift is a function of both the mass Auaniaker
the parameters of the nucleon-nucleon interaction.

PACS numbgs): 24.30.Cz, 21.60.Ev, 21.65f, 24.10.Nz

I. INTRODUCTION one-phonon resonance enerd@®,20. Such a reduction in
the excitation energy of the two-phonon state may be caused
by the anharmonicity of vibrations in nuclear matter.
The purpose of this paper is to study the frequency shift
the one- and two-phonon isoscalar GMR due to the anhar-
monicity of density oscillations in a spherical nucleus with a
sharp surface in the framework of the nonlinear hydrody-
rﬁ!_amical model. We will obtain an analytical expression for
ibility of nuclear matter[3—11]. The compressibility of N freq_uenc_y_sh|ft of the one- and t\/\{o-pho_non GMR cause_d
. . o by nonlinearities. Therefore we consider giant resonances in
nuclear matter is one of the most important quantities, be- . :
- . a spherical nucleus with a sharp surface. It should be noted
cause it influences both the ground and excited state proper- . . .
. . . . . that various properties of giant resonances have been suc-
ties of nuclei, heavy-ion reactions, properties of neutron . : .
. cessfully described by the use of different linear hydrody-
stars, and supernova explosidi38,31]. ) S
S o namical approximationg3,4,6,7,11,12,14 The anharmo-
In order to extract the compressibility value it is necessary . . . Lo : .
; ; . nicities of vibrations in a nuclear matter slab with sharp
to know the experimental energies of the GMR over a wide : e .
; . surfaces has been considered within a nonlinear hydrody-
range of atomic mass numb&i7—10. From a macroscopic ! :
. e namical model in Ref{13].
analysis of theA dependence of the GMR energy it is pos- Th i v of th h . lar GMR
sible to extract the compressibility of nuclear maf@l The € noniinearity ot the one-phonon isoscalar was

extracted value of the compressibility depends on the moddftvestigated in the quantized time-dependent Hartree-Fock
applied in the analysis of the experimental data. NonlineafQTPHP) model [15], in a random phase approximation

effects may give contributions to the energy of the GMR(RPA) based on the Hartree-Fock-BogoliubWFB+RPA)
[7,15,17,18 Therefore nonlinear effects may change thenuclear basis stz?lte[§], in a relativistic mean-fieldRMF)
value of the compressibility obtained from an analysis oftheory[17], and in an extended RPAERPA) model[18].
experimental GMR energies. The anharmonicity of the two-phonon giant resonances was
In the past few years two-phonon giant resonances havestimated in the RPA models {16,18,23. These studies
also been studied both experimentally and theoretifaB»  require cumbersome numerical calculations and the link be-
29] The two-phonon giant dipole resonance has been obiween the parameters of the nucleon-nucleon interaction and
served at an energy about twice as large as that of the onéie shift of resonance energy caused by anharmonicity can
phonon resonande 9—24. only be obtained numerically. However, j@6] the anhar-
The one-phonon giant resonance is treated as an excitedonicity of the two-phonon giant resonances was studied
state built on the ground state of the nucleus. In the frameanalytically in a variational approach with a simplified inter-
work of the harmonic oscillator model the two-phonon giantaction.
resonance is treated as an excited state built on a one-phononThe analytical expression derived in this paper confirms
excitation. Decay schemes of the one- and two-phonon gianhe direct and transparent connection between the shift in
resonances confirm this origin of these resonaft@s24.  energy of the one- and two-phonon giant resonances due to
However, the measured energies of the two-phonon isove@nharmonicities. Also illustrated is the dependence of these
tor giant dipole resonances are slightly smaller than twice thghifts on values of the constants of the Skyrme-type
[4,32,33 energy density functional. The constants of the en-
ergy density functional are related to the parameters of the

Giant dipole resonances were predicfdd and experi-
mentally discovered2] more than 50 years ago. Neverthe-
less, the giant resonances have been and still are a maj8]r
topic of research in nuclear physits—29. Many different
types of giant resonances have been discovE®e®]. The
isoscalar giant monopole resonan&MR) is of particular

*Electronic address: denisov@kinr.kiev.ua nucleon-nucleon interactioat,32—37.
TElectronic address: yamajis@rikaxp.riken.go.jp The nonlinear hydrodynamic model of density vibrations
*Permanent address. in spherical nuclei is described in Sec. Il. The results for the
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isoscalar GMR are presented in Sec. lll. The summary and Equations(4) and(5) are nonlinear. The nonlinear terms

conclusions are presented in Sec. IV.

II. NONLINEAR DENSITY VIBRATIONS IN A SPHERICAL
NUCLEUS

Density oscillations(r,t) in the hydrodynamic approxi-
mation obey the continuity equati¢d,38]

% ¢ div(pv) =0 1
o Hdiv(pv) = )
and the Euler equatiof#,38]
v . 1 Vag(p) o )
gtV RV, 70 @

where v(r,t) is the velocity of nucleons$&(p)/Sp is the
variational derivative of the energy density functional, amd
is the nucleon mass.

which contain the constantsandf in Egs.(4) and(5) arise
due to the nonlinear nature of the hydrodynamic equations.
The terms with constantb and ¢ in Egs. (4) and (5) are
related to the anharmonic potential nature of the energy den-
sity functional (3).

Let us obtain the solution to the system of E@s.and(5)
in the form of a perturbation series, a treatment which is
similar to the treatment of nonlinear oscillations in classical
mechanicg39]:

E=&ot &t éot -, (7)
v=votvi v+, (8)
k=Kko+ky+kot -, 9
w=wot wytwyt . (10)

As a first approximation the system of equatid¢ds and

Let us consider the following energy density functional of (5) can be easily transformed by an equation for density vi-

nuclear matter:

(p=p=)®  (p=p=)®  (p—pu)?
g(p):p 500+a0 2 +b0 3 Co 4
2poc 6p00 12p°°
(Vp)?
+dox, ©)

whereay=K/9, by, cg, andd, are constants, anl is the
nuclear matter compression modu(@s-7]. We should note
that the form of realistic energy density functionf®2,33
does not coincide exactly with E¢3). However, any realis-
tic energy density functional per nucleof(p)/p, may be

brations:
b _ald ik
gtz my2or ar
d1 g all o o9&
erﬁr[r arLZﬁr(r &r) ] 0. @Y

Let us consider the link between our hydrodynamic ap-
proach and microscopic theories of giant resonances. Micro-
scopic theories of giant resonances are based on thef RPA
The Landau-Vlasov equation is the semiclassical analog of

expanded into a power series in the deviation of the densityqe microscopic RPA equatiorig]. The nuclear fluid dy-
from the equilibrium valug.. as in Eq.(3), when there are hamics mode(4,14] can be derived by using the Landau-

no gradient terms. The form of the gradient term in 8).is

Vlasov equation. The density fluctuations in the nuclear fluid

the same as the gradient term of the energy density fundynamics model also obey the continuity equatiéh The
tional of the Skyrme force in the Thomas-Fermi approachequatlons for monopole density fluctuations in a nuclear fluid

[33].

dynamics model in the case of quadrupole distortions of the

In the case of monopole vibrations in spherical nuclei,/ocal Fermi sphergl4] are similar to Eqs(4), (5), and(11).

Egs.(1) and(2) may be simplified,

0é ia(rzv)+i o7(r2§v)_0

E r2 ar r2 ar ' (4)
w aost dall o ok v b 9&
T - - | = rc—j||+ev—+—&—
ot m or m Jar r2 ar ar ar m?> ar
c _o0¢
g2 2
oo, ®

where e and f are the auxiliary constantse€f=1), a
=ag, b=3ay+by, c=2by+cy, d=dg, and ¢ is the func-
tion describing the density vibrations:

p(r)=p[1+&(r,0)].

We neglect fourth and higher order terms in E5).

(6)

Note that the monopole density oscillations are purely longi-
tudinal. So the terms related to transversal motion are absent
in the fluid dynamic equations in this case. The difference
between Eq(11) and the fluid dynamics density vibration
equation is connected to the value of the constaraisdd in
Eq.(11) (see alsg14]). Therefore, a hydrodynamic model of
the GMR is an approximation to a microscopic theory based
on the RPA. So it is reasonable to examine anharmonic ef-
fects in the GMR by studying the density fluctuations in the
framework of a nonlinear hydrodynamics model.

The solution to Eqs4) and(5) in first order perturbation
theory is

. sin(koqr) sin(kgr)
§O=aS|n(w0t)Tro=a koro , (12)
- —aﬂcos{wot)sm(kor)_kor cogKkor) 13

Ko (kor)2
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fiwo=Egjass- (18)

and wave number of oscillations, respectively. The solutions

obtained in first order perturbation theory are lineatinrhe
frequency and wave number are connected by the dispersi
equation

a d
wgzmkg‘f‘ akg (14
Note that we chose the solutigh2) and(13) of Egs.(4) and
(5), because this solution and dispersion relati@d) are
also valid in the limitd— 0, which limit is often considered
for giant monopole density resonancesee, for example,
[3.4]).

The density oscillation wave numbé&jy is determinated

o

'Hwe vibration energy calculated in the classical approach is

E 1 dv 2+1 dVp.[a&2+d(VEy)?]
class™ 5 Mpvg 2 P afo (V&

(19

1 . 1
EB[a(t)]2+ EC[a(t)]z.

By taking into account Eqg12) and(13), the expression for
harmonic oscillator frequencw,=(C/B)*?, and boundary
condition(17) we find the vibration amplitude

by kinematic and dynamic linear boundary conditions on the

free surface of the nucleus.

The kinematic boundary condition is assumed to be the
equality of the normal component of the nucleon velocity on

the surfacey (R,t), to the surface velocity g(t),
v(Rt)=vgt),

wherev g(t) = d4(t)/dt, Ris the nuclear radius, ané(t) is

(19

2% 1/2
(BC) 1/2)

1/2

a:(
2mh o

=17
( 3[mr3(a+ 72dry 2A~ 23142

. (20

the amplitude of surface oscillations. In the case of a spheriwhereA is the number of the nucleons in the nucleus and we

cal nucleusy (R,t) coincides with the radial velocity in the
linear approximation.

useR=r A2
Let us consider the next order of the perturbation approxi-

The dynamical boundary condition is the equality of themation.

normal component of the surface effective pressufe,t),
caused by the variation of the nucleon dengjfy,t) in a
nucleus, to the pressure(t) caused by both the surface
tension and the shift of the surfaéét) from the equilibrium
position,

o(R,t)=P(t). (16)

We neglect the surface tensid(t) =0, because the influ-

The nuclear interaction within the nucleus volume is
much stronger than that on its surfaces. Therefore we may
consider that the nonlinear density vibration dynamics in the
nucleus is determined by the dynamics within the volume,
and that the oscillations of the surface are controlled by the
volume dynamics. We shall ignore the nonlinearities in the
boundary conditions. One can see that we should take into
account thei? and4* corrections to the Thomas-Fermi ki-
netic energy in order to describe the surface layer of nuclear

ence of the surface restoring force on the GMR energy isnatter accurately33]. We have restricted ourselves to the

small[3,7,11. Note that boundary conditiond5) and (16)
are the same as used in Secs. 6A-3a and 6A-3BJiand in
[7,11,12.

Let us substitute solutiond2) and(13) into the boundary
conditions(15) and(16) and obtain the equation for the wave
numberk,:

8E(p)
(O —r=pe—5—
ag R—P 5p .
azar,t))
= 0 y _d
mp (aé(r t) "

r=R
= ap..m(a+dk3)sin(wet) sin(kor )|, —r
xsin(kgR)=0. (17

As a result of to the dispersion relatidi4), the fre-
guency of vibrationsw, is also fixed by the boundary con-

Thomas-Fermi approach to the kinetic energy functional in
Eq. (3). Therefore, the wave numbéris fixed in the next
orders of the perturbation theory to be the same as in the
linear approximation, i.ek=Kk,.

The terms with coefficientb, e, andf in Egs.(4) and(5)
should be taken into account in the second order of pertur-
bation analysis. The system of equations determigingnd
U1 IS

d 1 a(r f a(r?éq
9 1 9(r‘vy) __f (r<éovo) ’ (21)
ot |'2 ar r2 ar
aUl a ﬁgl d o 19 2&51 _ ﬁl)o b &50
gt mar  morl 2 o ar | T o ThdoT
(22

ditions. The amplitude of vibrations is obtained from the By taking the time derivative of Eq21) and the divergency
condition of energy equality, evaluated by means of theof Eq. (22), and subtracting Eq22) from Eg. (21), we ob-

guantum and classical expressions,

tain the equation fog; as follows:
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wo\??& al g ,0&) d 14 011 0 06
—| ===t re—-
/) g2 myg20r ar | my2ar| or|c2arl ar

= <@>2—1}&2—§+g (r, t)~—2—ﬁ+g (r,t)=2wiwoép+g(r,t), (23
® (9t 1 wo (7t 1 1%Y0s0 1
where
19 d(&ovo) dvg b &
_ 2| P Y S
gl(r't)_rZ ar[r ( =gt ooy Thtoy (24)
The time dependence of functign(r,t) can be presented as
91(r,t)=g10o(r) +9g1a(r)cog 2wet), (29

wheregqo(r) andgq,(r) are functions of only. The expressions fay,o(r) andg,(r) are presented in the Appendix. The
condition that there be no resonance t¢88] on the right-hand side of E§23) leads tow;=0. Note that the resonance term
condition is only discussed in the time dependence case if B#f.This consideration can be extended to the case of spatial
dependencésee alsd13]). The finite solution of Eq(23) at r=0 can be found by applying the general method of the
nonhomogeneous differential equation solutidd] and has the form

E1(r, 1) =&10(r)+ &15(r)cog 2wt ), (26)

whereé o(r) and&;5(r) are functions of only:

&10(r)= ClslnHKor) +£2(Efrdr/910(r,)r/2— frdrglo(r’)r’+Mfrdr’gm(r’)r’ costixor ')
Kol deg\lJo 0 Kof 0
——COSKKOr)frdr’glo(r’)r’sinf(:cor’)), (27)
of 0
sin(K,r) sinh( k,r) m sm(k r) 5{ r)
§1r)=c, k2r2 +C3 KZ’:Z d(k2+ D) : Jdr g1Ar")r’ cogkyr’) + 2 fdr g1or’)r'sin(kar’)
+%J’;dr’glz(r’)r’cosf(xzr’) COSKKZr)f dr'gqo(r’)r’sinh(kor’ )) (28
2

Herec,, c,, andc; are constantsc3=a/d, and the values of Using the boundary conditiofi7), we can determine the

k, and k, are related to the vibration frequeney, by the  constantc; and the combination of the constamtsandcs.

dispersion relations By substituting Eqs(12), (13), and Egs.(26)—(28) into
Eq. (22) we find the velocityv,(r,t) in the form

a d r,t)= rt+ r)sin(2wgt)/(2wg). 31
402=2121 1, (29 v1(r, 1) =va(Nt+v1ar)sin(2wgt)/ (2wo) (32)
m 2 m
Note that
a d 1 dlrvio(r)]
4w%=—EK§+EK‘2‘. (30) r_207—r_0’
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and as a result of the continuity equati(@1), there are no The N-phonon giant resonance in the nucleus is defined as
density fluctuations related with the first term in E81). a coherent excitation dfl one-phonon oscillations. The den-
Therefore there is not any influence of this term on the intesity fluctuation of theN-phonon giant resonance in the case
gral properties of the density distribution. The expression®f small value ofN may be presented as
for the radial functiong1o(r), &15(r), v1g(r), andv15(r) are
too cumbersome and so we have not presented them. . sin(kor)

By using the same method as before we may easily obtain Ennw(r 1) =NEo(r,t) =Nasin(wot) kot
the equation foig,(r,t):

Thus, the vibration amplitude of th¥-phonon excitation is
(a)o>202§2 alo ( 2,952) N times larger than the amplitude of the one-phonon state.

ar The N-phonon density oscillations in a nucleus are also de-

@ scribed by the system of hydrodynamic expressighsand

o2 m 2 ar

d1 9 al1 9 P (5). The frequency shift of thé\-phonon excitation due to
___[ rZ_{__(rZ_Z)“ the anharmonicity can be easily obtained from the expres-
my2dr | driy2dr\ or sions for the one-phonon case by substituting constants re-
lated to nonlinear terms in Eq&}) and(5):
|| wo P&
“llw) ! at? (Y bnie—Nbirw,  Cnie—NC1ru,  Enpo—New =N,
wy &y fnro—Nf1z,=N. (36)
~ =2 1 0x(1 )= 200080+ 92(r 1), (32
0 Therefore the energy of the-phonon excitation is given by
where Enio=h[Nwg+ snin(Nb,N2c,Ne,N)]= Nfi(wo+ Nws,).
(37)
19, ff9(§100+5001) g
go(r,t) = 2T T ot telvi - Let us define the ratios of energiég, andWyy,, as
o] B, P C a0 vy Ete N0 _0anr(NDNTENEND) _ p02
Y | T m\ Star TS0 | T mSoar || N hwg wg wo'
(33

_ENho)_Eth N—M
The right-hand side of Eq(32) has a resonance term, NM Emio M

which is proportional toéy(r,t). The nonresonance term ) . . )
condition[39] in this order of the perturbation theory leads The ratiosVy andWyy quantify the nonlinearityor anhar-

w2
1+N—]. (38
o

to the finite correction of the oscillation frequency: monicity) of the N-phonon excitation and the relative anhar-
monicity of theN-phonon and-phonon states, respectively.
w,=wgnin(b,c,e,f) Thes_e ratips giveVNzo_and WNMz(N—M)/!\/I .f.or har-
monic oscillations. Deviations from these limiting values
o? bko[b+f(a+dk§)] give us the quantitative characteristics of anharmonicity.
-y AT The ratioVy is a purely theoretical quantity. The ratio
aym(a+dkg) Wym can be derived from experimental data. Moreover, the
7% hib{b+ f[a+d(m/r o) 2A 23} Qata on the ratidV,, for electric giant isovector dipole and
=— 5 SPT A58 (34) isoscalar quadrupole resonances can be extracted from ex-
12 marj[a+d(m/re)®A~27 perimental dat#19—22. The ratiosV; andW,; will be ana-

lyzed in detail for isoscalar monopole vibrations in next sec-
The vibration frequency changes in third order of perturbatjon.
tion theory. This frequency shift of oscillatiofas,i;; is pro-
portional to the square of the amplitude of vibrations; see

Il ISOSCALAR MONOPOLE EXCITATION
also [39]. Note thatwgpnis(b,c,e,f)=wgpnis(b,f), because

terms withc or f proportional to the resonance teggg(r,t) The proton and neutron densities vibrate in phase in the

are absent on the right-hand side of E8p). case of isoscalar oscillations. These vibrations are described
The energy of the one-phonon/ &) giant resonance re- by Egs.(4) and (5) and satisfy kinematical and dynamical
lated to the density vibrations in a nucleus is equal to boundary conditions(15)—(17) on the free surface of a

nucleus. By using expressions obtained in the previous sec-

Eipo=Al wot wshifd( D, T) =7 (wo+ w3). (35  tion we can easily evaluate the energy of the isoscalar GMR.

The resonance energy depends on the constgntby, and
Here we have taken into account the semiclassical quantizak, of the energy density function&).
tion rule for classical periodic motion. For symmetrical nuclear matter and the realistic Skyrme
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energy density functional, the consta by, co, andd
@i, bo, Co 0 Esk
are equal to Co= me VpP(M =0
z?p p
28(18/774)1/3ﬁ2 ts
& __ e a3, 3 2 _ ag+1
ag=p2- ( sk ) TEn P g aolab—1)(a0—2)p
9\ P lvp-o 413
(1877)

(18R Lty w1 +—[3t1+t2(5+4x2)]p5’3 (41)
=T " 30m P= + 16ao(ao+ p.,

187 1/3

%[3t1+t2(5+4xz)]p5/3 (39

bo=p3 (7_3(@ )
ap\ P lypm—o
2(187%) 132 s 13 w1 Here we have taken into account that the prgiérand neu-
=—5n  P- Tt 16%(“0 Dp, tron p" densities are connected with the total density by the
s expressiorpP(r,t)=p"(r,t)=3p.[1+&(r,t)]. The realistic
(1877) 53 Skyrme energy density functional is defined within the
144 [t +12(5+4%7) Jp=: 40 Thomas-Fermi approach §33]

c I sy L[ (14 2 AP B S 1
ske1gm  LPTTH (P Sl | 145X p*— Xo+ 5| L(PA) "+ (P71 + T5tap™| | 1+ 5X3 | p"— | Xt 5
3(9774)1/3 1 (9774)2/3 1
X p 2+ n\ 2 - - p\5/3 ny 5/. -
[P+ (p")]|+ o0 |l 1+ X+t 1+ 5%, [(pP)*R+(p")F]p+ 50 | t2[ X2t 5
p\8/3 n\ 8/ 1 . 1 2 1 1
X[(VpP)2+(Vp"?], (43
|
wherep=pP+p" andtg, t1, ts, t3, Xg, X1, X2, X3, andag The values of excitation energies calculated in nuclei with
are the Skyrme force paramet¢&2,33. A=40, 90, and 208 for different sets of Skyrme forces over-

The values of the constangg, by, co, anddy and the estimate the experimental values of the isoscalar monopole
parameters of the most successful sets of Skyrme nucleofesonance energy iffCa, °°zr, and ?°%Pb[10], respectively
nucleon interaction34—37 are shown in Table |. Note that (see Table .
the three-particle contribution related 4@ in Eq. (44) has a The energy of the isoscalar GMR is often described by
different density dependence for these sets of paramsiess [4,6-9
Table I). The values of the excitation energies for isoscalar
density vibrations in the nucleus within the anharmomic ( 72K
and harmonidi w, approximations and the ratid®g andWo, =
are presented in Table Il. The theoretical and experimental m(R?)
[10] energies and ratios in Table Il are calculated for nuclei
with nucleon numbeA=40, A=90, andA=208. The the- Where(R?) is the mean square nuclear radius. Equati
oretical values are given for different parameter sets ofliffers from our expressiofsee Eqs(14) and (35)] for the
Skyrme forces. evaluation of the GMR energy, because we take into account

The values of the constangg, by, co, andd, evaluated the term related tal in the harmonic approximation. The
for different sets of Skyrme forces are spread over wide invalue of constand=d, is positive for all sets of Skyrme
tervals(see Table)l We may shorten these intervals if we forces(see Table )l Therefore the energy of the isoscalar
know the experimental values of the ratitl,;. Unfortu- GMR evaluated in our approach is somewhat higher than
nately we do not have these data for the isoscalar GMR. that obtained by using E¢44) for the same value df. Note

(44)
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TABLE I. The parameters of Skyrme interactions and the constants of the energy density fur(@ional

Sk3[34] Ska[35] SkM* [36] RATP [37]
to (MeV fmd) —1128.75 1602.78 —2645.00 —2160
t; (MeV fm®) 395.00 570.00 410.00 513.00
t, (MeV fm®) —95.00 —67.00 135.00 121.00
ty (MeV fm3*3«0) 14000.00 8000.00 15595.00 11600.00
Xo 0.45 —-0.02 0.09 0.418
X1 0.00 0.00 0.00 —-0.36
X5 0.00 0.00 0.00 —2.29
X3 1.00 —0.286 0.00 0.586
@ 1.00 1/3 1/6 1/5
po=3l(4mr3) (fm~3) 0.1453 0.1554 0.1603 0.1599
ap=K/9 (MeV) 355.5/9 263.4/9 216.6/9 239.6/9
bo (MeV) 3.76 -11.1 —14.3 —-13.0
co (MeV) -11.2 12.5 21.8 17.9
dy (MeV fm?) 9.15 13.3 10.9 12.8

that the energy of the isoscalar GMR obtained in micro-phonon resonancek;;,=%wy(1+V;), rise by 2% for
scopic RPA theory for the same set of Skyrme forces is alsbieavy and by~14—18% for light nuclei compared to the
smaller thari wg in Table Il especially in light nuclei. Such harmonic approach. We recall that the harmonic limit values
a discrepancy is connected with the approximation of thdor the ratios(39) and(40) areV,;=0 andW,;= 1. Different
step density distribution used in our model. It is known thatsets of Skyrme interactions give various values for the ratios
the GMR energy evaluated in a hydrodynamic model is re¥V; andW,,. The effect of the density vibration’s anharmo-
duced if the finite thickness of the diffuse layer is taken intonicity for the Sk3 set is largest compared to the other sets.
account; for details se¢@0-43. This is becaus&/yxb?=(3ay+by)?, and the value of the

The anharmonicity is stronger in the light nuclei than in parameterb, is positive in the case of Sk3 forces and is
the heavy ones because the vibration amplitudes in the lighiegative for Ska, Skin and RATP parameter sets. The
nuclei are larger than in the heavy ones. As a result of anvalue of compressibilityK =9a, is the largest for the Sk3
harmonicity, the excitation energies of the isoscalar oneparameter set, as we see in Table I.

TABLE Il. The giant resonance energies evaluated in nonlileand linear% w, approaches, and the
ratiosV, and W, for different sets of Skyrme forces in our hydrodynamical model and in QTDHF, RMF,
and ERPA models. The energy values, amplitudes, and reii@dW,, are given for nuclei with nucleon
numbersA=40, 90, and 208. The anharmonicity effects of the two strongest monopole staf&®hnare
studied in the ERPA. The quantities for the highest states obtained in the ERPA are given in parentheses.

Sk3 Ska SkM RATP RMF QTDHF HFB+RPA ERPA Expt.
[34] [35] [36] [37] [17] [15] (8] [18] [10]
A=40
E (MeV) 39.60 3577 32.71 3462 19.0 21.0 16.2 1804
hiwo (MeV) 33.66 31.47 2891 3058 215  26.1 21.3
A 0.18 0.14 0.3 0.13 —0.12 —-020 —0.24
Way 1.35 127 126 126
A=90
E (MeV) 26.61 24.06 22.04 2327 227 16:40.07
hiwo (MeV) 25.02 22.87 2099 22.15 23.3
A 0.06 0.05 0.05 0.05-0.026
Way 113 110 110 1.10
A=208
E (MeV) 19.02 17.07 15.64 16.49 21.0 13.0 184,79  13.91+0.11
hiwo (MeV) 18.61 16.76 15.37 16.20 21.1 135 1350
A 0.022 0.018 0.018 0.018—0.005 —-0.037 —0.015(-0.015)
Way 1.044 1.036 1.035 1.036 1.084047)
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The ratiosVy and W,,y are a quadratic function a6  taken into account in microscopic approach&l15-18§.
=3a,y+ b, [see Eq(34)]. The ratioVy(A) is proportional to  These additional effects may cause the differences between
A~*3 for large values ofA, becausew,xA~® and w, Various model predictions.

«A~%% The same\ dependence, sign, and similar amplitude  The energy of the two-phonon isoscalar GMR is also

of V,(A) are also obtained ifi26]. Note that the nature of changed due to anharmonicity, since the ratig, deviates
anharmonicity in our paper is the same as in R26]. An-  from the harmonic limit as we see in Table Il. The values of

other A dependence o, as A~ 2% is found in Ref.[25], ~ Wa obtained for Ska, Sk, and RATP sets of Skyrme
which is related to the Pauli principle correcti§g4,25. forces are similar. The values of qnharmommty for the two-
Note thatV,=A~23 in the slab of nuclear mattéd.3]. The phonon monopol_e resonance obtalneﬁZﬁ].are close to our
different A dependences 0¥, obtained within similar ap- values. The nonlinearity effect o anWs, Is the largest ]‘or .
proaches for the slab and spherical space distributions the Sk3 parameter set. The anharmonicity effect obtained in

; . RPA theory is smaller than in our approach for the two-
nuclear matter are related to the different geometries of th honon monopole excitatiorisee the valuss, in Table II.

nuclear density distributions. Note that vibrations in the sla Note that we consider anharmonicity by using perturba-
and spherical nuclei are described by different equationgs, theory. Therefore our model lost accuracy in the case of
[compare Eqs(4) and (5) in this paper and if13]], and  |5rge anharmonicity. As a result of this, it is necessary to

have, therefore, differerk dependences ab,. consider the anharmonicity of the-phonon state numeri-
The anharmonicity effects for the isoscalar GMR are esta|ly at large values oK.

timated in the QTDHH15], RMF [17], HFB+RPA [8] and

ERPA [18] approximations. The values &, % w,, andV; IV. CONCLUSION
obtained in these approximations are given in Table Il. Our
values ofV, obtained for Sk3, Ska, Sk and RATP sets of
Skyrme forces are smaller than QTDHF and HFBPA pre-
dictions and larger than RMF result.

The dependence of the Hartree-Fock deformation energ
on the value of the mean square nuclear radRf is evalu-
ated by using the constraint method in R4fE5,17. It is )
shown in[15,17 that the dependence of the Hartree-FocknUCle-

; : : ; Nonlinear effects are very important for the extraction of
energy on(R?) differs from that in the harmonic approxima- L
tion. This induces anharmonicity effects in Refa5,17. the nuclear compressibility from th% dependence of GMR

Note that the radial dependence of the transition delfiity experimental energies, because the anharmonicity changes

difference between dynamie(r,t) and staticp.. densitie$ en(_arrr?les of glant :elsotn%nce?im h iant
for the isoscalar monopole resonarit) is not directly and € experimental study ot thie-phonon giant resonances

uniquely related to the variation of the mean square radius Of different multipolarities gives us information about both

The nonlinearity connected with pairing effects is studiedth(? value and_ the: dependenc_e of the rat/yy . The ad-
in Ref. [8] within the constrained Hartree-Fock-Bogoliubov ditional experimental information may help to select sets of
method. It is shown in Ref8] that the pairing interaction Skyrme forces and to reduce the variations of the constants

gives an additional strong contribution to the dependence ot P andd. Note that only limited experimental information
the Hartree-Fock-Bogoliubov energy ¢R2) in “%Ca. The about one—p_honon_ and two-phonon isovector giant dipole
coupling between phonons of different natures and multipo_resonances is available for analy§l®,20.
larities is taken into account in Rdf18]. ACKNOWLEDGMENTS
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The anharmonic terms of the energy density functional
enlarged considerably the energy of the one- and two-
phonon excitations. Therefore the isoscalar GMR should be
tudied in the framework of nonlinear models especially for
ight nuclei. However, the anharmonicity of the two-phonon
giant resonance should be taken into account even in heavy

APPENDIX
The expressions fay,¢(r) andg,,(r) are obtained by substituting.2) and (13) to (22)

91o(r) = — @[ — bk*r 2+ 2bk°r 3sin( 2kr) — 6ew’m+ bk*r2 cog 2kr) — 2bk°r# cog 2kr) + 6ew?m cog 2kr)
—6ew’micr3 sin(2kr) — 11ew?mk’r? cog 2kr) + 2ewPmkr 4 cog 2kr) + 12ew?mkr sin( 2kr)
—ew?mk?r?]/(4k8r8m), (A1)
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912(r) = — [ —6ew?m+bk*r2— 2bk®r3 sin(2kr) + 2bk°r# cog 2kr) — bk*r2 cog 2kr) — 2fw?k?r ?m cog 2kr)
—4fw?k3r3msin(2kr) — ew?mIker2+ 2ew’mk*r4 cog 2kr) + 6ew?m cog 2kr) + 4 fw?k*r *m cog 2kr)

—6ew?micr sin(2kr) + 2fw?k?r2m— 11lew’mkr? cog 2kr) + 12ewPmkr sin(2kr)/(4k8r6m). (A2)
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