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Temperature dependent BCS equations with continuum coupling
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The temperature dependent BCS equations are modified in order to include the contribution of the con-
tinuum single particle states. The influence of the continuum upon the critical temperature corresponding to the
phase transition from a superfluid to a normal state and upon the behavior of the excitation energy and of the
entropy is discussed.

PACS numbegs): 21.60—n, 21.30.Fe, 21.65:f

I. INTRODUCTION dynamical properties of superfluid nuclei has not been inves-
tigated so far.

The effect of temperature upon pairing correlations in nu-  The main problem in dealing with the continuum coupling
clei was studied long add ], after the theory of superfluidity in statistical calculations of excited nuclei is the fact that the
was introduced to describe the appearance of a gap in thgarticles moving in the continuum have a finite probability to
low-energy spectrum of finite nucl¢R]. The extension of be emitted from the nucleus. In other words, such processes
the theory of superfluidity to the finite temperature case wagre time dependent and they are difficult to accommodate in
prompted by the search of evidence about the nuclear phasgationary models as BCS or HFB. But to extend stationary
transition from a superfluid to a normal state, in analogy withmany body theories to time-dependent formalisms is not an
the one found in condensed matter syst¢BjsThe vanish-  easy undertaking. In fact it may even be a not well defined
ing of pairing correlations with temperature is related to thetask since the initial conditions may induce chaotic solutions.
fact that the excitation energy breaks pairs of particles whiclThese features were already recognized in the beginning of
block the single particle levels close to the Fermi surfacequantum mechanics. Thus, Gamow and Wigner tried to rec-
where the pairing correlations are initiated. onciliate the outgoing character of the decaying process with

The change of the pairing properties with the temperaturghe conveniences of stationarity by solving the Sdinger
was also studied in competition with the angular momentunequation with outgoing boundary conditioffer references
[4-6]. In this case a new effect was observed, which is dugee Refs[8,9]). The corresponding solutions are related to
to the fact that at zero temperature the single-particle statete complex poles of th8 matrix, which define the so-called
close to the Fermi level are already partially blocked by theGamow resonances. If the resonances are narrow the real
unpaired nucleons which form the finite angular momentunparts of the complex poles of tf&matrix give the positions
of the nucleus. Thus, when the temperature is switched oof the resonances while the corresponding imaginary parts
the first effect is a depletion of the partially blocked single-give the decay widths. The narrow resonances are very im-
particle states which, in turn, induces an enhancement of thgortant to describe nuclear correlations, especially in un-
pairing correlations. This behavior is different for the case ofbound or excited nuclei, because in these states the nucleons
thermal excitations of nuclei with zero angular momentum,could move within the nuclear volume during a certain mini-
where the pairing correlations decrease monotonically withmum time, so that they can interact with each other. One thus
the increase of the temperature. expects that a basis formed by bound and narrow Gamow

The temperature effects on pairing correlations were studresonances would provide a convenient framework to de-
ied both in the BCY1,4,5,7 and HFB[6] approximations, scribe decaying processg®,11]. However, the drawback of
usually with a constant single-particle level density approxi-the calculations based on this representation is that one gets
mation. The available theoretical evidence shows that fotomplex probabilities which are not always easy to interpret
medium and heavy-mass nuclei the pairing correlations dis-11].
appear for a critical temperature of the order of 0.5-1.0 Another alternative to describe unstable nuclei is to use a
MeV. The excitation energies corresponding to this criticalbasis consisting of scattering states, instead of Gamow states,
temperature are quite small for nuclei close to ghstability  in the vicinity of the resonant polg42,13. In this case all
line and therefore in all such calculations the coupling withquantities are real and one does not have problems of inter-
the continuum spectrum was neglected. The situation is difpreting complex probabilities. Within this representation the
ferent for nuclei which are far from the stability line. In this widths of the resonances are obtained by evaluating the de-
case the Fermi level lies close to the continuum thresholdivative of the corresponding phase shifts. This also defines
and the coupling with the continuum becomes important. Wehe continuum level densityl4] commonly used to estimate
shall focus here on the study of this coupling since, to outhe contribution of the continuum to nuclear partition func-
knowledge, the effect of the continuum coupling on thermo-tions [15-20. The escape of the particles which move in

resonant states is thus treated in these calculations as a sta-
tionary process, reflected by a constant particle density at
*On leave from Institute of Atomic Physics, Bucharest, Romanialarge distances from the nucleus. The underlying pidtligg
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is an excited nucleus in dynamical equilibrium with an ex-potential of the free nucleonic g449], or by replacing in

ternal nucleonic gas, whose contribution should be eventugq, (3) the level densityg(e) by the quantity[20]
ally extracted. Recently a similar framework was used to

include continuum coupling in BCS equations at zero tem- 5 1 ds
peraturd12,13. In this paper we will extend this method to g(e):g—gfree=; E d_eJ (4)
study temperature dependent BCS equatidiCs). ]

Il FORMALISM where gsee IS the level density in the absence of the mean

field and 6 is the phase shift. The quantigf ) is the con-
The standard procedure to derive the temperature depetinuum level density 14]. It takes into account the contribu-
dent BCS equations is to minimize the grand potential cortion of the resonant part of the continuum spectrum. The
responding to a pairing Hamiltonian. For a bound single pareontinuum coupling can thus be included by replacing in the
ticle spectrum with energieg; and a constant pairing grand potentia(3) the densityg by the continuum level den-
interaction of strengti®, the gap and particle number equa- sity g(€). This is a general recipe which can be applied to all

tions at a finite temperatur are given by1] quantities derived from the grand potential, as, e.g., the en-
ergy and entropy of the system.
E 1__2f1 (1) The incorporation of the continuum in interacting systems
G T 2E can readily be performed following a similar prescription.
Thus the contribution of the continuum to the grand potential
1 €—A\ of an excited superfluid nucleus can be expressed in terms of
N:E. 2 1- ?(1_2fi) ' 2 the continuum level density as in E@), with the difference

J J

that now instead of the single particle energies one should

whereEj=[(ej—)\)2+A2]1’2 is the quasiparticle energy; use the quasiparticle'energ'ies. The corresponding TBCS

=[1+exp(BE;)] ! is the Fermi distribution function and €quations can be obtained directly from E@B. and (2) by

B=1KT. replacing the level density of the bound states with the total
In principle the single particle energies depend also |evel density, i.e., bygy(e) +g(€). Thus the TBCS equa-

upon temperature because the average mean field is a furfé@ns with continuum coupling become

tion of the nuclear excitations. However, in self-consistent

temperature dependent Hartree-Fock calculations one finds 2 - 1-2f; J’ 1-2f(e) q .

[19] that for temperatures belo=1 MeV, which is the G 4 2E | 9 7Ede ®)

range explored in temperature dependent BCS calculations,

the single-particle spectrum is virtually the same as the one 1 SN

at zero temperature. We will also assume here that the single N=> 5[1_ e —— - 2fj)}

particle energies are those at zero temperature. i

The contribution of the continuum on thermodynamical 1
properties of finite nuclei was studied mainly in connection +f g(e)=
with the problem of the liquid-gas phase transitid8—2Q 2
as well as in temperature dependent shell correcti@ig
but without including pairing correlations. In these calcula-where the second term gives the contribution of the con-
tions the effect of the continuum was introduced into thetinuum to the pairing correlations. In the limit=0 one gets
thermodynamical quantities through the level density. Thushe same equations as in Refd2,13. For temperatures
the grand potential for a noninteracting system was taken dsigher than the critical temperature the gap vanishes and the
[20] particle number equation is similar to the one used in ther-

modynamical calculations of noninteracting systefh§—
~ 21].
Q:_Tj [9(€) +a(e)]In{1+exd —S(e—N)}de, The contribution of the continuum to the energy and to
©)] the entropy can be introduced in a similar fashion, as men-
tioned above. One gets

wheregy(€)=Z5(e—¢) is the level density of the bound
spectrum andj(e) is the level density associated with the 2
positive energy spectrum. In Rdfl9] it is shown that the E=> nj5j+f g(e)n(e)ede— =, (7)
grand potentia(3) describes a nucleus in dynamical equilib- !
rium with a nucleonic gas. As discussed above, this is due to
the fact that in a stationary treatment the nucleons scattered
in the continuum are permanently emitted from the nucleus.
To obtain the proper grand potential, i.e., the one corre-
sponding to the nucleus itself, one should take away from + Bt .(e)E,(e)}de, ®)
Eq. (3) the contribution of the nucleonic gas. This can be
done by subtracting from the grand potent(@) the grand wheren; is the occupancy of the state of enekgy given by

Ej
e—N\
1- g li-2f@ljde,  ®

s=3 finff) + B+ [ atonmit.co
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TABLE |. Neutron single particle states corresponding*tii.

n; =% 1- 'EIE—_)\(l— 2fj) 9 These are the states used in the TBCS calculakgris the energy
J andTl", the width of the state labelled hy. Both quantities are in
MeV.
ande=1+exp(—,8Ej). A similar notation is used for the
corresponding quantities in the continuum. n E, T,
In the limit of vanishing widths the continuum level den-
sity becomes a sum of Dirac delta functions and the reso- 2ds2 —1.470
nances act as bound statégquasibound states). This is the 3S12 —0.730
case for, e.g., protons trapped in a high Coulomb barrier. If a dap2 0.486 0.112
resonance is not narrow then a pair scattered to that reso- 9712 1.605 0.010
nance have a large probability to escape from the system. h112 3.296 0.016

Therefore, its contribution to the pairing correlation is small
as compared with the corresponding contribution from a qua-

sibound state with similar energy and angular momentuntows we present the results given by the TBCS equations for
[12,13. the isotope®Ni.

Although narrow resonances play a fundamental role in  We calculated the single particle spectrum by using the
the enhancement of pair correlatidasd in most other mea- HF approximation and the Skyrme Il interactip®5]. The
surable physical processes as wétleir proper inclusion in  resonant energies are defined as the energies where the phase
the applications may be difficult. The reason for this is thatshift passes throughr/2 with a positive slopg23]. The
in the region of a narrow resonance the level density inwidth is extracted from the value of the energy where the
creases abruptly and the numerical evaluation of the integralderivative of the phase shift is half of its maximum value.
in the equations above may require extremely small mesithe bound states outside the closed sin#50 and the
intervals. One can circumvent this problem by noticing thatresonant states considered in the TBCS calculations are
the resonance is narrow because there is a pole ofSthe listed in Table I. It can be seen that these states form the
matrix which is very close to the real energy axis. Thereforeequivalent of the major shell=50-82. One notices that the
one can evaluate the integrals by changing the integratiorelative positions of the single-particle states differ substan-
path, that is by choosing a contoGrin the complex energy tially with the ones corresponding to beta stable nuclei. Thus,
plane which embodies the real axis around the narrow resahe states with low angular momenta are shifted down as
nance, and by thereafter applying the Cauchy theoremompared with the ones with high angular momenta. This is
[12,21]. Equation(7) thus becomes a general feature related to the diffusivity of the mean field in

nuclei close to the drip lin¢26], which is larger than the
A? corresponding one in stable nuclei .
E=2 ni+ 2 Nn(E,)E,+ fcg(f)n(f)fdf_ I The TBCS equationé5) and (6) are solved starting with
' ’ (10) the HF spectrum calculated at zero temperature. In the ab-
sence of experimental information on heavy Ni isotopes in
the open shelN=50-82(the heaviest known Ni isotope is
the double magic nucleud$Ni) we use for the strength of the
pairing force the standard val@=25/A MeV, whereA is
the mass number.
The variation of the gap with temperature is shown in Fig.

wheren(E,) are the occupation probabilities calculated in
the complex pole&, enclosed by the pat@. If one neglects
the contribution of the integral over the contd@iin Eq. (10)
then the energf would become complex. This is the case in
representations based on Gamow resonances|@dly As
already mentioned, within such representations one obtains

complex physical quantities which have to be interpreted. : : :
For the energy such a task is rather easy, since already by 49 i
looking at the temporal evolution of the wave function one o T ~~_ L
realizes that the real part corresponds to the actual energy of RN
the system while the imaginary part is related to the corre- [y S AN B
sponding decay probability. This interpretation is valid if the 3 0.5 AN L
resonance is narrow, i.e., if the ratio between the width and = N
the energy of the resonance is sn{@B,24]. But the inter- < 0.67 \ B
pretation of complex probabilities in general is not so 0.4 4 \\ L
straightforward[11,22. These problems do not appear here \
because in Eq(10) the contribution of the integral over the 027 | r
contourC is included and therefore the energyis real. 0.0 , , : -

0.0 0.2 0.4 0.6 0.8 1.0

T (MeV)

I1l. NUMERICAL APPLICATION

FIG. 1. Dependence of the gap parameteupon the tempera-
In order to illustrate how the continuum affects the prop-ture T. The dashed line corresponds to the case when the resonant
erties of superfluid nuclei close to the drip line, in what fol- states are considered as quasibound states.
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FIG. 2. Excitation energy plotted as a function of temperature. FIG. 3. Entropy plotted as a function of temperature. The
The dashed line corresponds to the case when the resonant stategshed line corresponds to the case when the resonant states are
are considered as quasibound states. The energy is plotted up to thensidered as quasibound states. The entropy is plotted up to the
critical temperature. critical temperature.

1. In the limit of T=0 the gap has the valu®(0)=0.955 ]
MeV and decreases to zero at the critical temperalyre becomes more correlated and therefore stiffer to thermal ex-

—0.524 MeV. This critical temperature is smaller by aboutcitations. The same effect is observed for the entropy, as seen

3.8% than the one obtained from the relatioh, in Fig. 3.

_ i ; At critical temperature the excitation energy has the value
=0.57A(0), which is the value predicted by a constant level ;
density E’;\p)proximatimﬁl]. P 4 2.185 MeV and the entropy is 5.708. For a constant level

In Fig. 1 it is also shown the gap one would get if the density g the excitation energy at critical temperature is

. a2 2 _ 2 -
width of the resonances are neglected, i.e., if in Eg5(6)  9Iven byl1] Ec~aTc+0.59A(0)%, wherea=(7"/3)g is the
one would take instead of the continuum level density a sun£Ve! density parameter, which in this case acquires the value
of Dirac delta functions. The gap at zero temperature is iff=3-958 MeV ~. We found that by neglecting the widths
this case bigger than in the previous c4$@,13. As dis- the level denlsny parameter increases to the vaaue
cussed above, the wider is a resonance the smaller is ifs4-143 MeV ~. This implies that the difference in the ex-
contribution to the pairing correlation. That is, a pair scat-citation energies seen in Fig. 2 is esentially due to the mean
tered to a wide resonance spends less time in that state 8§cupancy of the resonant stateshich is larger if the
compared to the time that the same pair would spend in gyldths are neglectgcand not due to the effective level den-
quasibound state and, therefore, the wider resonance contriply parameter.
utes less to the pairing correlations. This has the important [N conclusion, in this paper we have extended the tem-
consequence that neglecting the widths of the resonances oR@rature dependent BCS equations by introducing the cou-
increases the correlations of the system and therefore irf2ling with the single-particle continuum. The contribution of
creases the critical temperature. This is what happens, e.gh€ continuum is given by the resonant states and their effect
with calculations that quantize the continuum by using arS taken into account through the continuum level density.
impenetrable box if the dimensions of the box are not ex- We found that the widths of the resonances affect signifi-
tremely large(so that one gets a dense enough spectrum ifantly all physical quantities. In particular, the pairing corre-
the energy regions of resonant statégowever, one has to lations are diminished and this modifies significantly the
mention that this is not a serious problem if the resonance¥alue of the critical temperature at which the supefluid phase
are very narrow. disappears. Also the dependence upon temperature of the
Neglecting the widths one gets for the critical temperatureEXcitation energy and of the entropy is considerably affected
the valueT.=0.722 MeV, which is only 1% larger than the by the widths of the resonances, i.e., by their lifetime.

value one would obtain in a constant level density approxi- However, in the case of proton superfluidity the single-
mation. This indicates that this approximation would work particle resonant states close to the continuum threshold may

quite well for nuclei close to the proton drip line, where the have & very small width and therefore they can be treated in
width of the proton single-particle resonances may be so nathe TBCS calculations as quasibound states, neglecting their

row that they can be neglected. widths altogether.
In Fig. 2 we show the dependence of the excitation energy
upon temperature up to the point where the superfluid phase ACKNOWLEDGMENTS
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