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Temperature dependent BCS equations with continuum coupling
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The temperature dependent BCS equations are modified in order to include the contribution of the con-
tinuum single particle states. The influence of the continuum upon the critical temperature corresponding to the
phase transition from a superfluid to a normal state and upon the behavior of the excitation energy and of the
entropy is discussed.

PACS number~s!: 21.60.2n, 21.30.Fe, 21.65.1f
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I. INTRODUCTION

The effect of temperature upon pairing correlations in n
clei was studied long ago@1#, after the theory of superfluidity
was introduced to describe the appearance of a gap in
low-energy spectrum of finite nuclei@2#. The extension of
the theory of superfluidity to the finite temperature case w
prompted by the search of evidence about the nuclear p
transition from a superfluid to a normal state, in analogy w
the one found in condensed matter systems@3#. The vanish-
ing of pairing correlations with temperature is related to
fact that the excitation energy breaks pairs of particles wh
block the single particle levels close to the Fermi surfa
where the pairing correlations are initiated.

The change of the pairing properties with the temperat
was also studied in competition with the angular moment
@4–6#. In this case a new effect was observed, which is d
to the fact that at zero temperature the single-particle st
close to the Fermi level are already partially blocked by
unpaired nucleons which form the finite angular moment
of the nucleus. Thus, when the temperature is switched
the first effect is a depletion of the partially blocked sing
particle states which, in turn, induces an enhancement of
pairing correlations. This behavior is different for the case
thermal excitations of nuclei with zero angular momentu
where the pairing correlations decrease monotonically w
the increase of the temperature.

The temperature effects on pairing correlations were s
ied both in the BCS@1,4,5,7# and HFB@6# approximations,
usually with a constant single-particle level density appro
mation. The available theoretical evidence shows that
medium and heavy-mass nuclei the pairing correlations
appear for a critical temperature of the order of 0.5–
MeV. The excitation energies corresponding to this criti
temperature are quite small for nuclei close to theb stability
line and therefore in all such calculations the coupling w
the continuum spectrum was neglected. The situation is
ferent for nuclei which are far from the stability line. In th
case the Fermi level lies close to the continuum thresh
and the coupling with the continuum becomes important.
shall focus here on the study of this coupling since, to
knowledge, the effect of the continuum coupling on therm
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dynamical properties of superfluid nuclei has not been inv
tigated so far.

The main problem in dealing with the continuum couplin
in statistical calculations of excited nuclei is the fact that t
particles moving in the continuum have a finite probability
be emitted from the nucleus. In other words, such proces
are time dependent and they are difficult to accommodat
stationary models as BCS or HFB. But to extend station
many body theories to time-dependent formalisms is not
easy undertaking. In fact it may even be a not well defin
task since the initial conditions may induce chaotic solutio
These features were already recognized in the beginnin
quantum mechanics. Thus, Gamow and Wigner tried to r
onciliate the outgoing character of the decaying process w
the conveniences of stationarity by solving the Schro¨dinger
equation with outgoing boundary conditions~for references
see Refs.@8,9#!. The corresponding solutions are related
the complex poles of theSmatrix, which define the so-called
Gamow resonances. If the resonances are narrow the
parts of the complex poles of theSmatrix give the positions
of the resonances while the corresponding imaginary p
give the decay widths. The narrow resonances are very
portant to describe nuclear correlations, especially in
bound or excited nuclei, because in these states the nucl
could move within the nuclear volume during a certain mi
mum time, so that they can interact with each other. One t
expects that a basis formed by bound and narrow Gam
resonances would provide a convenient framework to
scribe decaying processes@10,11#. However, the drawback o
the calculations based on this representation is that one
complex probabilities which are not always easy to interp
@11#.

Another alternative to describe unstable nuclei is to us
basis consisting of scattering states, instead of Gamow st
in the vicinity of the resonant poles@12,13#. In this case all
quantities are real and one does not have problems of in
preting complex probabilities. Within this representation t
widths of the resonances are obtained by evaluating the
rivative of the corresponding phase shifts. This also defi
the continuum level density@14# commonly used to estimat
the contribution of the continuum to nuclear partition fun
tions @15–20#. The escape of the particles which move
resonant states is thus treated in these calculations as a
tionary process, reflected by a constant particle density
large distances from the nucleus. The underlying picture@19#.
©2000 The American Physical Society17-1
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is an excited nucleus in dynamical equilibrium with an e
ternal nucleonic gas, whose contribution should be eve
ally extracted. Recently a similar framework was used
include continuum coupling in BCS equations at zero te
perature@12,13#. In this paper we will extend this method t
study temperature dependent BCS equations~TBCS!.

II. FORMALISM

The standard procedure to derive the temperature de
dent BCS equations is to minimize the grand potential c
responding to a pairing Hamiltonian. For a bound single p
ticle spectrum with energiese j and a constant pairing
interaction of strengthG, the gap and particle number equ
tions at a finite temperatureT are given by@1#

2

G
5(

j

122 f j

2Ej
, ~1!

N5(
j

1

2 F12
e j2l

Ej
~122 f j !G , ~2!

whereEj5@(e j2l)21D2#1/2 is the quasiparticle energy,f j
5@11exp(bEj )#21 is the Fermi distribution function and
b51/kT.

In principle the single particle energiese j depend also
upon temperature because the average mean field is a
tion of the nuclear excitations. However, in self-consist
temperature dependent Hartree-Fock calculations one fi
@19# that for temperatures belowT51 MeV, which is the
range explored in temperature dependent BCS calculati
the single-particle spectrum is virtually the same as the
at zero temperature. We will also assume here that the si
particle energies are those at zero temperature.

The contribution of the continuum on thermodynamic
properties of finite nuclei was studied mainly in connecti
with the problem of the liquid-gas phase transition@18–20#
as well as in temperature dependent shell corrections@21#,
but without including pairing correlations. In these calcu
tions the effect of the continuum was introduced into t
thermodynamical quantities through the level density. Th
the grand potential for a noninteracting system was take
@20#

V52TE @gb~e!1g̃~e!# ln$11exp@2b~e2l!%de,

~3!

wheregb(e)5( jd(e2e j ) is the level density of the boun
spectrum andg̃(e) is the level density associated with th
positive energy spectrum. In Ref.@19# it is shown that the
grand potential~3! describes a nucleus in dynamical equili
rium with a nucleonic gas. As discussed above, this is du
the fact that in a stationary treatment the nucleons scatt
in the continuum are permanently emitted from the nucle
To obtain the proper grand potential, i.e., the one co
sponding to the nucleus itself, one should take away fr
Eq. ~3! the contribution of the nucleonic gas. This can
done by subtracting from the grand potential~3! the grand
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potential of the free nucleonic gas@19#, or by replacing in
Eq. ~3! the level densityg̃(e) by the quantity@20#

g~e!5g̃2gfree5
1

p (
j

dd j

de
, ~4!

wheregfree is the level density in the absence of the me
field andd j is the phase shift. The quantityg(e) is the con-
tinuum level density@14#. It takes into account the contribu
tion of the resonant part of the continuum spectrum. T
continuum coupling can thus be included by replacing in
grand potential~3! the densityg̃ by the continuum level den
sity g(e). This is a general recipe which can be applied to
quantities derived from the grand potential, as, e.g., the
ergy and entropy of the system.

The incorporation of the continuum in interacting syste
can readily be performed following a similar prescriptio
Thus the contribution of the continuum to the grand poten
of an excited superfluid nucleus can be expressed in term
the continuum level density as in Eq.~3!, with the difference
that now instead of the single particle energies one sho
use the quasiparticle energies. The corresponding TB
equations can be obtained directly from Eqs.~1! and ~2! by
replacing the level density of the bound states with the to
level density, i.e., bygb(e)1g(e). Thus the TBCS equa
tions with continuum coupling become

2

G
5(

j

122 f j

2Ej
1E g~e!

122 f ~e!

2E~e!
de, ~5!

N5(
j

1

2 F12
e j2l

Ej
~122 f j !G

1E g~e!
1

2 F12
e2l

E~e!
@122 f ~e!#Gde, ~6!

where the second term gives the contribution of the c
tinuum to the pairing correlations. In the limitT50 one gets
the same equations as in Refs.@12,13#. For temperatures
higher than the critical temperature the gap vanishes and
particle number equation is similar to the one used in th
modynamical calculations of noninteracting systems@18–
21#.

The contribution of the continuum to the energy and
the entropy can be introduced in a similar fashion, as m
tioned above. One gets

E5(
j

nje j1E g~e!n~e!ede2
D2

G
, ~7!

S5(
j

$ ln~ f̃ j !1b f jEj%1E g~e!$ ln@ f̃ n~e!#

1b f n~e!En~e!%de, ~8!

wherenj is the occupancy of the state of energye j , given by
7-2
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TEMPERATURE DEPENDENT BCS EQUATIONS WITH . . . PHYSICAL REVIEW C61 044317
nj5
1

2 F12
e j2l

Ej
~122 f j !G ~9!

and f̃ j511exp(2bEj). A similar notation is used for the
corresponding quantities in the continuum.

In the limit of vanishing widths the continuum level de
sity becomes a sum of Dirac delta functions and the re
nances act as bound states~‘‘quasibound states’’!. This is the
case for, e.g., protons trapped in a high Coulomb barrier.
resonance is not narrow then a pair scattered to that r
nance have a large probability to escape from the syst
Therefore, its contribution to the pairing correlation is sm
as compared with the corresponding contribution from a q
sibound state with similar energy and angular moment
@12,13#.

Although narrow resonances play a fundamental role
the enhancement of pair correlations~and in most other mea
surable physical processes as well! their proper inclusion in
the applications may be difficult. The reason for this is th
in the region of a narrow resonance the level density
creases abruptly and the numerical evaluation of the integ
in the equations above may require extremely small m
intervals. One can circumvent this problem by noticing th
the resonance is narrow because there is a pole of thS
matrix which is very close to the real energy axis. Therefo
one can evaluate the integrals by changing the integra
path, that is by choosing a contourC in the complex energy
plane which embodies the real axis around the narrow re
nance, and by thereafter applying the Cauchy theo
@12,21#. Equation~7! thus becomes

E5(
i

nie i1(
n

n~En!En1E
C
g~e!n~e!ede2

D2

G
,

~10!

where n(En) are the occupation probabilities calculated
the complex polesEn enclosed by the pathC. If one neglects
the contribution of the integral over the contourC in Eq. ~10!
then the energyE would become complex. This is the case
representations based on Gamow resonances only@22#. As
already mentioned, within such representations one obt
complex physical quantities which have to be interpret
For the energy such a task is rather easy, since alread
looking at the temporal evolution of the wave function o
realizes that the real part corresponds to the actual energ
the system while the imaginary part is related to the co
sponding decay probability. This interpretation is valid if t
resonance is narrow, i.e., if the ratio between the width
the energy of the resonance is small@23,24#. But the inter-
pretation of complex probabilities in general is not
straightforward@11,22#. These problems do not appear he
because in Eq.~10! the contribution of the integral over th
contourC is included and therefore the energyE is real.

III. NUMERICAL APPLICATION

In order to illustrate how the continuum affects the pro
erties of superfluid nuclei close to the drip line, in what fo
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lows we present the results given by the TBCS equations
the isotope84Ni.

We calculated the single particle spectrum by using
HF approximation and the Skyrme III interaction@25#. The
resonant energies are defined as the energies where the
shift passes throughp/2 with a positive slope@23#. The
width is extracted from the value of the energy where
derivative of the phase shift is half of its maximum valu
The bound states outside the closed shellN550 and the
resonant states considered in the TBCS calculations
listed in Table I. It can be seen that these states form
equivalent of the major shellN550–82. One notices that th
relative positions of the single-particle states differ subst
tially with the ones corresponding to beta stable nuclei. Th
the states with low angular momenta are shifted down
compared with the ones with high angular momenta. Thi
a general feature related to the diffusivity of the mean field
nuclei close to the drip line@26#, which is larger than the
corresponding one in stable nuclei .

The TBCS equations~5! and ~6! are solved starting with
the HF spectrum calculated at zero temperature. In the
sence of experimental information on heavy Ni isotopes
the open shellN550– 82~the heaviest known Ni isotope i
the double magic nucleus78Ni) we use for the strength of the
pairing force the standard valueG525/A MeV, whereA is
the mass number.

The variation of the gap with temperature is shown in F

FIG. 1. Dependence of the gap parameterD upon the tempera-
ture T. The dashed line corresponds to the case when the reso
states are considered as quasibound states.

TABLE I. Neutron single particle states corresponding to84Ni.
These are the states used in the TBCS calculation.En is the energy
andGn the width of the state labelled byn. Both quantities are in
MeV.

n En Gn

2d5/2 21.470
3s1/2 20.730
d3/2 0.486 0.112
g7/2 1.605 0.010
h11/2 3.296 0.016
7-3
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1. In the limit of T50 the gap has the valueD(0)50.955
MeV and decreases to zero at the critical temperatureTc

50.524 MeV. This critical temperature is smaller by abo
3.8% than the one obtained from the relationTc
50.57D(0), which is the value predicted by a constant lev
density approximation@1#.

In Fig. 1 it is also shown the gap one would get if th
width of the resonances are neglected, i.e., if in Eqs.~5!,~6!
one would take instead of the continuum level density a s
of Dirac delta functions. The gap at zero temperature is
this case bigger than in the previous case@12,13#. As dis-
cussed above, the wider is a resonance the smaller i
contribution to the pairing correlation. That is, a pair sc
tered to a wide resonance spends less time in that sta
compared to the time that the same pair would spend
quasibound state and, therefore, the wider resonance con
utes less to the pairing correlations. This has the impor
consequence that neglecting the widths of the resonances
increases the correlations of the system and therefore
creases the critical temperature. This is what happens,
with calculations that quantize the continuum by using
impenetrable box if the dimensions of the box are not
tremely large~so that one gets a dense enough spectrum
the energy regions of resonant states!. However, one has to
mention that this is not a serious problem if the resonan
are very narrow.

Neglecting the widths one gets for the critical temperat
the valueTc50.722 MeV, which is only 1% larger than th
value one would obtain in a constant level density appro
mation. This indicates that this approximation would wo
quite well for nuclei close to the proton drip line, where t
width of the proton single-particle resonances may be so
row that they can be neglected.

In Fig. 2 we show the dependence of the excitation ene
upon temperature up to the point where the superfluid ph
vanishes. It can be seen that if the effect of the width
resonant states is neglected, then the slope of the excita
energy becomes much smaller. This is also a manifesta
of the fact that by neglecting the widths, the ground st

FIG. 2. Excitation energy plotted as a function of temperatu
The dashed line corresponds to the case when the resonant
are considered as quasibound states. The energy is plotted up
critical temperature.
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becomes more correlated and therefore stiffer to thermal
citations. The same effect is observed for the entropy, as s
in Fig. 3.

At critical temperature the excitation energy has the va
2.185 MeV and the entropy is 5.708. For a constant le
density g the excitation energy at critical temperature
given by@1# Ec'aTc

210.5gD(0)2, wherea5(p2/3)g is the
level density parameter, which in this case acquires the va
a53.958 MeV21. We found that by neglecting the width
the level density parameter increases to the valuea
54.143 MeV21. This implies that the difference in the ex
citation energies seen in Fig. 2 is esentially due to the m
occupancy of the resonant states~which is larger if the
widths are neglected! and not due to the effective level den
sity parameter.

In conclusion, in this paper we have extended the te
perature dependent BCS equations by introducing the c
pling with the single-particle continuum. The contribution
the continuum is given by the resonant states and their ef
is taken into account through the continuum level density

We found that the widths of the resonances affect sign
cantly all physical quantities. In particular, the pairing corr
lations are diminished and this modifies significantly t
value of the critical temperature at which the supefluid ph
disappears. Also the dependence upon temperature of
excitation energy and of the entropy is considerably affec
by the widths of the resonances, i.e., by their lifetime.

However, in the case of proton superfluidity the sing
particle resonant states close to the continuum threshold
have a very small width and therefore they can be treate
the TBCS calculations as quasibound states, neglecting
widths altogether.
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