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Ground state correlations in 16O and 40Ca
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We study the ground state properties of doubly closed shell nuclei16O and 40Ca in the framework of
correlated basis function theory using state dependent correlations, with central and tensor components. The
realistic Argonnev14 andv88 two-nucleon potentials and three-nucleon potentials of the Urbana class have been
adopted. By means of the Fermi hypernetted chain integral equations, in conjunction with the single operator
chain approximation, we evaluate the ground state energy, one- and two-body densities and electromagnetic
and spin static responses for both nuclei. In16O we compare our results with the available Monte Carlo and
coupled cluster ones and find a satisfying agreement. As in the nuclear matter case with similar interactions and
wave functions, the nuclei result underbound by 2–3 MeV/nucleon.

PACS number~s!: 21.60.Gx, 21.10.Dr, 27.20.1n, 27.40.1z
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I. INTRODUCTION

The attempt to describe all nuclei starting from the sa
nucleon-nucleon interaction which reproduces the proper
of two-, and possibly three-, nucleon systems is slowly
taining its first successes. A set of techniques to exactly s
the Schro¨dinger equation in the 3<A<8 nuclei is now avail-
able: Faddeev@1#, correlated hyperspherical harmonics e
pansion@2#, quantum Monte Carlo@3#. Their straightforward
extension to medium-heavy nuclei is however not yet f
sible, both for computational and theoretical reasons.

The correlated basis function~CBF! theory is one of the
most promising many-body tools currently under develo
ment to attack the problem of dealing with the complica
structure~short range repulsion and strong state depende!
of the nuclear interaction. The CBF has a long record
applications in condensed matter physics, as well as in liq
helium and electron systems. In nuclear physics the m
extensive use of CBF has been done in infinite nuclear
neutron matter. The neutron stars structure described via
CBF based neutron matter equation of state is in nice ag
ment with the current observational data@4,5#. In nuclear
matter CBF has been used not only to study ground s
properties@4,6,7# but also dynamical quantities, as electr
magnetic responses@8,9# and one-body Green’s function
@10#.

The CBF theory is based upon the variational princip
i.e., one searches for the minimum of the energy functio

E@C#5
^CuHuC&

^CuC&
~1!

in the Hilbert subspace of the correlated many-body w
functionsC:

C~1,2...A!5G~1,2...A!F~1,2...A!, ~2!

whereG(1,2...A) is a many-body correlation operator actin
on the mean field wave functionF(1,2...A) @we will take a
Slater determinant of single particle wave functions,fa( i )].
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In realistic nuclear matter calculations, the correlation ope
tor is given by a symmetrized product of two-body corre
tion operatorsFi j :

G~1,2•••A!5SF)
i , j

Fi j G . ~3!

In principle richer choices for the operator~3! can be made
by including explicit three- or more-nucleon correlation
which cannot be described by the product of two-body c
relations. It is essential, however, that the two-body corre
tion Fi j has an operatorial dependence analogous to tha
the modern nucleon-nucleon interactions@11–15#. Nowa-
days, sophisticated CBF calculations considerFi j of the form

Fi j 5 (
p51,8

f p~r i j !Oi j
p , ~4!

where the involved operators are

Oi j
p51,85@1,si•sj ,Si j ,~L•S! i j # ^ @1,ti•tj # ~5!

andSi j 5(3 r̂ i j •si r̂ i j •sj2si•sj ) is the tensor operator. Th
correlation functionsf p(r ), as well as the set of single pa
ticle wave functions, are fixed by the energy minimizati
procedure.

A key point in applying CBF is the evaluation of th
many-variables integrals necessary to calculate the en
functional ~1!. A direct approach consists in using Mon
Carlo sampling techniques~variational Monte Carlo, VMC!
@16#. However, the required numerical effort is such that,
realistic interactions and correlations, VMC can be e
ciently used only in light nuclei. Actually, a realistic calcu
lation of the ground state of16O has been done in Ref.@17#
by using the so called cluster Monte Carlo~CMC! method.
In CMC the terms related to the scalar part of the correlat
(p51) are completely summed by VMC, whereas the
maining operatorial (p.1) contributions are approximate
by considering up to four- or five-body cluster terms.
©2000 The American Physical Society02-1
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An alternative to the Monte Carlo methodology is pr
vided by cluster expansions and the integral summation te
nique known as Fermi hypernetted chain~FHNC! @18#, par-
ticularly suited to treat heavy systems. By means of
FHNC equations it is possible to sum infinite classes
Mayer-like diagrams resulting from the cluster expansion
the expectation value of the Hamiltonian, or of any oth
operator. FHNC has been widely applied to both finite a
infinite systems with purely scalar~state independent, or Ja
strow! correlations.

The case of the state dependentFi j , needed in nuclea
systems, is more troublesome since the noncommutativit
the correlation operators prevents the development of a c
plete FHNC theory for the correlated wave function of E
~2!. For this reason an approximated treatment of the op
torial correlations, called single operator chain~SOC!, has
been developed@19#. The SOC approximation, together wit
a full FHNC treatment of the Jastrow part of the correlatio
provides an accurate description of infinite nucleonic ma
@4#. It is therefore believed that FHNC/SOC effectively i
cludes the contribution of many-body correlated clusters
all orders. The evaluation of additional classes of diagra
in nuclear matter has set the estimated accuracy for
ground state energy to less than 1 MeV at saturation den
(rnm50.16 fm23) @4,20#.

In a series of papers@21–23# we have extended the FHNC
scheme to describe the ground state of doubly closed s
nuclei, from 4He to 208Pb, with semirealistic, central inter
actions and two-body correlations, either of the Jastrow t
or depending, at most, on the third components of the is
pins of the correlated nucleons. In Ref.@24# we used FHNC/
SOC to evaluate energies and densities of the16O and 40Ca
nuclei, having doubly closed shells in thels coupling
scheme, with potentials and correlations containing oper
terms up to the tensor components. In the16O nucleus the
comparison of our results with those of a CMC calculati
confirmed the accuracy of the FHNC/SOC approximat
estimated in nuclear matter.

The present work is the extension of that of Ref.@24#. The
ground state properties of the16O and 40Ca nuclei are cal-
culated within the FHNC/SOC formalism by using a com
plete, realistic nucleon-nucleon potential, withp.6 compo-
nents, and by considering also three-nucleon interacti
The two-nucleon interactions we have employed are the
gonnev14 @25# potential and thev88 reduction of the Argonne
v18 @14# potential. For the three-nucleon interaction we ha
adopted the Urbana models, Urbana VII@26# with Argonne
v14 and Urbana IX@3# with Argonnev88 . In addition to the
energy and the densities, we have also evaluated the s
responses. They are the nonenergy weighted sums of
inclusive dynamical responses of the nucleus to exte
probes. We have studied the density, the electromagn
and the spin static responses, both in the longitudinal
transverse channels.

The paper is organized as follows: in Sec. II we brie
present the interaction and the correlated wave func
properties and recall the basic features of FHNC/SOC; S
III deals in short with the insertion of the spin-orbit comp
nents and of the three-nucleon potential; in Sec. IV we sh
04430
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and discuss the results for the energy, one- and two-b
densities and static responses; the conclusions are draw
Sec. V.

II. INTERACTION, CORRELATED WAVE FUNCTION,
AND CLUSTER EXPANSION

We work in the framework of the nonrelativistic descri
tion of the nucleus and use a Hamiltonian of the form

H5
2\2

2 m (
i

¹ i
21(

i , j
v i j 1 (

i , j ,k
v i jk . ~6!

Very high quality phase-shift analyses of a large body ofpp
andnp data have been recently carried out@11,12#. Building
on this accurate data base, several nucleon-nucleon~NN! po-
tentials have been constructed, like the updated Nijme
interaction@13#, the CD Bonn interaction@15# and the Ar-
gonnev18 (A18) @14# interaction. All of them include charge
symmetry breaking terms in order to provide a precise fit
both thepp andnp data.

The structure ofv i j and v i jk , at large interparticle dis-
tances is dictated by meson exchange processes. The
range part of theNN interactions is determined by the on
pion exchange~OPE!:

v i j
OPE5

f pNN
2

4p

mp

3
@Yp~r i j !si•sj1Tp~r i j !Si j #ti•tj , ~7!

where mp is the pion mass~138.03 MeV!, ( f pNN
2 /4p)

50.081, andYp(r ) and Tp(r ) are the Yukawa and tenso
Yukawa functions,

Yp~r !5
e2mr

mr
, ~8!

Tp~r !5
e2mr

mr F11
3

mr
1

3

~mr !2G , ~9!

with m;0.7 fm21. The Argonne potentials simulate the e
fects ofr exchange, not explicitly included@25#, by modify-
ing the Yukawa functions with a short-range cutoff,Yp(r )
→Y(r )5Yp(r )Fcut(r ) and Tp(r )→T(r )5Tp(r )Fcut

2 (r )
with Fcut(r )512exp(2cr2) (c52 fm22). The intermedi-
ate and short-range parts of this class of potentials are mo
phenomenological andA18 is parametrized according to th
operatorial structure

v i j 5 (
p51,18

vp~r i j !Oi j
p , ~10!

where the first 14 components,

Oi j
p51,145@1,si•sj ,Si j ,~L•S! i j ,L2,L2si•sj ,~L•S! i j

2 #

^ @1,ti•tj #, ~11!

give the isoscalar part, defining av14-like potential (A14),
2-2
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v14,i j 5 (
p51,14

vp~r i j !Oi j
p . ~12!

The remaining four components ofA18 are of the isovecto
(t i ,z1t j ,z) and isotensor (3t i ,zt j ,z2t i•t j ) type. The Ar-
gonnev88 potential (A88) is an eight operators reduction o
A18 built to reproduce the isoscalar part of the full intera
tion in theS, P, and 3D1 waves and the3D123S1 coupling
@3#.

Other potentials use different parametrizations. For
stance, the Nijmegen model@12# employsp2 operators in-
stead ofL2.

The longest range part of the three-nucleon interacti
~TNI! involves a two pions exchange with the intermedia
excitation of aD @27#:

v i jk
2p5A2p(

cyc
S $Xi j ,Xik%$ti•tj ,ti•tk%1

1

4
@Xi j ,Xik#

3@ti•tj ,ti•tk# D , ~13!

where

Xi j 5Y~r i j !si•sj1T~r i j !Si j , ~14!

and the symbols@ ,# and $,% indicate the commutator an
anticommutator operators, respectively.

The Urbana class of TNI@28# introduces an additional
repulsive, spin, and isospin independent, short range ter

v i jk
R 5U0(

cyc
T2~r i j !T

2~r ik!, ~15!

which simulates dispersive effects when integrating outD
degrees of freedom. The total Urbana TNI are then given
the sum of the two terms defined above,v i jk5v i jk

2p1v i jk
R ,

and theA2p and U0 parameters are adjusted to provide
good fit to the binding energies of few-body nuclei a
nuclear matter. In theA141Urbana VII (A141UVII) model
the valuesA2p520.0333 MeV andU050.0038 MeV have
been fixed by variational calculations. In the most rec
A181Urbana IX ~A181UIX ! model the valuesA2p5
20.0293 MeV andU050.0048 MeV have been obtaine
with a quantum Monte Carlo calculation for3H and a varia-
tional calculation for nuclear matter. The values ofA2p are
in good agreement with those predicted by the pure tw
pions exchange model (A2p;20.03 MeV!.

The truncatedA88 NN potential was introduced in Ref
@3# because its simpler parametrization allowed a simplifi
tion of the numerically involved quantum Monte Carlo ca
culations. The contribution of the missing channels was p
turbatively evaluated. One should remark, however, thatA88
was found to give a slight overbind. For this reason,
strength of the repulsive part of the TNI Urbana IX mod
was increased by;30% to reproduce the experimental e
ergies. The results presented in this paper have been obta
with the A141UVII and A881UIX models, where the Ur-
bana IX interaction has been redefined as above.
04430
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The many-body wave function~2! contains two ingredi-
ents: the correlation functionsf p(r ) and the single particle
states forming the Slater determinantF(1,2...A). In our cal-
culations we have used af 6-type correlation, so neglecting
the spin-orbit components. This choice will be discussed
commented on later in the paper.

The best variational choice ofFi j would be given by the
free minimization of the FHNC/SOC energy and the soluti
of the corresponding Euler equations,dE/dFi j 50. This ap-
proach is not practicable in finite nuclear systems, so we
an effective correlation obtained by the minimization of t
energy evaluated at the lowest order of the cluster expan
ELO . The two-body Euler equations are then solved un
the healing conditions f 1(r>d1)51, f p.1(r>dp)50 and
requiring that the first derivatives of these functions atr
5dp vanish. The healing distancesdp are taken as varia
tional parameters. In analogy with the nuclear matter case
our calculations we adopt only two healing distances:dc for
the four central channels anddt for the two tensor ones
Additional variational parameters are the quenching fact
ap of the NN potentials in the Euler equations. More deta
are given in Ref.@19# for nuclear matter and in Ref.@24# for
finite nuclei. In the CMC calculation of Ref.@17# a nuclear
matter Euler correlation was used and the nuclear ma
Fermi momentumkF was used as a variational paramet
We follow here the same strategy.

The single particle wave functionsfa( i ) used in this
work have been obtained either by solving the single part
Schrödinger equation with Woods-Saxon potential,

VWS~r !5
V0

11exp@~r 2R0!/a0#
, ~16!

or with a harmonic oscillator wellVHO(r ) with oscillator
length bHO5A\/mv. The parametersV0 , R0, and a0 of
VWS(r ) and bHO of VHO(r ) are also variationally deter
mined.

It is possible to express the expectation values ofn-body
operators in terms ofn-body density matrices, and relate
quantities. In particular, the one- and two-body densiti
r1(r1) andr2

p(r1 ,r2) , defined as

r1~r !5K (
i

d~r2r i !L ~17!

and

r2
p~r ,r 8!5K (

iÞ j
d~r2r i !d~r 82r j !Oi j

p L , ~18!

are needed to compute the energy mean value~1!. In the
above expressions we indicate the mean value of an ope
Q as ^Q&5^CuQuC&/^CuC&. Cluster expansion and Ferm
hypernetted chain theory provide a viable way to evalu
the densities both in infinite and finite Fermi systems. W
present here only some of the basic features of the FH
SOC computational scheme. More complete discussion
2-3
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the FHNC theory are found in Refs.@18# and@21# for scalar
correlations and in Refs.@19# and @24# for the operatorial
case.

In FHNC theory, with scalar correlations, the densities
written in terms of the correlationf 1(r ) and of thenodaland
elementaryfunctionsNxy

1 (r1 ,r2) and Exy
1 (r1 ,r2), represent-

ing the sums of the corresponding nodal and elemen
cluster diagrams. Thex(y) label characterizes the exchan
pattern at the external points 1~2! and can indicate: a direc
link ~d! if the particle is not exchanged and the point
reached by a dynamical correlation,h(r )5@ f 1(r )#221; an
exchange link~e! if the particle belongs to a closed exchan
loop; a cyclic link ~c! if the particle belongs to an ope
exchange loop. The possible combinations are:dd, de, ed,
ee, and cc. In infinite, homogeneous systems, as nucl
matter, the FHNC functions depend only on the interparti
distancer 12. The FHNC integral equations allow for com
puting the nodal functions, once the elementary ones
known.

With the introduction of operatorial correlations, th
nodal functions gain a state dependence,Nxy

p>1(r1 ,r2). The
correlation operators do not commute anymore among th
selves,@F12,F13#Þ0, and one must take into account th
various possible orderings in Eq.~3!. For this reason a com
plete FHNC treatment for the full, state dependent densi
is, at present, not possible. The single operator chain
proximation was introduced in Ref.@19# for nuclear matter,
and extended tols doubly closed shell nuclei in Ref.@24#, for
f 6 correlations. The SOC scheme consists in summing th
p.1 chains, where each link may contain only one opera
rial element and scalar dressings at all orders. Notice
operatorial dependence comes also on account of the
changes of two or more nucleons, since the space exch
operator is given byPi j 52(p5c,s,t,stOi j

p /4. Here, and in
the following, we may refer to the operatorial channels ac
(p51), s ~spin!, t ~tensor!, andb ~spin orbit!. The isospin
channels have an extrat label.

The elementary functionsExy(r1 ,r2) represent an input to
the FHNC equations, as they cannot be calculated in a clo
form. The FHNC/0 approximation consists in neglecting
the elementary contributions. This seemingly crude appro
mation is actually based on the fact that the elementary
grams are highly connected and have, at least, a quad
dependence on the density of the system. These diagram
not expected to produce relevant contributions in the re
tively low density nuclear systems, whereas they are imp
tant in denser systems, like atomic liquid helium. A test
the validity of the FHNC/0 approximation, and, in gener
of the importance of the elementary diagrams, is provided
the degree of accuracy in satisfying the densities normal
tions. In Ref.@24# particular attention has been paid to t
normalization of the one-body density,

A5E d3r 1r1~r1!, ~19!

and to that of the central and isospin two-body densities
04430
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1

A~A21!
E d3r 1E d3r 2r2

c~r1 ,r2!, ~20!

215
1

3AE d3r 1E d3r 2r2
t~r1 ,r2!. ~21!

Deviations of the sum rules from their exact values a
due to~i! the approximate evaluation of the elementary d
grams and~ii ! the SOC approximation. The first item ha
been already investigated in Ref.@21#, where it has been
found that the most relevant corrections to the FHNC/0 s
rules come from theEee

exch diagrams, i.e.,ee-elementary dia-
grams whose external points belong to the same excha
loop. These diagrams mainly contribute to the isospin sa
ration sum rule~21! and to the potential energy, if the inte
action has large exchange terms. This is understood if
notice that a four-point elementary diagram, linear in t
central linkh(r ), belongs toEee

exch, as well as diagrams lin-
ear in the operatorial link,f 1(r ) f p.1(r ).

In Ref. @24# it has been shown that the one-body dens
sum rule is violated in FHNC/SOC by less than 1% and
two-body density normalizations~20! and ~21! by ;9% in
the worst case (40Ca with tensor correlations!. This is the
same degree of accuracy found in Ref.@4# for nuclear matter
calculations.

In Ref. @24# the comparison of the16O FHNC energies
calculated for a purely Jastrow correlation with the ex
VMC estimates shows an excellent agreement, with a dif
ence of;1% in the kinetic energy~24.61 MeV in FHNC vs
24.3360.21 in VMC! and of ;2% in the potential energy
(222.07 MeV in FHNC vs221.5660.25 in VMC!. The
16O FHNC energies calculated with af 6 correlation and us-
ing thev6 truncation of the Urbanav14 potential@29#, have
been compared with the results of a fifth order CMC calc
lation, which appeared to have reached a satisfying con
gence. In this case we found a difference of less than 5%
the kinetic energy~31.16 MeV in FHNC/SOC vs 29.45
60.33 in CMC! and of ;7% for the potential one
(235.47 MeV in FHNC/SOC vs233.0360.31 in CMC!.
The FHNC/SOC calculation gives a binding energy p
nucleon of 24.33 MeV to be compared with the24.59
60.10 MeV value obtained by CMC. This difference is com
patible with the nuclear matter estimates.

III. SPIN-ORBIT AND THREE-BODY FORCES

As already mentioned in the Introduction, the novelty
this work with respect to Ref.@24# is the inclusion of the
spin-orbit and three-body terms of the potential. In this s
tion we briefly show how to extend the FHNC/SOC forma
ism to consider these parts of the interaction.

A. Spin-orbit potential

The treatment of the spin-orbit interaction within th
FHNC/SOC formalism has been discussed in detail in R
@30# for the nuclear matter case. In that paper, the evalua
of the mean value of the spin-orbit terms of the interactio
2-4
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^v7[b,8[bt&, was done using af 8 correlation factor, so in-
cluding all the eight operatorial components in Eq.~4!.

Here we extend the nuclear matter formalism to the fin
nuclei case for af 6 correlation. A correlation containing
spin-orbit components would, probably, be more efficie
from the variational point of view. However, these corre
tion terms introduce extra uncertainties in the cluster exp
sion, and we have chosen to work with a simpler correlat
in favor of a safer convergence. We shall discuss further
point and give some estimates of thef p.6 corrections.

In the FHNC/SOC scheme, the ground state matrix e
mentW of a generic two-body operatorŴ is split into four
parts:

W5W01Ws1Wc1Wcs , ~22!

where W0 indicates the sum of the diagrams with cent
chains between the fully correlated interacting points, c
nected byŴ, Ws the sum of the diagrams having operator
vertex corrections~or single operator rings! touching the in-
teracting points and central chains,Wc the diagrams with one
operatoral chain, SOC, between the interacting points, a
finally, Wcs the diagrams containing both operatorial vert
corrections and chains. A more complete discussion on
topic is found in Refs.@19# and @24#.

The nuclear matter calculations of Ref.@30# show that
two-body clusters provide the leading contribution to^vb,bt&.
Three body separable diagrams, contributing toWs , gave the
main many-body contributions and were of the order of 10
of the two-body ones. Chain contributions were ev
smaller. These results have been confirmed in Ref.@7#, where
the authors found̂ vb1bt& two2body/A522.29 MeV and a
many-body contribution (Ws1Wc) of 20.28 MeV at the
nuclear matter saturation density, with theA18 potential.

Relying on these facts, for the spin-orbit terms of t
interaction, we have calculated only theW0 contribution of
Eq. ~22! with a f 6 correlation function. It turns out that, in
this case, only the tensor correlations contribute, and the
expression reads

^vb jt&W0
529E d3r 1E d3r 2f ti t~r 12!v

b jt~r 12!

3 f tkt~r 12!h
c~r1 ,r2!$rc~r1!rc~r2!Ki t j tktAkt

28@Ncc
c ~r1 ,r2!2r0~r1 ,r2!#2Ki t j t l t

3Kl tktmtAmtDmtCd~r1!Cd~r2!%. ~23!

In the above equation a sum over repeated indexes is un
stood, (i t , j t ,kt ,l t ,mt5c,t), the coefficientsKi jk , Ai , and
D i are given in Ref.@19#, and the other FHNC functions ar
defined in Ref.@24#.

For the 16O nucleus, we could check the reliability of th
approximation against some CMC results@31#. Using a
nuclear matter correlation and theA14 potential, we find
^vb1bt&W0

/A50.56 MeV whereas CMC, with the same co
relation, gives an extrapolated value of 0.62 MeV. We d
04430
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not find the same kind of agreement for af 8 correlation,
where theW0 result is 21.23 MeV and CMC gives 0.03
MeV. This supports our choice in favor of the use of a si
pler f 6 correlation.

B. Three-body potential

The evaluation of the mean value of the three-body int
action, ^v i jk&5^v i jk

2p&1^v i jk
R &, closely follows the method

developed in Ref.@28# for nuclear matter. Diagrams 2.1–3 o
the reference were shown to provide the relevant contri
tions to ^v i jk

2p&, and diagrams 3.1 and 3.2 to^v i jk
R &. These

diagrams, which we show in Fig. 1, are those considered
our calculations.

As an example, we show here how the nuclear ma
expression of diagram 2.1 is extended to our case. The
plicit expressions for the remaining terms are given in
Appendix.

In diagram 2.1 the pairs of nucleon connected by the
eratorsXi j ~pairs 12 and 13 in the figure! are dressed at al
orders by Jastrow correlations, whereas the remaining
~23! bears the full operatorial correlations. Only the antico
mutator part ofv i jk

2p contributes to^v i jk
2p&2.1. Spin-ispospin

trace and spatial integration over nucleon 1 generate an
fective two-body potential, acting on the 23 pair, havingst
andtt components only and depending on the exchange
terns (xy) of particles 2 and 3,

vxy
e f f~r2 ,r3!5 (

k5st,tt
vxy

e f f,k~r2 ,r3!O23
k , ~24!

with

FIG. 1. Cluster diagrams considered for the three-body fo
expectation value. The 2.123 diagrams are related to the^v i jk

2p& part
of the force and the 3.122 diagrams are related tôv i jk

R &. The
points denote the particle coordinates. The dashed, wavy,
double-wavy lines denote generalized scalar, operator and sin
operator ring correlation bonds, respectively. See Ref.@28# for more
details.
2-5
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vxy
e f f,k~r2 ,r3!54A2pE d3r 1

3F (
x8y8

gxx8
c

~r2 ,r1!Vx8y8
c

~r1!gy8y
c

~r1 ,r3!G
3j213

i s j sksXi s~r 21!X
j s~r 13!, ~25!
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wherek5kst, (i s , j s , ks5c, s, t), gxy
c andVxy

c are cen-
tral partial distribution functions and vertex corrections d
fined in Ref.@24#, j213

i jk are angular couplings given in Re
@19#, andXc(r )50, Xs(r )5Y(r ), andXt(r )5T(r ). The al-
lowed combinations for (x8y8) are:dd, de, ed, andcc. In
the last case also (xy) should be (cc).

The full expression for the mean value of the 2.1 diagra
^v i jk

2p&2.1, is then given by
^v i jk
2p&2.15

1

2E d3r 2E d3r 3f i~r 23! f j~r 23!h
c~r2 ,r3!Kik jAj$vdd

e f f,k~r2 ,r3!†r1
c~r2!r1

c~r3!1r1
c~r2!Nde

c ~r2 ,r3!Cd~r3!

1Cd~r2!Ned
c ~r2 ,r3!r1

c~r3!1Cd~r2!@Nde
c ~r2 ,r3!Ned

c ~r2 ,r3!1Nee
c ~r2 ,r3!#Cd~r3!‡1vde

e f f,k~r2 ,r3!@r1
c~r2!

1Cd~r2!Ned
c ~r2 ,r3!#Cd~r3!1ved

e f f,k~r2 ,r3!Cd~r2!@r1
c~r3!1Nde

c ~r2 ,r3!Cd~r3!#1vee
e f f,k~r2 ,r3!Cd~r2!Cd~r3!%

22E d3r 2E d3r 3f i~r 23! f j~r 23!h
c~r2 ,r3!Cd~r2!Cd~r3!KiklKl jmAmDm$vdd

e f f,k~r2 ,r3!@Ncc
c ~r2 ,r3!2r0~r2 ,r3!#2

12vcc
e f f,k~r2 ,r3!@Ncc

c ~r2 ,r3!2r0~r2 ,r3!#%. ~26!
at
s

C
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al-
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Both commutator and anticommutator contributions
present in̂ v i jk

2p&2.2, while only the commutator part contrib
utes to^v i jk

2p&2.3.
In Table I we compare the TNI mean values for16O cal-

culated by FHNC/SOC with the Monte Carlo estimates@31#
obtained with the same wave function. We have used
Urbana V three-nucleon interaction@28# and thev6 trunca-
tion of the Urbanav14 NN interaction. The correlations hav
been obtained by the two-body Euler equation and we u
harmonic oscillator single particle states withb51.54 fm.
The 40Ca results are also shown.

For the Jastrow correlation the Monte Carlo results h
been obtained with a VMC calculation, while for thef 6 cor-
relation the calculation is of the CMC type. In16O the
FHNC/SOC results are in satisfactory agreement with
Monte Carlo ones for both the classes of correlations. T
40Ca results may be compared with those in nuclear ma
where, at saturation density, the Urbana V model gi
^v i jk

2p&522.32 MeV and̂ v i jk
R &53.35 MeV@28#. The change

of sign of ^v i jk
2p& between the Jastrow and the operator

correlation is due to the fact that the attractive contribut
comes most from the tensor component of the effective
tential, vxy

e f f,tt(r2 ,r3), which does not contribute in absenc
of tensor correlations.

IV. RESULTS

The results presented in this section have been obta
with v8 type NN interactions, either by truncating theA14
potential@25# or by using theA88 potential of Ref.@3#, to-
gether withf 6 correlations and Urbana three-nucleon pote
tials. We have estimated thef p.6 corrections, as well as th
contributions from thep.8 components of the potential, b
local density approximation~LDA !. In practice, if we define
e

e

d

e

e
e
r,
s

l
n
-

ed

-

asDEnm(r) the sum of these corrections in nuclear matter
densityr, we evaluate their contribution in the finite nucleu
as

DE5
1

AE d3rr1~r !DEnm@r1~r !#. ~27!

We have already studied the accuracy of FHNC/SO
computational scheme against the results of CMC in R
@24#. In the present article we compare again the16O results
with those of CMC in order to test the accuracy in the c
culation of the interaction terms we have added. For t
reason we have computed the ground state energy for
A141UVII model using a f 6 correlation derived from the
nuclear matter two-body Euler equations. The parameter

TABLE I. TNI expectation values per nucleon, in MeV, in16O
and 40Ca for the Urbana V model. Thef 1(6) column gives the
energies for the Jastrow~operatorial! correlation. The superscrip
C(A) indicates the commutator~anticommutator! contribution.

f 1~FHNC! f 1~VMC! f 6~SOC! f 6~CMC!

16O

^v i jk
2p,C& 20.17 20.16 20.90 20.86

^v i jk
2p,A& 0.74 0.70 20.39 20.44

^v i jk
R & 1.33 1.28 1.65 1.57

40Ca

^v i jk
2p,C& 20.24 21.50

^v i jk
2p,A& 1.80 20.26

^v i jk
R & 2.75 3.20
2-6
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GROUND STATE CORRELATIONS IN16O AND 40Ca PHYSICAL REVIEW C 61 044302
the correlation are: the Fermi momentumkF , and the healing
distancesdc , used for all the central channels, anddt for the
tensor channels. Additional variational parameters are
quenching factorsbp of the potential„see Eq.~3.2! of Ref.
@19#…, and as in Ref.@24# we have takenb151 andbp.1
5aS . We have used the same set of single particle sta
produced by a Woods-Saxon~WS! plus wine-bottle mean
field potential, and correlation parameters of Ref.@17#. How-
ever, small differences in the correlation come on accoun
the fact that our nuclear matter Euler equation does not c
tain thevp.6 components, contrary to Ref.@17#.

The results of these calculations are shown in Table
The table gives also the corresponding CMC results, as
tracted from the reference, by subtracting, when reported
three-body and spin-orbit correlations contributions. T
DECMC line gives the CMC corrections coming from
( f ,v)p.6 and should be compared with theDE1^v728,i j &
sum (20.5 vs20.80 MeV/nucleon! in the FHNC/SOC col-
umn. The ground state energyEgs is given by Egs5Ev
2Tcm , whereTcm is the center of mass kinetic energy. Th
Coulomb potential energŷvCoul& has been included inEgs.
The root mean square radii rms are also reported.

The energy found in CMC is27.7 MeV/nucleon, and it
contains a20.85 MeV/nucleon contribution from explici
three-body correlations. Therefore the FHNC/SOC res
(25.97 MeV/nucleon! should be compared with an est
mated CMC value of26.85 MeV/nucleon. If the CMC ex-

TABLE II. FHNC/SOC and CMC energies in MeV/nucleon fo
16O with the A141UVII interaction and the CMC single particle
potential and nuclear matter correlation. rms in fm; see text.

FHNC/SOC CMC

^T&2Tcm 37.23 32.0
^v6,i j & 242.48 238.2
^v728,i j & 20.85

^v i jk
2p& 22.83

^v i jk
R & 1.90

^v i jk& 20.93 21.1
^vCoul& 1.00 0.9
DE 0.05
DECMC 20.5
Egs 25.97 26.9
rms 2.44 2.43
04430
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pansion has reached a satisfactory convergence, the dis
ancies between the two calculations are due to the trunca
in the FHNC/SOC scheme and to the aforementioned dif
ences in the correlation. As it was found in Ref.@24#, the
FHNC ground state energy differs from the CMC estima
by ;1 MeV/nucleon, compatible with the estimated acc
racy of the method in nuclear matter. In this calculation t
DE corrections are small, somehow justifyinga posteriori
the use of LDA. It is remarkable that in the coupled clus
approach of Ref.@32# the authors findEgs(CC)526.1 MeV/
nucleon with the two-bodyA14 model, close to our esti
mated Egs(FHNC/SOC)526.04 MeV/nucleon ~obtained
without ^v i jk& and ^vCoul&).

The nuclear matter energies per nucleon calculated w
several interactions are given in Table III as a function of
density. TheA181UIX ( A18) andA881UIX ( A88) inter-
actions provide energy minima at the empirical value of
saturation density. The results of theA18 column differ from
those of Ref.@5# because we have subtracted a perturba
correction, related to additional state dependence of the
relation. The second column of the table shows the res
for theA881UIX interaction with af 8 correlation. The con-
tribution of the f p.6 terms is given in the third column. Fo
completeness, we also give the results obtained with the
A14 potential plus the UVII three-body force and the cor
spondingDE/A. The A141UVII ( A14) minimum of the
equation of state is located at a density slightly higher th
the empirical one.

The ground state energies of16O and 40Ca calculated
with the A881UIX and the truncatedA141UVII interac-
tions are shown in Table IV. We have adopted the nucl
matter f 6 correlation, where the nuclear matter density
used as a variational parameter~it means that, for a given
rnm , we use the correlation function parameters minimizi
the nuclear matter energy at that density!. In addition, the
energy has been minimized over the single particle poten
~harmonic oscillator, HO, or WS! parameters. The table als
contains the kinetic energies computed with only the me
field wave functions. They are about half of the total kine
energies obtained in the full calculations and this differen
has to be ascribed to the correlations. This type of beha
is also found in nuclear matter. For example, at satura
density and with theA181UIX Hamiltonian, the nuclear
matter calculations of Ref.@5# provide a total kinetic energy
of 42.27 MeV/nucleon to be compared with the correspo
-

TABLE III. Nuclear matter energies per nucleon forA181UIX ( A18), A881UIX ( A88), and A14

1UVII ( A14). TheDE/A columns list the spin-orbit correlation and thep.8 potential components cor
rections. Densities in fm23, energies in MeV.

rnm E/A (A18) E/A (A88) DE/A (A88) E/A (A14) DE/A (A14)

0.04 24.11 25.50 20.30 25.25 20.80
0.08 27.46 28.45 20.82 28.43 20.38
0.12 29.42 210.31 21.48 210.63 0.00
0.16 210.05 210.87 22.16 211.99 0.61
0.20 28.74 210.06 23.02 212.37 0.27
0.24 25.66 27.75 23.96 211.74 0.50
2-7
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TABLE IV. Energies in MeV/nucleon for16O and 40Ca obtained withA881UIX1 f 6,nm and with trun-
catedA141UVII 1 f 6,nm . In the upper part of the table we show the values the minimization parame
bHO , a0 , R0, are expressed in fm,rnm in fm23 all the other quantitites in MeV/nucleon. The energ
experimental values are27.97 MeV/nucleon for16O and28.55 MeV/nucleon for40Ca. The experimenta
rms radii are 2.73 and 3.48 fm for16O and 40Ca, respectively.

16O(HO)A88
16O(WS)A88

16O(WS)A14
40Ca(HO)A88

40Ca(WS)A88
40Ca(WS)A14

bHO 2.00 2.10
V0 242.00 236.00 250.00 241.50
R0 3.60 3.80 5.30 5.00
a0 0.55 0.55 0.53 0.55
rnm 0.09 0.09 0.09 0.09 0.09 0.09

^T& 22.57 27.34 25.91 30.02 30.58 30.90
^T& IPM 11.64 13.82 12.20 14.09 14.15 14.10
^v8,i j & 227.49 232.48 231.05 238.03 238.68 -39.08

^v i jk
2p& 21.15 21.66 21.35 21.94 21.94 21.74

^v i jk
R & 1.26 1.98 1.56 2.46 2.37 2.11

Ecm 0.48 0.58 0.52 0.18 0.20 0.19
^vCoul& 0.78 0.86 0.84 1.85 1.85 1.87
DE 20.66 20.94 20.50 20.95 20.96 20.70
Egs 25.18 25.48 25.11 26.77 26.97 26.50
rms 3.03 2.83 2.93 3.65 3.66 3.66
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ing Fermi gas value of 22.11 MeV/nucleon. As expected,
minimization with the WS potentials produces lower minim
than those obtained with HO potentials. The comparison
tween the WS calculations done with the two different int
actions shows small differences in the results, of the orde
7% in Egs . From the relative point of view the largest di
ferences are those related toDE, which for A14 are 50%
smaller than those ofA88. These rather similar values of th
energies have been obtained with two quite different set
single particle wave functions. This can be deduced by lo
ing at the values of the WS parameters in Table IV, and e
better from Fig. 2 where the FHNC/SOC charge distributio
are compared with the independent-particle model~IPM!
ones and with the empirical densities taken from the com
lation of Ref.@33#. The charge densities have been obtain
by folding the proton densities with the electromagnetic fo
factors of Ref.@34#.

We do not obtain a satisfactory agreement between
computed densities and the empirical ones. However, we
mark that, for a given type of single particle wave function
either HO or WS, we find shallow energy minima with r
spect to variations of the mean field parameters around
minimum itself. This may indicate that charge distributio
and rms radii are sensitive to details of the many body w
function which have small effects on the energy calculati
To better study this aspect, we have done calculations
using a set of single particle wave functions fixed to rep
duce at best the empirical charge densities. In this case
only variational parameters are those related to the corr
tion functions. Actually, we have varied onlydt and kept
fixed its ratio withdc . The results of these calculations wi
the A881UIX interaction are shown in Table V and in Fig
3. We observe that a large change in the single particle w
functions produces small variations in the energy valu
04430
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1.3% in 16O and 4.8% in40Ca, within the accuracy of the
FHNC/SOC scheme. The analysis of these results shows
the values of the kinetic and potential energies have con
erably changed, while their sum remains almost const
The agreement with the empirical densities has clearly
proved, as one can also see in Fig. 4 where the elastic e
tron scattering cross sections calculated in distorted w
Born approximation@35# with the FHNC/SOC charge dens
ties are compared with the experimental data@36#. The best

FIG. 2. FHNC/SOC charge densities related to the results
Table IV ~thin full lines! compared with the IPM densities~dashed
lines! and with the empirical ones~thick full lines!.
2-8
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GROUND STATE CORRELATIONS IN16O AND 40Ca PHYSICAL REVIEW C 61 044302
agreement with the data is produced by the densities of
3. However, also in this case the high momentum and la
energy data are not well described in both nuclei.

From the comparison between the dashed and the thin
lines in Figs. 2 and 3 we can inspect the effects of the c
relation on the charge densities. In16O the correlations en
hance the densities with respect to the IPM ones with
substantially changing the shape of the oscillation. The ef
of the correlations on the40Ca densities is negligible. Thes

TABLE V. Energies in MeV/nucleon for16O and40Ca obtained
with A881UIX1 f 6,nm and with WS mean field potentials fixed t
reproduce the empirical charge densities.R0 anda0 are expressed
in fm, rnm in fm23, and the other quantities in MeV/nucleon.

16O(WS)A88
40Ca(WS)A88

V0 253.00 250.00
R0 3.45 4.60
a0 0.7 0.5
rnm 0.09 0.09

^T& 32.64 38.15
^T& IPM 15.35 16.82
^v8,i j & 237.79 246.34

^v i jk
2p& 22.36 22.98

^v i jk
R & 3.00 3.94

Ecm 0.64 0.23
^vCoul& 0.94 2.10
DE 21.21 21.28
Egs 25.41 26.64
rms 2.67 3.39

FIG. 3. The same as Fig. 2 for the calculation of Table V.
04430
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results confirm the findings of Ref.@37# where the charge
densities have been calculated up to the first order in
correlation lines. On the other hand, in Ref.@17# the corre-
lations produce much larger deviations from the IPM den
ties. The reason of the different effect of the correlations
the densities of40Ca and16O is presently object of investi
gation.

Short range correlations strongly affect the two-body d
sities ~18!. Their effect is evident in the two-nucleon distr
bution functionr2(r 12) defined as

r2~r 12!5
1

AE d3R12r2
c~r1 ,r2!, ~28!

whereR125
1
2 (r11r2) is the center of mass coordinate. In a

analogous way, we define the proton-proton distribut
function rpp(r 12) as

rpp~r 12!5
1

ZE d3R12rpp~r1 ,r2!, ~29!

where thepp-two-body density is

rpp~r1 ,r2!5K (
iÞ j

d~r12r i !d~r22r j !S 11t i ,z

2 D S 11t j ,z

2 D L
5

1

4
r2

c~r1 ,r2!1
1

12
r2

t~r1 ,r2!. ~30!

Figure 5 showsr2(r 12) andrpp(r 12) with the wave func-
tions of Table V, compared with the IPM densities. The
duction of the correlated distribution functions at smallr 12
values is due to the repulsive core of the interaction. W
have calculated the FHNC/SOC16O distribution functions
also for theA141UVII model and we found that they ar
rather similar to theA881UIX ones @r2

max(A141UVII)
;0.081, r2

max(A881UIX) ;0.089, rpp
max(A141UVII)

FIG. 4. Electron scattering elastic cross sections for16O ~left!
and 40Ca ~right!. The full lines have been produced by the FHN
SOC densities of Fig. 3. The other two lines by the WS FHNC/S
densities of Fig. 2. The dashed lines correspond to theA88 densities
while the dotted lines to theA14 ones.
2-9
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FIG. 5. Two-nucleon ~upper panels! and
proton-proton ~lower panels! distribution func-
tions for theA881UIX interaction. The dashed
lines give the IPM results, the solid lines th
FHNC/SOC ones.
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;0.032, andrpp
max(A881UIX) ;0.032], and in good agree

ment with those computed in Ref.@17#.
The interest in calculating the two-body densities is a

related to the possibility of using their Fourier transforms
analyze several integrated nuclear responses. The resp
of the nucleus to external probes, either of electromagneti
hadronic type, can be related to the dynamical structure fu
tions SX(q,v) given by

SX~q,v!5(
I

u^C I uOXuC0&u2d~v I2v02v!, ~31!

whereOX is the operator producing the fluctuations arou
the ground stateC0. In the above equation the sum runs ov
the intermediateC I states with energyv I . The nonenergy
weighted sums ofSX(q,v) give the static structure function
~or, simply, structure functions, SF!, SX(q), as

SX~q!5E SX~q,v!dv5^C0uOX
†OXuC0&. ~32!

In the case of density fluctuations, the operator is

rq5 (
i 51,A

exp~ ıq•r i ! ~33!

and the lower limitv integration in Eq.~32! is taken in an
appropriate way to eliminate the contribution of the elas
scattering. The density SF,S(q), is then

S~q!511
1

AE d3r 1d3r 2 exp~ ıq•r12!$r2
c~r1 ,r2!

2r1~r1!r1~r2!%. ~34!

From the normalizations of the one- and two-body densit
one obtainsS(q50)50.
04430
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The response to charge fluctuations is driven by the
erator

rc,q5 (
i 51,A

exp~ ıq•r i !S 11t i ,z

2 D , ~35!

which is responsible also of the electromagnetic longitudi
response, if the small (;2%) contributions of the neutron
magnetic moment and of the meson-exchange currents
disregarded. The longitudinal response is measured in ine
tic electron-nucleus experiments and its energy integral g
the longitudinal SF,SL(q), or Coulomb sum. In the nucle
we are studying, the explicit expression ofSL(q) reads

SL~q!511
1

4ZE d3r 1d3r 2 exp~ ıq•r12!

3H r2
c~r1 ,r2!1

1

3
r2

t~r1 ,r2!2r1~r1!r1~r2!J .

~36!

In Fig. 6 we present the density~upper panel! and charge
~lower panel! SF for 16O, calculated with the wave function
of Table V. The FHNC/SOC results obtained from our c
culations are shown by the white triangles. Theq50 value is
very sensitive even to small violations of the normalizatio
of the densities. For instance, the two-body density norm
ization of Eq.~20!, with the Table V parameters, is violate
in 16O by only 5.3% and that of the one-body density, E
~19!, by 2.0%. These acceptable normalization errors p
duce the large valuesS(q50)51.61 andSL(q50)50.86.

The SF obtained after properly renormalizing the den
ties are given in Fig. 6 as full curves. The other curves sh
the IPM SF~dashed lines! and those obtained with only Ja
strow correlations. The renormalization is effective only
smallq values and forq.1 fm21 the SF remain unchanged
Analogous calculations done in40Ca show a similar behav
2-10
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ior. Hence the conclusions about the large-q importance of
the correlations in the SF and densities are not affected
the normalization problems. In agreement with the findin
of Ref. @17#, our results show that the correlations, both
the Jastrow and operatorial types, lower the SF at largeq.

In Fig. 7 we compare the Coulomb sum rules calcula
for 16O and 40Ca with theA881UIX interaction with the
experimental estimates done by analyzing the set of w
data on inclusive quasielastic electron scattering@38# experi-
ments in 12C, 40Ca, and 56Fe. The figure also shows th
nuclear matter Coulomb sum for theA141UVII model from
Ref. @39#. The finite nuclei results are in complete agreem
with the latest analysis of the experimental data, wher
detailed study of the electron scattering world experime
and a proper inclusion of the large energy tail in the dyna
cal response were carried out. The nuclear matter results
in reproducing the data at the lowestq values where finite
size effects can be still important.

Besides the density and charge SF also the isovector
longitudinal and transverse~ISL and IST! SF are of experi-
mental interest since they can be extracted from polari
proton and neutron scattering cross section data. Exp
ments of this type on12C and 40Ca nuclei@40# did not con-
firm the prediction of random phase approximation@41# and
distorted-wave impulse approximation@42# calculations of a
large enhancement, with respect to unity, of the ratio of
ISL to the IST response at small energies.

The ratio has been calculated for nuclear matter within
CBF theory, using af 6 correlation together with the Urban
v141TNI potential @43#. The computed average enhanc

FIG. 6. Density~upper panel! and longitudinal~lower panel!
structure functions for16O ~left! for theA881UIX interaction. The
IPM ~dashed lines!, FHNC/SOC ~solid lines!, non-normalized
FHNC/SOC~triangles!, and Jastrow~stars! results are given.
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ment was;20%, compatible with the data in heavy nuclei
energies below 100 MeV. However, the nuclear matter c
culation did not take into account the strong distortion of t
emitted nucleon wave function. Variational and clus
Monte Carlo wave functions were used in Ref.@44# to evalu-
ate the integrated spin responses in light nuclei and16O. A
maximum 25% enhancement of the ratio was found in16O.

The fluctuation operators in the isovector spin respon
are

rsL,q5 (
i 51,A

exp~ ıq•r i !~s i•q!~t i•T! ~37!

in the longitudinal case, and

rsT,q5 (
i 51,A

exp~ ıq•r i !~s i3q!~t i•T! ~38!

in the transverse one. In the above equations we have i
cated withT a unit vector in the isospin space. If the nucle
has zero isospin, then the response does not depend o
direction ofT, except for the small Coulomb effects. Follow
ing the treatment of Ref.@44#, we obtain for the ISL structure
function SsL(q) the expression

SsL~q!5
SsL

u ~q!

Aq2

511
1

9AE d3r 1d3r 2$r2
st~r1 ,r2! j 0~qr12!

2r2
tt~r1 ,r2! j 2~qr12!%, ~39!

and for the IST one,SsT(q),

SsT~q!5
SsT

u ~q!

2Aq2

511
1

9AE d3r 1d3r 2H r2
st~r1 ,r2! j 0~qr12!

1
1

2
r2

tt~r1 ,r2! j 2~qr12!J . ~40!

FIG. 7. Coulomb sums for16O, 40Ca and nuclear matter~n.m.!
compared with the experimental results from12C, 40Ca, and56Fe.
2-11
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The ISL and IST structure functions for16O and 40Ca,
calculated with the wave functions of Table V, are shown
Fig. 8 as a function of the momentum transfer. For the16O
nucleus we show also the Jastrow results, identical for b
ISL and IST. Central correlations do not differentiate b
tween the longitudinal and transverse responses becau
the lack of tensor correlations. Our16O results are very close
to those of Ref.@44# obtained with theA141UVII interac-
tion. The lowest panel of Fig. 8 shows theSsL(q)/SsT(q)
ratio. We observe that the maximum enhancement is;25%
in 16O and;38% in 40Ca, close to the experimental valu

V. CONCLUSIONS

This paper is the natural extension of the work of R
@24#. We have added to the FHNC/SOC computatio

FIG. 8. Isovector spin longitudinal~solid! and transverse
~dashed! structure functions for the16O and 40Ca nuclei. For16O
we show also the Jastrow results~dotted line!. The lowest panel
gives the ratios of the isovector spin longitudinal and transve
structure functions for both nuclei.
04430
th
-

of

.
l

scheme for doubly closed shell nuclei inls coupling, the
contribution of the spin-orbit and three-body interaction
Our calculations of16O and 40Ca nuclei have been don
considering af 6 type of correlation andv8 potentials: the
A881UIX @3# and a truncated version of theA141UVII
@25# potentials. The contribution from the remaining mome
tum dependent terms of the correlation and of the poten
are estimated by means of a local density interpolation
their nuclear matter values.

The main results of the paper are given in Tables IV a
V where the16O and 40Ca ground state energies per nucle
are presented. Their values are;223 MeV/nucleon above
the experimental ones, consistently with the CBF results
nuclear matter. Additional lowering of the energies may
obtained by~i! three-body correlations, and~ii ! perturbative
corrections to the two-body correlations. It has been alre
mentioned that three-body correlations have been found
provide an extra 0.8 MeV/nucleon binding in16O for the
A141UVII model. Perturbative corrections have been tak
into account in nuclear matter either by the method discus
in Ref. @5# or by the inclusion of the second order two
particle two-hole contribution in correlated basis perturb
tion theory @45,46#. Both approaches lower the energy b
DE2;2 MeV/nucleon. The nuclear matter case gives
strong indication that the inclusion of these correctio
should be pursued and that their quantitative consistenc
finite nuclear systems needs to be numerically checked.

A complete minimization over all the parameters of t
wave functions, both in the correlation and in the mean fie
has led to a marked disagreement between the CBF and
empirical charge densities in the low distance region. Ho
ever, calculations with different sets of single particle wa
functions, reproducing the empirical densities in IPM, pr
vided energies differing from the best minima only by a fe
percent. The CBF scheme does not appear to be very s
tive to the details of the mean field basis in a parame
region around the variational minimum. Nevertheless, th
details become relevant for a correct description of the o
and two-body densities. The introduction of additional co
straints during the minimization process may be necessar
order to avoid these ambiguities.

Our results show that the short-range correlations prod
small effects on the charge density distributions, especi
in 40Ca where the FHNC scheme is supposed to perfo
better. These findings are in agreement with those of R
@37# where the same kind of nuclear matter correlations h
been used. The sensitivity of the charge distributions to
state dependent short-range correlations requires furthe
vestigations to be fully clarified. In effect, the VMC on
body densities of@17# have larger dependence on these co
ponents.

In addition to the ground state energies, we have stud
the static structure functions. The FHNC results for the C
lomb sum rule fully agree with the empirical values. Th
ratio between the ISL and IST SF shows an enhancem
between 25% in16O and 38% in40Ca, in agreement with
those of Refs.@43# and@44# and just slightly higher than the
experimental estimates.

From this work we can conclude that realistic variation

e

2-12
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calculations for medium-heavy, doubly closed shell nucle
ls coupling scheme with modern, sophisticated potentials
not only feasible, but have also reached the same degre
accuracy as in nuclear matter.

There are several natural extensions we envisage. Fo
stance, the inclusion of three-body correlations, the stud
NÞZ closed shell nuclei and the development of the FHN
SOC formalism for thejj coupling scheme. Work along thes
directions is in progress.
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APPENDIX

In this Appendix we give the explicit expressions of t
remaining diagrams contributing to the three-nucleon pot
tial expectation value in FHNC/SOC:

^v i jk
2p&2.256A2pE d3r 1E d3r 2E d3r 3

f i st~r 12!

f c~r 12!

3Xl s~r 12!
f j st~r 13!

f c~r 13!
Xms~r 13!@Ri s j s l sms

13Ai sd i s l s
Aj sd j sms

#r3
c~r1 ,r2 ,r3!, ~A1!

^v i jk
2p&2.3512A2pE d3r 1E d3r 2E d3r 3

f i st~r 12!

f c~r 12!

3Xl s~r 12!
f j st~r 23!

f c~r 23!
Xms~r 13!@Li s l sns

2Ki s l snsAns#j231
j smsnsr3

c~r1 ,r2 ,r3!, ~A2!
ys

pe

ys

04430
n
re
of
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of
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n
g
e

-

^v i jk
R &3.15

1

6E d3r 1E d3r 2E d3r 3v123
R r3

c~r1 ,r2 ,r3!,

~A3!

^v i jk
R &3.25

1

2E d3r 1E d3r 2E d3r 3v123
R

3
f i~r 23! f k~r 23!

@ f c~r 23!#
2 KikmAm@r3,dir

c ~r1 ,r2 ,r3!d ik

1r3,exch
c ~r1 ,r2 ,r3!Dm#. ~A4!

The Li jk andRi jkl matrices are given in Refs.@19# and@28#,
respectively. The central three-body density,r3

c(r1 ,r2 ,r3), is
written in superposition approximation as

r3
c~r1 ,r2 ,r3!5 (

xyzx8y8z85d,e

gxx8
c

~r1 ,r2!Vx8y8
c

~r2!

3gy8y
c

~r2 ,r3!Vyz
c ~r3!gzz8

c
~r3 ,r1!Vz8x

c
~r1!

28gcc
c ~r1 ,r2!Vcc

c ~r2!gcc
c ~r2 ,r3!

3Vcc
c ~r3!gcc

c ~r3 ,r1!Vcc
c ~r1!. ~A5!

As already stated, only theee combination is not allowed
at a given vertex. Theexchangeanddirect three-body den-
sities, r3,exch/dir

c (r1 ,r2 ,r3), are given by those parts of th
full density where nucleons 2 and 3 belong or not to t
same exchange loop.
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