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NN scattering 3S1-3D1 mixing angle at next-to-next-to-leading order
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The 3S1-3D1 mixing angle for nucleon-nucleon scatteringe1 is calculated to next-to-next-to-leading order in
an effective field theory with perturbative pions. Without pions, the low energy theory fits the observede1 well
for momenta less than;50 MeV. Including pions perturbatively significantly improves the agreement with
data for momenta up to;150 MeV with one less parameter. Furthermore, for these momenta the accuracy of
our calculation is similar to an effective field theory calculation in which the pion is treated nonperturbatively.
This gives phenomenological support for a perturbative treatment of pions in low energy two-nucleon pro-
cesses. We explain why it is necessary to perform spin and isospin traces ind dimensions when regulating
divergences with dimensional regularization in higher partial wave amplitudes.

PACS number~s!: 13.75.Cs, 21.30.2x
ng
wi
,
fo
n
tu
to

it

t
ith

e

t-t
e

er

ge

ve

m
n

of
LO

al

r-

s
ith
nly

-
ion

cle-

nt
Effective field theory provides a technique for describi
two-nucleon systems in the most general way consistent
the symmetries of QCD@1,2#. In Refs.@3,4#, Kaplan, Savage
and Wise~KSW! devised a power counting that accounts
the effect of large scattering lengths. With this power cou
ing the dimension six four-nucleon operators are nonper
bative, while pion exchange and higher dimension opera
are perturbative. Powers ofap are summed to all order~p is
a typical nucleon momentum, anda is anS-wave scattering
length!. When pions are included in a manner consistent w
chiral symmetry the expansion is in powers ofQ/L where
Q5p or mp , and L is the range of the theory. Forp
,mp/2 ~below the pion cut!, pions can be integrated ou
leaving only contact interactions. Therefore, the theory w
out pions is an expansion in powers ofp/mp . Note that for
low enough momentum the theory without pions will b
more accurate since it is not limited by the additionalmp /L
expansion.

A number of observables have been computed at nex
leading order~NLO! with the KSW power counting. Thes
include nucleon-nucleon phase shifts@3–5#, Coulomb cor-
rections to proton-proton scattering@6#, proton-proton fusion
@7#, electromagnetic form factors for the deuteron@8#, deu-
teron polarizabilities@9#, np→dg @10#, Compton deuteron
scattering@11#, parity violating deuteron processes@12#, and
nd→nd @13#. Typically errors are 30–40 % at leading ord
~LO! and of order 10% at NLO indicatingQ/L;1/3, or L
;400 MeV. Since the expansion parameter is fairly lar
calculations at next-to-next-to-leading order~NNLO! are
necessary to achieve accuracy comparable to more con
tional approaches.

In the KSW power counting the leading order diagra
for NN scattering are order 1/Q, so NNLO corresponds to a
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order Q calculation. In the theory without pions, several
the observables listed above have been computed to NN
@14#. In the theory with pions the potential pion and loc
operator contributions to the phase shift in the1S0 channel
were calculated at NNLO in Refs.@15,16#. The deuteron
quadrupole moment@17# has also been computed at this o
der. In this paper the3S1-3D1 mixing anglee1 is calculated
at NNLO in the theory with pions. This calculation provide
a clear example of an observable for which the theory w
perturbative pions does better than the theory with o
nucleons for momenta of ordermp , and without additional
parameters. In addition, forp;mp the accuracy of this pre
diction is comparable to a calculation which treats the p
nonperturbatively@2#.

The relevant Lagrangian has terms with 0, 1, and 2 nu
ons:

L5
f 2

8
Tr~]mS]mS†!1

f 2v

4
Tr~mqS1mqS†!

1N†S iD 01
DW 2

2M
DN1

igA

2
N†s i~j] ij

†2j†] ij!N

2C0
~3S1!O0

~3S1!
1

C2
~3S1!

8
O2

~3S1!
2D2

~3S1!
v Tr~mj!O0

~3S1!

2C2
~SD!O2

~SD!1¯ . ~1!

HeregA51.25 is the nucleon axial-vector coupling,S5j2,
f 5131 MeV is the pion decay constant, the chiral covaria
derivative is Dm5]m1 1

2 (j]mj†1j†]mj), and mj

5 1
2 (jmqj1j†mqj†), wheremq5diag(mu ,md) is the quark
©2000 The American Physical Society05-1



fo

an

he

s
e

za

fo
th
pi
a

n
a

se
ani-

in
the

oef-
re-

y

r-
to

in
t
ure
ith

SEAN FLEMING, THOMAS MEHEN, AND IAIN W. STEWART PHYSICAL REVIEW C61 044005
mass matrix. At the order we are workingvTr(mj)5v(mu

1md)5mp
2 5(137 MeV)2. Equation~1! contains two-body

nucleon operators

O0
~3S1!

5~NTPi
~3S1!N!†~NTPi

~3S1!N!,

O2
~3S1!

5~NTPi
~3S1!N!†~NTPi

~3S1!
¹J 2N!1H.c.,

O2
~SD!5~NTPi

~3S1!N!†~NTPi
~3D1!N!1H.c., ~2!

where the projection matrices are

Pi
~3S1!

5
~ is2s i !~ i t2!

2&
,

Pi
~3D1!

5
n

4An21
S ¹J i¹J j2

d i j

n
¹J 2D Pj

~3S1! , ~3!

d5n11 is the space-time dimension, and¹J5¹Q 2¹W . The
derivatives in Eqs.~2! and ~3! should really be chirally co-
variant, however, only the ordinary derivative is needed

the calculation in this paper.C0
(3S1) , C2

(3S1) , D2
(3S1) , and

C2
(SD) in Eq. ~1! are normalized so that the on-shell Feynm

rules in the center of mass frame are

~4!

wherep is the momentum of the nucleon. From now on t
superscript (3S1) will be dropped. Equation~4! is correct
even if spin and isospin traces are performed inn dimen-
sions.

To regulate ultraviolet divergences it is convenient to u
dimensional regularization, which respects all the symm
tries of the Lagrangian. When using dimensional regulari
tion it is necessary to perform spin traces inn dimensions in
order not to break rotational symmetry. This is important
calculating divergent graphs in higher partial waves. For
nucleon theory it is convenient to also continue the isos
traces ton dimensions so that the regulator does not bre
the Wigner symmetry@18# of the lowest order Lagrangia
@19#. Spin and isospin polarization vectors are then norm
ized so that

(
i

e ie i* 5d215n. ~5!

For the scatteringNN(e i)→NN(e j ), i 5 j so calculations
may be simplified by setting

e ie i* → d i j

n
. ~6!
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A more detailed discussion of traces inn dimensions is given
in Appendix A.

To implement the KSW power counting it is useful to u
a renormalization scheme where the power counting is m
fest, such as PDS@3,4# or OS@20,21#. ~In this paper the PDS
scheme will be used.! In these schemes coefficients of certa
four-nucleon operators have power law dependence on
renormalization point,mR , and taking mR;p;mp;Q
makes the power counting manifest. The size of these c
ficients is larger than naive dimensional analysis would p
dict due to the presence of a nontrivial fixed point fora
→`. A consequence of this is that bubble graphs withC0’s
must be summed to all orders. This sums all powers ofap
@3,22#. The 3S1 coefficients in Eq.~1! scale asC0(mR)
;1/Q, C2(mR)p2;Q0, andmp

2 D2(mR);Q0. These param-
eters are fixed by the3S1 phase shift at NLO.C2

(SD) is an
unknown parameter and enters into the3S1-3D1 amplitude at
orderQ. This is clear from the beta function forC2

(SD)(mR)
in the theory without pions:

b2
~SD!5mR

]

]mR
C2

~SD!~mR!5S MmR

4p DC0
~3S1!

~mR!C2
~SD!~mR!.

~7!

Solving this equation givesp2C2
(SD)(mR);p2/mR;Q. As

discussed below, pions giveC2
(SD) an additional logarithmic

dependence onmR .
The leading order3S1-3S1 amplitude is

A~21!52
4p

M

1

g1 ip
, g5

4p

MC0
1mR . ~8!

This amplitude has a pole atp5 ig corresponding to the
deuteron bound state. The deuteron has binding energB
52.22 MeV, sog5AMB545.7 MeV. With this boundary
condition the difference betweeng and the observed scatte
ing length a is obtained from perturbative contributions
C0 @20#

C0~mR!5C0
np~mR!1C0

~0!~mR!1¯ , ~9!

whereC0
(0)(mR);Q0. In the PDS scheme the expansion

Eq. ~9! is necessary to obtainmR independent amplitudes a
each order inQ. This expansion is also necessary to ens
that higher order corrections do not give an amplitude w
spurious higher order poles@20,21#.

The S matrix for the 3S1 and 3D1 channels is 232 and
can be parametrized using the convention in Ref.@23#:

S511
iMp

2p S ASS ASD

ASD ADDD
5S e2i d̄0 cos 2ē1 iei d̄01 i d̄2 sin 2ē1

iei d̄01 i d̄2 sin 2ē1 e2i d̄2 cos 2ē1
D . ~10!

In this parametrization the mixing angle is given by
5-2
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sin~2ē1!5
Mp

2p

ASD

AF11
ipM

2p
ASSGF11

ipM

2p
ADDG1S Mp

2p
D 2

@ASD#2

. ~11!
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The phase shifts and mixing angle can be expanded in p
ers ofQ/L

d̄05 d̄0
~0!1 d̄0

~1!1¯ , d̄2501 d̄2
~1!1¯ ,

ē1501 ē1
~1!1 ē1

~2!1¯ , ~12!

where the superscript denotes the order in theQ expansion.
The phase shifts and mixing angles start at one higher o
in Q than the amplitudes because of the factor ofp in Eq.
~10!. SinceASD starts atQ0, there is no orderQ0 contribu-
tion to ē1 . This is consistent with the fact that this angle
much smaller than the3S1 phase shift. In the PDS schem
expressions ford̄0

(0,1) , d̄2
(1) , and ē1

(1) were given in Ref.@4#.
Our main result is the calculation ofē1

(2) . The NNLO

predictions ford̄0
(2) and d̄2

(2) are not needed to calculateē1
(2)

and will be presented in a future publication@24#. Expanding
both sides of Eq.~11! in powers ofQ gives1

ē1
~1!5

Mp

4p

ASD~0!

F112
ipM

4p
A~21!G1/25

Mp

4p
uA~21!u

ASD~0!

A~21! ,

~13!

ē1
~2!5

Mp

4p

ASD~1!

F112
ipM

4p
A~21!G1/22 i e1

~1!@d0
~1!1d2

~1!#

5
Mp

4p
uA~21!uReFASD~1!

A~21! G .
ē1

(1) is determined by the orderQ0 graphs in Fig. 1 and doe
not involve any free parameters. The orderQ0 mixing am-
plitude is @4#

ASD~0!5&
MgA

2

8p f 2 A~21!H mp Re@X~a!#2
g

a
Im@X~a!#J ,

~14!

X~a!52
3

4a22
3i

4a
1

ia

2
1 i S 1

2a
1

3

8a3D ln~122ia!,

where

1The branch cut for the square root in Eq.~13! is taken to be on

the positive real axis. This is consistent withd̄0(p→0)5p. The
sign of our 3D1 state is the opposite of Ref.@4#, makingASD(0) in
Eq. ~14! have the opposite overall sign.
04400
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p

mp
. ~15!

At order Q, the Feynman diagrams that contribute to t
3S1-3D1 amplitude are shown in Fig. 2. In addition to po
tential pions, at this order theS-wave phase shifts can hav
contributions from diagrams with radiation pions@4#. Per-
forming the energy loop integrals using contour integratio
potential pions occur when a pole from a nucleon propaga
is taken. Radiation pion contributions come from taking
pole in a pion propagator. For graphs with radiation pion
is necessary to count powers ofp;Qr5AMmp @25# and
then scale down top;mp . OrderQ contributions can come
from Qr

3 and Qr
4 radiation pion graphs@16#, however these

vanish for a 3S1-3D1 transition. Soft pion graphs begin a
order Qr

2, and for p;mp are orderQ2 @25#. Relativistic
corrections begin at orderQ2 and therefore are not included

In dimensional regularization a graph withk loops in-
cludes a factor of (mR/2)k(42d) ~where the extra 2 is inserte
for convenience!. Spin and isospin traces will be evaluated
d21 dimensions for the reasons discussed in Appendix
Of the graphs in Fig. 2 only~e! and ~f! are divergent ind
5422e dimensions. The divergence in~f! is cancelled by a
graph with the NLOduvD2 counterterm2 given by Eq.~5.2!
of Ref. @21#. The p2/e divergence in~e! is cancelled by the
new counterterm

duvC2
~SD!5

3&C0
finite

10 S MgA
2

8p f 2D 2S 1

2e
2gE1 ln p D . ~16!

Note that it is crucial to indicate what constants are s
tracted along with the 1/e pole. The couplingC2

(SD) is deter-
mined from a fit to the observedē1 . If the extracted value is
to be used in other calculations, then its exact definition
cluding finite subtractions will be needed.3 The divergence in
Fig. 2~e! induces ln(mR) dependence inC2

(SD)(mR). In PDS

C2
~SD!~mR!5kC0~mR!2

3&

10
C0~mR!S MgA

2

8p f 2D 2

lnS mR
2

l2 D ,

~17!

2The bare coefficients in Eq.~1! are written asCbare5duvC
1Cfinite. In PDS additional finite subtractions are made so t
Cfinite5C(mR)2SdnC(mR), see Ref.@21#.

3We have not compared our value ofC2
(SD)(mp) to the value

extracted from the deuteron quadrupole moment@17# for this rea-
son.
5-3
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where k and l are constants. Note that there is only o
unknown in Eq.~17! since a shift in the value ofk can be
compensated by changing the value ofl.

At order Q the diagrams in Fig. 2 give the following
amplitudes in the PDS scheme

ASD~1!5Aa1Ab1Ac1Ad1Ae1Af , ~18!

where

iAa5 iC2
~SD!p2F11

MA~21!

4p
~ ip1mR!G52 iA~21!

C2
~SD!p2

C0
,

~19!

iAb52 i @A~21!#2&
~C2p21D2mp

2 1C0
~0!!

C0
2

mpMgA
2

8p f 2 X~a!,

iAc5 i
3&

2

M

4p S gA
2

2 f 2D 2

mpY~a!,

iAd52 iA~21!&S MgA
2

8p f 2D 2

mp
2 F ia2

i

2a
ln~122ia!GX~a!,

iAe5 iA~21!&S MgA
2

8p f 2D 2

mp
2 F2

3a2

10
lnS mR

2

mp
2 D

2 iaX~a!1Z~a!G ,
iAf52 i @A~21!#2&S M

4p D 3S gA
2

2 f 2D 2

mp
3 F ~ ia!22

mR
2

mp
2

2
1

2
lnS mR

2

mp
2 D 1 ln~122ia!GX~a!.

The functionX(a) is given in Eq.~14!, and the functions
Y(a) and Z(a) are given in Appendix B. The sum of th
amplitudes in Eq.~19! is

ASD~1!52A~21!z6a22@A~21!#2&
mp

3 MgA
2

8p f 2

3X~a!~z1a21z2!1&
Mmp

4p S gA
2

2 f 2D 2

3H MmpA~21!

4p FZ~a!1
i

2a
ln~122ia!X~a!G

FIG. 1. The two orderQ0 diagrams that contribute toē1 @4#. The
solid lines are nucleons and the dashed lines are potential pion
04400
2FMmpA~21!

4p G2

ln~122ia!X~a!

1
3

2
Y~a!1X~a!J , ~20!

where z1 , z2 , and z6 are mR independent dimensionles
combinations of coupling constants

z15
C2~mR!

C0~mR!2 ,

z25
D2~mR!

C0~mR!2 1
C0

~0!~mR!

mp
2 C0~mR!2

2
gA

2

2 f 2 S M

4p D 2F1

2
lnS mR

2

mp
2 D 1

mR
22g2

mp
2 G ,

z65
mp

2 C2
~SD!~mR!

C0~mR!
1

3&

10 S MmpgA
2

8p f 2 D 2

lnS mR
2

mp
2 D . ~21!

z1 and z2 also appear in the NLO3S1 amplitude@see Eq.
~A2!#. z2 can be eliminated by imposing the condition th
no spurious double pole should appear in this amplitude@16#:

z25
g2

mp
2 z12

gA
2

2 f 2 S M

4p D 2

lnS 11
2g

mp
D . ~22!

The constantz1 is extracted from a fit to the3S1 phase shift
at NLO. The orderQ contribution to ē1 contains one un-
known parameter,z6 or C2

(SD)(mR). This parameter is deter
mined by fitting to the value ofē1 from the Nijmegen partial
wave analysis@26# at low momentum. Results forē1 are
shown in Fig. 3. The solid line is the Nijmegen result. T
order Q result in the theory with pions@4# is shown by the
dotted line. The result of the orderQ2 calculation in the
theory with pions is given by the dot-dashed line in Fig.

The values used in Fig. 3 are

.

FIG. 2. OrderQ diagrams forē1 . The filled circle is defined in
Fig. 1, and the diamonds in~b! denote insertions of the3S1-3S1

operators with coefficientsC0
(0) , C2 , or D2 .
5-4
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g545.7 MeV, z150.2345, z2520.1038, z650.385.
~23!

The value ofz6 in Eq. ~23! corresponds to

C2
~SD!~mp!524.56 fm4. ~24!

For comparison results have also been shown in Fig. 3
the theory without pions@14#, where the prediction forē1
begins at orderQ2. The long dashed line is the orderQ2

result and the theory prediction has one free parameter.
short dashed line is the orderQ4 result which has two free
parameters. With one less free parameter, the orderQ2 pre-
diction of the theory with pions does better than the orderQ4

prediction of the theory without pions forp.50 MeV. In
fact the theory without pions breaks down aroundmp/2, as
expected since this is where the pion cut begins. It has b
noted in the literature@27# that many observables may n
test the power counting for perturbative pions. As can
seen from Fig. 3, the mixing parameter provides an exam
in which perturbative pions clearly give improved agreem
with the data.

The dot-dashed line in Fig. 3 improves over the orderQ
result for p,140 MeV. Forp;mp , the error in the order
Q2 prediction forē1 is ;20%. Recall that the mixing angl
is small and an error of;0.5% is consistent with our expec
tation for a NNLO calculation. It is interesting to ask ho
sensitive the results in Fig. 3 are to the choice of parame
If we use the3S1 scattering length to fixg instead of the
deuteron binding energy then the orderQ0 result ~dotted
line! increases by;1° for p;mp . Therefore, the mixing
angle is quite sensitive to the location of the pole. On
other hand, the NNLO prediction is not sensitive to the va
of z1 obtained from fitting the3S1 phase shift. This is be
causeē1

(2) in Eq. ~13! depends on the linear combination

z5z620.56z1 , ~25!

but is insensitive to the orthogonal combination. A change
z1 can be compensated by a change inz6 while keepingz

FIG. 3. Predictions for the3S1-3D1 mixing parameterē1 . The
solid line is the multienergy Nijmegen partial wave analysis@26#.
The long and short dashed lines are the orderQ2 andQ4 predictions
in the theory without pions@14#. The dotted line is the orderQ
prediction in the theory with pions from Ref.@4#. The dash-dotted
line is the orderQ2 prediction in the theory with pions.
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.0.255. Solutions with the samez give similar predictions,
for instance, takingz150.300 andz650.423 gives an order
Q2 phase shift that differs by,0.08° from the one shown in
Fig. 3.

A further test of the convergence of theQ expansion is
provided by examining the extent to which the amplitu
violates unitarity. When Eq.~11! is expanded in powers ofQ
the expression forē1 is explicitly real at each order inQ.
However, one could insert the NLO expression forASS and
ADD and the NNLO expressions forASD into Eq. ~11! and
solve forē1 without making aQ expansion. The resultingē1

will have an imaginary part which is orderQ3 in the power
counting. Comparing the imaginary part ofē1 calculated us-
ing Eq. ~11! to ē1

(1)1 ē1
(2) gives uIm(ē1)/(ē1

(1)1ē1
(2))u<0.2 for

p<180 MeV, which is of the expected size for an orderQ2

quantity. Also, for p<mp the ratio uASD(1)/ASD(0)u<0.6,
which is consistent with an expansion parameter of or
1/2. The agreement of the size of these terms with our
pectations suggests that theQ expansion is under control.

In Ref. @2#, the mixing angle is calculated using Wein
berg’s power counting. In this approach, momentum pow
counting is applied to the potential and then the Schro¨dinger
equation is solved numerically. Solving the Schro¨dinger
equation with the one pion exchange potential is equiva
to summing ladder graphs with potential pion exchange to
orders. However, all necessary counterterms are not
cluded, so there is a residual dependence on the cutoff.
cutoff dependence can be used to give an estimate of
uncertainty in the theoretical prediction due to higher ord
effects. We will compare our calculation with that of Re
@2#, however, it is important to keep in mind that Ref.@2#
includes graphs which are higher order inQ than those in
Fig. 2. Reference@2# also includesD’s and more parameter
are varied in the fit. The results of Ref.@2# are shown in Fig.
4. Varying the cutoff between 0.6mr and 1.3mr gives an
uncertainty of 0.7° atp5mp . This uncertainty is compa
rable to the error in our fit which differs from the data b
0.5° at p5mp . The error in our calculation increases fo
larger values ofp because our prediction grows withp faster
than the observedē1 . For these values ofp the nonperturba-

FIG. 4. Prediction forē1 from Ref. @2#. The fit was done to the
partial wave analysis in Ref.@26# shown by the solid line. The long
dashed line uses the cutoffL50.6mr , the short dashed line use
L5mr , and the dotted line usesL51.3mr .
5-5
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SEAN FLEMING, THOMAS MEHEN, AND IAIN W. STEWART PHYSICAL REVIEW C61 044005
tive calculation suffers from considerable uncertainty. Fo
cutoff equal tomr , the prediction grows withp, but with a
lower value of the cutoff (0.6mr) the calculatedē1 provides
better agreement with data. It would be interesting to work
one higher order inQ and/or includeD’s with the KSW
power counting to see if the agreement with data at highep
improves. At one higher order inQ a four derivative four
nucleon 3S1-3D1 operator appears. However, using t
renormalization group its coefficient is determined in ter
of C0 , C2 , andC2

(SD) .
For momentap!mp , effective range expansions can b

constructed for the phase shifts and mixing angle. By in
grating the pion out of the effective field theory coefficien
in the expansion can be predicted. In Ref.@28# coefficients in
the expansions ofp cotd(1S0), p cotd̄0, and ē1 are obtained
from the orderQ0 calculations in Ref.@4#. Reference@28#
found that the effective field theory gives parameter free p
dictions for the higher coefficients, but these did not ag
with fits @29# to the partial wave data. However, it is not cle
whether the extraction of higher order terms in the expans
is accurate enough to test the effective field theory@20#. In
toy models it has been shown that the convergence of
effective field theory predictions for these coefficients
slow @30#. This also seems to be the case when the effec
field theory is applied to real data. In Ref.@16# it was found
that the orderQ corrections to the coefficients ofp cotd(1S0)

improve the agreement with the fit values, however, the
served convergence is rather slow.

From the amplitude in Eq.~20! the orderQ2 corrections
to the momentum expansion ofē1 can be derived. The ex
pansion in the theory without pions takes the form@14#

ē15b1

p3

Ap21g2
1b2

p5

Ap21g2
1¯ , ~26!

whereb1 andb2 are constants.ē1 has a cut atp56 ig, so
the momentum expansion ofē1 only converges forp,g.
Clearly it would be more useful to expand a function w
better analyticity properties. Following Ref.@31# this can be
done by parametrizing theS matrix as

S5S cose1 2sine1

sine1 cose1
D S e2id0 0

0 e2id2
D S cose1 sine1

2sine1 cose1
D .

~27!

p cotd0, p5 cotd2, ande1 have momentum expansions wi
radius of convergencemp/2 rather thang. For low energy
expansions these variables should be used. The expres
for d0,2 andd̄0,2 are the same to orderQ. The mixing angle in
this parametrization is related to the one in Eq.~10! by

tan~2e1!5
tan~2ē1!

sin~ d̄02 d̄2!
5

2ASD

ASS2ADD
. ~28!

In terms of the amplitudes, the first two terms in theQ ex-
pansion ofe1 are
04400
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s
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-
e

n

e

e

-

ons

e1
~1!5

ASD~0!

A~21! ,

e1
~2!5ReFASD~1!

A~21! G2
Mg

4p
e1

~1!FADD~0!2uA~21!u2
ASS~0!

~A~21!!2G .
~29!

In Fig. 5 we plot the orderQ andQ2 effective field theory
predictions fore1 using the parameters in Eq.~23!. The open
circles in Fig. 3 are data from Virginia Tech@32#. The stars
are the Nijmegen single energy fit to the data@26# whose
quoted errors are invisible on the scale shown. It see
somewhat strange that the data point atp5265 MeV from
Ref. @32# differs from the fit in Ref.@26# by more than eight
standard deviations.

e1 has a series expansion inp2:

e15g1p21g2p41g3p61¯ . ~30!

Fitting this polynomial to the solid line in Fig. 5 fo
7 MeV,p,50 MeV and weighting low momenta mor
heavily than high momenta gives the values in the first c
umn in Table I. To estimate the uncertainty in the extract
of the gi we varied the range of momentum and weighti
used in the fit. The value ofg1 is quite stable, whileg2 and
g3 varied by 10 and 50 %, respectively. The effective fie
theory predictions for the coefficientsgi are

FIG. 5. Predictions for the mixing parametere1 defined in Eq.
~27!. The solid line is the multienergy Nijmegen partial wave ana
sis @26#. The dotted line is the NLO prediction in the theory wit
pions from Ref.@4#. The dash-dotted line is the NNLO prediction i
the theory with pions. The open circles are data from Virginia Te
@32# and the stars are Nijmegen single energy data@26# whose
quoted errors are invisible on the scale shown.

TABLE I. Predictions for the coefficients in a momentum e
pansion ofe1 at LO and NLO in the effective field theory.

Fit to Nijmegene1 O(Q0) O(Q)

g1 (fm2) 0.3060.01 0.55 0.22
g2 (fm4) 22.060.2 24.1 21.5
g3 (fm6) 8.764.3 28 9.5
5-6
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g15
2&

mpLNN
S 8

15
2

g

mp
D2

&

LNN
2 S 601

600
2

8

5
ln 22

5g

mp
1

2g2

mp
2 D

2
z6

mp
2 1

8p&z2

MLNNN
,

g25
4&

mp
3 LNN

S 232

35
1

5g

3mp
D1

4&

mp
2 LNN

2 S 391

315
2

4

5
ln 2

2
589g

120mp
1

8g2

3mp
2 D 1

2&

mp
2 LNN

4p

M S z12
10

3
z2D ,

g35
16&

mp
5 LNN

S 16

21
2

7g

5mp
D2

16&

mp
4 LNN

2 S 241

200
2

3

2
ln 2

2
252409g

50400mp
1

46g2

15mp
2 D 2

8&

mp
4 LNN

4p

M S 5

6
z12

14

5
z2D .

~31!

In eachgi the first term is from the orderQ0 diagrams in Fig.
1, while the remaining terms are from the orderQ diagrams
in Fig. 2. Using the values in Eq.~23! gives the predictions
in Table I. At orderQ0 the effective field theory is off by a
factor of 2. The orderQ corrections make the prediction
closer to the fit values; the error is;25% for g1 and g2 ,
while g3 is consistent within error. The effective field theo
is converging onto the experimentalgi , but the errors are
somewhat larger than anticipated by the power counting.
convergence for terms in the expansion ofe1 is faster than
the convergence in the1S0 channel.

To summarize, we have computed the orderQ2 correction
to the mixing parametere1 . The effective theory converge
onto the observede1 , and errors are comparable to unce
tainties in alternative approaches where the pion is trea
nonperturbatively forp;mp . When performing low energy
momentum expansions, it is important to use a paramete
tion of theSmatrix in which the mixing angle has a conve
gent expansion forp,mp/2. The effective field theory pre
dictions for the coefficients of this expansion conver
towards values extracted from a fit to low energy data. In
future, it will be interesting to see if including theD or going
to one higher order in theQ expansion will provide bette
agreement fore1 at p.mp .

Note added. While this paper was being reviewed, th
authors completed a NNLO calculation of the phase shift
the 1S0 , 3S1 , and 3D1 channels. Predictions for the otherP
andD wave phase shifts were also examined. We find tha
some of these channels the KSW expansion exhibits la
corrections at NNLO which suggest a breakdown of the p
turbative treatment of pions. A detailed discussion can
found in the preprint@24#.
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APPENDIX A: TRACES IN n DIMENSIONS

In the standard implementation of dimensional regulari
tion in relativistic theories, the spin traces are performed id
dimensions@34#. For nonrelativistic nucleon-nucleon scatte
ing the spin traces are often done in three dimensions, a
which the remaining scalar integrals are evaluated ind5n
11 dimensions. This is in agreement with performing a p
tial wave expansion of the matrix elements using Cleb
Gordan coefficients; a procedure specific ton53. This ap-
proach provides well-defined results forS-wave transitions.
However, when higher partial waves are considered it
comes necessary to perform the spin traces inn dimensions.
To see why consider Fig. 2~e!, and replace the bubble sum
by a singleC0 for simplicity. The numerator of this graph i
proportional to

S pipi 8

p2 2
d i i 8

n
DTr@s is jsms i 8sm8s j 8#qmqm8kjkj 8,

~A1!

wherek andq are the two loop momenta which run throug
the pion lines. First consider settingd i i 8/n5d i i 8/3 in Eq.
~A1! and performing the trace in four dimensions. At ve
low momentum, the result can be expanded inp/mp . When
this is done, the amplitude from this graph is proportional
a constant for lowp. However, for a3S1 to 3D1 transition
the amplitude should be proportional top2 at low momen-
tum. The constant indicates that projection onto3S1-3D1

was unsuccessful. If we keep thed i i 8/n in Eq. ~A1!, and
perform the trace in three dimensions then the amplitud
still proportional to a constant for low momentum. Howeve
if the trace in Eq.~A1! is done inn dimensions then the
amplitude is proportional top2 as it should be. In the
3S1-3D1 calculation the two terms in round brackets in E
~A1! have mp

2 /e divergences. These divergences cancel
the difference no matter how the expression is evalua
because there is no operator in this partial wave to absor
mp

2 /e divergence. However, the finitemp
2 contributions only

cancel when spin traces and projection operators are ev
ated inn dimensions. Therefore, in this paper all spin trac
will be performed inn dimensions.

In Refs.@19,33# it was pointed out that the nucleon con
tact interactions with no derivatives are invariant und
Wigner’s SU~4! spin-isospin symmetry fora(1S0),a(3S1)

→`. If spin traces are performed inn dimensions then it is
necessary to treat the isospin traces on the same foo
otherwise Wigner symmetry will be broken by the regulat
For this reason, isospin traces will also be done inn dimen-
sions. For example, if the orderQr

3 radiation pion calculation
in Ref. @25# is performed with spin traces inn dimensions,
but isospin traces in 3 dimensions then the result is not p
portional to 1/a(1S0)21/a(3S1). However, in Ref.@19# it
5-7
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was shown that Wigner symmetry implies that the orderQr
3

graphs should be proportional to 1/a(1S0)21/a(3S1). If all
spin and isospin traces are performed inn dimensions then
the value of individual orderQr

3 graphs changes, but the su
gives the same result as in Ref.@25#.

If the partial wave projection operators are chosen to h
the normalization given in Eq.~3! then doing the traces inn
dimensions does not change any calculations in the the
without pions. ForS-wave transitions in the theory with
pions this convention amounts to a change of renormal
tion scheme, since the difference in evaluating a graph is
overall multiplicative factor of the form 11O(e). In PDS,
subleading terms in the beta functions for coefficients of f
nucleon operators are affected. When spin and isospin tr
are done inn dimensions the NLO3S1 ~or 1S0! amplitude is
v.

B

s

.

04400
e

ry

a-
n

r
es

A~0!

@A~21!#2 52mp
2 ~z1a21z2!1

mp
2 gA

2

2 f 2 S M

4p D 2

3F ~ ĝ22a2!

4a2 ln~114a2!2
ĝ

a
tan21~2a!G ,

~A2!

whereĝ5g/mp andz1 andz2 are given in Eq.~21!. Differ-
ent schemes will give different expressions forz1,2, but the
amplitude in Eq.~A2! will remain the same.

APPENDIX B: EXPRESSIONS FOR Y AND Z
In this appendix we give expressions forY andZ which

appear in Eqs.~19! and ~20!:
Y~a!52
2

5
1

3

10a2 1S 3

8a5 1
5

4a32
2a

5 D tan21~a!2S 3

8a5 1
5

4a3D tan21~2a!

1
~1524a2!

80a6 ln~11a2!2
~3116a2116a4!

32a7 ImFLi2S 2a21 ia

114a2 D1Li2~22a22 ia!G
1 i F 3

8a3 1
1

2a
2

a

2
2

~3110a2!

16a5 ln~114a2!1
~3116a2116a4!

128a7 ln2~114a2!G , ~B1!

Z~a!52
7

40
1

9i

16a3 1
21

40a2 1
3i

40a
2

3ia

5
1

29a2

200
1S 3a2

5
2

9

16a42
15

8a2D ln 2

1
3~16a7250a324ia2215a115i !

80a5 ln~12 ia!1
~29i 127a224ia2178a3216a5!

32a5 ln~122ia!

2
~9148a2148a4!

64a6 F3

2
ln2~122ia!12 Li2~2112ia!1Li2S 112ia

2112ia D1
p2

4 G . ~B2!

In deriving the formula forZ(a) we found it useful to use reduction formulas due to Tarasov@35# implemented with the
program from Ref.@36#.
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