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NN scattering S;-3D; mixing angle at next-to-next-to-leading order
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The 3S;-3D, mixing angle for nucleon-nucleon scatteriagis calculated to next-to-next-to-leading order in
an effective field theory with perturbative pions. Without pions, the low energy theory fits the obggmwed
for momenta less than-50 MeV. Including pions perturbatively significantly improves the agreement with
data for momenta up te-150 MeV with one less parameter. Furthermore, for these momenta the accuracy of
our calculation is similar to an effective field theory calculation in which the pion is treated nonperturbatively.
This gives phenomenological support for a perturbative treatment of pions in low energy two-nucleon pro-
cesses. We explain why it is necessary to perform spin and isospin tradedirimensions when regulating
divergences with dimensional regularization in higher partial wave amplitudes.

PACS numbd(s): 13.75.Cs, 21.30:x

Effective field theory provides a technique for describingorder Q calculation. In the theory without pions, several of
two-nucleon systems in the most general way consistent witthe observables listed above have been computed to NNLO
the symmetries of QCIPL,2]. In Refs.[3,4], Kaplan, Savage, [14]. In the theory with pions the potential pion and local
and Wise(KSW) devised a power counting that accounts for gperator contributions to the phase shift in tH&, channel

the effect of large scattering lengths. With this power countyyare calculated at NNLO in Ref§15,16. The deuteron
ing the dimension six four-nucleon operators are nonpertur- v

. Lo . ; . uadrupole momerjtl7] has also been computed at this or-
bative, while pion exchange and higher dimension operatorg . gs..3 .. .
are perturbative. Powers ap are summed to all orddp is er. In th'_s paper th Sl'_ Dy mixing a_ngleel IS galculatgd

a typical nucleon momentum, ardis an Swave scattering at NNLO in the theory with pions. This ca_lculatlon prowde_s
length. When pions are included in a manner consistent witr clear example of an observable for which the theory with
chiral symmetry the expansion is in powers@fA where perturbative pions does better than the theory with only
Q=p or m,, and A is the range of the theory. Fgg  nucleons for momenta of orden,, and without additional
<m_/2 (below the pion cyt pions can be integrated out parameters. In addition, fgg~m,, the accuracy of this pre-
leaving only contact interactions. Therefore, the theory with-diction is comparable to a calculation which treats the pion
out pions is an expansion in powersfm_ . Note that for  nonperturbativelyf2].

low enough momentum the theory without pions will be  The relevant Lagrangian has terms with 0, 1, and 2 nucle-
more accurate since it is not limited by the additiomgl/A  gps:

expansion.

A number of observables have been computed at next-to-
leading orderlNLO) with the KSW power counting. These
include nucleon-nucleon phase shif-5], Coulomb cor-
rections to proton-proton scatterif@|, proton-proton fusion
[7], electromagnetic form factors for the deutef@}, deu-
teron polarizabilitied 9], np—d+y [10], Compton deuteron

f2 B . 2w N
£=§TI’((9 2(9#2 )+ TTI’(qu"‘qu )

scattering 11], parity violating deuteron processg?], and . D2 iga

vd— vd [13]. Typically errors are 30—40 % at leading order +N'| Do+ M N+ TNT“i(gaigT_gTaif)N

(LO) and of order 10% at NLO indicatin@/A ~1/3, or A

~400MeV. Since the expansion parameter is fairly large, 5 5 C(;Sl) . . .
calculations at next-to-next-to-leading ordédNLO) are — Cé Sl)(’)g SUy TO(Z S D(2 SV Tr(m?) Og S
necessary to achieve accuracy comparable to more conven-

tional approaches. _C<28D>O(28D>+... ) (1)

In the KSW power counting the leading order diagrams
for NN scattering are order @, so NNLO corresponds to an

Hereg,=1.25 is the nucleon axial-vector coupling= &2,
*Electronic address: fleming@furbaide.physics.utoronto.ca f=131MeV is the pion decay constant, the chiral covariant
TElectronic address: mehen@theory.caltech.edu derivative is D,=d,+3 (£9,£'+&'9,£€), and mé
*Electronic address: iain@theory.caltech.edu =3 (§mgé+ Equg#), wherem,=diag(m,,my) is the quark
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mass matrix. At the order we are workirgl'r(mé) = w(m, A more detailed discussion of tracesrnimimensions is given
+mg)=m?2=(137 MeV)’. Equation(1) contains two-body in Appendix A. o
nucleon operators To implement the KSW power counting it is useful to use
a renormalization scheme where the power counting is mani-
0(381>:(NTP§351)N)T(NTP{381>N) fest, such as PDB3,4] or 0S[20,21]. (In this paper the PDS
0 i i ! H . R
scheme will be useflin these schemes coefficients of certain
3sy) TeCS it aTe (3502 four-nucleon operators have power law dependence on the
O, M=(N"P; "'N)'(N'P; ""V°N)+H.c,, renormalization point,ug, and taking ugr~p~m,~Q
makes the power counting manifest. The size of these coef-
O(ZSD):(NTpi(ssl)N)T(NTpi(le)N)+ Hec. (20 ficients is larger than naive dimensional analysis would pre-
dict due to the presence of a nontrivial fixed point for
where the projection matrices are —o, A consequence of this is that bubble graphs v@s
must be summed to all orders. This sums all powersf
3sy  (1o20i)(i 7)) [3,22). The 3S; coefficients in Eq.(1) scale asCy(ug)
T o, ~1/Q, Cy(ur)p?~QP andm2D,(ug)~Q°. These param-
eters are fixed by théS, phase shift at NLOCSP is an
) unknown parameter and enters into ff®-3D, amplitude at
P

(°sy) (3)  orderQ. This is clear from the beta function f@5°° (ug)
in the theory without pions:

Mur| (s
- )cg Y (ur)CH ().

(7)

derivatives in Eqs(2) and (3) should really be chirally co- B85 =ug—C5(ug)=
variant, however, only the ordinary derivative is needed for

3 3 3
the calculation in this papelcé ) C(2 S D(2 %) and

C$P in Eq. (1) are normalized so that the on-shell FeynmanSolving this equation givep?C$S? (ug)~p% ur~Q. As

d=n+1 is the space-time dimension, akd=V—V. The P (

rules in the center of mass frame are discussed below, pions give'>® an additional logarithmic
dependence opg.
c§s cfsy The leading ordePS;-3S, amplitude is
38 >< t5 = -1 Clgasl) ’ i >< b5 = —t Cfsl) P2 ’
oo A(_l)__477 1 B 47 8
Dy™ cisD = Vy-l—ip’ Y—MCO‘*‘,U«R- (8

. 2G5S 2 . (SD
3S1><3sl =—iD{*m?, 3sl><31). =8P p?

(4)  This amplitude has a pole g=iy corresponding to the
deuteron bound state. The deuteron has binding enBrgy
=2.22MeV, soy=.MB=45.7 MeV. With this boundary
) . . i 7 condition the difference betweepand the observed scatter-
even if spin and isospin traces are performedidimen- ing lengtha is obtained from perturbative contributions to

sions. C, [20]
To regulate ultraviolet divergences it is convenient to use°

dimensional regularization, which respects all the symme-

tries of the Lagrangian. When using dimensional regulariza- Col ur) = CoP(r) +CH (mr)++ ©

tion it is necessary to perform spin tracesidimensions in

order not to break rotational symmetry. This is important forwhere C§(ug) ~QP. In the PDS scheme the expansion in
calculating divergent graphs in higher partial waves. For thd=g. (9) is necessary to obtaing independent amplitudes at
nucleon theory it is convenient to also continue the isospireach order irQ. This expansion is also necessary to ensure
traces ton dimensions so that the regulator does not breakhat higher order corrections do not give an amplitude with
the Wigner symmetry18] of the lowest order Lagrangian Spurious higher order pol¢20,21].

[19]. Spin and isospin polarization vectors are then normal- The Smatrix for the 3S; and ®D; channels is X2 and

wherep is the momentum of the nucleon. From now on the
superscript 1S;) will be dropped. Equatior(4) is correct

ized so that can be parametrized using the convention in R23]:
: SS  4SD
> e =d—1=n. (5) oqy Mp (AT A
i 2 ASD ADD
For the s_catt_e_ring\l N(ei)ﬁNN(eJ), i=] so calculations eziEO cos 2%, ieiEO+iEZ sin 2¢;
may be simplified by setting = - - — . (10)
B ie'%ti%2sinZe;  e?%cos 2
S
€€ — —. (6) . L L o
n In this parametrization the mixing angle is given by
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- M p ASD
sin(2e;)= — . (11
2m ipM ipM Mp)?
1+ ——ASS|| 1+ ——APP |+ | ——| [ASP]?
2 2 2
|

The phase shifts and mixing angle can be expanded in pow- p

ers of Q/A a= et (15

EO:E)O)—’_E)J-)—’_“.’ EZZO_F%J-)_'_..., ] )
At order Q, the Feynman diagrams that contribute to the
P CI = C N (12) 35,-3D, amplitude are shown in Fig. 2. In addition to po-
! L ! ' tential pions, at this order th&wave phase shifts can have
where the superscript denotes the order in@hexpansion. contrlbutlr?ns from clilagra}ms W'Th raQ|at|0n p'oﬁ@' Per—_
The phase shifts and mixing angles start at one higher Ordéprmln_g It € energy OOE mtegrals ;Jsmg cont?ur Integration,
in Q than the amplitudes because of the factopdh Eq. _pOteEt'a pléor(ljs_ occur when a ppbe from a nuc ?‘on pro;l)(ggator
(10). Since ASP starts atQ®, there is no ordeQ® contribu- 'S Ita_en. Xadiation pion cgntn ut|ohns qohmed_rom taking a
tion to ;. This is consistent with the fact that this angle is polein a pion propagator. For grap va't radiation pions it
much smaller than th&S, phase shift. In the PDS scheme, 'S Necessary to count powers pf-Q,=yMm, [25] and
expressions f0B®D W andet?) were given in Ref[4]. then scaale dOV\gn tp_~ m. QrderQ contributions can come
o ) 0 it g Zth, I 1| tion &2 The NNLO from Q; and Q; radiation pion graph§16], however these
}”.ma'” reszu IS 2e calculation @ °. The vanish for a3S;-3D; transition. Soft pion graphs begin at
predictions forsy”) and 55" are not needed to calculad”  order Q?, and for p~m, are orderQ? [25]. Relativistic
and will be presented in a future publicati@¥]. Expanding  corrections begin at ordéd? and therefore are not included.

both sides of Eq(11) in powers ofQ gives In dimensional regularization a graph withloops in-

M 4SD(0) M 4S00) cludes a factor of £&/2)<4~% (where the extra 2 is inserted
E(ll):_p . = Mp |ACD) 7 for convenienck Spin and isospin traces will be evaluated in
47 [1+2ﬂA(‘1)} 47 Al d—1 dimensions for the reasons discussed in Appendix A.
A Of the graphs in Fig. 2 onlye) and (f) are divergent ind
(13 =4-2e dimensions. The divergence (f) is cancelled by a
graph with the NLOS“YD, counterterrf given by Eq.(5.2)
—2 Mp ASBD) D 514 50 of Ref.[21]. The p?/ e divergence ine) is cancelled by the
o By ipM i€ [65°+657] new counterterm
[1+2—A<1>}
o 3v2cy™ Mgz \?( 1
SD(1 ve(SD)_ — 7Y R
_ %lv‘“”lm{j——:; , =" (87Tf2 (26 vetin ”)' (16

2(11) is determined by the ord&@° graphs in Fig. 1 and does Note that it is F:rucial to indicate what_constan_ts are sub-
i i tracted al th the &/pole. Th lingcSP) is deter-
not involve any free parameters. The or@@? mixing am-  tracted along with the Z/pole. The coupling>3™"" is deter-
plitude is[4] mined from a fit to the observes] . If the extracted value is
to be used in other calculations, then its exact definition in-
MgIZ_\ y cluding finite subtractions will be needédhe divergence in
ASPO=v2 812 A(_l)[ m, R X(a@)]— ;“’n[?((a)]], Fig. 2(e) induces Infr) dependence i€ (ug). In PDS

14
- LT
8f2 n e
a7

3 3 ia
X(a)z—m—m-}— ?-}—I

(SD) — _ %
Cz (mr)=kCo(uR) 10 Co(ur)

! > In(1-—2i
22 ga3/IN1-2ia),

o

2The bare coefficients in Eq(l) are written asCPe=s"'C
+Qf'”'te. In PDS additional finite subtractions are made so that
The branch cut for the square root in EG3) is taken to be on  Cfinte=C(uz) — 3 8"C(ug), see Ref[21].

the positive real axis. This is consistent widg(p—0)= 7. The %We have not compared our value 6°”(m,) to the value
sign of our®D; state is the opposite of Rg#], making AS™® in extracted from the deuteron quadrupole monidm for this rea-
Eq. (14) have the opposite overall sign. son.
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e | TR O

FIG. 1. The two ordef° diagrams that contribute g [4]. The

solid lines are nucleons and the dashed lines are potential pions. Q..ﬁ._ 9 e D >.®.<
I 1 1 : '
_p_:_l_p_

where k and A are constants. Note that there is only one
unknown in Eq.(17) since a shift in the value ot can be FIG. 2. OrderQ diagrams fore; . The filled circle is defined in

compensated by changing the value\of Fig. 1, and the diamonds ifb) denote insertions of thés;-3S;
At order Q the diagrams in Fig. 2 give the following gperators with coefficient€(?, C,, or D,.

amplitudes in the PDS scheme

SD(1) — MmTrA(—l) 2
ASPD = A+ A+ At Ag+ Aet Ay, (18) _[ A 2wt
where 3
(-1 ClSDp2 + Ey(a)%\’(a)}, (20)
iA,=iCSPp2 1+ (ip+ ) | = 1AV,
0

19 where {1, ¢, and g are ug independent dimensionless

combinations of coupling constants
(C2p?+D,m?+Cf") m Mgz

A =—i[ A(-112
== 7
_ 32 M 9/24 2 Co(ur)
IACZITE 7 mvy(a),
) _Dalpr) - Co'(nR)
M i 2= ¢ 2 2 2
Ag=—i A3 A 2] ia— = In(1-2ia)| K(a), olur)™ " M-Colur)
87Tf '7T 2a 2 2 2 2 2
9 M Eln MR +MR_7
2 2 2f2\4x7) |27\ m2 m2 |’
A=A V2| =5 Moa)" o] 32, ( ms " ’
e 8mf2] "7 10 T\ m2
_miC(pR) | 3V2(MM,GR|* (iR -
—iaXa)+ Z(a)|, 57 Co(upr) 10 | 8nxf? m2 )
2 [, and ¢, also appear in the NLG'S, amplitude[see Eq.

iA=—i[ A" 1>]2f( 77> (zg—f>

. M
m3| (i a)?~ o) (A2)]. ¢, can be eliminated by imposing the condition that
” no spurious double pole should appear in this amplifdéé

2
MR .
—Eln — | +In(1-2ia) | X a). 5 ) 5
w 04 ga (M 2y
L=zl 52\ 77 N1 o (22)
The functionX(«) is given in Eq.(14), and the functions g m
M a) and Z(«a) are given in Appendix B. The sum of the
amplitudes in Eq(19) is The constant is extracted from a fit to théS, phase shift
-y at NLO. The orderQ contribution to'e; contains one un-
ASDW = 4D g [ AC-D]2yg T A mz 9 kn_own par_ar_neterg“ﬁ or C(ZSD)(MR)_ This parz_i_meter is det_er-
8nf2 mined by fitting to the value o€, from the Nijmegen partial

5 wave analysig26] at low momentum. Results fog; are
Ja shown in Fig. 3. The solid line is the Nijmegen result. The
X Ma)({ra+ §2)+‘f (2 f2) order Q result in the theory with piong4] is shown by the
dotted line. The result of the ordeé®? calculation in the
theory with pions is given by the dot-dashed line in Fig. 3.

Mm, A"
X —— o=
[ The values used in Fig. 3 are

4

Z(a)+ I—|n(1—2i a) X )
2a
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b (MeV) 150

FIG. 3. Predictions for théS;-3D, mixing parametek;. The
solid line is the multienergy Nijmegen partial wave analy{£i§].
The long and short dashed lines are the o@®andQ* predictions
in the theory without piong14]. The dotted line is the orde®
prediction in the theory with pions from Rg#]. The dash-dotted
line is the ordeiQ? prediction in the theory with pions.

y=45.7MeV, (;=0.2345, (,=-0.1038, (z=0.385.
(23)

The value of{g in Eq. (23) corresponds to
CcP(m,)=—4.56 fnf" (24)

For comparison results have also been shown in Fig. 3 f
the theory without pion$14], where the prediction fog;
begins at ordeQ?. The long dashed line is the ord&?

PHYSICAL REVIEW C 61 044005

0 L L [ L 2 L L ). L
50 150 200
p(MeV)

FIG. 4. Prediction fore; from Ref.[2]. The fit was done to the
partial wave analysis in Ref26] shown by the solid line. The long
dashed line uses the cutoff=0.6m,, the short dashed line uses
A=m,, and the dotted line uses=1.3m,.

=0.255. Solutions with the san®egive similar predictions,
for instance, taking;=0.300 and{s=0.423 gives an order
Q? phase shift that differs by:0.08° from the one shown in
Fig. 3.

A further test of the convergence of tiig expansion is
provided by examining the extent to which the amplitude
violates unitarity. When Eq11) is expanded in powers @
the expression fok; is explicitly real at each order iQ.

JHowever, one could insert the NLO expression ft° and

APP and the NNLO expressions fo4SP into Eq. (11) and
solve fore; without making aQ expansion. The resulting;

result and the theory prediction has one free parameter. TH#ill have an imaginary part which is ord@® in the power

short dashed line is the ord&* result which has two free
parameters. With one less free parameter, the difepre-
diction of the theory with pions does better than the o@ér
prediction of the theory without pions fqg>>50MeV. In
fact the theory without pions breaks down aroungd/2, as

counting. Comparing the imaginary part f calculated us-
ing Eq. (11) to eV +7¢€? gives |Im(e)/(éP+¢€?)|<0.2 for
p=180 MeV, which is of the expected size for an ord@r
quantity. Also, forp<m,, the ratio |.ASP() ASP()<0.6,
which is consistent with an expansion parameter of order

expected since this is where the pion cut begins. It has beery2. The agreement of the size of these terms with our ex-

noted in the literatur¢27] that many observables may not

test the power counting for perturbative pions. As can be

pectations suggests that tQeexpansion is under control.
In Ref. [2], the mixing angle is calculated using Wein-

seen from Fig. 3, the mixing parameter provides an exampl@erg's power counting. In this approach, momentum power
in which perturbative pions clearly give improved agreemenp:ouming is applied to the potential and then the Sdimger

with the data.

The dot-dashed line in Fig. 3 improves over the orQer
result for p<140 MeV. Forp~m_, the error in the order
Q? prediction fore; is ~20%. Recall that the mixing angle
is small and an error 0f0.5% is consistent with our expec-
tation for a NNLO calculation. It is interesting to ask how
sensitive the results in Fig. 3 are to the choice of parameter
If we use the3S; scattering length to fixy instead of the
deuteron binding energy then the ord®P result (dotted
line) increases by~1° for p~m_. Therefore, the mixing

equation is solved numerically. Solving the Sdfirger

equation with the one pion exchange potential is equivalent
to summing ladder graphs with potential pion exchange to all
orders. However, all necessary counterterms are not in-
cluded, so there is a residual dependence on the cutoff. This

gutoff dependence can be used to give an estimate of the

uncertainty in the theoretical prediction due to higher order
effects. We will compare our calculation with that of Ref.
[2], however, it is important to keep in mind that RE2]

angle is quite sensitive to the location of the pole. On thdncludes graphs which are higher order@nthan those in

other hand, the NNLO prediction is not sensitive to the value™

of ¢, obtained from fitting the®S,; phase shift. This is be-
%) in Eq. (13) depends on the linear combination

causeef;
z={s—0.5&, (25)

ig. 2. Referenc§2] also includesA’s and more parameters
are varied in the fit. The results of R¢2] are shown in Fig.
4. Varying the cutoff between §, and 1.3n, gives an
uncertainty of 0.7° ap=m,_. This uncertainty is compa-
rable to the error in our fit which differs from the data by
0.5° atp=m,_. The error in our calculation increases for

but is insensitive to the orthogonal combination. A change irarger values op because our prediction grows withfaster

{, can be compensated by a changelinwhile keepingz

than the observed, . For these values qf the nonperturba-
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tive calculation suffers from considerable uncertainty. For a b7 /A
cutoff equal tom,, the prediction grows witlp, but with a ¢, (deg)L / o
lower value of the cutoff (018,) the calculated; provides oL / ]
better agreement with data. It would be interesting to work to L / + o]
one higher order inQ and/or includeA’s with the KSW 1 / -
power counting to see if the agreement with data at higher sl v ]
improves. At one higher order i@ a four derivative four i R4 bi 1
nucleon 3S,-3D,; operator appears. However, using the o / x
renormalization group its coefficient is determined in terms 2 o 2 P A
of Cy, C,, andCP), L s T ]
For momentgp<m,,, effective range expansions can be oL A
constructed for the phase shifts and mixing angle. By inte- 0 100 00 pMeV) 30
grating the pion out of the effective field theory coefficients
in the expansion can be predicted. In H&8] coefficients in FIG. 5. Predictions for the mixing parametey defined in Eq.

the expansions op Coté(ls‘)) P cotgo ande; are obtained (27). The solid line is the multienergy Nijmegen partial wave analy-
' ’ sis[26]. The dotted line is the NLO prediction in the theory with

from the orderQ® calculations in Ref[4]. Reference28] ) R S
found that the gfective field theory gives parameter free preplons from Ref[4]. The dash-dotted line is the NNLO prediction in

dictions for the higher coefficients, but these did not agred.,!0Y With pions. The open circles are data from Virginia Tech
o . o ?32] and the stars are Nijmegen single energy d&®@ whose

with fits [29] to the partial wave data. However, it is not clear Loted errors are invisible on the scale shown

whether the extraction of higher order terms in the expansioﬁ '

is accurate enough to test the effective field thg@®]. In

. SD(0
toy models it has been shown that the convergence of the 6(1):“4 o
effective field theory predictions for these coefficients is ooACY
slow [30]. This also seems to be the case when the effective
field theory is applied to real data. In R¢L6] it was fotlmd ASDDT My AS90)
that the ordeiQ corrections to the coefficients pfcotst e?= R% 7|~ Ee(ll) APPO) |A(_l)|2m .

improve the agreement with the fit values, however, the ob- 29)
served convergence is rather slow.

From the amplitude in Eq(20) the orderQ? corrections
to the momentum expansion e} can be derived. The ex-
pansion in the theory without pions takes the fdrid|

In Fig. 5 we plot the orde® andQ? effective field theory
predictions fore; using the parameters in E@®3). The open
circles in Fig. 3 are data from Virginia Te¢B2]. The stars
are the Nijmegen single energy fit to the d@26] whose
€ =b, P +b, P L. (26) quoted errors are invisible on the scale shown. It seems

Jp2+ 92 Vp?+ y? ’ somewhat strange that the data pointpat265 MeV from
Ref.[32] differs from the fit in Ref[26] by more than eight

whereb,; andb, are constantse; has a cut ap=+iy, so standard deviations.

3 5

the momentum expansion @ only converges fop<y. e; has a series expansion firi:
Clearly it would be more useful to expand a function with
better analyticity properties. Following Ré¢B1] this can be €,=01p°+g,p*+gspt+---. (30)

done by parametrizing th® matrix as

Fitting this polynomial to the solid line in Fig. 5 for
cose;  sine; 7 MeV<p<50MeV and weighting low momenta more
—sine; cose;)’ heavily than high momenta gives the values in the first col-

(277 umnin Table I. To estimate the uncertainty in the extraction
of the g; we varied the range of momentum and weighting
p cotd, p°cots,, ande; have momentum expansions with used in the fit. The value @, is quite stable, whileg, and
radius of convergencen,_/2 rather thany. For low energy 93 Varied by 10 and 50 %, respectively. The effective field
expansions these variables should be used. The expressidhgory predictions for the coefficients are

for &5 andgoyz are the same to ord€). The mixing angle in
this parametrization is related to the one in EXD) by

cose; —sine )\ [e?% 0
- 0 e2i52

sine;  CcOSeq

TABLE I. Predictions for the coefficients in a momentum ex-
pansion ofe; at LO and NLO in the effective field theory.

tan2e;) 2A45P it to Ni 0
tan2e,)= E 1_ — _ (289) Fit to Nijmegene, 0(Q% 0(Q)
. _ ASS_ADD 5
Sin( 5p— &2) g, (fm?) 0.30=0.01 0.55 0.22
g, (fm%) —2.0£0.2 -4.1 -15
In terms of the amplitudes, the first two terms in Qeex- g, (fm®) 8.7+4.3 28 9.5

pansion ofe, are
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— ﬁ 877_‘% APPENDIX A: TRACES IN n DIMENSIONS
mi MANNN . . . . .
In the standard implementation of dimensional regulariza-
tion in relativistic theories, the spin traces are performed in
42 [—-32 5y 43 (391 4 dimensiong 34]. For nonrelativistic nucleon-nucleon scatter-
0r=—3 ( + )+ e ( =In2 ing the spin traces are often done in three dimensions, after
mzAnn| 35 3mg] mzAfy (315 5 which the remaining scalar integrals are evaluated#n
589y 842 23 A 10 +1 dimensions. This is in agreement with performing a par-
~120m + 3 2) + A V( 1—35“2), tial wave expansion of the matrix elements using Clebsh-
m SMz/ MzANN Gordan coefficients; a procedure specificnte 3. This ap-
proach provides well-defined results fSiwave transitions.
However, when higher partial waves are considered it be-
U3= 156‘/2 (1_6_ Y )_ 146‘/3 (Zil_ E n comes necessary to perform the spin traces dimensions.
myAnn121 5m;/ miA{y1200 2 To see why consider Fig.(&, and replace the bubble sum
252409 462 83 475 14 by a smgle(ljo for simplicity. The numerator of this graph is
_ + _ — |- =0 proportional to
50400n, 15m2/ miAny M |6 5
(31
ini’ i’
In eachg; the first term is from the orde®® diagrams in Fig. (%_ 5_> Tlo'oloMo o™ ol Jgmg™ kiki',
1, while the remaining terms are from the ord@diagrams p n
in Fig. 2. Using the values in E@23) gives the predictions (A1)

in Table I. At orderQ° the effective field theory is off by a
factor of 2. The ordeQ corrections make the predictions wherek andq are the two loop momenta which run through

closer to the fit values; the error is25% forg; andg,,  the pion lines. First consider setting' /n=45""/3 in Eq.
while g3 is consistent within error. The effective field theory (A1) and performing the trace in four dimensions. At very
is converging onto the experimentg], but the errors are |ow momentum, the result can be expandegim,,. When
somewhat larger than anticipated by the power counting. Thehis is done, the amplitude from this graph is proportional to
convergence for terms in the expansionegfis faster than g constant for lowp. However, for aS; to 3D, transition
the convergence in th&S, channel. . the amplitude should be proportional p3 at low momen-
To summarize, we have computed the or@ércorrection  tum. The constant indicates that projection ori®,-3D;
to the mixing parameteg; . The effective theory converges 1< unsuccessful. If we keep thd /n in Eq. (A1), and

onto the observed,, and errors are comparableé to Uncer-perform the trace in three dimensions then the amplitude is
tainties in alternative approaches where the pion is treategy, proportional to a constant for low momentum. However,
nonperturbatively fop~m. . When performing low energy it the trace in Eq.(Al) is done inn dimensions then the
momentum expansions, it is important to useaparameterlzad-mp”tude is proportional tgp? as it should be. In the
tion of the Smatrix in which the mixing angle has a conver- 35,-3D, calculation the two terms in round brackets in Eq.
gent expansion fop<m,/2. The effective field theory pre- (A1) have m?/e divergences. These divergences cancel in
dictions for the coefficients of this expansion converge, g

i d I tracted f fitto | data. In th the difference no matter how the expression is evaluated,
owards values extracted from a fit to low energy data. In iN§,q 5,56 there is no operator in this partial wave to absorb an
future, it will be interesting to see if including theor going

to one higher order in th€ expansion will provide better m; |/ € dlvergencg. However, the f'.”'m.w contributions only
cancel when spin traces and projection operators are evalu-
agreement foe; atp>m,.

! ; : . ated inn dimensions. Therefore, in this paper all spin traces
s Jadedinle | Daper ias berg Tevewed, e il b perormed im dmensions
P P In Refs.[19,33 it was pointed out that the nucleon con-

1 3 3 F
the °Sp, °S,, and Dl. channels. Predlct|9ns for the_ otter .tact interactions with no derivatives are invariant under
andD wave phase shifts were also examined. We find that in"~ o ) 1 35
igner's SU4) spin-isospin symmetry foral S0 a(*Sv)

some of these channels the KSW expansion exhibits Iarg}év ) e ! o
corrections at NNLO which suggest a breakdown of the per—— > If Spin traces are performed mdimensions then it is

turbative treatment of pions. A detailed discussion can bé&€cessary to treat the isospin traces on the same footing,
found in the preprinf24]. otherwise Wigner symmetry will be broken by the regulator.

For this reason, isospin traces will also be dona gimen-

sions. For example, if the ordégf' radiation pion calculation

in Ref.[25] is performed with spin traces in dimensions,
S.F. was supported in part by NSERC and wishes to thankut isospin traces in 3 dimensions then the result is not pro-

the Caltech theory group for their hospitality. T.M. and portional to 14(*S,) —1/a(3S;). However, in Ref[19] it
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was shown that Wigner symmetry implies that the or@ér A0 ) mzwgi M \ 2
graphs should be proportional tea{tS,) — 1/a(S,). If all [ACD2 MZ(L1a?+ ) + >z (E)
spin and isospin traces are performedhidimensions then

the value of individual orde@,3 graphs changes, but the sum (¥*=a?) y

o Y. 1
gives the same result as in RE25]. X| = 2gZ  IN(A+4a) - “tan *(2a)

If the partial wave projection operators are chosen to have (A2)
the normalization given in Ed3) then doing the traces in

dimensions does not change any calculations in the theor\)(/hereﬁm yim.. and¢, and¢, are given in Eq(21). Differ-

W_ithout _pions. For_S-wave transitions in the theory With ent schemes will give different expressions far,, but the
pions this convention amounts to a change of renormalizagmpjitude in Eq.(A2) will remain the same.

tion scheme, since the difference in evaluating a graph is an
overall multiplicative factor of the form £ O(e). In PDS,
subleading terms in the beta functions for coefficients of four
nucleon operators are affected. When spin and isospin traces In this appendix we give expressions forand Z which
are done im dimensions the NLG'S, (or 1Sy) amplitude is  appear in Eqs(19) and (20):

APPENDIX B: EXPRESSIONS FOR Y AND Z

—2+3+3+ *tan 2 3+5t*12
N == 5% 16,2 | 8as T 207 5|18 (@) 7| gos T g,3)180 (20)
+(15—4a2)| Lo (3+ 16a%+ 16a*) L 2% +ia i 2a?
“g0as Nt 3207 ML gz | T~ 2e7a)
» 3 . 1 (3+10a2)| Lia? +(3+16a2+16a4)| 214 402 81
803" 20 27 qoas N(IFAR) g IN(1+4a%)|, (B1)
gy L O 203 3ia+29a2+ 3> 9 15 no
(== 20" 162 T 2002 T 20a~ 5 T 200 | 5 16a® B8a2/"
+3(16a7—50a3—4ia2—15a+15i)I - +(—9i+27a—24ia2+78a3—16a5)| Lo
800" n( ) 3225 n( i)
(9+48a?+ 48a*) 3|21 o2 i — 1421 a4 Li 1+2ia +772 8o
- 646(6 En( - Ia) IZ(_ |CY) |2 _1+2|a T ( )

In deriving the formula forZ(a) we found it useful to use reduction formulas due to Targ8} implemented with the
program from Ref[36].

[1] S. Weinberg, Phys. Lett. B51, 288(1990; Nucl. PhysB363 [9] J.-W. Cheret al, Nucl. Phys.A644, 221 (1998.
3(1991); C. Ordonez and U. van Kolck, Phys. Lett2B1, 459  [10] M. J. Savage, K. A. Scaldeferri, and M. B. Wise, Nucl. Phys.
(1992; C. Ordonez, L. Ray, and U. van Kolck, Phys. Rev. AB52, 273(1999; J.-W. Chen, G. Rupak, and M. J. Savage,

Lett. 72, 1982(1994; U. van Kolck, Phys. Rev. @9, 2932 nucl-th/9905002.
(2] (C::ngé‘)d; G. P.LLegage, n;ﬂ-thlng&I)zkg.Ph ReVSE 2086 [11] J.-W. Chen, H. W. Griesshammer, M. J. Savage, and R. P.
. Ordonez, L. Ray, and U. van Kolck, Phys. Re .
(1996 Springer, Nucl. PhysA644, 245 (1998.

B[12] D. B. Kaplan, M. J. Savage, R. P. Springer, and M. B. Wise,
Phys. Lett. B449 1 (1999; M. J. Savage and R. P. Springer,
Nucl. Phys.A644, 235 (1998.

[3] D. B. Kaplan, M. J. Savage, and M. B. Wise, Phys. Lett.
424, 390(1998.
[4] D. B. Kaplan, M. J. Savage, and M. B. Wise, Nucl. Phys.

B534, 329 (1999. [13] Malcolm Butler and Jiunn-Wei Chen, nucl-th/9905060.
[5] E. Epelbaum and U.-G. Meissner, nucl-th/9903046. [14] J.-W. Chen, G. Rupak, and M. J. Savage, Nucl. P53,
[6] X. Kong and F. Ravndal, hep-ph/9903523; Phys. Letd®) 386 (1999.

320(1999. [15] G. Rupak and N. Shoresh, Phys. Rev6@ 054004(1999.

[7] X. Kong and F. Ravndal, nucl-th/9902064; nucl-th/9904066. [16] T. Mehen and |. W. Stewart, nucl-th/9906010.
[8] D. B. Kaplan, M. J. Savage, and M. B. Wise, Phys. Re%9C  [17] M. Binger, nucl-th/9901012.
617 (1999. [18] E. Wigner, Phys. Revs1, 106 (1937); 51, 947 (1937.

044005-8



NN SCATTERING ®S;-°D; MIXING ANGLE AT NEXT-. ..

[19] T. Mehen, I. W. Stewart, and M. B. Wise, Phys. Rev. L88,
931(1999.

[20] T. Mehen and I. W. Stewart, Phys. Lett.45 378(1999.

[21] T. Mehen and |. W. Stewart, Phys. Rev.59, 2365(1999.

[22] U. van Kolck, hep-ph/9711222.

[23] H. P. Stapp, T. J. Ypsilantis, and N. Metropolis, Phys. Rev.

105, 302 (1957.

[24] S. Fleming, T. Mehen, and |. W. Stewart, nucl-th/9911001.

[25] T. Mehen and I. W. Stewart, nucl-th/9901064.

[26] V. G. J. Stokset al, Phys. Rev. (48, 792 (1993; http://nn-
online.sci.kun.nl/NN/

[27] T. D. Cohen and J. M. Hansen, Phys. Rev.58, 3047
(1999.

[28] T. D. Cohen and J. M. Hansen, Phys. Revo% 13 (1999.

[29] V. G. J. Stokset al, nucl-th/9509032.

PHYSICAL REVIEW C 61 044005

[30] D. Kaplan(private communication

[31] J. M. Blatt and L. C. Biedenharn, Phys. R&&, 399 (1952.

[32] R. A. Arndt and R. L. Workman, Few Body Syst. Suppl64
(1994; R. A. Arndt, J. S. Hyslop Ill, and L. D. Roper, Phys.
Rev. D35, 128(1987; R. A. Arndt and L. D. Roper, Scatter-
ing Analysis Interactive Dial-in Program(saip), http://
said.phys.vt.edu/

[33] P. F. Bedaque,
nucl-th/9906032.

[34] J. Collins, Renormalization (Cambridge University, Cam-
bridge, 1984.

[35] O. V. Tarasov, Phys. Rev. B4, 6479 (1996; Nucl. Phys.
B502, 455(1997.

[36] R. Mertig and R. Scharf, Comput. Phys. Commadl, 265
(1998.

H.-W. Hammer, and U. van Kolck,

044005-9



