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Light-front Bethe-Salpeter equation
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A three-dimensional reduction of the two-particle Bethe-Salpeter equation is proposed. The proposed reduc-
tion is in the framework of light-front dynamics. It yields auxiliary quantities for the transition matrix and the
bound state. The arising effective interaction can be perturbatively expanded according to the number of
particles exchanged at a given light-front time. An example suggests that the convergence of the expansion is
rapid. This result is particular for light-front dynamics. The covariant results of the Bethe-Salpeter equation can
be recovered from the corresponding auxiliary three-dimensional ones. The technical procedure is developed
for a two-boson case; the idea for an extension to fermions is given. The technical procedure appears quite
practicable, possibly allowing one to go beyond the ladder approximation for the solution of the Bethe-Salpeter
equation. The relation between the three-dimensional light-front reduction of the field-theoretic Bethe-Salpeter
equation and a corresponding quantum-mechanical description is discussed.

PACS number~s!: 24.85.1p, 12.39.Ki, 14.40.Cs, 13.40.Gp
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I. INTRODUCTION

In relativistic field theory the Bethe-Salpeter equati
~BSE! @1# describes two-particle systems in interaction. T
inhomogeneous BSE

T5V1VG0T ~1!

yields the transiton matrixT of two-particle scattering. In Eq
~1! G0 is the disconnected Green’s function for two particle
which is reduced to the Green’s function of two no
interacting particles by neglecting self-energy parts, i.e.,
taking

G05
i

k̂1
22m1

21 io

i

k̂2
22m2

21 io
, ~2!

with k̂i
m denoting the off-mass-shell momentum operator a

ing on the coordinates of particlei with massmi , the hat on
the variable emphasizing its operator character. The driv
term V stands for the complete interaction, irreducible w
respect to two-particle propagation. If the dynamics allo
for a two-particle bound state with total four-momentumKB ,
KB

25MB
2 , the vertexuG) ~the round ket indicates the depe

dence on four-dimensional coordinates of all particles! at the
bound-state pole is solution of the homogeneous BSE

uG)5VG0uG) ~3!

with the relation

uC)5G0uG) ~4!

to the Bethe-Salpeter amplitudeuC) of the bound state
Equations~1! and ~3! do not determineuC) in full; the nor-
malization condition has to be added. The two-particle to
four-momentumK is conserved in Eqs.~1! and ~3!; that is,
0556-2813/2000/61~4!/044003~18!/$15.00 61 0440
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Oa 5 T, G0 or V, as well asuC) and uG) carry a four-
dimensionald function in momentum space,

^K8uOauK&5d~K82K !Oa~K !, ~5!

^K8uC!5d~K82KB!uCB&, ~6!

^K8uG!5d~K82KB!uGB&, ~7!

the reduced quantities depending parametrically onK, even
if not spelled out explicitly foruGB& and uCB&. The reduced
quantitiesuCB&, uGB& and theOa(K) are functions of the
internal variables expressed in terms of the four-dimensio
momentumkm or coordinatexm. They satisfy the Eqs.~1!
and~3! in a corresponding fashion. For convenience we ha
used the bra-ket notation to represent functions which can
written in either momentum or coordinate spaces.

The inhomogeneous and homogeneous BSEs~1! and ~3!
are general and exact formulations for the scattering am
tude and bound state. However, for any realistic field the
solution of the BSE constitutes a difficult calculational ta
which has not been tackled in full. In practical calculation
the driving termV(K) has to be truncated to low orders o
particle exchange. In Euclidean space, the fermion case
only been solved in ladder approximation@2#, i.e., with
single particle exchange for the driving term, while the b
son case has only been solved in ladder and crossed la
approximation@3#. However, the step from the Euclidean
space to Minkowski-space solutions requires a complica
analytic continuation@4#. Direct solutions in Minkowski
space are just now becoming available@5#.

In the light of the great calculational difficulties, three
dimensional reductions of the BSE are still of high phys
interest. The conceptual sacrifices generated by the reduc
can possibly be outweighed by the gain in technical ea
One hopes to be able to include physical phenomena w
the four-dimensional BSE with a highly truncated interacti
is unable to account for. For example, the three-dimensio
©2000 The American Physical Society03-1
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SALES, FREDERICO, CARLSON, AND SAUER PHYSICAL REVIEW C61 044003
Gross approach@6# allows only one particle to propagat
off-mass-shell, but it appears to go beyond the ladder
proximation of BSE by single particle exchange and to
clude crossed exchanges implicitly; it manfestly preser
covariance. Other reduction schemes give up covaria
which then must be recovered through complicated cor
tion schemes. An equal-time projection scheme has also b
explored for the pion-nucleon system which fulfills requir
ments of covariance and discrete Poincare` symmetries@7#.
The papers by Fuda@8# report on the comparision of one
meson exchange models in ladder approximation on b
light-front and instant-form dynamics, without emphasis
the underlying field-theoretic framework. The field theore
approach in the light front has also been recently used w
success to describe finite nuclei@9# and nuclear matter with
nucleon-nucleon correlation@10#. After the submission of
this work, Ref.@11# came to our attention, which discuss
the light-front description of the angular momentum bou
states of the Bethe-Salpeter equation for the same bos
model used here.

The purpose of this paper is twofold.~i! First, the paper
attempts to find a three-dimensional equation for auxili
quantities from which the full covariant solution of the BS
in the ladder or any other approximation can be obtain
with ease. This is a technical objective with solutions wel
known in the framework of instant-form dynamics. Here t
advantages of light-front dynamics are to be explored.

~ii ! Second, the paper tries to illuminate the connection
a quantum-mechanical description of the two-particle sys
whose dynamic input is related to the underlying fie
theory.

Section II motivates our novel choice for thre
dimensional auxiliary quantities from which the covaria
solutions of the BSE are obtained. It motivates light-fro
dynamics as our choice for a dynamical framework. Sect
III gives our theoretical apparatus in full. Section IV tests t
potential of the method in the example of a two-boson bou
state. We perform numerical calculations for the two-bos
bound state including up to four-particle intermediate sta
in lowest order and compare to the solutions of the fo
dimensional BSE equation in the ladder approximation. S
tion V sketches the generalization of our theoretical appa
tus to fermions. Section VI discusses the connection w
light-front quantum mechanics. Our conclusions are sum
rized in Sec. VII.

II. CHOICE OF TWO-PARTICLE AUXILIARY FREE
GREEN’S FUNCTION G̃0„K…

It is well known, from the work of Ref.@12#, that the
transition matrix T(K) and the Bethe-Salpeter amplitud
uCB& of the covariant BSE can be obtained with the help
a convenient auxiliary Green’s functionG̃0(K), still to be
chosen. That is, we have

T~K !5W~K !1W~K !G̃0~K !T~K !, ~8!

uGB&5W~KB!G̃0~KB!uGB&, ~9!
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uCB&5G0~K !uGB&, ~10!

provided the driving termV(K) is changed toW(K) accord-
ing to

W~K !5V~K !1V~K !@G0~K !2G̃0~K !#W~K !. ~11!

Equations~9! and ~10! do not determineuCB& in full; the
normalization condition

lim
K2→KB

2
K CBU G0~K !212G0~KB!21

K22KB
2

2
V~K !2V~KB!

K22KB
2 UCBL

51 ~12!

has to be added. It involves the original driving termV(K)
@13#. The choice ofG̃0(K) is hoped to be sufficently cleve
that the integral equation~11! does not have to be solved i
full, but that a few terms of the infinite series

W~K !5V~K ! (
n50

`

@„G0~K !2G̃0~K !…V~K !#n,

W~K !5V~K !1V~K !„G0~K !2G̃0~K !…V~K !1•••

~13!

suffice. The auxiliary Green’s functionG̃0(K) remains a
four-dimensional one, but its choice may sacrifice the co
riance whichG0(K) possesses.

The dynamics of the interacting two-particle system c
be fully described by its propagation between hyperplan
the hyperplanesx05const in instant-form dynamics, the hy
perplanesx15x01x35const in light-front dynamics@14#.
Among the hyperplanes ofx15const, only the light front
with x150 is left invariant by seven kinematical boost
while the hyperplanex15const scales under light-fron
boosts. In contrast, the free Green’s function of the B
depends on the individual timesxi

0 or on the individual light-
front timesxi

1 .
The free Green’s function ininstant-form coordinates,

e.g.,ki5(ki
0 ,kW i)

^x81
0x82

0uG0ux1
0x2

0&52
1

~2p!2E dk1
0dK0

3
e2 ik1

0(x81
0
2x82

0
2x1

0
1x2

0)

@~k1
0!22kŴ1

22m1
21 io#

3
e2 iK 0(x82

0
2x2

0)

@~K02k1
0!22~KW 2kŴ1!22m2

21 io#

~14!

—in fact only its dependence on individual timesxi
0 is made

explicit—reduces for propagation between the hyperpla
x1

05x2
05x0 andx81

05x82
05x80 to
3-2
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^x80x80uG0ux0x0&5E dK0

2p
e2 iK 0(x802x0)E dk18

0dk1
0^k81

0uG0~K !uk1
0&, ~15!

[E dK0

2p
e2 iK 0(x802x0)u0G0~K !u0 . ~16!

In Eq. ~15! the notation

^k81
0uG0~K !uk1

0&52
1

2p

d~k18
02k1

0!

@~k1
0!22kŴ1

22m1
21 io#@~K02k1

0!22~KW 2kŴ1!22m2
21 io#

~17!

is introduced, as well as the abbreviation

u0G0~K !u0ªE dk18
0dk1

0^k81
0uG0~K !uk1

0& ~18!

5
i

2k̂1on
0 2k̂2on

0 S 1

~K02 k̂1on
0 2 k̂2on

0 1 io !
2

1

~K01 k̂1on
0 1 k̂2on

0 2 io !
D . ~19!

The matrix element̂k18
0uG0(K)uk1

0& of Eq. ~17!, in which only the dependence on the ‘‘dynamic’’ variablek1
0 is made explicit

remains an operator with respect to the ‘‘kinematic’’ variableskW1, the operator character being carried by the operatorsk̂ion
0

5AkŴ i
21mi

2 acting on functions of kinematic variables. The basis states for functions of these kinematic variables are

by ^xW i ukW i&5exp(ıkW i•xW i) and are eigenfunctions of the momentum operatorkŴ and the free energy operatork̂on
0 . The statesukW &

form an orthogonal and complete basis for functions of the kinematic variables.
In Eq. ~18!, the vertical baru0 indicates that the dependence onk1

0 is integrated out. The bar on the left of the Green
function represents integration onk1

0 in the bra state, the bar on the right in the ket state; we shall encounter Green’s fun
in which integration onk1

0 is performed only on one side, the baru0 being placed on that side alone. The resulting funct

u0G0(K)u0 is three dimensional and depends only on the kinematic variableskW1. It is a global propagator, since it mediate
between hyperplanes according to Eq.~16!, not allowing for individual time differences between the two particles, it is
explicitly covariant. In instant-form dynamics, the global propagatoru0G0(K)u0 still allows for particle and antiparticle
propagation. This is considered to be a technical disadvantage.

The free Green’s function inlight-front coordinates, e.g.,ki5(ki
2
ªki

02ki
3, ki

1
ªki

01ki
3, kW i')

^x18
1x28

1uG0ux1
1x2

1&52
1

~2p!2E dk1
2dK2e2 i /2 k1

2(x18
1

2x28
1

2x1
1

1x2
1)e2 i /2 K2(x28

1
2x2

1)

3
1

k̂1
1~K12 k̂1

1!S k1
22

kŴ1'
2 1m1

22 io

k̂1
1

D S K22k1
22

kŴ2'
2 1m2

22 io

K12 k̂1
1

D ~20!

—only its dependence on the individual light-front ‘‘times’’xi
1 is made explicit—reduces, for propagation between

hyperplanesx1
15x2

15x1 andx18
15x28

15x81, to

^x81x81uG0ux1x1&5E dK2

2p
e2 i /2 K2(x812x1)E dk18

2dk1
2^k18

2uG0~K !uk1
2&, ~21!

[E dK2

2p
e2 i /2 K2(x812x1)uG0~K !u. ~22!

In Eq. ~21! the notation
044003-3
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^k18
2uG0~K !uk1

2&52
1

2p

d~k81
22k1

2!

k̂1
1~K12 k̂1

1!S k1
22

kŴ1'
2 1m1

22 io

k̂1
1

D S K22k1
22

kŴ2'
2 1m2

22 io

K12 k̂1
1

D ~23!
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is introduced with the abbreviation

uG0~K !uªE dk18
2dk1

2^k18
2uG0~K !uk1

2& ~24!

5
iu~K12 k̂1

1!u~ k̂1
1!

k̂1
1~K12 k̂1

1!~K22 k̂1on
2 2 k̂2on

2 1 io !
~25!

ªg0~K !, ~26!

whereK1.0 can be chosen without any loss of generali
However, there is a difference betweenK1>0 and K1

.0. In principle G0 can have contributions of the form
d(k1)/k1 which are related to zero modes. Their contrib
tion could appear as a nontrivial weight atk150 and are
also related to the renormalization of the quantum fi
theory on the light front @15#. The matrix element
^k81

2uG0(K)uk1
2& of Eq. ~23!, in which only the dependenc

on the ‘‘dynamic’’ variablek1
2 is made explicit, still remains

a functional operator with respect to functions of the ‘‘kin
matic’’ variables

~ k̂1
1 ,k̂1'!, k̂1on

2 5
kŴ1'

2 1m1
2

k̂1
1

and

k̂2on
2 5

~KW '2kŴ1'!21m2
2

K12 k̂1
1

.

The basis states for functions of the kinematical light-fro
variables are defined by

^xi
2xW i'uki

1kW i'&5e2ı(1/2ki
1xi

2
2kW i'•xW i') ~27!

and are eigenfunctions of the momentum operators (k̂i
1 ,kŴ i')

and the free energy operatork̂ion
2 acting on functions of the

kinematical variables. The statesuk1kW'& form an orthonor-
mal and complete basis in the space of functions of the
nematical variables, e.g.,

E dk1d2k'

2~2p!3
^x82xW'8 uk1kW'&^k1kW'ux2xW'&

5d~x822x2!d~xW'8 2xW'!. ~28!

In Eq. ~24! the vertical baru indicates that the dependenc
on k1

2 is integrated out. The bar on the left of the Green
04400
.

-

d

t
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function represents integration onk1
2 in the bra state, the ba

on the right in the ket state. We shall encounter Gree
functions in which integration onk1

2 is done on one side
alone, the baru being placed only on that side. The operat
g0(K) is three dimensional and it depends on the kinema
variables (k1

1 ,kW1') only. It is a global propagator, since
mediates between hyperplanes according to Eq.~22!, not al-
lowing for individual light-front time differences betwee
the two particles. It does not possess explicit covariance
is still covariant under light-front boosts. In light-front dy
namics, the global propagatorg0(K) only allows particle
propagation, no antiparticle propagation, due to the choic
K1.0. This is the advantage of light-front dynamics, wi
which we work from now on.

The auxiliary four-dimensional Green’s functionG̃0(K),
introduced in Eqs.~8!–~13! has to be chosen next. We re
quire for G̃0(K):

G̃0~K !u5G0~K !u, ~29!

uG̃0~K !5uG0~K !, ~30!

uG̃0~K !u5uG0~K !u, ~31!

and define a three-dimensional transition matrixt(K)
through

u@G̃0~K !1G̃0~K !T~K !G̃0~K !#u

5g0~K !1g0~K !t~K !g0~K !. ~32!

In Eqs. ~29!–~32! the abbreviationu for integrating out the
k1

2 dependence of operators is used. The conditions~29!–
~32! are a rather mixed bag. The conditions~31! and~32! are
physical ones: They require that the global-propagator fo
of G̃0(K) be the same as for the exact free Green’s funct
G0(K) and that the full Green’s function of BSEG0(K)
1G0(K)T(K)G0(K) can be obtained fromuG̃0(K)u and the
three-dimensionalt(K). However, the two conditions~31!

and ~32! do not determineG̃0(K) in full. Our choice is

G̃0~K !ªG0~K !ug0
21~K !uG0~K !, ~33!

thoughG̃0(K)5d( k̂18
22K2/2)g0(K)d( k̂1

22K2/2) ~and ob-
vious variants of it! seems to be a legitimate alternativ
However, the conditions~29! and ~30! introduce the addi-
tional convenience that the auxiliary Green’s function be
close as possible to the exact free one and Eq.~33! allows the
light-front propagators in higher Fock-states to appear
plicitly in the kernel of integral equation for the auxiliar
3-4
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transition matrix, which will be defined in the next sectio
The auxiliary quantities are computed in Appendix A.

III. CALCULATIONAL PROCEDURE

Our calculational procedure amounts to solving thr
dimensional integral equations, whose solutions then y
the covariant results of the BSE by quadrature. The fo
dimensional transition matrixT(K) is obtained from the
three-dimensional auxiliary onet(K), defined by Eq.~32!,
through

t~K !5g0~K !21uG0~K !T~K !G0~K !ug0~K !21, ~34!

by first iterating the integral equation~8! once,

T~K !5W~K !1W~K !@G̃0~K !1G̃0~K !T~K !G̃0~K !#W~K !,

and then making use of our choice, Eq.~33!, for G̃0(K) and
the result Eq.~34!. The relation between theT(K) and the
auxiliary t(K) is

T~K !5W~K !1W~K !G0~K !u@g0~K !211t~K !#u

3G0~K !W~K !. ~35!

The auxiliary transition matrixt(K) itself is obtained by the
three-dimensional integral equation

t~K !5w~K !1w~K !g0~K !t~K !, ~36!

in which the driving termw(K) is derived from the modified
four-dimensional interactionW(K) of Eq. ~11! according to

w~K !ªg0~K !21uG0~K !W~K !G0~K !ug0~K !21. ~37!

There is an integral equation forw(K) as there is forW(K),
but we do not give it here. We hope that, through our cho
~33! for G̃0(K), a few terms of the expansion~11!, of W(K)
in powers ofV(K) will dynamically suffice to yield the full
result of BSE with satisfactory accuracy. The numerical
ample of Sec. IV where rapid convergence ofw(K) is seen,
demonstrates the validity of this expectation.

If the transition matrixT(K) of the BSE has a bound-sta
pole at total four momentumKB , KB

25MB
2 , the auxiliary

three-dimensional transition matrixt(K) also has a bound
state pole at exactly the sameKB , according to Eq.~34!,
with the residueugB& being the solution of the homogeneo
three-dimensional equation

ugB&5w~KB!g0~KB!ugB&, ~38!

corresponding to the inhomogeneous one, Eq.~36!. From
ugB&, the residueuGB& of BSE can be recovered according
Eq. ~35!

uGB&5W~KB!G0~KB!uugB& ~39!

as well as the amplitudeuCB& of BSE, i.e.,

uCB&5G0~KB!W~KB!G0~KB!uugB&, ~40!
04400
-
ld
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e

-

uCB&5@11„G0~KB!2G0~KB!ug0~KB!21uG0~KB!…W~KB!#

3G0~KB!uugB&. ~41!

For the form Eq.~41! of the bound state amplitude, the co
dition Eq. ~38! ugB&2w(KB)g0(KB)ugB&50 is used. The
step from the three-dimensional residueugB& to the Bethe-
Salpeter amplitudeuCB& appears predominantly a kinemat
one, effected by the operatorG0(KB)u. Only the second term
in Eq. ~41! depends on the interaction, and it is expected
be a small correction.

The Bethe-Salpeter amplitudeuCB& is related to the aux-
iliary three-dimensionalufB&, defined by

ufB&ªg0~KB!ugB& ~42!

and satisfying

ufB&5g0~KB!w~KB!ufB&, ~43!

in an obvious way by

E dk1
2^k1

2uCB&5ufB&. ~44!

The result~44! follows immediately from Eq.~41!. The aux-
iliary bound-state wave functionufB& is the projection of the
Bethe-Salpeter amplitudeuCB& to equal light-front indi-
vidual timesxi

15x1, taken on the hyperplanex150.
The Bethe-Salpeter amplitudeuCB& and its three-

dimensional auxiliary versionufB& still have to be normal-
ized. If the dependence onK of the original interactionV(K)
is weak, i.e.,@V(K)2V(KB)#/(K22KB

2).0 and if further-
more the interaction-dependent term in the step fromufB& to
uCB& according to Eq. ~41! is small, i.e., uCB&
.G0(KB)ug0(KB)21ufB&, then

lim
K2→KB

2
K CBU G0~K !212G0~KB!21

K22KB
2

2
V~K !2V~KB!

K22KB
2 UCBL

. lim
K2→KB

2
K CBU G0~K !212G0~KB!21

K22KB
2 UCBL

. lim
K2→KB

2
K fBU g0~K !212g0~KB!21

K22KB
2 UfBL 51. ~45!

For any further applications, i.e., for predicting physical o
servables, we now have two equally valid options. We m
either work with covariant operators usinguCB& and/or the
transition matrixT(K) of the BSE or we may derive effec
tive operators suited for the context of the auxiliary thre
dimensional bound stateufB& and/or the auxiliary three-
dimensional transition matrixt(K). We give an example of
each of the two possible strategies.

We use the eletroweak currentJ m(Q) as an example and
assume that it connects an initial bound-state Bethe-Salp
amplitudeuCBi& to a final oneuCB f& in an elastic process
We takeJ m(Q) to be the current appropriate for the ha
3-5
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ronic field theory with four-momentum transferQ5KB f
2KBi . The matrix element for describing the proce
^CB fuJ m(Q)uCBi& can first be derived from the Bethe
Salpeter amplitudeuCB& of the bound state. Alternatively, i
can be obtained from the three-dimensional bound stateufB&
by

^CB fuJ m~KB f2KBi!uCBi&5^fB fu j m~KB f ,KBi!ufBi&,
~46!

with the effective current in three-dimensional space

j m~K f ,Ki !

ªg0~K f !
21uG0~K f !$11W~K f !@G0~K f !

2G0~K f !ug0~K f !
21uG0~K f !#%J m~K f2Ki !

3$11@G0~Ki !2G0~Ki !ug0~Ki !
21uG0~Ki !#

3W~Ki !%G0~Ki !ug0~Ki !
21. ~47!

For the relation betweenuCB& and ufB&, Eq. ~41! is used,
which separates the kinematic and dynamic, i.e., interac
dependent, steps in that relation from each other. The bo
state has to be calculated for the initial and final four m
m

ul

ob
f
sk

d
II
xi-

f

nd

ox

u

04400
n
nd
-

mentaKBi andKB f . The effective currentj m(K f ,Ki) is pre-
dominantly derived kinematically from the covariant on
throughg0(K f)

21uG0(K f)J m(K f2Ki)G0(Ki)ug0(Ki)
21 but

it also depends on the interactionW(K) of Eq. ~11!. If W(K)
is not computed in full, but only expanded up to a certa
order in the original interactionV(K) of the BSE, the effec-
tive current should be expanded consistently up that ord

IV. A NUMERICAL TEST CASE

We use the bound state of a schematic two-boson sys
as a test case of the power of the suggested numerical t
nique. The employed interaction Lagrangian is

LI5gSf1
†f1s1gSf2

†f2s, ~48!

where the bosons with fieldsf1 andf2 have massesm1 and
m2, which we take to be equal,m15m25m, and the ex-
changed boson with fields has massm. The coupling con-
stant isgS .

Using standard techniques in Euclidean space, the ho
geneous BSE is solved for the bound-state vertexuGB& in the
ladder approximation, i.e.,
^k18uGB&5 igS
2E d4k1

~2p!4

^k1uGB&

@~k182k1!22m21 i«#~k1
22m21 i«!@~KB2k1!22m21 i«#

. ~49!
e
a

udy

d,
ct

ex-
ap-
n

The solution is calculated in the two-particle c.m. syste

i.e., for KB5(MB ,0W ), and for the ratio of massesm/m
50.5. Requiring the bound state mass to have a partic
value MB fixes the coupling constantgS . The four-
dimensional bound-state vertex^k1uGB& depends on all Eu-
clidean four components of the momentumk1 of boson 1.
The exact four-dimensional bound state amplitude is
tained according to Eq.~10!. However, the representation o
the vertex and bound-state amplitude in terms of Minkow
momenta is difficult. We do not attempt it.

In contrast, the four-dimensional bound-state amplitu
obtained by the numerical technique suggested in Sec. I
available in Minkowski space. We calculate it only appro
mately by using for the driving termw(KB) of the auxiliary
three-dimensional equation~38!, an expansion in orders o
the interactionV(K) of BSE in Eqs.~13! and ~37!, i.e., in
powers of the coupling constantgS of the interaction La-
grangian~48!. We use the approximation up to the seco
and fourth powers ofgS , i.e., w(KB).w(2)(KB) and
w(KB).w(2)(KB)1w(4)(KB). In a time-ordered view, the
BSE allows for an exchange of an infinite number ofs
bosons in stretched configurations. In contrast, the appr
mative w(2)(KB) allows only for one exchange@Fig. 1~a!#,
while w(4)(KB) allows for two @Fig. 1~b!#. The analytic
forms ofw(2)(KB) andw(4)(KB) are given in Appendixes B
and C. The explicit forms of the homogeneous integral eq
,

ar

-

i

e
is

i-

a-

tion for ugB&, Eq. ~38!, for the above approximations in th
driving term are given in Appendix D. In order to make
comparision with the exact bound state amplitude we st
the following projected forms, i.e.,

f exact~AkW1'
2 !ªE dk1

2dk1
1^k1uCB&

52E dk1
0dk1

3^k1
0kW1'k1

3uG0~KB!uGB&, ~50!

f app
(n)~AkW1'

2 !5E dk1
1^k1

1kW1'ufB&app
(n)

5E dk1
1^k1

1kW1'ug0~KB!ugB&app
(n) . ~51!

The superscripts~n! in Eq. ~51! indicate the power of the
coupling constant up to which the approximation is carrie
i.e., w(KB).( i 52

n w( i )(KB). The comparision between exa
and approximate results is carried out on two levels.

In Fig. 2 the relation betweengS andMB is tested form
50.5m against the four-dimensional results. Whereas the
act relation is already satisfactorily reproduced by the
proximation based onw(2)(KB), the approximation based o
w(2)(KB)1w(4)(KB) improves the agreement.
3-6
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In Figs. 3 and 4, the projected bound-state amplitu

f (AkW1'
2 ) are compared for two cases. In the first caseMB

50, i.e., the binding is very strong. It is of the order of th
masses of the interacting particles as encountered in q
systems. In the other caseMB51.98m, i.e., the binding is
very weak. It is only 2% of the masses of the interacti
particles, as encountered in nuclear systems. In both c
the approximation based onw(2)(KB) is already quite accu
rate. The improvement due to the inclusion ofw(4)(KB) is
particularly noticeable for the case of strong binding.

The fact that a low-order approximation ofw(n)(KB)
works surprisingly well is a virtue of light-front dynamics.
is well known that the analogous approximation scheme
instant-form dynamics has much poorer convergence pro
ties with respect to the number of exchangeds bosons@16#.

FIG. 1. Light-front time ordered diagrams forw(2)(K) ~a! and
w(4)(K) ~b!, representing the light-front time ordered view of on
and twos exchanges, respectively.

FIG. 2. Results forgS as a function of the two-body bound sta
massMB for m50.5m. Numerical solution of the covariant four
dimensional BSE~49! ~solid curve!, the light-front equation~38!
with interaction including up to three-particles in the intermedi
states, i.e., withw(KB).w(2)(KB) ~dashed curve! and including up
to four particles in the intermediate states, i.e., withw(KB)
.w(2)(KB)1w(4)(KB) ~dotted curve!. Solution of the quantum me
chanics squared mass eigenvalue equation~60!, with w(Kv)
.w(2)(Kv) ~long-dashed curve!, and with w(Kv).w(2)(Kv)
1w(4)(Kv) ~short-dashed curve! defining the two-particle potentia
in Eq. ~63!.
04400
s

rk

es

n
r-

V. EXTENSION TO FERMIONS

The Green’s function which propagates two fermions d
connectedly contains self-energy corrections as in the cas
bosons. They are usually left out of the ladder approximat
of interaction. The two-fermion free Green’s function the
takes the form which we immediately rewrite convenien
as

G0
F5

k”̂ 11m1

k̂1
22m1

2

k”̂ 21m2

k̂2
22m2

2
, ~52!

G0
F5DG0

F1~k”̂ 1on1m1!~k”̂ 2on1m2!G0 , ~53!

FIG. 3. Results for the transverse momentum distributionf (q)
as a function of the transverse componentq of the individual four-
momentum, forMB50 andm50.5m: ~a! numerical solution of the
four-dimensional BSE withgs520.14;~b! relative error of the vari-
ous approximations with respect to the four-dimensional BSE
sults, defined byD f (q)512 f app

(n)(q)/ f exact(q) with n52 and 4. Re-
sults for the light-front equation~38! with an interaction including
up to three-particles in the intermediate states, i.e., withw(KB)
.w(2)(KB) wheregs520.8 ~dashed curve! and with an interaction
including up to four-particles in the intermediate states, i.e., w
w(KB).w(2)(KB)1w(4)(KB) wheregs520.2~dotted curve!. Solu-
tions of the quantum mechanics squared mass eigenvalue equ
~60!, with the two-particle potential in Eq.~63! defined byw(Kv)
.w(2)(Kv) wheregs515.7 ~long-dashed curve!, and withw(Kv)
.w(2)(Kv)1w(4)(Kv) wheregs514.9 ~short-dashed curve!.
3-7
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where

k̂1on
2 5

kŴ1'1m1
2

k̂1
1

and k̂2on
2 5

kŴ2'1m2
2

k̂2
1

.

In Eq. ~53! G0 is the covariant bosonlike Green’s functio
the paper has worked with in the conceptual developm
until now. Furthermore, Eq.~53! is the definition ofDG0

F

which contains—except for the particular spin-dependent
erators (k”̂ 1on1m1) and (k”̂ 2on1m2) that commute with
G0—all particular divergences and subtleties connected w
the fermion motion. The operator

FIG. 4. Results for the transverse momentum distributionf (q)
as a function of the transverse componentq of the individual four-
momentum, forMB51.98m and m50.5m: ~a! numerical solution
of the four-dimensional BSE withgs59.03; ~b! relative error of the
various approximations in respect to the four-dimensional BSE
sults, defined byD f (q)512 f app

(n)(q)/ f exact(q) with n52 and 4. Re-
sults for the light-front equation~38! with interaction including up
to three-particles in the intermediate states, i.e., withw(KB)
.w(2)(KB) wheregs59.10 ~dashed curve! and with an interaction
including up to four-particles in the intermediate states, i.e., w
w(KB).w(2)(KB)1w(4)(KB) wheregs59.03~dotted curve!. Solu-
tions of the quantum mechanics squared mass eigenvalue equ
~60!, with the two-particle potential in Eq.~63! defined byw(Kv)
.w(2)(Kv) wheregs58.33 ~long-dashed curve!, and withw(Kv)
.w(2)(Kv)1w(4)(Kv) wheregs58.23 ~short-dashed curve!.
04400
nt

-

h

DG0
F5

g1
1

2k1
1

k”̂ 2on1m2

k̂2
22m2

2
1

k”̂ 1on1m1

k̂1
22m1

2

g2
1

2k2
1

1
g1

1

2k1
1

g2
1

2k2
1

~54!

carries the instantaneous part of the fermion propagator
light-front time. Its is singular underk1

2 integration. We
therefore suggest the following strategy for fermions: W
apply the reduction to an auxiliary Green’s functionG̃0
twice, using the apparatus of Secs. I and II. The opera
dependence on the total two-fermion four momentumK is
factored out as there. All operators become then param
cally dependent onK.

In the first step, the two-fermion Green’s function (k”̂ 1on

1m1)(k”̂ 2on1m2)G0(K) is introduced instead ofG0
F(K).

We use formulas~8!–~13! to do this. All the physics of
anomalous two-fermion propagation is contained in the n
effective interactionW(K) of Eq. ~11!. Thus, one arrives at a
new BSE, corresponding to Eq.~1! after reduction with re-
spect to K, with the four-dimensional Green’s functio
(k”̂ 1on1m1)(k”̂ 2on1m2)G0(K) and the new interaction. The
resulting two-fermion equation is now solved with the tec
nique as developed for two bosons. This is possible due
the fact that the spin-dependent operator (k”̂ 1on1m1)(k”̂ 2on

1m2) also commutes with the auxiliary oneG̃0(K)
5G0(K)ug0(K)21uG0(K), i.e.,

~k”̂ 1on1m1!~k”̂ 2on1m2!G̃0~K !

5G̃0~K !~k”̂ 1on1m1!~k”̂ 2on1m2!. ~55!

This idea will not be further developed in this paper, b
indicates that the scope of the method extends beyond
two-boson system.

VI. RELATION TO LIGHT-FRONT QUANTUM
MECHANICS

Sections I–IV used the notion of a bound state, but sc
tering states were not introduced. The latter could have b
introduced in the BSE~1! as well as in the auxiliary three
dimensional equation~36! for t(K) with the global propaga-
tor g0(K). Given an initial two-particle plane-wave sta
uk1

1kW1'Kon& with total momentumKon and light-front ‘‘en-
ergy’’

Kon
2 5

kW1'
2 1m1

2

k1
1

1
~KW '2kW1'!21m2

2

K12k1
1

,

one may define the corresponding three-dimensional sca
ing stateuf (1)(k1

1kW1'Kon)& with outgoing light-front bound-
ary conditions as the solution of a standard Lippma
Schwinger type of equation, i.e.,

uf (1)~k1
1kW1'Kon!&5uk1

1kW1'Kon&1g0~Kon!w~Kon!

3uf (1)~k1
1kW1'Kon!& ~56!

-

h

tion
3-8
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with four-momentumKon5(Kon
2 ,K1,KW '). The relation to

the auxiliary transition operatort(K) is obvious,

t~Kon!uk1
1kW1'Kon&5w~Kon!uf (1)~k1

1kW1'Kon!&. ~57!

Furthermore, it satisfies the homogeneous equation

@g0~Kon!
212w~Kon!#uf (1)~k1

1kW1'Kon!&50 ~58!

in the same way as the auxiliary bound stateufB& of Eq. ~38!
does, i.e.,

@g0~KB!212w~KB!#ufB&50. ~59!

Equations~58! and ~59! formally look similar to the eigen-
value equations of quantum mechanics with the only diff
ence being that the two-particle interactionw(K) depends on
the eigenvalue. Untill now the relationship to quantum m
chanics has indeed been entirely formal. The statesufB& and
uf (1)(k1

1kW1'Kon)& and the corresponding transition matr
have significance only as quantities from which the solutio
of the BSE can be obtained with comparative ease. On
other hand, at this stage a quantum-mechanical descriptio
the two-particle system can be given which corresponds
namically to the underlying field-theoretic one, though it
by no means equivalent to it.

Quantum-mechanical two-particle statesuw& are required
to satisfy the eigenvalue equation for the squared mass
erator

@M0
21v~K1,KW '!#uw&5MB

2 uw&, ~60!

where the squared free-mass operator is

M0
25

kŴ1'
2 1m1

2

x̂
1

~KW '2kŴ1'!21m2
2

12 x̂
. ~61!

and x̂5 k̂1
1/K̂1. The states are elements of a Hilbert-spa

spanned by the free-particle on-mass-shell basis sta
Boundary conditions must be imposed on the solutions
Eq. ~60! in order to make them acceptable. Bound-state
scattering state solutions to the mass squared operator e
tion exist and are orthonormalized. The orthonormalizat
for scattering states is of thed-function type. The states hav
a probability interpretation. The quantum mechanical bou
state normalization is

^wBuwB&51. ~62!

The two-particle potentialv(K1,KW ') is independent of
the eigenvalueK2, the eigenvalueKB

2 to be calculated for
the bound state and the eigenvalueKon

2 prescribed for the
scattering states; the potential is Hermitian— it is instan
neos in light-front time; it conserves the kinematic comp
nents (K1,KW ') of the total two-particle four-momentumK.
In quantum mechanicsv(K1,KW ') may be parametrized b
fitting it to observables. If contact is attempted to a cor
sponding field theory a standard form of identification is
04400
-
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-

-
-

-

^k18
1kW1'8 uv~K1,KW '!uk1

1kW1'&

ª iA K1

k18
1~K12k18

1!

3^k18
1kW1'8 uw~Kv!uk1

1kW1&A K1

k1
1~K12k1

1!
~63!

with

Kv5S 1

2
Kon821

1

2
Kon

2 ,K1,KW 'D . ~64!

The relativistic quantum-mechanical potentialv(K1,KW ') is
defined in the framework of light-front dynamics. The valu
Kon

2 is defined in the context of Eq.~60!. This choice guar-
antees that theS matrix calculated field theoretically to firs
order inw(K) and calculated quantum mechanically to fir
order in v(K1,KW ') are identical. TheS matrix carries ad
function for light-front energyK2 between initial and final
states. The definition of Eq.~63! removes thatd function
from v(K1,KW ') and allows for general offK2-shell matrix
elements. Thus, Eq.~64! implies a very particular off-shel
extension. This procedure of identification—it is n
derivation—is standard for the instant-form of quantum m
chanics, e.g., when the one-boson exchange potential
tween nucleons is introduced. This paper extends that pr
dure to light-front quantum mechanics. Furthermore,
potential is usually defined in the two-particle c.m. syste
i.e., for KW '50, and is considered unchanged in moving s
tems, i.e., independent ofKW ' andK1.

The identification~63! motivates a quantum-mechanic
potential. It does not attempt to derive it. The goal of t
identification is not to simulate exact solutions of the BS
but to be in a best accord with a chosen physics criterion
quantum mechanics description has different objectives t
matching a field-theory result. It rather attempts to descr
many-particle systems with the same rules once it has d
so satisfactorily for the two-particle system with the sam
rules. Thus, when the quantum-mechanical potential can
be derived completely, as is the case in hadronic physics
potential is tuned to known experimental properties of
two-particle system and then considered a vehicle which
ries that two-particle information to many-particle system
Despite the particular many-particle aspect of quantum m
chanics, a study of its predictive quality even for the tw
particle system is interesting. Figures 2–4 perform su
study for the two-boson system of Sec. IV. The bound st
constitutes an especially stringent test. For the instantane
choice, the approximation,K25Kon

2 .m11m2 in the inter-
action in the c.m. system is quite severe, because in this
field theory requiresK25KB

2,m11m2. The relation be-
tween the coupling constantgS and the bound-state massMB
and the dependence of the bound-state wave functionf (q)

on the momentumq5AkW'
2 are compared in the field theo

retic and quantum-mechanical descriptions. Results are s
3-9
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ied for the approximationsw(K).w(2)(K) and w(K)
.w(2)(K)1w(4)(K) up to second order and fourth-order
the coupling constantgS . The quantum-mechanical bindin
energy and wave function preserve most field-theoretic c
acteristics, expectedly better in the case of small bind
rather than in the case of strong binding. The quantu
mechanical choice of the potential is usually based on
one-boson exchange, i.e., on the approximationw(K)
.w(2)(K). We are happy to find that this identification a
counts better for the field-theoretic results than the cho
based onw(K).w(2)(K)1w(4)(K).

Instead of solving Eq.~60!, its formal identity with the
energy eigenvalue problem for a nonrelativistic Hamilton
is often exploited@17# and uwB& is applied directly in the
framework of light-front quantum mechanics.

The response of the quantum-mechanical system to
electromagnetic probe is given by a four-vector curr
j v
m(K812K1,KW '8 2KW ') which, as the quantum-mechanic

potential is a three-dimensional operator and it depends
the three-dimensional momentum transfer (Q1,QW ')5(K81

2K1,KW '8 2KW '). As in the case of the potential, contact c
be attempted with the corresponding field theory. A poss
identification is

^k18
1kW1'8 u j v

m~K812K1,KW '8 2KW '!uk1
1kW1'&

ªA K1

k18
1~K12k18

1!
^k18

1kW1'8 u j m~Kv82Kv!uk1
1kW1'&

3A K1

k1
1~K12k1

1!
~65!

with

Kv5~Kon ,K1,KW '!,

Kv85~Kon8 ,K81,KW '8 !. ~66!

The field-theoreticj m(K82K) is the one of Eq.~47! in Sec.
III. It contains the field-theoretic interaction in the form o
w(K). The quantum-mechanical currentj v

m(K812K1,KW '8

2KW '), is derived in the special case of elastic scatter
between bound states. Thus, the identification of Eq.~65! is
not consistent with the choice of Eq.~63!, which guaranteed
the agreement of the field-theoretic and the quantu
mechanicalS matrix in first order in the interaction. Never
theless, the quantum-mechanical currentj v

m(K812K1,KW '8

2KW ') can be meaningfully studied and separated i
interaction-free single particle and interaction-depend
two-particle pieces. Thus, the definition of Eq.~65! implic-
itly contains a possible quantum-mechanical definition of
interaction-dependent two-particle current. At this stage,
standard definition based on the identification of theSmatrix
could also be given@18#. It also exploits the formal identity
of the eigenvalue problem with a nonrelativistic Hamiltoni
with equations similar to Eq.~60!, but it then identifies the
nonrelativistic bound state with the solutionufB& of Eq. ~59!,
04400
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the auxiliary field-theoretic bound state for the BSE. Th
the calculation of the electromagnetic deuteron form fact
in Ref. @18# is performed in the field-theoretic spirit of Eq
~59!. The two-particle current operators of pion range in R
@18# should not be confused with the quantum-mechan
interaction-dependent two-particle currents of this section

VII. CONCLUSION

The paper suggests a calculational procedure for solv
the BSE with comparative ease and in principle, with a
desired accuracy. The procedure is based on an auxi
three-dimensional integral equation, in the framework
light-front dynamics, whose solution then yields the result
the BSE by quadrature. The intermediate auxiliary quanti
do not display covariance; covariance is restored in the fi
step to the full result of BSE.

The calculational procedure is exact, but it also offers
efficient approximative scheme: Only particles propaga
Antiparticles do not. Antiparticle propagation is relegated
the effective interaction. The convergence with repect to
number of exchanged particles mediating the interaction
pears to be rapid. Though only an indication of that fa
comes from the simple test case of a BSE bound stat
ladder approximation, it is supported by the similar result
Ref. @16# for the corresponding scattering amplitude. Calc
lational improvements are possible in a systematic man
Thus, as a further and physically more interesting con
quence, the solution of the BSE for bound state and sca
ing up to fourth order in the coupling constant, i.e., in ladd
and crossed ladder approximation and with the inclusion
self-energy corrections is obtained based on a simplify
three-dimensional calculational procedure. The proced
capitalizes on beneficial properties of light-front dynamics
should be an interesting alternative to the Gross approach@6#
which is also three dimensional and which has been s
gested to include the cross-ladder exchanges approxima

The calculational procedure is general, though it is giv
in this paper for an interacting two-boson system only. T
ideas needed for an extension to fermions are developed
important technical details have not yet been worked out
unforeseen difficulties may still arise. The problem of ro
tional invariance in light-front dynamics will become esp
cially acute for fermions when spin and orbital angular m
mentum are to be coupled. The auxiliary three-dimensio
quantities will then be hampered by their lack of rotation
invariance. We strongly believe, however, that the final s
to the covariant result of BSE will overcome that difficulty

The auxiliary three-dimensional quantities, i.e., the ope
tors and equations, that mediate the solution of the BSE,
close in spirit to relativistic quantum mechanics. The pa
also discusses this relation. First, only particles, and not
tiparticles, propagate in the three-dimensional equations
in quantum mechanics. Second, the quantum-mechanica
teraction is an instantaneous potential, the corresponding
teraction w(K) in the three-dimensional equation is no
However, this paper finds that the instantaneous choice
the potential does not distort the physics of the underly
3-10
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field theory. Thus, the relation between quantum mecha
and field theory can be made close. However, compare
field theory, quantum mechanics has the virtue of an ins
extension to many-particle systems: Barring many-part
forces, the quantum-mechanical interaction is additive in
instantaneous pairwise potentials. In fact, the concep
strategy of quantum mechanics often is to tune away sh
comings of the chosen instantaneous potential by adjus
undetermined phenomenological parameters to vital kno
experimental properties of the considered two-particle s
tem. In this way the potential carries the accepted knowle
on the two-particle system over to many-particle systems

The paper left open the relationship of the theoretical
paratus developed to realistic physics problems. We hav
mind applications to hadronic and subhadronic systems.
concept of light-front wave functions was applied in the co
text of nuclear physics to describe the deuteron@17# and the
discussion of its properties in the light front continues to
present@19#. The BSE is supposed to yield the bound sta
and the scattering amplitudes of those two-particle syste
In contrast, the response of such a two-particle system
wards an eletroweak probe is considered in perturba
theory. The required matrix element is determined by
field-theoretic current between states of the BSE. The pa
offers two equivalent routes for calculation: Either the cov
riant states of BSE are constructed and then used in t
four-dimensional form together with the field-theoretic cu
rent or that field-theoretic current is reduced to an auxili
three-dimensional one and used with the auxiliary thr
dimensional states. Both calculational schemes are equ
lent field-theoretic ones. However, the latter calculatio
scheme is close in spirit to the quantum-mechanical o
Quantum mechanics requires the definition of two-parti
exchange currents; its definition is also sketched.
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APPENDIX A: EVALUATION OF AUXILIARY
QUANTITIES

The operatorsG0(K)ug0(K)21 and g0
21uG0(K) connect

three-dimensional and four-dimensional basis states. The
operators are related by conjugation; we therefore disc
only one, i.e.,G0(K)ug0(K)21.

The momentum space matrix elements
G0(K)ug0(K)21 for K1.0, are
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^k18
2k18

1kW1'8 uG0~K !ug0~K !21uk1
1kW1'&

5
i

2p

d~k18
12k1

1!d~kW1'8 2kW1'!

S k18
22

kW1'8
2 1m1

22 io

k18
1 D

3
~K22k1on

2 2k2on
2 1 io !u~K12k1

1!u~k1
1!

S K22k18
22

~KW '2kW1'8 !21m2
22 io

K12k18
1 D .

~A1!

When the avaliable light-front ‘‘energy’’K2 is not on shell,
i.e., K2Þk1on

2 1k2on
2 , the evaluation of the matrix elemen

in Eq. ~A1! is standard. The two singular propagators

S k18
22

kW1'8
2 1m1

22 io

k18
1 D 21

and

S K22k18
22

~KW '2kW1'8
1!21m2

22 io

K12k18
1 D 21

can be rewritten as ad function and principal-part singular
ity; integration onk81

2 can be carried out with usual tech
niques.

A problem arises, when the avaliable light-front ‘‘en
ergy’’ K2 is on-shell, i.e.,K25Kon

2 5k1on
2 1k2on

2 . Without
losing generality, we will have to suppose thatK1.0 and
k1

1.0. Then,K22k1on
2 2k2on

2 1 io51 io and the limiting
process of going to the real axis must be performed w
care. However, in this situation the matrix element will a
ways be integrated with respect tok18

2 , over a function
f (k18

2) still to be determined and, unfortunately with un
known analyticity properties, i.e.,

E dk18
2 f ~k18

2!^k18
2k18

1kW1'8 uG0~K !ug0~K !21uk1
1kW1'&

5
i

2p
d~k18

12k1
1!d~kW1'8 2kW1'!E dk18

2

3
f ~k18

2!

~k18
22k1on

2 1 io !

1

~K22k18
22k2on

2 1 io !

3~K22k1on
2 2k2on

2 1 io !. ~A2!

Without any loss of generality, we can think off (k81
2) as

being split into a partf uhp(k18
2) having singularities only in

the upper halfk18
2 plane and a partf lhp(k18

2) having singu-
larities only in the lower halfk18

2 plane, i.e.,

f ~k18
2!5 f uhp~k18

2!1 f lhp~k18
2!. ~A3!

In the case that there is a part with poles simultaneously
both half planes, they can be fully separated, i.e.,
3-11
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g~k18
2!

1

k18
22a12 ia2

1

k18
22b11 ib2

5g~k18
2!

1

~a2b!1 i ~a21b2!

3F 1

k18
22a12 ia2

2
1

k18
22b11 ib2

G ~A4!

with g(k18
2) being singularity free. The integration in Eq

~A2! can now be carried out using Cauchy’s theorem:

E dk18
2 f ~k18

2!^k18
2k18

1kW1'8 uG0~K !ug0~K !21uk1
1kW1'&

5d~k18
12k1

1!d~kW1'8 2kW1'!~K22k1on
2 2k2on

2 1 io !

3F f uhp~k1on
2 !

1

K22k1on
2 2k2on

2 1 io

1 f lhp~K22k2on
2 !

1

K22k2on
2 2k1on

2 1 io
G

04400
5d~k18
12k1

1!d~kW1'8 2kW1'!@ f uhp~k1on
2 !

1 f lhp~K22k2on
2 !#. ~A5!

We note that propagators cancel and no singularity rema
However, the result~A5! is for practical purposes useles
since the split into two parts with disjoint singularities is n
known in a numerical calculation. If, however, the light-fro
‘‘energy’’ is on-shell,K25Kon

2 , then the two terms can b
recombined to the original function, i.e.,

E dk18
2 f ~k18

2!^k18
2k18

1kW1'8 uG0~K !ug0~K !21uk1
1kW1'&

5d~k18
12k1

1!d~kW1'8 2kW1'! f ~k1on
2 ! ~A6!

for K25Kon
2 .

APPENDIX B: INTERACTION IN FIRST ORDER

The interactionw(k), defined by Eqs.~37! and ~11! to
lowest order of the driving termV(K), is given by

w(2)~K !5g0~K !21uG0~K !V~K !G0~K !ug0~K !21,
~B1!

where the matrix element of the operat
uG0(K)V(K)G0(K)u is
^k18
1kW1'8 uuG0~K !V~K !G0~K !uuk1

1kW1'&

5 i
~ igS!2

~2p!2E dk18
2dk1

2
1

k18
1~K12k18

1!

1

S k18
22

kW1'8
2 1m1

22 io

k18
1 D

1

S K22k18
22

~KW '2kW1'8
2 !1m2

22 io

K12k18
1 D

3
1

~k18
12k1

1!

1

S k18
22k1

22
~kW182kW1'!21m22 io

k18
12k1

1 D
1

k1
1~K12k1

1!

1

S k1
22

kW1'
2 1m1

22 io

k1
1 D

3
1

S K22k1
22

~KW '2kW1'!21m2
22 io

K12k1
1 D . ~B2!

The double integration ink2 in Eq. ~B2! is performed analytically using Cauchy’s theorem and the conditionK1.0. The
integration is nonzero forK1.k18

1.0 andK1.k1
1.0. Two possibilities also appear fors forward propagation. Fork1

1

.k18
1 , a s is emitted by particle 1 and otherwise absorbed:

^k81
1kW1'8 uuG0~K !V~K !G0~K !uuk1

1kW1'&

5~ igS!2
iu~K12k18

1!u~k18
1!

k18
1~K12k18

1!~K22k1on82 2k2on82 1 io !

3S u~k1
12k18

1!

~k1
12k18

1!

i

~K22k1on82 2k2on
2 2kson82 1 io !

1
u~k18

12k1
1!

~k18
12k1

1!

i

~K22k1on
2 2k2on82 2kson

2 1 io !
D

3
iu~K12k1

1!u~k1
1!

k1
1~K12k1

1!~K22k1on
2 2k2on

2 1 io !
, ~B3!
3-12
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where the light-front ‘‘energies’’ of the intermediate states
the individual particles are given by

k1on82 5
kW1'8

2 1m1
2

k18
1

,

k1on
2 5

kW1'
2 1m1

2

k1
1

,

k2on82 5
~KW '2kW1'8 !21m2

2

K12k18
1

,

k2on
2 5

~KW '2kW1'!21m2
2

K12k1
1

,

04400
f
kson82 5

~kW1'8 2kW1'!21m2

k1
12k81

1
,

kson
2 5

~kW1'8 2kW1'!21m2

k18
12k1

1
. ~B4!

The global three-particle propagator for 1, 2, ands appears
in Eq. ~B3!, in two cases: whens is either emitted or ab-
sorbed by particle 1.

The matrix element̂k18
1kW1'8 uw(2)(K)uk1

1kW1'& is obtained
from Eq. ~B3! by multiplying both sides by the matrix ele
ment of the operatorg0(K)21 from Eq. ~25!:
^k18
1kW1'8 uw(2)~K !uk1

1kW1'&5~ igS!2
u~k1

12k18
1!

~k1
12k18

1!

i

~K22k81on
2 2k2on

2 2kson82 1 io !

1~ igS!2
u~k18

12k1
1!

~k18
12k1

1!

i

~K22k1on
2 2k2on82 2kson

2 1 io !

5~ igS!2
u~k1

12k18
1!

~k1
12k81

1!

i

S K22
kW1'8

2 1m1
2

k18
1

2
~KW '2kW1'!21m2

2

K12k1
1

2
~kW1'8 2kW1'!21m2

k1
12k18

1
1 io D

1~ igS!2
u~k18

12k1
1!

~k18
12k1

1!

i

S K22
kW1'

2 1m1
2

k1
1

2
~KW '2kW1'8 !21m2

2

K12k18
1

2
~kW1'8 2kW1'!21m2

k18
12k1

1
1 io D .

~B5!

APPENDIX C: INTERACTION IN SECOND ORDER

The interactionw(k), defined by Eqs.~37! and ~11! to second order in the driving termV(K), is given by

w~K !.w(2)~K !1w(4)~K !, ~C1!

wherew(2)(K) is given by Eq.~B5! and

w(4)~K !5g0~K !21uG0~K !V~K !G0~K !V~K !G0~K !ug0~K !212g0~K !21uG0~K !V~K !G̃0~K !V~K !G0~K !ug0~K !21.
~C2!

The second term in Eq.~C2! corresponds to the iteration of the interactionw(2)(K)

g0~K !21uG0~K !V~K !G̃0~K !V~K !G0~K !ug0~K !21

5g0~K !21uG0~K !V~K !G0~K !ug0~K !21uG0~K !V~K !G0~K !ug0~K !21

5w(2)g0~K !w(2). ~C3!

The matrix element of the operatoruG0(K)V(K)G0(K)V(K)G0(K)u is
3-13
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^k18
1kW1'8 uuG0~K !V~K !G0~K !V~K !G0~K !uuk1

1kW1'&

5
~ igS!4

2~2p!6E dk18
2dp1

2dk1
2dp1

1d2p1'

1

k18
1~K12k18

1!

1

S k18
22

kW1'8
2 1m1

22 io

k18
1 D

3
1

S K22k18
22

~KW '2kW1'8
2 !1m2

22 io

K12k18
1 D

1

~k18
12p1

1!

1

S k18
22p1

22
~kW1'8 2pW 1'!21m22 io

k18
12p1

1 D
3

1

p1
1~K12p1

1!

1

S p1
22

pW 1'
2 1m1

22 io

p1
1 D

1

S K22p1
22

~KW '2pW 1'!21m2
22 io

K12p1
1 D

1

~p1
12k1

1!

3
1

S p1
22k1

22
~pW 1'2kW1'!21m22 io

p1
12k1

1 D
1

k1
1~K12k1

1!

1

S k1
22

kW1'
2 1m1

22 io

k1
1 D

1

S K22k1
22

~KW '2kW1'!21m2
22 io

K12k1
1 D .

~C4!

The on-energy-shell values of the light-front minus momentum in Eq.~C4! are given in Eq.~B4!, and

p1on
2 5

pW 1'
2 1m1

2

p1
1

,

p2on
2 5

~KW '2pW 1'!21m2
2

K12p1
1

. ~C5!

The matrix element̂k18
1kW1'8 uuG0(K)V(K)G0(K)V(K)G0(K)uuk1

1kW1'& is found by analytical integration in the light-fron
‘‘energies’’ in Eq.~C4!. To separate the intermediate four particle propagation, which occurs fork18

1 , p1
1, andk1

1 satisfying
0,k1

1,p1
1,k81,K1, the following factorization is necessary:

1

K22p1
22

~KW '2pW 1'!21m2
22 io

K12p1
1

3
1

p1
22k1

22
~kW1'2pW 1!21m22 io

p1
12k1

1

5
1

K22k1
22

~KW '2pW 1'!21m2
22 io

K12p1
1

2
~kW1'2pW 1'!21m22 io

p1
12k1

1

3F 1

K22p1
22

~KW '2pW 1'!21m2
22 io

K12p1
1

1
1

p1
22k1

22
~kW1'2pW 1'!21m22 io

p1
12k1

1
G . ~C6!

After the Cauchy integration in the light-front ‘‘energies’’ the result for^k18
1kW1'8 uuG0(K)V(K)G0(K)V(K)G0(K)uuk1

1kW1'&
in the region of 0,k1

1,p1
1,k18

1,K1, which is denoted bŷk18
1kW1'8 uuG0(K)V(K)G0(K)V(K)G0(K)u(a)uk1

1kW1'&, is given
by
044003-14
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^k18
1kW1'8 uuG0~K !V~K !G0~K !V~K !G0~K !u(a)uk1

1kW1'&

5
~ igS!4

2~2p!3E dp1
1d2p1'

u~k18
1!u~K12k18

1!

k18
1~K12k18

1!

i

K22
kW1'8

2 1m1
2

k18
1

2
~KW '2kW1'8 !21m2

2

K12k18
1

1 io

3@F8~K !1F9~K !#
u~k1

1!u~K12k1
1!

k1
1~K12k1

1!

i

K22
kW1'

2 1m1
2

k1
1

2
~KW '2kW1'!21m2

2

K12k1
1

1 io

, ~C7!

with

F8~K !5
u~k18

12p1
1!

~k18
12p1

1!

i

K22
pW 1'

2 1m1
2

p1
1

2
~KW '2kW1'8 !21m2

2

K12k18
1

2
~kW1'8 2pW 1'!21m2

k18
12p1

1
1 io

3
u~p1

1!u~K12p1
1!

p1
1~K12p1

1!

i

K22
pW 1'

2 1m1
2

p1
1

2
~KW '2pW 1'!21m2

2

K12p1
1

1 io

u~p1
12k1

1!

~p1
12k1

1!

3
i

K22
kW1'

2 1m1
2

k1
1

2
~KW '2pW 1'!21m2

2

K12p1
1

2
~pW 1'2kW1'!21m2

p1
12k1

1
1 io

; ~C8!

F9~K !5
u~k18

12p1
1!

~k18
12p1

1!

i

K22
pW 1'

2 1m1
2

p1
1 2

~KW '2kW1'8 !21m2
2

K12k18
1

2
~kW1'8 2pW 1'!21m2

k18
12p1

1
1 io

3
i

K22
kW1'

2 1m1
2

k1
1

2
~KW '2kW1'8 !21m2

2

K12k18
1

2
~kW1'8 2pW 1'!21m2

k18
12p1

1
2

~pW 1'2kW1'!21m2

p1
12k1

1
1 io

3
u~p1

12k1
1!

~p1
12k1

1!

i

K22
kW1'

2 1m1
2

k1
1

2
~KW '2pW 1'!21m2

2

K12p1
1

2
~pW 1'2kW1'!21m2

p1
12k1

1
1 io

. ~C9!

The part of the propagator given by Eq.~C7! contains the virtual light-front propagation of intermediate states with u
four particles. The functionF8 contains only intermediate states up to three particles and is two-body reducible. I
eventually be canceled by the corresponding piece in the second term in Eq.~C2!. The functionF9 has one intermediate stat
in which the four-particle propagator can be recognized as the middle piece of Eq.~C9!. The other possibility that includes u
to four particles in the intermediate state propagation is given by 0,k18

1,p1
1,k1

1,K1. To obtain this part, we perform th
transformationk18↔k1 in Eq. ~C7!.

The contribution of the region given by 0,p1
1,k1

1,K1 and 0,p1
1,k18

1,K1 to the matrix element

^k18
1kW1'8 uuG0(K)V(K)G0(K)V(K)G0(K)uuk1

1kW1'& is denoted by^k18
1kW1'8 uuG0(K)V(K)G0(K)V(K)G0(K)u(b)uk1

1kW1'&. It
044003-15
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contains only up to three-particle intermediate states and is two-body reducible. Consequently, it will be canceled
corresponding piece of the second term in Eq.~C2!. It is given by

^k18
1kW1'8 uuG0~K !V~K !G0~K !V~K !G0~K !u(b)uk1

1kW1'&

5
~ igS!4

2~2p!3E dp1
1d2p1'

u~k18
1!u~K12k18

1!

k18
1~K12k18

1!

i

K22
kW1'8

2 1m1
2

k18
1

2
~KW '2k1'8 !21m2

2

K12k18
1

1 io

u~k18
12p1

1!

~k18
12p1

1!

3
i

K22
pW 1'

2 1m1
2

p1
1

2
~KW '2kW1'8 !21m2

2

K12k18
1

2
~kW1'8 2pW 1'!21m2

k18
12p1

1
1 io

u~p1
1!u~K12p1

1!

p1
1~K12p1

1!

3
i

K22
pW 1'

2 1m1
2

p1
1

2
~KW '2pW 1'!21m2

2

K12p1
1

1 io

u~k1
12p1

1!

~k1
12p1

1!

3
i

K22
pW 1'

2 1m1
2

p1
1

2
~KW '2kW1'!21m2

2

K12k1
1

2
~kW1'2pW 1'!21m2

k1
12p1

1
1 io

3
u~k1

1!u~K12k1
1!

k1
1~K12k1

1!

i

K22
kW1'

2 1m1
2

k1
1

2
~KW '2kW1'!21m2

2

K12k1
1

. ~C10!

For the momentum region satisfying 0,k18
1,p1

1,K1 and 0,k1
1,p1

1,K1, the contribution to the matrix elemen

^k18
1kW1'8 uuG0(K)V(K)G0(K)V(K)G0(K)uuk1

1kW1'& can be obtained from Eq.~C10! by performing the following transforma
tion on the kinematical momentum:k18↔K2k18 , k1↔K2k1 andm1↔m2. From Eqs.~C9! and~C10!, the following result is
obtained:

^k18
1kW1'8 uuG0~K !V~K !G0~K !V~K !G0~K !uuk1

1kW1'&

5~^k18
1kW1'8 uuG0~K !V~K !G0~K !V~K !G0~K !u(a)uk1

1kW1'&1@k18↔k1# !

1~^k18
1kW1'8 uG0~K !V~K !G0~K !V~K !G0~K !u(b)uk1

1kW1'&1@k18↔K2k18 ,k1↔K2k1 ,m1↔m2# !. ~C11!

The subtraction of the iterated first order driving term in Eq.~C2! cancels the corresponding terms in Eq.~C11! such that
the matrix element̂k18

1kW1'8 uw(4)(K)uk1
1kW1'& is two-body irreducible with a global four-body propagation. It is obtained fr

Eqs.~C7!, ~C9!, and~C2! as

^k18
1kW1'8 uw(4)~K !uk1

1kW1'&5
~ igS!4

2~2p!3E dp1
1d2p1'

u~k81
12p1

1!

~k18
12p1

1!

u~p1
1!

p1
1

u~K12p1
1!

K12p1
1

3
i

K22
pW 1'

2 1m1
2

p1
1

2
~KW '2kW1'8 !21m2

2

K12k18
1

2
~kW1'8 2pW 1'!21m2

k18
12p1

1
1 io
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3
i

K22
kW1'

2 1m1
2

k1
1

2
~KW '2kW1'8 !21m2

2

K12k18
1

2
~kW1'8 2pW 1'!21m2

k18
12p1

1
2

~pW 1'2kW1'!21m2

p1
12k1

1
1 io

3
u~p1

12k1
1!

~p1
12k1

1!

i

K22
kW1'

2 1m1
2

k1
1

2
~KW '2pW 1'!21m2

2

K12p1
1

2
~pW 1'2kW1'!21m2

p1
12k1

1
1 io

1@k18↔k1#. ~C12!

APPENDIX D: INTEGRAL EQUATION FOR THE BOUND-STATE

In the approximation considered, the vertex function satisfies an integral equation with the kernel containing two pa
corresponding to Eq.~B5! and the other to Eq.~C12!. The plus momentum are rescaled byK1, such that the momentum
fractionsx5k1

1/K1, y5k18
1/K1, andz5p1

1/K1, are used. The notation̂k18
1kW1'8 ugB&[gB(y,kW1'8 ) is introduced. The ho-

mogeneous integral equation for the light-front vertex function is evaluated in the center of mass system

gB~y,kW1'8 !5
1

~2p!3E d2k1'dx

2x~12x!

K (2)~y,kW1'8 ;x,kW1'!1K (4)~y,kW1'8 ;x,kW1'!

MB
22M0

2
gB~x,kW1'!, ~D1!

where the free two-body mass isM0
25(kW1'

2 1m2)/x(12x) and 0,x,1.
The part of the kernel which has only the propagation of virtual three particles states foward in the light-front t

obtained from Eq.~B5!,

K (2)~y,kW1'8 ;x,kW1'!5gS
2 u~x2y!

~x2y!S MB
22

kW1'8
2 1m2

y
2

kW1'
2 1m2

12x
2

~kW1'8 2kW1'!21m2

x2y
D 1@x↔y,kW1'8 ↔kW1'#. ~D2!

Equation~D1! with the effective interaction given by Eq.~D2! corresponds to the Weinberg equation derived from the BSE
the infinitum momentum frame@20#. It has also been solved in Ref.@21# and in Ref.@22# including self-energy correction. The
equivalent equation for fermions has been discussed in Ref.@23#.

The contribution to the kernel from the virtual four-body propagation is obtained from Eq.~C12!,

K (4)~y,kW1'8 ;x,kW1'!5
gS

4

~2p!3E d2p1'dz

2z~12z!~z2x!~z2y!

u~z2y!u~x2z!

S MB
22

kW1'8
2 1m2

y
2

pW 1'
2 1m2

12z
2

~kW1'8 2pW 1'!21m2

z2y
D

3
1

S MB
22

kW1'8
2 1m2

y
2

kW1'
2 1m2

12x
2

~kW1'8 2pW 1'!21m2

z2y
2

~pW 1'2kW1'!21m2

x2z
D

3
1

S MB
22

pW 1'
2 1m2

z
2

kW1'
2 1m2

12x
2

~pW 1'2kW1'!21m2

x2z
D 1@x↔y,kW1'↔kW1'8 #. ~D3!

Equations~D1!–~D3! are easily recognized to be covariant under kinematical light-front boosts. However, the covaria
the four-dimensional wave function~41! is certainly lost by a finite expansion ofW(K) in Eq. ~11! and the use of the
correspondingw(K) while covariance continues to hold for the solution of Eq.~11!.
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