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A three-dimensional reduction of the two-particle Bethe-Salpeter equation is proposed. The proposed reduc-
tion is in the framework of light-front dynamics. It yields auxiliary quantities for the transition matrix and the
bound state. The arising effective interaction can be perturbatively expanded according to the number of
particles exchanged at a given light-front time. An example suggests that the convergence of the expansion is
rapid. This result is particular for light-front dynamics. The covariant results of the Bethe-Salpeter equation can
be recovered from the corresponding auxiliary three-dimensional ones. The technical procedure is developed
for a two-boson case; the idea for an extension to fermions is given. The technical procedure appears quite
practicable, possibly allowing one to go beyond the ladder approximation for the solution of the Bethe-Salpeter
equation. The relation between the three-dimensional light-front reduction of the field-theoretic Bethe-Salpeter
equation and a corresponding quantum-mechanical description is discussed.

PACS numbgs): 24.85:+p, 12.39.Ki, 14.40.Cs, 13.40.Gp

. INTRODUCTION 0, =T,GyorV, as well as|¥) and|I") carry a four-
dimensionals function in momentum space,
In relativistic field theory the Bethe-Salpeter equation
(BSE) [1] describes two-particle systems in interaction. The (K" O4KY=8(K'=K)O,(K), (5)
inhomogeneous BSE
(K'[W)=8(K'=Kpg)[ V), (6)
T=V+VGyT (1)
_ | | _ _ (K'|I)=8(K' ~Kg)|Tg), W)
yields the transiton matriX of two-particle scattering. In Eq.
(1) Gy is the disconnected Green'’s function for two particles,the reduced quantities depending parametricallyKomven
which is reduced to the Green’s function of two non-if not spelled out explicitly foiI'g) and|¥g). The reduced
interacting particles by neglecting self-energy parts, i.e., byjuantities| ¥g), |I's) and theO,(K) are functions of the
taking internal variables expressed in terms of the four-dimensional
momentumk® or coordinatex”. They satisfy the Eqs1)
i i and(3) in a corresponding fashion. For convenience we have
vy used the bra-ket notation to represent functions which can be
written in either momentum or coordinate spaces.
R ) The inhomogeneous and homogeneous BREsand (3)
with kf* denoting the off-mass-shell momentum operator actzre general and exact formulations for the scattering ampli-
ing on the coordinates of particlevith massm; , the hat on  tyde and bound state. However, for any realistic field theory
the variable emphasizing its operator character. The drivingolution of the BSE constitutes a difficult calculational task
termV stands for the complete interaction, irreducible with\yhich has not been tackled in full. In practical calculations,
respect to two-particle propagation. If the dynamics allowsthe driving termV/(K) has to be truncated to low orders of
for a two-particle bound state with total four-momenti®,  particle exchange. In Euclidean space, the fermion case has
K&=M3, the verteXI') (the round ket indicates the depen- only been solved in ladder approximatig], i.e., with
dence on four-dimensional coordinates of all particlshe  single particle exchange for the driving term, while the bo-
bound-state pole is solution of the homogeneous BSE ~ son case has only been solved in ladder and crossed ladder
approximation[3]. However, the step from the Euclidean-

GOZA = ’
k2—m2+io k3—m3+io

IT)=VG|I') (3)  space to Minkowski-space solutions requires a complicated
analytic continuation[4]. Direct solutions in Minkowski
with the relation space are just now becoming availapté.
In the light of the great calculational difficulties, three-
| ) =G,|T") (4 dimensional reductions of the BSE are still of high physics

interest. The conceptual sacrifices generated by the reduction
to the Bethe-Salpeter amplitude¥) of the bound state. can possibly be outweighed by the gain in technical ease.
Equations(1) and(3) do not determingW) in full; the nor-  One hopes to be able to include physical phenomena which
malization condition has to be added. The two-particle totathe four-dimensional BSE with a highly truncated interaction
four-momentunK is conserved in Eqgql) and (3); that is, is unable to account for. For example, the three-dimensional
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Gross approach6] allows only one particle to propagate |Wg)=Go(K)|T'g), (10
off-mass-shell, but it appears to go beyond the ladder ap-

proximation of BSE by single particle exchange and to in-provided the driving ternV(K) is changed t&W(K) accord-
clude crossed exchanges implicitly; it manfestly preserveing to

Go(K) '~ Go(Kg) "+ V(K)—V(Kp)
K?—K§ K2-K3

has to be added. It involves the original driving te¥(K)

[13]. The choice ofG,(K) is hoped to be sufficently clever
Eat the integral equatiofi1) does not have to be solved in

explored for the pion-nucleon system which fulfills require- Equations(9) and (10) do not determingW¥g) in full; the
light-front and instant-form dynamics, without emphasis to lim

nucleon-nucleon correlatioflQ0]. After the submission of

model used here. ull, but that a few terms of the infinite series

covariance. Other reduction schemes give up covariance, ~
which then must be recovered through complicated correc- W(K)=V(K)+V(K)[Gy(K)—Go(K)JW(K). (11
tion schemes. An equal-time projection scheme has also been
ments of covariance and discrete Poincayenmetries[7].  normalization condition
The papers by Fudp8] report on the comparision of one-
meson exchange models in ladder approximation on both < v >
B B

the underlying field-theoretic framework. The field theoretic K?—Kg
approach in the light front has also been recently used with  _ 1 (12)
success to describe finite nuc[®i] and nuclear matter with
this work, Ref.[11] came to our attention, which discusses
the light-front description of the angular momentum bound
states of the Bethe-Salpeter equation for the same boson$

The purpose of this paper is twofold) First, the paper o
attempts to find a three-dimensional equation for auxiliary W(K)=V(K) 2, [(Go(K)—Co(K)V(K)]",
guantities from which the full covariant solution of the BSE n=0
in the ladder or any other approximation can be obtained
with ease This is a technical objective with solutions well- W(K)=V(K)+V(K)(Gy(K)—Go(K)V(K)+ - - -

known in the framework of instant-form dynamics. Here the (13
advantages of light-front dynamics are to be explored.

(ii) Second, the paper tries to illuminate the connection tasuffice. The auxiliary Green’s functioEO(K) remains a
a quantum-mechanical description of the two-particle systenfour-dimensional one, but its choice may sacrifice the cova-
whose dynamic input is related to the underlying fieldriance whichGy(K) possesses.
theory. The dynamics of the interacting two-particle system can
Section Il motivates our novel choice for three- pe fully described by its propagation between hyperplanes,
dimensional auxiliary quantities from which the covariantthe hyperp|anegozconst in instant-form dynamiCS, the hy-
solutions of the BSE are obtained. It motivates light-frontperplanesx* =x%+x3=const in light-front dynamicg$14].
dynamics as our choice for a dynamical framework. Sectiolamong the hyperplanes of* =const, only the light front
[l gives our theoretical apparatus in full. Section IV tests theyith x*=0 is left invariant by seven kinematical boosts,
potential Of the method in the example Of a t\NO-bOSOI’l boun%h”e the hyperp'anex+ =const Sca|es under |ight-front

bound state including up to four-particle intermediate stategepends on the individual timed or on the individual light-
in lowest order and compare to the solutions of the four+,qn+ timesx:* .
Qimensional BSE equation i.n th'e ladder approximation. Sec- The freeI Green’s function innstant-form coordinates,
tion V sketches the generalization of our theoretical appara- k= (KO K

tus to fermions. Section VI discusses the connection witt9- i= (ki' ki)

light-front quantum mechanics. Our conclusions are summa-

ed i 1
rized in Sec. VII. (x’({x’g|Go|x8xg>=— 7 )zf dkgdKO
o
Il. CHOICE OF TWO-PARTICLE AUXILIARY FREE _.0,,0_ ,0_ 0, 0
~ e ik (X =X x3+x3)
GREEN'’S FUNCTION Gy(K) X

It is well known, from the work of Ref[12], that the [(k))2—ki—mi+io]
transition matrix T(K) and the Bethe-Salpeter amplitude KO0
| W) of the covariant BSE can be obtained with the help of % e 22

a convenient auxiliary Green’s functidBq(K), still to be

0 LOV2 (1 N2 2.
chosen. That is, we have [(K*=kD = (K=ky)“—m3+io]

(14)
T =WK)+W(K)Go(K)T(K), ®) —in fact only its dependence on individual tirrwféis made
5 explicit—reduces for propagation between the hyperplanes
[T's)=W(Kg)Go(Kp)|I's), 9  x3=x3=x° andx'9=x"9=x'% to
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dk® o,
(X% | Go|x"x%) = f S K f dkq dki(k I Go(K) KD, (15
dKO _ik0ry,70_ 0
Ef e T Go(K)lo. (16)
In Eqg. (15) the notation
1 5(k:°—K9)
(K'UGo(K)[KD)=—5— - (17)

[(kD? =K = m2+i0][(K° = k)~ (K ~ky)?—~mé +io]

is introduced, as well as the abbreviation

|0Go(K)|o= f dk; dK(k' | Go(K)[K?) (18)
i 1 1
T500 510 00 _ 10 i\ (k0.0 20 ]| (19)
2|(1on2k20n (K _klon_k20n+|0) (K +k10n+k20n_|0)

The matrix eIemen([kiO|Go(K)|k(f) of Eq. (17), in which only the dependence on the “dynamic” variakEeis made explicit
remains an operator with respect to the “kinematic” varialﬂ@sthe operator character being carried by the oper:ia?gﬁs

= Vk?+m? acting on functions of kinematic variables. The basis states for functions of these kinematic variables are defined

by (xi|k;)=exp(k;-X;) and are eigenfunctions of the momentum operatand the free energy operati},. The state$k)
form an orthogonal and complete basis for functions of the kinematic variables.

In Eqg. (18), the vertical bat, indicates that the dependence kﬁwis integrated out. The bar on the left of the Green’s
function represents integration &f in the bra state, the bar on the right in the ket state; we shall encounter Green’s functions
in which integration ork? is performed only on one side, the Harbeing placed on that side alone. The resulting function
[0Go(K)|o is three dimensional and depends only on the kinematic varidf@leu is a global propagator, since it mediates
between hyperplanes according to Et6), not allowing for individual time differences between the two particles, it is not
explicitly covariant. In instant-form dynamics, the global propagd@,(K)|, still allows for particle and antiparticle
propagation. This is considered to be a technical disadvantage.

The free Green'’s function itight-front coordinates, e.gk;= (k. :==k®— k%, k' :=k®+k3, ki)

1 . —_ ! ’ . —_ ’
(X17%5 7 |Golx3 x5 ) =— (277)2] dk; dK e~ 12k 04 0 xg 3 g 112K (x4 = x3)
1
X ; ; 20
. . k2 +m2—io k2, +m2—io
kI(KJr—kI)(kl—,\— K=k ————=—
ki K™ —k;

—only its dependence on the individual light-front “times” is made explicit—reduces, for propagation between the
hyperplanes; =x; =x" andx; " =x,"=x"", to

dK™ i

0 x Gl %) = [ Gme 0 [ |GoKlk ), D
dK™ i

= [ Soe g @

In Eqg. (21) the notation
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L _ 1 S(k'{ —ky)
(kq |G0(K)|k1>=_ﬂ - - - - (23)
. . k2, +m?—io k3, +m2—io
k;(w—k;)(k;——ﬂ — )( Tk
Ky K*—kj
|
is introduced with the abbreviation function represents integration &j in the bra state, the bar
on the right in the ket state. We shall encounter Green’s
|Go(K)|==f dk,~dk; (k]| Go(K)[K{) (24) functions in which integration ok, is done on one side
Lo ! alone, the baf being placed only on that side. The operator

0o(K) is three dimensional and it depends on the kinematic

(K™ —ky) o(ky) (25) variables k; ,|2n) only. It is a global propagator, since it

- RI(K+ - RI)( K™ — Rl—on_ Rz—on+ i) mediates between hyperplanes according to(Z2), not al-
lowing for individual light-front time differences between
:=go(K), (26)  the two particles. It does not possess explicit covariance but

is still covariant under light-front boosts. In light-front dy-
whereK*>0 can be chosen without any loss of generality.namics, the global propagatgy(K) only allows particle
However, there is a difference betweén=0 and K* propagation, no antiparticle propagation, due to the choice of
>0. In principle G, can have contributions of the form K*>0. This is the advantage of light-front dynamics, with
S(k*)/k™ which are related to zero modes. Their contribu-which we work from now on.

tion could appear as a nontrivial weight lat=0 and are The auxiliary four-dimensional Green’s functidy(K),

also related to the renormalization of the quantum fieldintroduced in Eqs(8)—(13) has to be chosen next. We re-
theory on the light front[15]. The matrix element quire for Go(K):

(k" {|Go(K)|ky ) of Eg. (23), in which only the dependence

on the “dynamic” variablek; is made explicit, still remains GO(K)| =Gy(K)|, (29
a functional operator with respect to functions of the “kine-
matic” variables |Go(K)=|Go(K), (30)
%, ) ~
Ay ~_ ki +tmy |Go(K)[=[Go(K)], (31)

(ki keo), kion= s
1 and define a three-dimensional transition matti¢)

and through

I[Go(K)+Go(K)T(K)Go(K)]|
=go(K) +go(K)t(K)go(K). (32

) ) ) ) ) In Egs.(29—(32) the abbreviatior] for integrating out the
The basis states for functions of the kinematical Ilght-frontkl— dependence of operators is used. The conditi@®s—
variables are defined by (32) are a rather mixed bag. The conditiaidd) and(32) are
- . - o hysical ones: They require that the global-propagator form
(X% KRy =e A Ron) @y P o S
of Gy(K) be the same as for the exact free Green'’s function
) ) o Go(K) and that the full Green’s function of BSEy(K)
and are eigenfunctions of tkle momentum operatiy's K; ) +Gy(K)T(K)Go(K) can be obtained frodﬁo(KH and the
and the free energy operathy,, acting on functions of the  three-dimensionat(K). However, the two condition§31)

kinematical variables. The statés*lzg form an orthonor-  and(32) do not determin@o(K) in full. Our choice is
mal and complete basis in the space of functions of the ki-

A (KL_En)Z"'mg

K+ —k;

20n—

nematical variables, e.g., Go(K) :=Go(K)|gg H(K)|Go(K), (33
2 = Tr— — - —
dk"d?k, x5 KR R R,) thoughGy(K) = 8(k; ™ —K~/2)go(K) 8(k; —K~/2) (and ob-
2(27)3 L L L L vious variants of it seems to be a legitimate alternative.

However, the condition$29) and (30) introduce the addi-
=8(x' " —x7)8(X, —X,). (28)  tional convenience that the auxiliary Green’s function be as
close as possible to the exact free one and &8).allows the
In Eqg. (24) the vertical bat indicates that the dependence light-front propagators in higher Fock-states to appear ex-
on ki is integrated out. The bar on the left of the Green’splicitly in the kernel of integral equation for the auxiliary
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transition matrix, which will be defined in the next section. |‘I'B>=[1+(Go(KB)—Go(KB)|go(KB)_1|GO(KB))W(KB)]
The auxiliary quantities are computed in Appendix A.
X Go(Kg)||7e)- (41)

For the form Eq(41) of the bound state amplitude, the con-
Our calculational procedure amounts to solving threedition Eq. (38) |yg)—w(Kg)go(Kg)|ys)=0 is used. The

dimensional integral equations, whose solutions then yielgtep from the three-dimensional residug) to the Bethe-

the covariant results of the BSE by quadrature. The fourSalpeter amplitudg¥ ) appears predominantly a kinematic

Ill. CALCULATIONAL PROCEDURE

dimensional transition matrix(K) is obtained from the
three-dimensional auxiliary ongK), defined by Eq(32),
through

t(K)=go(K) " Go(K)T(K)Go(K)[go(K) ™, (34)
by first iterating the integral equatidi8) once,
T(K)=W(K) +W(K)[Go(K) +Go(K) T(K)Go(K) IW(K),

and then making use of our choice, Eg3), for G(K) and

the result Eq.(34). The relation between th&(K) and the
auxiliary t(K) is

T(K)=W(K) +W(K)Go(K)|[go(K) ~*+t(K)]|

X Go(K)W(K). (35

The auxiliary transition matrix(K) itself is obtained by the
three-dimensional integral equation
t(K)=w(K)+w(K)go(K)t(K), (36)

in which the driving termw(K) is derived from the modified
four-dimensional interactiokV(K) of Eq. (11) according to

W(K):=go(K) ~HGo(K)W(K)Go(K)[go(K) ™t (37)

There is an integral equation fer(K) as there is foW(K),

but we do not give it here. We hope that, through our choice

(33) for Go(K), a few terms of the expansidf1), of W(K)
in powers ofV(K) will dynamically suffice to yield the full

one, effected by the operatGiy(Kg)|. Only the second term
in Eq. (41) depends on the interaction, and it is expected to
be a small correction.

The Bethe-Salpeter amplitud® ) is related to the aux-
iliary three-dimensionall¢g), defined by

| $8):=0o(Kg)| v8) (42
and satisfying
| $e)=0o(Kg)W(Kp)| ¢g), (43
in an obvious way by
[EREE a

The result(44) follows immediately from Eq(41). The aux-
iliary bound-state wave functiobg) is the projection of the
Bethe-Salpeter amplitudé¥g) to equal light-front indi-
vidual timesx;" =x", taken on the hyperplane" =0.

The Bethe-Salpeter amplitud¢¥g) and its three-
dimensional auxiliary versiohgg) still have to be normal-
ized. If the dependence dfof the original interactio’V(K)
is weak, i.e.,[V(K)—V(KB)]/(KZ—Ké):o and if further-
more the interaction-dependent term in the step ffgg) to
|¥g) according to Eq. (41) is small, i.e., |¥g)
=Go(Kg)|9o(Kg) Y #s), then

_ < Go(K) " 1=Go(Kg) ™! V(K)—V(Kg)
lim ( ¥y -
K?—K3

2 2
K2—K§ K2—K3

result of BSE with satisfactory accuracy. The numerical ex-

ample of Sec. IV where rapid convergencendK) is seen,
demonstrates the validity of this expectation.

If the transition matrixT (K) of the BSE has a bound-state

pole at total four momenturdg, K3=M3, the auxiliary

three-dimensional transition matri¥K) also has a bound-

state pole at exactly the sankg;, according to Eq(34),

with the residue yg) being the solution of the homogeneous

three-dimensional equation
|'ve)=wW(Kg)go(Kp)| ve), (39

corresponding to the inhomogeneous one, ). From

| vg), the residuél’z) of BSE can be recovered according to

Eq. (35)
[T'g)=W(Kg)Go(Kg)|| v&) (39
as well as the amplitude¥ 5) of BSE, i.e.,
|Wg)=Go(Kg)W(Kg)Go(Kg)|| v8), (40)

~ iim (W Go(K) ™t =Go(Kp) ™t v

KZHKE ® KZ—K% .

) Jo(K) 1 =go(Kp) *
- 2||m2<¢3 e ds)=1. (45
KHKB

For any further applications, i.e., for predicting physical ob-
servables, we now have two equally valid options. We may
either work with covariant operators usiigfg) and/or the
transition matrixT(K) of the BSE or we may derive effec-
tive operators suited for the context of the auxiliary three-
dimensional bound statbpg) and/or the auxiliary three-
dimensional transition matrii(K). We give an example of
each of the two possible strategies.

We use the eletroweak currefit*(Q) as an example and
assume that it connects an initial bound-state Bethe-Salpeter
amplitude|¥g;) to a final one|Wg;) in an elastic process.
We take 7#(Q) to be the current appropriate for the had-
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ronic field theory with four-momentum transfé=Kg; mentaKg; andKg;. The effective curreng”(K; ,K;) is pre-
—Kg;. The matrix element for describing the processdominantly derived kinematically from the covariant one
(Vi T4(Q)|Wg;) can first be derived from the Bethe- throughgy(K;) Y Go(Ks) T*(Ki—K;i)Go(Ki)|go(K;) ~* but
Salpeter amplitudé¥ z) of the bound state. Alternatively, it it also depends on the interacti®(K) of Eq. (11). If W(K)
can be obtained from the three-dimensional bound $t&e  is not computed in full, but only expanded up to a certain
by order in the original interactioW(K) of the BSE, the effec-

(Vo] TH(K Ko | W o) = (barli*(Kar . Kar) | da) tive current should be expanded consistently up that order.
Bf Bf— Kgi)| ¥Bi) = (PBil) Bf:KBi) [ PBi)
(46)

IV. A NUMERICAL TEST CASE

with the effective current in three-dimensional space .
We use the bound state of a schematic two-boson system

J4(Ks,Kj) as a test case of the power of the suggested numerical tech-

. nigue. The employed interaction Lagrangian is
=0o(K1) HGo(K){1+W(KH[Go(K¢)

—Go(Knlgo(Kp) ~|Go(K) I}T#(K—K,) £1=0s$110+ sh220, (49

X{LH+[Go(Ki) = Go(Kigo(Ki) *|Go(K)] where the bosons with fields; and ¢, have masses);, and
XW(K)YGo(Ki)|go(Ki) L. (47) Mz, which we take to be equa,=m,=m, and the ex-
changed boson with field has mass.. The coupling con-
For the relation betweeW'g) and|#g), Eq. (41) is used, stantisgs.
which separates the kinematic and dynamic, i.e., interaction Using standard techniques in Euclidean space, the homo-
dependent, steps in that relation from each other. The bourgeneous BSE is solved for the bound-state velifgs} in the
state has to be calculated for the initial and final four mo-ladder approximation, i.e.,

d*k ky|T
(kqIrey=igz[ — talle)

2m)* [(k—ky)?— p?+ie](K2—mP+ie)[ (Kg—k)2—mP+ie]

(49

The solution is calculated in the two-particle c.m. systemtion for |yg), Eq. (38), for the above approximations in the
i.e., for KB:(M516)1 and for the ratio of masseg/m driving term are given in Appendix D. In order to make a
—0.5. Requiring the bound state mass to have a particuldfomparision with the exact bound state amplitude we study
value Mg fixes the coupling constangs. The four- the following projected forms, i.e.,
dimensional bound-state verték,|I'g) depends on all Eu-
clidean four components of the momentm of boson 1. 7 "

The exact four-dimensional bound stat(;hglmplitude is ob- forael VG '_f diq die CkalVe)

tained according to Eq10). However, the representation of

the vertex and bound-state amplitude in terms of Minkowski :2J dk0dIG(ko%k, k3| Go(Kg)|Tg), (50)
momenta is difficult. We do not attempt it.

In contrast, the four-dimensional bound-state amplitude

obtained by the numerical technique suggested in Sec. Il is my, g2 \_ PR, ")

available in Minkowski space. We calculate it only approxi- Fapd VK1) = | dky (ky k| d)app

mately by using for the driving termv(Kpg) of the auxiliary

three-dimensional equatiof38), an expansion in orders of :f dk (kI K K (n) 51
the interactionV(K) of BSE in Egs.(13) and (37), i.e., in (Kl Go(Ke) [ ve)app - (51

powers of the coupling constagl of the interaction La-

grangian(48). We use the approximation up to the secondThe superscript¢n) in Eq. (51) indicate the power of the
and fourth powers ofgs, i.e., w(Kg)=w(?(Kg) and coupling constant up to which the approximation is carried,
W(Kg)=w®(Kg) +W*(Kg). In a time-ordered view, the i.e.,w(Kg)=2",w)(Kg). The comparision between exact
BSE allows for an exchange of an infinite number @f and approximate results is carried out on two levels.
bosons in stretched configurations. In contrast, the approxi- In Fig. 2 the relation betweegs and Mg is tested foru
mative w(?)(Kg) allows only for one exchanggFig. 1(a)], =0.5m against the four-dimensional results. Whereas the ex-
while w*)(Kg) allows for two [Fig. 1(b)]. The analytic act relation is already satisfactorily reproduced by the ap-
forms ofw(®(Kg) andw®(Kg) are given in Appendixes B proximation based ow(?(Kp), the approximation based on
and C. The explicit forms of the homogeneous integral equaw(®(Kg) + w*(Kg) improves the agreement.
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’ (a)
/ ]
7 f{q) ]
s 107
7 n=0.5  Mp=0
Z
(a) 10
7 7
v rd [
-3
7 10 ¢
7/ /7 L
7/ 7/
/ /7 4'
7/ 7 - I I |
. 10 79 2 1 6
(b) q
FIG. 1. Light-front time ordered diagrams far?)(K) (a) and 0.2 , ‘
w®(K) (b), representing the light-front time ordered view of one (b) 1
and twoo exchanges, respectively. ]Df( q) 7 ]
0.1
In Figs. 3 and 4, the projected bound-state amplitudes ///’
f(\/IZi) are compared for two cases. In the first cadg 0.0 Sl )
=0, i.e., the binding is very strong. It is of the order of the NN
masses of the interacting particles as encountered in quark I h \\\ - B
systems. In the other caddz=1.98n, i.e., the binding is -0.1 ' -7
very weak. It is only 2% of the masses of the interacting I
particles, as encountered in nuclear systems. In both cases ] SR
the approximation based am?(Kg) is already quite accu- -0.2 5 i &
rate. The improvement due to the inclusionwf)(Kpg) is q

particularly noticeable for the case of strong binding.
The fact that a low-order approximation (™ (Kpg)

PHYSICAL REVIEW G1 044003

FIG. 3. Results for the transverse momentum distribufi¢m)

works surprisingly well is a virtue of light-front dynamics. It as a function of the transverse componermf the individual four-
is well known that the analogous approximation scheme irnomentum, foMg=0 andu=0.5m: () numerical solution of the
instant-form dynamics has much poorer convergence propef,our-dlmensmnal BSE witlys=20.14; (b) relative error of the vari-

ties with respect to the number of exchangetosond 16].

ous approximations with respect to the four-dimensional BSE re-
sults, defined by f(q) =1~ {0 q)/fexac( @) With n=2 and 4. Re-

sults for the light-front equatio38) with an interaction including

25

20 Rl i

15 - Tm 1
n=0.5

10 - 4D(solid)
LF-3P(dashed)
LF—4P(dotted)
QM—BP?ong—dashed)

5 I QM-4P(short-dashed) 1

0

0.0 05 1.0.. 15

up to three-particles in the intermediate states, i.e., wiliKg)
=w(®)(Kg) whereg,=20.8 (dashed curveand with an interaction
including up to four-particles in the intermediate states, i.e., with
w(Kg)=w?(Kg) +wW*(Kg) wheregs=20.2(dotted curve Solu-

tions of the quantum mechanics squared mass eigenvalue equation
(60), with the two-particle potential in Eq63) defined byw(K,)
=w®(K,) whereg,=15.7 (long-dashed curye and withw(K,)
=w(K,)+w*(K,) wheregs=14.9 (short-dashed curye

V. EXTENSION TO FERMIONS

The Green’s function which propagates two fermions dis-
connectedly contains self-energy corrections as in the case of
bosons. They are usually left out of the ladder approximation

FIG. 2. Results fogg as a function of the two-body bound state
massMg for x=0.5m. Numerical solution of the covariant four-
dimensional BSE49) (solid curve, the light-front equation38)
with interaction including up to three-particles in the intermediate@S
states, i.e., withv(Kg) =w(®)(Kg) (dashed curvyeand including up
to four particles in the intermediate states, i.e., witl{Kg)
=w®)(Kg) +wW¥(Kg) (dotted curve Solution of the quantum me-
chanics squared mass eigenvalue equati6f), with w(K,)
=w®(K,) (long-dashed curye and with w(K,)=w®(K,)
+w®(K,) (short-dashed curyalefining the two-particle potential
in Eq. (63).
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of interaction. The two-fermion free Green’s function then
takes the form which we immediately rewrite conveniently

(52

(53



SALES, FREDERICO, CARLSON, AND SAUER

10 ¢

©=0.5 My=1.98

10

10

0.6 ‘ ‘ - ;

0.0 F—— R

-0.2+

R ——

FIG. 4. Results for the transverse momentum distribufiap)
as a function of the transverse compongmf the individual four-
momentum, forMg=1.98n and x=0.5m: (a) numerical solution
of the four-dimensional BSE with;=9.03; (b) relative error of the
various approximations in respect to the four-dimensional BSE
sults, defined by f(q) =1~ 0)/fexac(d) With n=2 and 4. Re-
sults for the light-front equatio38) with interaction including up
to three-particles in the intermediate states, i.e., witfKg)
=w(?(Kg) whereg,=9.10(dashed curveand with an interaction

including up to four-particles in the intermediate states, i.e., with

w(Kg)=w?(Kg) +w*(Kg) whereg,=9.03(dotted curvé Solu-
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o+
Y1 72

2ky 2ky
(54)

s o +
AGF= '}’I Koont My Kigntmy 72
0 2kt K2—m2 K2—m2 2k

1 Kp—my 1—my 2

carries the instantaneous part of the fermion propagators in
light-front time. Its is singular undek; integration. We
therefore suggest the following strategy for fermions: We

apply the reduction to an auxiliary Green’s functi@b
twice, using the apparatus of Secs. | and Il. The operator
dependence on the total two-fermion four momentkinis
factored out as there. All operators become then parametri-
cally dependent oiK.

In the first step, the two-fermion Green'’s functioihl((n

+my) (Kyont+ My)Go(K) is introduced instead ofs5(K).

We use formulag8)—(13) to do this. All the physics of
anomalous two-fermion propagation is contained in the new
effective interactionV(K) of Eq. (11). Thus, one arrives at a
new BSE, corresponding to E@l) after reduction with re-
spect to K, with the four-dimensional Green’'s function
(K1on+ M) (Koon+ M) Go(K) and the new interaction. The
resulting two-fermion equation is now solved with the tech-
nique as developed for two bosons. This is possible due to
the fact that the spin-dependent operathy,f+m;)(Kon

+m,) also commutes with the auxiliary on&y(K)
=Go(K)[go(K) [Go(K), ie.,

(%1on+ ml)(&20n+ mz)éo(K)
:éO(K)(ﬁlon"_ml)(&Zon"_mz)- (55

This idea will not be further developed in this paper, but
indicates that the scope of the method extends beyond the
relWO-boson system.

VI. RELATION TO LIGHT-FRONT QUANTUM
MECHANICS

Sections |-1V used the notion of a bound state, but scat-
tering states were not introduced. The latter could have been

tions of the quantum mechanics squared mass eigenvalue equatidiiroduced in the BSE1) as well as in the auxiliary three-

(60), with the two-particle potential in Eq63) defined byw(K,)
=w®(K,) wheregs=8.33 (long-dashed curye and withw(K,)
=w®(K,)+w¥(K,) whereg,=8.23 (short-dashed curye

where

=~
J’_

2
11T my

k

Ky tm2
and ko=

klon: +
2

B

dimensional equatiofB6) for t(K) with the global propaga-
tor go(K). Given an initial two-particle plane-wave state
[ky IZlL Kon) With total momentunK,, and light-front “en-
ergy”

2 2 2 E 2.2
__li.+m1+(KJ._li_) +mj
K K*—ki

one may define the corresponding three-dimensional scatter-

In Eqg. (53) Gy is the covariant bosonlike Green’s function ing state| ¢(+)(kflzuKon)) with outgoing light-front bound-
the paper has worked with in the conceptual developmendry conditions as the solution of a standard Lippman-

until now. Furthermore, Eq(53) is the definition ofAGg

Schwinger type of equation, i.e.,

which contains—except for the particular spin-dependent op-

erators &ion+m;) and (e, +m,) that commute with

| Ky Key Kon)) = Ky K1y Kon) + Go(Kon)W(K gn)

Go—all particular divergences and subtleties connected with

the fermion motion. The operator

x| (ki Ky, Kon)) (56)
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with four—momentumKonz(Kgn,K*,Kl). The relation to <ki+E1L|U(K+rKL)|kI|21J_>
the auxiliary transition operatd(K) is obvious,

- K™
t(Kon)|ka1J_Kon>:W(Kon)|¢(+)(k-1'—k1LKon)>- (57) =1 7+ +_ Lt
ki " (KT=k;")

Furthermore, it satisfies the homogeneous equation ) ) K
[90(Kon) 1~ W(Kon]| 61 Ky, Kon)) =0 (59 kWO KD Vi 69
in the same way as the auxiliary bound statg) of Eq.(38)  ith
does, i.e,,
[9o(Kg) ™" —wW(Kg)]|$g)=0. (59 K,= %K('er%Kon,K*,}ZL). (64)

Equations(58) and (59) formally look similar to the eigen-

value equations of quantum mechanics with the only differ-The relativistic quantum-mechanical potentigk *,K ) is
ence being that the two-particle interactiw(K) depends on  defined in the framework of light-front dynamics. The value
the eigenvalue. Untill now the relationship to quantum me- s defined in the context of Eq60). This choice guar-
chanics has indeed been entirely formal. The statgs and  antees that th& matrix calculated field theoretically to first

| ¢ (ki k1, Kon)) and the corresponding transition matrix order inw(K) and calculated quantum mechanically to first
have significance only as quantities from which the solutiongrger inv(K*,K,) are identical. TheS matrix carries as

of the BSE can be obtained with comparative ease. On thgnction for light-front energyk ~ between initial and final

other hand, at this stage a quantum-mechanical description @fates. The definition of Eq63) removes thats function
the two-particle system can be given which corresponds dyf'rom (K K ) and allows for general of ~-shell matrix
namically to the underlying field-theoretic one, though it iselements ,Thlus Eq64) implies a very particular off-shell
by no means equivalent to it. ' '

Quantum-mechanical two-particle state$ are required extension. This procedure of identification—it is no
. X pa q derivation—is standard for the instant-form of quantum me-
to satisfy the eigenvalue equation for the squared mass

erator O%’hanics, e.g., w_he_n the one—bo;on exchange potential be-
tween nucleons is introduced. This paper extends that proce-

dure to light-front quantum mechanics. Furthermore, the

potential is usually defined in the two-particle c.m. system,

where the squared free-mass operator is i.e., forK, =0, and is considered unchanged in moving sys-

tems, i.e., independent &, andK ™.
The identification(63) motivates a quantum-mechanical
(61) potential. It does not attempt to derive it. The goal of the
identification is not to simulate exact solutions of the BSE
o but to be in a best accord with a chosen physics criterion. A
andx=k, /K". The states are elements of a Hilbert-spacequantum mechanics description has different objectives than
spanned by the free-particle on-mass-shell basis statematching a field-theory result. It rather attempts to describe
Boundary conditions must be imposed on the solutions ofmany-particle systems with the same rules once it has done
Eq. (60) in order to make them acceptable. Bound-state ando satisfactorily for the two-particle system with the same
scattering state solutions to the mass squared operator equates. Thus, when the quantum-mechanical potential cannot
tion exist and are orthonormalized. The orthonormalizatiorbe derived completely, as is the case in hadronic physics, the
for scattering states is of th&function type. The states have potential is tuned to known experimental properties of the
a probability interpretation. The quantum mechanical boundtwo-particle system and then considered a vehicle which car-
state normalization is ries that two-particle information to many-particle systems.
Despite the particular many-particle aspect of quantum me-
(peles)=1. (62 chanics, a study of its predictive quality even for the two-
. particle system is interesting. Figures 2—4 perform such
The two-particle potentiab(K*,K,) is independent of study for the two-boson system of Sec. IV. The bound state
the eigenvalu&k ™, the eigenvalu&y to be calculated for constitutes an especially stringent test. For the instantaneous
the bound state and the eigenvalkig, prescribed for the choice, the approximatiorK ™ =K,,>m;+m, in the inter-
scattering states; the potential is Hermitian— it is instantaaction in the c.m. system is quite severe, because in this case
neos in light-front time; it conserves the kinematic compo-field theory requiresK ™ =Kg<m;+m,. The relation be-
nents (<+,Kl) of the total two-particle four-momentu. tween the coupling constagt and the bound-state malsk;
In quantum mechanics(K*,K,) may be parametrized by and the dependence of the bound-state wave fundiigh

fitting it to observables. If contact is attempted to a corre-on the momentuny= \k? are compared in the field theo-
sponding field theory a standard form of identification is  retic and quantum-mechanical descriptions. Results are stud-

[M3+v(K*,K)]le)=M3|¢), (60)

O ~

o2 2 L 242
Mz_kli+ml+(KL_k1L) +m;
X 1-X%
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ied for the approximationsw(K)=w®)(K) and w(K) the auxiliary field-theoretic bound state for the BSE. Thus,
=w@(K)+w®(K) up to second order and fourth-order in the calculation of the electromagnetic deuteron form factors
the coupling constargs. The quantum-mechanical binding in Ref.[18] is performed in the field-theoretic spirit of Eq.

energy and wave function preserve most field-theoretic chars9). The two-particle current operators of pion range in Ref.
acteristics, expectedly better in the case of small binding18] should not be confused with the quantum-mechanical

rather than in the case of strong binding. The quantuminteraction-dependent two-particle currents of this section.
mechanical choice of the potential is usually based on the

one-boson exchange, i.e., on the approximatiw(K)
=w®)(K). We are happy to find that this identification ac-

. . . VII. CONCLUSION
counts better for the field-theoretic results than the choice

based orw(K)=w®(K)+w*(K).
Instead of solving Eq(60), its formal identity with the

The paper suggests a calculational procedure for solving
the BSE with comparative ease and in principle, with any

energy eigenvalue problem for a nonrelativistic Hamiltoniandesired accuracy. The procedure is based on an auxiliary

is often exploited[17] and |¢g) is applied directly in the
framework of light-front quantum mechanics.

three-dimensional integral equation, in the framework of
light-front dynamics, whose solution then yields the result of

The response of the quantum-mechanical system to aghe BSE by quadrature. The intermediate auxiliary quantities
electromagnetic probe is given by a four-vector currentgo not display covariance; covariance is restored in the final
jMK'"=K*,K| =K,) which, as the quantum-mechanical step to the full result of BSE.
potential is a three-dimensional operator and it depends on The calculational procedure is exact, but it also offers an

the three-dimensional momentum transf@*(Q,)=(K’'*

—K*,K/ —K,). As in the case of the potential, contact can
be attempted with the corresponding field theory. A possibl

identification is

<k1+|21L|j£L(K’+_K+1R1_KL)|kIRu>

K*
=\ —————(k, TR MK — K, ) kTR
ki+(K+_k:,L+)< 1 1J.|J ( v )| 1 1J_>
[ Kkt
X T EEEE——
ki (K*—k7)

KU:(KOHIKJrllZL):

(65)

with

K/ =(K.,,K'"K]). (66)

The field-theoretig#(K’ —K) is the one of Eq(47) in Sec.

I1l. It contains the field-theoretic interaction in the form of

w(K). The quantum-mechanical curreff(K'*—K* K/

—K,), is derived in the special case of elastic scatterin

between bound states. Thus, the identification of (B8) is
not consistent with the choice of E3), which guaranteed

the agreement of the field-theoretic and the quantum
mechanicalS matrix in first order in the interaction. Never-

theless, the quantum-mechanical curr¢fitK’*—K* K/

efficient approximative scheme: Only particles propagate.
Antiparticles do not. Antiparticle propagation is relegated to

éhe effective interaction. The convergence with repect to the

nhumber of exchanged particles mediating the interaction ap-
pears to be rapid. Though only an indication of that fact
comes from the simple test case of a BSE bound state in
ladder approximation, it is supported by the similar result of
Ref.[16] for the corresponding scattering amplitude. Calcu-
lational improvements are possible in a systematic manner.
Thus, as a further and physically more interesting conse-
quence, the solution of the BSE for bound state and scatter-
ing up to fourth order in the coupling constant, i.e., in ladder
and crossed ladder approximation and with the inclusion of
self-energy corrections is obtained based on a simplifying
three-dimensional calculational procedure. The procedure
capitalizes on beneficial properties of light-front dynamics. It
should be an interesting alternative to the Gross apprigch
which is also three dimensional and which has been sug-
gested to include the cross-ladder exchanges approximately.
The calculational procedure is general, though it is given
in this paper for an interacting two-boson system only. The
ideas needed for an extension to fermions are developed but
important technical details have not yet been worked out and
unforeseen difficulties may still arise. The problem of rota-

%ional invariance in light-front dynamics will become espe-

cially acute for fermions when spin and orbital angular mo-
mentum are to be coupled. The auxiliary three-dimensional
guantities will then be hampered by their lack of rotational
invariance. We strongly believe, however, that the final step
to the covariant result of BSE will overcome that difficulty.

— IZL) can be meaningfully studied and separated into The auxiliary three-dimensional quantities, i.e., the opera-
interaction-free single particle and interaction-dependentors and equations, that mediate the solution of the BSE, are
two-particle pieces. Thus, the definition of E5) implic-  close in spirit to relativistic quantum mechanics. The paper
itly contains a possible quantum-mechanical definition of aralso discusses this relation. First, only particles, and not an-
interaction-dependent two-particle current. At this stage, théiparticles, propagate in the three-dimensional equations and
standard definition based on the identification of $meatrix  in quantum mechanics. Second, the quantum-mechanical in-
could also be givefi18]. It also exploits the formal identity teraction is an instantaneous potential, the corresponding in-
of the eigenvalue problem with a nonrelativistic Hamiltonianteraction w(K) in the three-dimensional equation is not.
with equations similar to Eq60), but it then identifies the However, this paper finds that the instantaneous choice for
nonrelativistic bound state with the solutippig) of Eq.(59),  the potential does not distort the physics of the underlying

044003-10
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field theory. Thus, the relation between quantum mechanics (KKK [Go(K)lgo(K) Y ki Ky, )
and field theory can be made close. However, compared to SRR 1™

field theory, quantum mechanics has the virtue of an instant i 5(ki+_k1+)5(|zh_|zn)

extension to many-particle systems: Barring many-particle =on K2+ mi—io

forces, the quantum-mechanical interaction is additive in the ( k| — 1L 1 )

instantaneous pairwise potentials. In fact, the conceptual ki*

strategy of quantum mechanics often is to tune away short-

comings of the chosen instantaneous potential by adjusting X(Ki_kfon_kEon+i0)9(K+—k1+)9(kf)
undetermined phenomenological parameters to vital known ( (KL—IZL)Zer%—io)
experimental properties of the considered two-particle sys- K —k; — FR——

tem. In this way the potential carries the accepted knowledge K™=k

on the two-particle system over to many-particle systems. (A1)

The paper left open the relationship of the theoretical ap-

paratus developed to realistic physics problems. We have iWhen the avaliable light-front “energyK ™ is not on shell,

mind applications to hadronic and subhadronic systems. Thiee., K~ #k;,,tK,,,, the evaluation of the matrix element

concept of light-front wave functions was applied in the con-in Eq. (Al) is standard. The two singular propagators

text of nuclear physics to describe the deutdrbr] and the

discussion of its properties in the light front continues to the

preseni19]. The BSE is supposed to yield the bound states

and the scattering amplitudes of those two-particle systems.

In contrast, the response of such a two-particle system to-

wards an eletroweak probe is considered in perturbation

theory. The required matrix element is determined by the

field-theoretic current between states of the BSE. The paper

offers two equivalent routes for calculation: Either the cova-can be rewritten as & function and principal-part singular-

riant states of BSE are constructed and then used in thelfy' integra’[ion onk’I can be carried out with usual tech-

four-dimensional form together with the field-theoretic cur- niques.

rent or that field-theoretic current is reduced to an auxiliary A problem arises, when the avaliable light-front “en-

three-dimensional one and used with the auxiliary threeergy” K~ is on-shell, i.e.K™=Kg,=Kiont Ko, Without

dimensional states. Both calculational schemes are equiv@osing generality, we will have to suppose that >0 and

lent field-theoretic ones. However, the latter calculationalk1+>o_ Then, K™ —k;,n—Kyon+i0=+i0 and the limiting

scheme is close in spirit to the quantum-mechanical oneprocess of going to the real axis must be performed with

Quantum mechanics requires the definition of two-particlecare. However, in this situation the matrix element will al-

exchange currents; its definition is also sketched. ways be integrated with respect &, over a function
f(k;") still to be determined and, unfortunately with un-
known analyticity properties, i.e.,

,—
1

ki2+mi—io)|

and
kf

K-—k, —

(K, —K.)2+ mg—io) -t
K" —k,*
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X (K™ =Kion—Kzonti0). (A2)
APPENDIX A: EVALUATION OF AUXILIARY Without any loss of generality, we can think b6tk’;) as
QUANTITIES being split into a parf (ki) having singularities only in

the upper halk; ™ plane and a pary,,(k; ) having singu-
The operatorsGy(K)|go(K) ~t and gal|GO(K) connect larities only in the lower halk; ™ plane, i.e.,
three-dimensional and four-dimensional basis states. The two
operators are related by conjugation; we therefore discuss f(ky ) =Tunp(ki )+ finp(ky ). (A3)
only one, i.e.Go(K)|go(K) L.
The momentum space matrix elements ofin the case that there is a part with poles simultaneously in
Go(K)|go(K) 1 for K*>0, are both half planes, they can be fully separated, i.e.,
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(ki) 1 = 8(ky " — ki) 8Ky, — K[ Funp(Kion)
1 ’r— H ’r— H
ki —ai—iap ki = B1+ip; + (K™ —Kgon) 1. (A5)

,_ 1 We note that propagators cancel and no singularity remains.

=g(kg )(a—,B)Jri(a +B,) However, the resulfA5) is for practical purposes useless,

2 2 . o . L . .. .

since the split into two parts with disjoint singularities is not

1 1 known in a numerical calculation. If, however, the light-front

K —ay—ia, - K, = B1+iB, (A4) “energy” is on-shellLK™=K,,,, then the two terms can be

recombined to the original function, i.e.,
with g(k; ) being singularity free. The integration in Eq. f dkff(ki*xkfkflzh|Go(K)|go(K)7l|k1+|Zu>

(A2) can now be carried out using Cauchy’s theorem:

f (ki) (ki kg ki Go(K)lgo(K) ™ Hky Ky ) = ok " —kg) oKy, — Ky ) F(Kaop) (A6)
for KT =Kg,.

= (kg " — ki) 8(Ky, — Ky, ) (K™ —Kign—Kzontio) APPENDIX B: INTERACTION IN FIRST ORDER

1 The interactionw(k), defined by Eqs(37) and (11) to
X f“hp(kl_O”)K*—k* T i lowest order of the driving teri(K), is given by
lon 2on

WO(K)=go(K) ~HGo(K)V(K)Go(K)|go(K) T,

1 (B1)

+ Fihp(K™ =Koon) where the matrix element of the operator

K™ =Kaon—Kiontio |Go(K)V(K)Go(K)| is

(K3 TKLL | Go(K)V(K)Go(K) Ky Ky, )

(igs)® o 1 1
=l ZJ dki dkl r+ + r+ 12 2 7 12 2
(2m) ki "(KT=ky") [, kii+mi—io - K=k +my—io
k=] K=k - :
ki K™ —k]
y 1 1 1 1
(" —ki) (o o (Kik)?+p—io) KK —k{) [ K +mi-io
R S
X ! (B2)
P (K, — Ky, )2+m2—io)
' K+ —k{

The double integration ik~ in Eq. (B2) is performed analytically using Cauchy’s theorem and the condiién-0. The
integration is nonzero foK*>k;">0 andK*>k; >0. Two possibilities also appear for forward propagation. Fok;
>k;", ao is emitted by particle 1 and otherwise absorbed:

(k' 1K1, [1Go(K)V(K) Go( K[ ki Ky, )

FO(K™—k; ") 0(ki")
ki F(KT =K1 ") (K™ —Kjgh—Khonti0)

:(igs)2

9(kf—k1+) i N 9(ki+—kf) i
(kl+ - kiJr) (K™= kic:n_ I(27on_ k(’r;n+ IO) (kiJr - kir) (K™= hon_ kéc:n_ k;0n+ IO)

1O(K™ —k{) 0Ky )
X f
ky (K" =K )(K™=Kyon=KzonTi0)

(B3)
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where the light-front “energies” of the intermediate states of
the individual particles are given by

12 2

. kiT+m3]

lon™— k,+ '
1

_ kg +mg

klon: k+ ’
1

K.~ (KL_EL)Z""mg
2on K+_k£+
(K, —ky,)2+m5

k;On: K+—kI

O(ky —ki ™)
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(IZL—IZM)2+M2

ki =K'y

=

oon— ’

K-

oon

_('Zil_ﬁu)2+ s

B4)
ki " —k; (

The global three-particle propagator for 1, 2, anéppears
in Eq. (B3), in two cases: whew is either emitted or ab-
sorbed by particle 1.

The matrix elementk; "k}, [w®(K)|k;j k;, ) is obtained
from Eg. (B3) by multiplying both sides by the matrix ele-
ment of the operatogy(K) ! from Eq. (25):

(kTR WK KT Ky, ) = (igg)?

(kf_kfr) (Ki_krlion_ Eon_

’r+ +
+igg2l ~¥a)

ko

oon

+i0)

(ki"—kp) (

o(ky —ki™)

K™=k,

lon

/= j—
2on

-k K,onti0)

:(igs)2

=12 2 > 2 C =
ki +mi _ (KL_kn)z"‘mz _ (kh_kn)z"',u«z

(ki —k'7) (K_

’+ +
+(iggzta Tk

’r+
k1

K+ —ki Ky —k,*

2 2 C 2 o o
ki, +mi B (K, —kg,)?+m5 B (K, — kg )2+ pu?

(ki"—k7) (K

k; Kt —k, K" —k;

APPENDIX C: INTERACTION IN SECOND ORDER

The interactionw(k), defined by Eqs(37) and(11) to second order in the driving terii(K), is given by
wW(K)=w@(K)+w*(K), (Cy

wherew®)(K) is given by Eq.(B5) and

WH(K) =go(K) " Go(K)V(K)Go(K)V(K)Go(K)[go(K) = go(K) HGo(K)V(K) Go(K)V(K) Go(K)[go(K) . -

The second term in EqC2) corresponds to the iteration of the interactioff)(K)
9o(K) "HGo(K)V(K)Go(K)V(K)Go(K)|go(K) ~*

=go(K) " Go(K)V(K)Go(K)|go(K) ™ Go(K)V(K)Go(K)|go(K)

=w@gy(K)w?. (C3
The matrix element of the operatf®y(K)V(K)Gq(K)V(K)Gy(K)| is
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(ki Tk, ||Go(K)V(K)Go(K)V(K)Go(K)|| ki Ky, )

(igs)4f i 1 1
= dk! “dp; dk; dp; d? =
2(2me) T P T APPSR (k,_kﬁ+mf—io)
1 ’
« 1 1 1
_ - (KL_Eﬁ)‘*’mg_io (ki"=p1) R (IZiL—r;u)2+,u2—io
K _kl o K+_kl+ kl _pl_ k/+_ +
1 1 P21
o 1 1 1 1
p(K*'=pi) [ _ pl+mi-io| [~ (K, —py)*+m—io)| (p; —k{)
1| | K =Py — FR—
1 K™=p,;
o 1 1 1 1
e (Puki)?Epfio) ki(KT-k) (K kmicio) [ (K —ky)?¥my—io)
pl 1 + L+ 1 T F TRl + Lt
Py —Kkq Ky K™=k,
(CH
The on-energy-shell values of the light-front minus momentum in(Ed) are given in Eq(B4), and
_ o pi+mi
Pion=—
1
~ (K —pgy)2+m3
Poon=——"———F (CH

K™ —p;f

The matrix elementk; “K;, ||Go(K)V(K)Go(K)V(K)Go(K)| ki Ky, ) is found by analytical integration in the light-front
“energies” in Eq.(C4). To separate the intermediate four particle propagation, which occukg for p;, andk; satisfying
0<kj <p; <k'"<KT™, the following factorization is necessary:

1 1
K~ pr (KL —py)+m3—io sz—k;— (ki —Ppy)*+p®~io
K*—p; p1 —k{
B 1
_K_—kl_—(Kl_ﬁn)h'mg_io_(En_ﬁlﬁz‘ﬂbz—io
K*—p; p1 —k{
X - 1* + = 1» . (Co)
K,_pl__<Krpu>2+m§—io ok~ K mPu)*Hpi-io
K*—p; pi —k{

After the Cauchy integration in the light-front “energies” the result fat "k, || Go(K)V(K)Go(K)V(K)Go(K)| ki Ky, )
in the region of G<k; <p; <k;"<K™, which is denoted byk; "k}, ||Go(K)V(K)Go(K)V(K)Go(K)| x|k K1, ), is given
by
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(k1KLL [[Go(K)V(K)Go(K)V(K)Go(K) | (o] Ki Ky, )

:(igs)4f o Ok ) 0K ki)
202m)3) T T k(K -k Ki_IZﬁerf_(IZL—IZL)Zer%_

+10
ki * K*—ki*

0(ky) O(K™ —ky)
k1+(K+_k1+) K,_Ei"'mi_(KL_ﬁn)z"‘mg .

+10
K K*—k;

X[F'(K)+F"(K)] (C7)

with

=t ki"—p;) i
(ki+_pf) K- — 5§L+m%_ (KL_E£L)2+m§_ (Eh_ﬁn)z'f'l-tz
P KK G e

+io

XG(pI)G(K+—pI) i o(p; —k;)
pI(K+_pI) K__ﬁi_"mi_(lzi_ﬁu)z"‘m%_’_io (pf_kf)
Py K*—py

i
__Rif"mi _ (KL_ﬁlL)2+m§ _ (51J._|21J.)2+1U'2 n
ky K*—py pi —k{

; (C8

10

o(k;"—py) i
(" =pi) | PLAmE (K —Kp)?rmy (ki —pr)*+p?
P1 K*—ki* k" —p;

F"(K)=

+io

i
C O KLAmE (Ko —K{)Z2+m3 (K —pr )P+ u? (P — Ky )2+ u?
o P + o+ o I+ + o T +io
kq K™ —ky ki —p;1 P —Kkq

X

6(p; —ki) i
T T = - = = =
(Py —ki) K,_ki"'mi B (KL—plL)2+m§ B (P1, — k)% + p? N
ky K*—p; pi —ki

(C9

10

The part of the propagator given by H&7) contains the virtual light-front propagation of intermediate states with up to
four particles. The functior’ contains only intermediate states up to three particles and is two-body reducible. It will
eventually be canceled by the corresponding piece in the second term (@ZqgThe functionF” has one intermediate state
in which the four-particle propagator can be recognized as the middle piece GE#gThe other possibility that includes up
to four particles in the intermediate state propagation is givenvy;0’ <p; <k; <K™*. To obtain this part, we perform the
transformatiork; <k, in Eq. (C7).

The contribution of the region given by <Op; <k <K' and 0<p<k;" <K' to the matrix element
(ki k1, [1Go(K)V(K)Go(K)V(K)Go(K)|[ky k1. ) is denoted by(kj ki, [|Go(K)V(K)Go(K)V(K)Go(K)| ki Kar). It
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contains only up to three-particle intermediate states and is two-body reducible. Consequently, it will be canceled by the
corresponding piece of the second term in EZR). It is given by

(KK Go(K)V(K) Go(K)V(K) Go(K)| (oK1 Ky )

B (igS)4fd s OkT)OKT—ki™) i (k" —py)
C22m3) TR TR kKK K__Egi+mi_(r2l—kh)2+m§+io (Kt —pi)
ki* K —k;*
y i 6(py) O(K* —py)
- PLAm (K -K)TEmG (K —po)? e L PL(KT-pg)
Py K™ —ki™ Ki"—p1
y i o(ki —py)
- PLrm (Kopr)®tmi (ki —p])
Py K*—pi
y i

5i+mi ('ZL_ElL)Z"'mg (lzn_ﬁn)z"‘ﬂz .
FE P - r_ o+ +1o
Py K™=k ki —p1

K__

O(ky) 0K —ky) i
X = = = .
ki (K —k}) . K2, +mZ (K, —Kq)2+m3
Ky K™ —k{

(C10

For the momentum region satisfying<k; " <p; <K* and 0<k; <p; <K*, the contribution to the matrix element

(ki KL | Go(K)V(K)Go(K)V(K)Go(K)| [k Ky, ) can be obtained from EGC10) by performing the following transforma-
tion on the kinematical momenturks <K —k; , k<> K—k; andm;«<m,. From Egs(C9) and(C10), the following result is
obtained:

(k; K1, [|Go(K)V(K) Go(K)V(K) Go(K) [ Ky Ky, )
= ((kj "Ki, [|Go( K)V(K) Go( K)V(K) Go(K)| | Ky Ky, )+ [Kj Ky 1)

+((K; Ky, [Go(K)V(K) Go(K)V(K) Go(K) oy Ky Ky, ) +[Ky =K =k Ky =K —kg,mp—mp]).  (C1Y)

The subtraction of the iterated first order driving term in Eg2) cancels the corresponding terms in Eg§11) such that

the matrix elementk; "k}, [w*(K)|k; ki, ) is two-body irreducible with a global four-body propagation. It is obtained from
Egs.(C7), (C9), and(C2) as

o(k'y —py) 6(py) 6(K*—p7)
Ykt -p) pr Ki-pr

S S (igs)4
k! Tk Iw(K) Kk =—fd Fd?
(ky Ky (WK Ky k) 2(2m)° p. 0°p

i
- 5§L+m§. _ (Ki_ﬂi)z"'mg _ (Eh_ﬁn)z"'ﬂz
Py K=k ki"—p1

X

+io
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X . il i "~ g g »
o KEEmE (Rookg)®m (K —pa)®He? (P k)t
ky K =k " ki"—py P —k{
o(p; — ki i
APk +k Ky ]. (C12

(pf—kf) K- — Eii"'mi _ (Ki_ﬁli)2+m% _ (F;u_lzn)z"'ﬂz +io
ki K'=p;i Py —ky

APPENDIX D: INTEGRAL EQUATION FOR THE BOUND-STATE

In the approximation considered, the vertex function satisfies an integral equation with the kernel containing two parts, one
corresponding to Eq(B5) and the other to EqC12. The plus momentum are rescaled Ky, such that the momentum
fractionsx=k; /K", y=k; /K", andz=p;/K*, are used. The notatiofk] “k}, | yg)=ys(y.k},) is introduced. The ho-
mogeneous integral equation for the light-front vertex function is evaluated in the center of mass system

1 fdzkudx K@y, Ky, %K)+ K@y, Ky, %K)

(2m)3) 2x(1-x) M2 M2 ¥e(X,K1, ), (D1)

ye(y,Ki, )=

where the free two-body masshia3=(k?, +m?)/x(1—x) and 0<x<1.
The part of the kernel which has only the propagation of virtual three particles states foward in the light-front time is
obtained from Eq(B5),

0(X—y)
_Eﬁ_"mz _ |Z§L+m2 _(Eii_lzn)z"‘ﬂvz

y 1-x X—y

IC(Z)(y,IZh ;lezu):gé +[X<—>y,|2h<—>|2u]. (D2)

<x—w(Mé

Equation(D1) with the effective interaction given by E¢D2) corresponds to the Weinberg equation derived from the BSE in
the infinitum momentum fram20]. It has also been solved in R¢21] and in Ref[22] including self-energy correction. The
equivalent equation for fermions has been discussed in[R&.

The contribution to the kernel from the virtual four-body propagation is obtained fronf(Edg),

K@y R xRy, )= gs J’ d?py, dz 0(z—y)0(x—2)
T om3) 22(1-2)(2-x)(z-y) ) ki2+m?  p?2 +m? (K, —p1. )2+ p?
Ma— y  1-z z—y
v 1
Mg_Izﬁ"‘mz_E%L""mz_(lzh_ﬁn)z"'ﬂz_(51L_|21L)2+,Uv2
B 1—x z—y X—2z
X ! +[ Ky, k! ] (D3)
= = = = XY, Ky Ky |-
Mz_pi"'mz_ki"'mz_(pu_ku)z"'/iz -
B z 1-x X—2z

Equations(D1)—(D3) are easily recognized to be covariant under kinematical light-front boosts. However, the covariance of
the four-dimensional wave functio@l) is certainly lost by a finite expansion &¥(K) in Eq. (11) and the use of the
correspondingv(K) while covariance continues to hold for the solution of Efj).
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