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Dimensional regularization is applied to the Lippmann-Schwinger equation for a separable potential which
gives rise to logarithmic singularities in the Born series. For this potential a subtraction at a fixed energy can
be used to renormalize the amplitude and produce a finite solution to the integral equation for all energies. This
can be done either algebraically or numerically. In the latter case dimensional regularization can be imple-
mented by solving the integral equation in a lower number of dimensions, fixing the potential strength, and
computing the phase shifts, while taking the limit as the number of dimensions approaches three. We demon-
strate that these steps can be carried out in a numerically stable way, and show that the results thereby obtained
agree with those found when the renormalization is performed algebraically to four significant figures.

PACS numbd(s): 21.45+v, 02.70—c, 24.10-i

[. INTRODUCTION mensional regularization and renormalization” facilitates the
extraction of finite phase shifts from a particular class of
One difficulty for standard treatments of hadronic reac-divergent potentials. _
tions is that form factors are introduced at hadronic vertices [N Sec. Il we outline the general framework for imple-
in order to regulate integrals which would otherwise be di-meénting dimensional regularization and renormalization
vergent. This procedure reflects the substructure of hadrorf§CNniques numerically in the LS equation. We show how
which gives them a finite extent, and hence a form factorthe LS equation can be analytically continued to lower num-

However, any field theory upon which such calculations arebers of dlmen5|onsD=_3— & thl.js am_elloratmg the _d'V‘?r'
based will necessarily be nonlocal. The implementation offences which appear in three dimensions. The application of

basic field theoretic principles, such as causality and electrds renormalization condition at one energy in- 8 dimen-

; : . . Lo . : dsions can then lead to an amplitude which is finite at all
magnetic gauge invariance, is quite involved in such fiel

theories(1.2]. Methods which i . . energies in this lower number of dimensions, and thence to
eories[1,2]. Methods which impose gauge invariance on,“amolitude which is well-defined as the limit-0 is

an amplitude containing hadronic form factors have beenyan |y sec. il the special case of a separable potential,
formulated[s'—S], but they are |nFr|nS|caIIy non-umque,ysmce which leads to a divergent amplitude as-0 is considered.
thgy constrain only'the longitudinal part of the photon’s cou-\y/e obtain the amplitude for this potential fer-0. Renor-
pling to the hadronic system. _ “malizing the amplitude by demanding that the binding en-
Some of these difficulties can be resolved by using di-grgy of the deuteron be reproduced leads to a divergence in
mensional regularizatio(DR) [6-9] to render divergent in- the inverse of the “bare” coupling which appears in the
tegrals finite. This is the method of choice for dealing with original separable potential. We show that in DR this diver-
the infinities which arise in perturbative field theoretic calcu-gence goes as d/We then observe that for this particular
lations. However, there are very few studies of the applicapotential, it is not necessary to use DR, since the problem
tion of dimensional regularization to integral equations. Onecan be subtractively renormalized. That is to say, a subtrac-
notable exception is the recent application of DR to ation at one energy, which can be carried out algebraically,
Schwinger-Dyson equation in quenched QED by Schreiberenders the amplitude finite at all energies.
et al. [10]. In this paper we adapt their method and apply it However, it is not generally true that such algebraic renor-
to the Lippmann-SchwinggtS) equation. malization of an integral equation is possible. Therefore, in
We consider one member of the class of potentials ifSec. IV the general renormalization procedure of Sec. Il is
which one subtraction at a fixed energy results in a finiteapplied directly to the LS equation in-3e dimensions. In
integral equation at all energies. The potential we choose ithis approach no subtraction is carried out, and no assump-
separable and so provides a toy problem where the renormdion is made about the form of the potential. First, the LS
ized amplitude can be derived algebraically in a straightforequation is solved numerically iD=3—e¢e dimensions.
ward way. The amplitude thereby obtained can then be comFhen, demanding a specific value of the amplitude at one
pared with that found by the numerical solution of theenergy implies a value of the bare couplingdrdimensions.
dimensionally-regulated integral equation. We will show thatThe amplitude can then be computed numerically for this
with careful numerical work the phase shifts obtained viavalue of the coupling at arbitrary energy and physical quan-
these two different methods are in excellent agreement withities, such as phase shifts, extracteddirdimensions. This
each other. This proves that many of the difficulties associmust be done over a range of valueand then the limite
ated with implementing dimensional regularization numeri-—0 can be taken. Finally, in Sec. V we present some con-
cally can be overcome, and hence that such “numerical dieluding remarks.
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Il. THEORETICAL ANALYSIS T'(k,k":E)=V(k,k")
Dimensional regularization is often used to identify the " VI(k.k")
infinities encountered in perturbative calculati¢fs-9]. The +f dK'K"2—————"—T'(K",k’;E).
procedure involves replacing integrals that are infinitenin 0 E—K"?/m+igy
dimensions by the same integrals in a lower dimension &)

— €, where they have a finite result. The function defining

this integrgl, SaYI(f)' can_then be analyti_cally cqntinue(_j To dimensionally regulat¢his equation is much easier,
back ton dimensions. In this way the logarithmic singulari- e the angular part of the problem has already been dealt
ties of I can be isolated and then renormalized by adjustingyith in the original number of dimensions, in this case, three.

the bare parameters of the theory. This is the method of oy involves replacing the measure appropriate to three
choice for dealing with the infinities which arise in perturba- ;- ansions by one for (3€) dimensions, i.e.

tive quantum field theory calculations, but it has not been

widely applied to non-perturbative integral equations that_ e ] ,
A X ? o TA(kkE)=VI(KK)

contain divergences. It was used in the Lippmann-Schwinger €

equation for a divergent potential in Ref41,17, but in the

® | "
cases considered there the amplitude can be derived analyti- +f dk”k”(z_e)Lk).TL(k”,k’;E).
cally. In the case of a general divergent potential, this will 0 E—K"?/m+in
not be possible, and DR must be implemented numerically. ()

Recently, Schreibeet al. [10] have demonstrated the feasi-
bility of such a procedure, successfully employing DR in the
numerical solution of a divergent four-dimensional

It is worth pointing out here that if the partial-wave ex-

Schwinger-Dyson equation for the electron mass | pansion(2) is carried out in 3- e dimensions, rather than in
) ) . ; hree dimensions, then the potenNélends up depending on

guenched QED. In this section we explain how to adapt the b b dep g

: - . ; € as well ad. (See, for instance, Reff10].) However, if we
Esglggzn?gfﬁ&?ﬁébe?tezt;%;ﬁse in the three-dimensional are only concerned with isolating the divergences of the in-

Given tential/ the momentum- LS tion f rtegral equation as— 0, then we are free to take the limit as
€n a potentiaV in€ momentum-space equation for .~ ¢ first in V!, since that limit is nonsingular. Thus, choos-
the scattering amplitud€& for two particles of massis

ing to dimensionally regularize the partial-wave-expanded
equation, rather than the full three-dimensional equation,
T(k,k";E)=V(k,k") may be unfamiliar to those used to DR in perturbative set-
tings, but it is justified.
3 , , Now consider a potential'(k’,k) which leads to diver-
+J d*k"V(k,k )mT(k KiE), gences in the Born series for E@). The integral equation
K (4) will yield finite answers for the terms in that series, pro-
(1)  vided thate is taken large enough. Equatigd) has been
regularized. The next step is to renormalize it. To that end
we pick one of the parameters of the potential, e.g. its
strength, which we denote by, and regard it as a function
of €, N\=\.. A renormalization condition is then chosen.
This can be represented as the demand that the amplitude,
T'E(k,k’;E), have some specified value at a particular kine-
6patic point. For instance, we might demand that the ampli-
in 3—¢ dimensions, thus reducing Eql) to a one- tude has a pole &= — B, so that a bound state exists at that

dimensional integral equation. This expansion can be quitgnergy. S,UCh a renormalizgtion <:|0n(’1ition implicitly defines

involved (see, for instance, the analogous expansion in 4n€ function).. The amplltgde;ré(kz,k;E) can then be

— ¢ dimensions of Ref[10)). compute_d at the on—shell_p0|m! =l_< =mE, fo_r a variety
Here we follow a slightly different approach. Although of.energles, .W.Ith this particular choice .DL. This WI.|| cer-

the Lippmann-Schwinger equation is nominally a three-f@inly give finite results fore>0, provided thate is big

dimensional integral equation, in most instances it is writterfNoUgh. Furthermore, if it is enough to renormalize only the

and solved as a one-dimensional integral equation for a givefirength of the potential, such a calculation will produce fi-

partial wavel. In other words, making the expansion nite values for the on-shell amplitude and hence for the
phase shift even in the limig—0. This “numerical renor-

malization” program has been carried out before in the
Lippmann-Schwinger equation with other regulatdsee,
e.g9.[13-16), but here we will implement it for DR.

In the next section we illustrate how this numerical renor-
malization proceeds in the case of a simple separable poten-
and an equivalent expansion fgr leads, as is well known, tial. We show that the strength of the potential can always be
to the one-dimensional integral equation: adjusted so that the potential supports a bound state with

where 7 is a positive infinitesimal. To dimensionally regu-
late this equation we must continue all quantities in it into
3— € dimensions. If the potentia¥ is central, and depends
only on the angle betweek andk’, then the operatok.?
commutes with the Hamiltonian. It follows th&tand T can
be expanded using the eigenfunctions of the rotation operat

1 A a
T(k'k,;E):EZ 2l+1)T'(k,k";E)P,(k-k"), (2
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energyE= —B. This strength cancels the divergence in the To see how this removes the divergent part §E), we
Born series integrals, and so a finite scattering amplitude cawrite the form factorg(k) as

be extracted.

Ill. THE SEPARABLE POTENTIAL AND ALGEBRAIC
RENORMALIZATION

Consider a separable potential with a form factor thato
does not guarantee the convergence of the integrals needed

to determine the scattering amplitude. An example of such
potential is(from this point on we drop the angular momen-
tum labell)

1

V(k,k")=g(k)rg(k’) with g(k)ZW- (5
The corresponding off-shell-matrix is given by
T(kk;ET)=g(k)7(E")g(k"), (6)
with
[7(E)]"'=\"'=1(E), ()
where the integral (E) is
|(E):mf:dkk2%. (8)

Sinceg(k) —k~Y? ask—w, the integrand in Eq8) goes as
k=1 for k—o, and the integral(E) has a logarithmic diver-
gence.

Of course, if we had inserted the potenti@) in the
dimensionally-regulated  Lippmann-Schwinger

equation,

g(k)Eikh(k) with h(k)—1 as k—oo. (12

&

ur singular integral can then be written as

[h(k)]?
K2—mE—in

a (13

I (E) —mf:dk Ki=e

We now define an integral(E) that retains the singular part
of I .(E) in the limit ase—0:

k(1—¢

TE(E)E—mf:dkk (14)

2—mE-—i 7]'
This allows us to writd .(E) in terms of a subtraction as

[h(k)]? 1
k>-~mE—in k®>+mB

| (E)= —mJ:dk k(lf>{

+T(~B)
=J{(E)+Td~B), (15

where the integrall (E) is well defined in the limit as
—0. Making use of the identity

then the only thing that would have changed in the above

analysis is that Eqg7) and (8) would have become

[T(E)]"t=N_"=1(E), (9)
(T e [9(K)]?
IE(E)—medkkz —mE—k2+in' (10

This integral is now finite for any greater than zero. The
logarithmically divergent part of, will stand revealed as a
1/e pole. Since\, is a function ofe here this pole can be
cancelled by making an appropriate choicengf. Specifi-

cally, here we achieve this renormalization by demanding €

that one observable be reproduced, i.e. that i8¢ NN
channel have a bound state at eneEps~ —2.2246 MeV.

r B+1 B+1
focd r8 1 2 @« 16
r =5 1
o (rP+A)® 2 A (BT (q)
we have
~ mI'(1-€e/2)I'(1+€/2) m
l(—B)=—— ——— ase—0.

€ (mB)e/Z €

(17

This isolates the singularity df,(E) in the limit e—~0. We
now need to renormalize the strength of the potenjaln
order to get a finite amplitude.

To do this we write the condition for a bound stétd) as

(18

ie.,

This is done so that our interaction can be regarded as a toy
model of theNN potential in the deuteron channel. This
model is extremely simple, but it has the only two features
we are concerned with here: it leads to logarithmic diver-
gences in the Born series, and it has a shallow bound statahich makes it clear thak_* has both a divergent part,
The renormalization condition which fixes the position of proportional to 1¢ in DR, and other, finite, parts, that are
this bound state may be expressed as follows: dependent upon the particular bound-state energy we are try-
ing to reproduce. Equatiofl9) gives\, for a givene and

mI'(1—€e2)['(1+€/2)

—-1_
)\5 € (mB)E/Z

+J/(—B), (19

[7(E)] *=\_'-1/(E)—0 as E—~Eg=—B<O0.
11

from that we can then calculate(E) and theT-matrix.
Alternatively, we can use Eq18) for A, to write
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“HE)=1.-B)—1/E). 20
T (E)=1(-B)—1/E) (20) le
Inserting Eq(10) for I . and combining the integrands we see K=k k=k
that - ——eee
[h(K)]? A
Tgl(E)=(E+B)f dk K&=9 , , \\,"
0 (k*/m—E—i75)(B+k?m)
(21

which implies that
FIG. 1. The rotated contour of integration. Hekg is the on-

S(E)
Te(k’,k,E):g(k,) — g(k), (22) shell momentum.

These two tests should be applicable tany

where dimensionally-regularized integral equation. However, in the
o [h(k)]? case under investigation here the results of E2@.and(23)
S;l(E)zf dk K1~ _ provide an additional check on the accuracy of this numeri-
0 (kK*/m—E~in)(B+k*/m) cal renormalization using dimensional regularization.
(23 To perform such tests, we need to solve the integral equa-

tion for each value oé for both the bound state problem and
1tge scattering problem with considerable accuracy. To
achieve this accuracy, we first split the integral in the
é_ippmann-Schwinger equation arbitrarily into a piece from
Zero to somé,,, and a piece fronk,, to infinity. Then, on the
interval [k.,,°) we make a change of variables to

is a finite quantity. Sinc&,(E) is finite, the limit ase goes

to zero can be taken smoothly, and we never even need
consider any quantity other th&®(E), when the regulator
has been removed altogether. It is now trivial to obtain phas
shifts from Eqgs.(22) and (23). Their relationship to the on-
shell amplitude is just

Im T(E;Kkq,Kg) k
tar‘( )= m, (24) t=e€ In(k—m) ) (25)

wherekész is the on-shell momentum. . o .
thereby enabling us to employ a logarithmic mesh which

ensures the correct numerical integration when we obtain
1/\.. The variable transformatiof25) introduces a factor
The question motivating this study is whether numericale ! into the integrand, and so Gauss-Laguerre quadratures
techniques can be found that give the amplitdgék’,k; E) are chosen for the integration froky, to infinity, since they
numerically when the LS equation is solved in less than thre@aturally build in this factor.
dimensions. These techniques must be stable enough to al- Meanwhile, ordinary Gauss-Legendre quadratures are em-
low the limit e—0 to be taken. For the simple potenti&) ployed for the integration op0k,,]. This was done in two
the result of any such procedure must be given by E2®.  ways when we performed “numerical renormalization”
and(23), where an “algebraic renormalization” making ex- (1) We deformed the contour of integration from the real
plicit use of the potential’'s separability has been carried outk-axis to that depicted in Fig. 1. Along the contour from zero
In this section we implement an alternative strategy to thigo ke '¢ we divide the interval into two parts withg
algebraic renormalization, that of Sec. Il, which we call “nu- quadratures for ©-2kee”'¢ and n; quadratures for
merical renormalization.” We solve the partial-wave LS 2koe '?—kye '?. Finally, we taken, quadratures for the
equation in (3-€) dimensions, Egq.(2), directly. The part of the contour that returns us to the real axis, mntbr
strength\ . is adjusted to give the correct bound-state en-the interval[k,,,*). In this way we can optimize the four
ergy, i.e., so that .(k,k";E) has a pole aE=—B. Once this  different regions of the integration independently. For the
is done we calculate the phase shifts @s0. Here the determination of\ by the requirement that the potential sup-
dimensionally-regularized integral equation is being used tgorts a bound state, we takg=0, i.e. the contour of inte-
renormalize the strength of the potential. We do not have tgration corresponds to takidg=0. We have optimized the
explicitly carry through the subtractive, algebraic renormal-number of quadratures on each of the intervals of integration

IV. NUMERICAL RENORMALIZATION

ization discussed in Sec. lll, and the dimensionally-as well as the angled and the point at which the contour
regularized LS equation should give phase shifts as a funaeturns to the red axis, k,,. We have found it necessary to
tion of € which are well-behaved in the limé&—0. take nyg=16,n;=80,n,=10,n3=15,¢$=0.7, and Kk,

The two signals we look for to determine the success of=50 fm~1. We could have used a smaller number of
our numerical implementation of DR for our divergent inte- quadratures on each interval, but to establish that DR is valid
gral equation arg¢l) N, must have the behavidd9) in the  for the LS equation and for the two methods to gigentical
limit e—0; and(2) the results for phase shifts from numeri- results, we have not economized on the number of quadra-
cal renormalization must be stable in the linait> 0. tures.
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FIG. 2. The behavior of the inverse of the bare couplings a FIG. 4. Phase shifts & ,,=352.0 MeV for the solution of the
function of 1k, as obtained using the dimensionally-regularizedLS equation as a function af for e—0.
Lippmann-Schwinger equation.

Note that only the first integration technique was em-
(2) Instead of solving for th@-matrix we solved for the ployed to do the integration in Eq&2) and (23), but there
K-matrix and used the relationship the precise details are less important, since the integral in
question is finite.
1 The first check that the dimensional regularization of this
T(E")=K'(E)— zimmkK'(E)T(E™), (26)  integral equation is being done correctly is to see that the
2 bare coupling\ extracted by imposing the condition that
there be a bound state Bt=—B on Eq. (4) does behave
to relate the two on-shell, and extract the phase shifts. Thaccording to Eq(19). In Fig. 2 we plot the function &/,
K-matrix is, of course, a purely real quantity, but the integralversus 1¢ that is found when this condition is imposed on
equation defining it has a principal-value singularitykat Eq. (4) in the case of the potentias). We choseB=
=Ko, the on-shell point. To deal with this we placg —2.225 MeV, ang3=1.4489 fn 1. The slope of the curve,
Gauss-Legendre quadratures, distributed symmetricallis indeed,m, the nucleon mass, as per E@9).
aboutk=kg, on the interval 0,2ky]. We then also placa; Second, we can examine the convergence of the phase
Gauss-Legendre quadratures p2kg,k,,] and ny Gauss- shifts withe. In Figs. 3 and 4 we present the results obtained
Laguerre quadratures ¢k,,,). Here we found it sufficient from the Lippmann-Schwinger equatiéd) with the poten-
to takeny=16, n;=60, n;=15, andk,,=50 fm 1. tial (5) for the phase shifts as a function ofelin fact the
Each of these methods for solving the integral equation ipoints calculated using the two different meshes described
accurate to four significant figures, provided tkat10 6.  above are indistinguishable from one another on the scale
For very smalle only the second mesh produces resultsshown. The calculation has been done for the nucleon-
which are this stable.

TABLE I. Couplings and phase shifts for various values of the

105.0 . . . . . . distancee, away from three dimensions using the subtraction tech-
1000 | e ®© © ¢ o o o o o] nique. All quantities are numerically accurate to four significant
o0 . figures. Generated withy=16; n;=60; n3=15, Ky,,—=50 fm™ 1.
9200fF o ] € A (fm) 5(24)  5(96)  5(352)
B 80y ] 1.0 0.11928 57.352 37.151 22553
? 80.0 2.5x10°* 4.9817x 10 2 89.360 67.566 49.740
750 ] 6.25<10 2 1.30340<10 2 97.748 76.120 58.067
700 1.5625< 10?2 3.27867%x 10°° 99.855 78.299 60.224
3.90625¢10° %  8.20662 10" % 100.38 78.848 60.770
650 | 1 9.76563<10°*  2.05224<10°* 100.51 78.985 60.906
60.0 | 1 24414210 *  5.13094<10 ° 100.55 79.019 60.941
55.0 "o L L L L . . , 6.1035210°°  1.28276<10°° 100.56 79.028 60.949
ot 10 10 10 1 1 10 1.52588<10°°  3.20691x10°® 100.56 79.030  60.951

3.8147x10°© 8.01728 107 100.56 79.031 60.952
FIG. 3. Phase shifts &,,,=24.0 MeV for the solution of the 9.53674<10°7  2.0043210° 7 100.56 79.031 60.952
LS equation as a function af for e—0.
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TABLE II. Couplings and phase shifts for various values of the 60.980
distancee, away from three dimensions using the algebraic solution S
of the separable potential and contour rotation. All quantities are 60.970 ¢ Lo’ *
numerically accurate to five significant figures. Generated with 60.960 © o *
=16, n;=80, n,=10, n;=15, ¢=0.7, andk,=50 fm ™. .

_. 60.950 [ .

€ \ (fm) 5(24)  8(96)  8(352) g .
1.0 0.119286 57.356 37.154 22.555 g .
2.5x10°! 49816102 89.355 67.563 49.738 © e09s0 [ °
6.25<10 2 1.30340x10 2 97.742 76.114 58.059 60.920 L 1
1.5625< 10 2 3.27867% 10 % 99.849 78.297 60.222 e
3.90625¢10°%  8.2066210 % 100.38 78.845 60.768 60.910 |
9.7656310 %  2.05223<10 % 10051 78.983  60.905
2.44141<10 4 5.13094<10°° 100.54 79.017 60.939 60'90%5,0 45|,o 55I,o 65;.0 75I.o 35;,0 gsl.o 105.0
6.1035410°°  1.28276<10°° 100.55 79.026 60.948 ke (fm”)

1.52588<10 ° 3.20691x10°® 100.55 79.028 60.950
3.8147x 10 ® 8.01728<10° 7 100.55 79.028 60.950
9.5367x 107 2.0043210°7 100.55 79.028 60.950

FIG. 5. Phase shifts aE ,,=352.0 MeV with €=6.1035
%107, for the solution of the LS equation as a functionkgf.

than that displayed in this plot.

nucleon system in théS, channel at laboratory energies of
24 and 352 MeV. The strength of the potenialvaries with
e as displayed in Fig. 2, having been adjusted so that the V. CONCLUSION

potential supports a bound state with a binding energy of From the above analysis and that of RE0] we con-

2.225 MeV. clude that it is possible to use dimensional regularization to

A detailed comparison of the phase shifts resulting from der di . I . ith | ithmic di
the solution of the dimensionally-regularized LS equationren er divergent integral equations with logarithmic diver-
ences finite, provided that a renormalization condition is

with those found using the algebraic results of the prewou? posed in order to fix one of the parameters of the potential.

section shows that the agreement is good to four significan lthough in the present investigation we have chosen the

figures until we get to very smalk{10~°) values ofe. Long b . :
) . und-state energy to fix the strength of the potential, we
before that the phase shifts have converged as a function guld just as easily have used the scattering length or the

e. This comparison 1S presented in in Tables | and Il, Wher(%/alue of the on-shell amplitude at some finite energy as the
the phase shifts obtained by these two methods at three eRsnormalization condition
te;rgles]c, as )Il_vetl)ll asl thre] baretr(]:ouplmgl;t, a][e sf:jovt\)/n asla.fun;-] At this point one might ask whether the ideas discussed
r:on ofe. 1a ed' shows ”e resuls' OL('jnLSEytSO V'di € here can be profitably employed if power-law divergences
thomogeneou?h tlr)rcentsmna ly-rlegzu a”f]e h.f(t))gfe. nth are involved. Of course, such divergences do not appear ex-
1en using thatA. 1o caculate phase shilts in - he plicity when DR is implemented in analytic calculations
dimensionally-regularized LSETable Il gives the result for (see, e.g., Ref11]). However, the numerical techniques dis-
]E)hase s\?\;fts ftr)om quz) ahnd(23) as well as thbe resu(tLB)h ussed above simply will not eliminate ultraviolet diver-
or 7\5_- e observe that there Is agreement between the ag'ences of degree greater than zero. The reason for this lies in
gebraic and numerical renormalization to four significant f'g'the way such divergences are eliminated in “standard” DR
ures. Fur_therr_nor_e_, therg IS convergence In the phase Sh'fF Fhere the offending integral is analytically continued into a
e—~0 tofive S|gn|f|(;ant flgures, which IS bqund the numeri- region wheree is large enough so that the divergences no
cal accuracy of this calculation. All this indicates that thelonger appear. The resulting analytic form is thesfinedas
d|menS|or1|aIIy-reguIar|zed integral equation is giving 8the value of the integral in the region where the integral was
unique solution. formally divergent. It is this definition that eliminates the

Finally, we should T“e”“O” that t.he_re is some SenSitiVitypower—law divergences, and, in contrast to the case where
to the value ok, that is chosen. This is a numerical effect, logarithmic divergences are present, the limit-0 cannot

and reflects the wide Spacing of quadratures in the Iogarithbe taken until this additional step is made. Since the work of
mic mesh abovék=Kkpy. In Fig. 5 we plotd at Biap=352 g paper relies on being able to straightforwardly take the
MeV for e=6.1035<10 > over a range ofkyS, USING jinit .0 it is not clear that power-law divergences can be
meshes of the second type described above. Prowgéd  gjiminated in “numerical” DR. It is possible that a numeri-
large en.ou.gh the results are stab!e to four.S|gn|f|cant figureg. procedure analogous to the analytic one just described
The variations in other phase shifts, andNp, are smaller .4 pe developed to make sense of integral equations in
which power-law divergences appear in the scattering series.
However, the working out of such a scheme is beyond the
The results displayed in Table | were obtained usingdhaatrix scope of this paper.
method and the second of the two meshes described above. Although the present analysis is restricted to a simple toy

044002-6



NUMERICAL RENORMALIZATION USING DIMENSIONAL . .. PHYSICAL REVIEW C 61 044002

model which has only logarithmic divergences, we see nsystem. However, formally it still contains divergences.
reason why it cannot be easily extended to other integral (2) The Bethe-Salpeter equation for pion-nucleon scatter-
equations of interest. Two examples which we believe to béng [18,19. In this case we would hope to use DR rather
particularly important are as follows. than introduce form factors when solving the integral equa-
(1) Effective field theory treatments of neutron-deuterontion. This might facilitate the introduction of electromagnetic
scattering in the doublet channel. The leading-order effectiveouplings into ther— N scattering problem.
field theory calculation produces Faddeev equations whose
_kernel does not go to zero fast enoughkas to make t_he _ ACKNOWLEDGMENTS
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