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Numerical renormalization using dimensional regularization: A simple test case
in the Lippmann-Schwinger equation
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Dimensional regularization is applied to the Lippmann-Schwinger equation for a separable potential which
gives rise to logarithmic singularities in the Born series. For this potential a subtraction at a fixed energy can
be used to renormalize the amplitude and produce a finite solution to the integral equation for all energies. This
can be done either algebraically or numerically. In the latter case dimensional regularization can be imple-
mented by solving the integral equation in a lower number of dimensions, fixing the potential strength, and
computing the phase shifts, while taking the limit as the number of dimensions approaches three. We demon-
strate that these steps can be carried out in a numerically stable way, and show that the results thereby obtained
agree with those found when the renormalization is performed algebraically to four significant figures.

PACS number~s!: 21.45.1v, 02.70.2c, 24.10.2i
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I. INTRODUCTION

One difficulty for standard treatments of hadronic rea
tions is that form factors are introduced at hadronic verti
in order to regulate integrals which would otherwise be
vergent. This procedure reflects the substructure of had
which gives them a finite extent, and hence a form fac
However, any field theory upon which such calculations
based will necessarily be nonlocal. The implementation
basic field theoretic principles, such as causality and elec
magnetic gauge invariance, is quite involved in such fi
theories@1,2#. Methods which impose gauge invariance
an amplitude containing hadronic form factors have be
formulated@3–5#, but they are intrinsically non-unique, sinc
they constrain only the longitudinal part of the photon’s co
pling to the hadronic system.

Some of these difficulties can be resolved by using
mensional regularization~DR! @6–9# to render divergent in-
tegrals finite. This is the method of choice for dealing w
the infinities which arise in perturbative field theoretic calc
lations. However, there are very few studies of the appli
tion of dimensional regularization to integral equations. O
notable exception is the recent application of DR to
Schwinger-Dyson equation in quenched QED by Schre
et al. @10#. In this paper we adapt their method and apply
to the Lippmann-Schwinger~LS! equation.

We consider one member of the class of potentials
which one subtraction at a fixed energy results in a fin
integral equation at all energies. The potential we choos
separable and so provides a toy problem where the renor
ized amplitude can be derived algebraically in a straightf
ward way. The amplitude thereby obtained can then be c
pared with that found by the numerical solution of t
dimensionally-regulated integral equation. We will show th
with careful numerical work the phase shifts obtained
these two different methods are in excellent agreement w
each other. This proves that many of the difficulties asso
ated with implementing dimensional regularization nume
cally can be overcome, and hence that such ‘‘numerical
0556-2813/2000/61~4!/044002~7!/$15.00 61 0440
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mensional regularization and renormalization’’ facilitates t
extraction of finite phase shifts from a particular class
divergent potentials.

In Sec. II we outline the general framework for imple
menting dimensional regularization and renormalizat
techniques numerically in the LS equation. We show h
the LS equation can be analytically continued to lower nu
bers of dimensions,D532e, thus ameliorating the diver
gences which appear in three dimensions. The applicatio
a renormalization condition at one energy in 32e dimen-
sions can then lead to an amplitude which is finite at
energies in this lower number of dimensions, and thence
an amplitude which is well-defined as the limite→0 is
taken. In Sec. III the special case of a separable poten
which leads to a divergent amplitude ase→0 is considered.
We obtain the amplitude for this potential fore.0. Renor-
malizing the amplitude by demanding that the binding e
ergy of the deuteron be reproduced leads to a divergenc
the inverse of the ‘‘bare’’ coupling which appears in th
original separable potential. We show that in DR this div
gence goes as 1/e. We then observe that for this particula
potential, it is not necessary to use DR, since the prob
can be subtractively renormalized. That is to say, a subt
tion at one energy, which can be carried out algebraica
renders the amplitude finite at all energies.

However, it is not generally true that such algebraic ren
malization of an integral equation is possible. Therefore,
Sec. IV the general renormalization procedure of Sec. I
applied directly to the LS equation in 32e dimensions. In
this approach no subtraction is carried out, and no assu
tion is made about the form of the potential. First, the
equation is solved numerically inD532e dimensions.
Then, demanding a specific value of the amplitude at o
energy implies a value of the bare coupling inD dimensions.
The amplitude can then be computed numerically for t
value of the coupling at arbitrary energy and physical qu
tities, such as phase shifts, extracted inD dimensions. This
must be done over a range of valuese and then the limite
→0 can be taken. Finally, in Sec. V we present some c
cluding remarks.
©2000 The American Physical Society02-1
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II. THEORETICAL ANALYSIS

Dimensional regularization is often used to identify t
infinities encountered in perturbative calculations@6–9#. The
procedure involves replacing integrals that are infinite inn
dimensions by the same integrals in a lower dimensionn
2e, where they have a finite result. The function defini
this integral, sayI (e), can then be analytically continue
back ton dimensions. In this way the logarithmic singular
ties of I can be isolated and then renormalized by adjust
the bare parameters of the theory. This is the method
choice for dealing with the infinities which arise in perturb
tive quantum field theory calculations, but it has not be
widely applied to non-perturbative integral equations t
contain divergences. It was used in the Lippmann-Schwin
equation for a divergent potential in Refs.@11,12#, but in the
cases considered there the amplitude can be derived an
cally. In the case of a general divergent potential, this w
not be possible, and DR must be implemented numerica
Recently, Schreiberet al. @10# have demonstrated the feas
bility of such a procedure, successfully employing DR in t
numerical solution of a divergent four-dimension
Schwinger-Dyson equation for the electron mass
quenched QED. In this section we explain how to adapt
methods of Schreiberet al. for use in the three-dimensiona
Lippmann-Schwinger equation.

Given a potentialV the momentum-space LS equation f
the scattering amplitudeT for two particles of massm is

T~k,k8;E!5V~k,k8!

1E d3k9V~k,k9!
1

E2k92/m1 ih
T~k9,k;E!,

~1!

whereh is a positive infinitesimal. To dimensionally regu
late this equation we must continue all quantities in it in
32e dimensions. If the potentialV is central, and depend
only on the angle betweenk and k8, then the operatorL2

commutes with the Hamiltonian. It follows thatV andT can
be expanded using the eigenfunctions of the rotation oper
in 32e dimensions, thus reducing Eq.~1! to a one-
dimensional integral equation. This expansion can be q
involved ~see, for instance, the analogous expansion in
2e dimensions of Ref.@10#!.

Here we follow a slightly different approach. Althoug
the Lippmann-Schwinger equation is nominally a thre
dimensional integral equation, in most instances it is writ
and solved as a one-dimensional integral equation for a g
partial wavel. In other words, making the expansion

T~k,k8;E!5
1

4p (
l

~2l 11!Tl~k,k8;E!Pl~ k̂• k̂8!, ~2!

and an equivalent expansion forV, leads, as is well known
to the one-dimensional integral equation:
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Tl~k,k8;E!5Vl~k,k8!

1E
0

`

dk9k92
Vl~k,k9!

E2k92/m1 ih
Tl~k9,k8;E!.

~3!

To dimensionally regulatethis equation is much easier
since the angular part of the problem has already been d
with in the original number of dimensions, in this case, thr
It only involves replacing the measure appropriate to th
dimensions, by one for (32e) dimensions, i.e.,

Te
l ~k,k8;E!5Vl~k,k8!

1E
0

`

dk9k9(22e)
Vl~k,k9!

E2k92/m1 ih
Te

l ~k9,k8;E!.

~4!

It is worth pointing out here that if the partial-wave e
pansion~2! is carried out in 32e dimensions, rather than in
three dimensions, then the potentialVl ends up depending on
e as well asl. ~See, for instance, Ref.@10#.! However, if we
are only concerned with isolating the divergences of the
tegral equation ase→0, then we are free to take the limit a
e→0 first in Vl , since that limit is nonsingular. Thus, choo
ing to dimensionally regularize the partial-wave-expand
equation, rather than the full three-dimensional equati
may be unfamiliar to those used to DR in perturbative s
tings, but it is justified.

Now consider a potentialVl(k8,k) which leads to diver-
gences in the Born series for Eq.~3!. The integral equation
~4! will yield finite answers for the terms in that series, pr
vided thate is taken large enough. Equation~4! has been
regularized. The next step is to renormalize it. To that e
we pick one of the parameters of the potential, e.g.
strength, which we denote byl, and regard it as a function
of e, l5le . A renormalization condition is then chose
This can be represented as the demand that the amplit
Te

l (k,k8;E), have some specified value at a particular kin
matic point. For instance, we might demand that the am
tude has a pole atE52B, so that a bound state exists at th
energy. Such a renormalization condition implicitly defin
the function le . The amplitudeTe

l (k8,k;E) can then be
computed at the on-shell point:k825k25mE, for a variety
of energies, with this particular choice ofle . This will cer-
tainly give finite results fore.0, provided thate is big
enough. Furthermore, if it is enough to renormalize only
strength of the potential, such a calculation will produce
nite values for the on-shell amplitude and hence for
phase shift even in the limite→0. This ‘‘numerical renor-
malization’’ program has been carried out before in t
Lippmann-Schwinger equation with other regulators~see,
e.g. @13–16#!, but here we will implement it for DR.

In the next section we illustrate how this numerical ren
malization proceeds in the case of a simple separable po
tial. We show that the strength of the potential can always
adjusted so that the potential supports a bound state
2-2
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NUMERICAL RENORMALIZATION USING DIMENSIONAL . . . PHYSICAL REVIEW C 61 044002
energyE52B. This strength cancels the divergence in t
Born series integrals, and so a finite scattering amplitude
be extracted.

III. THE SEPARABLE POTENTIAL AND ALGEBRAIC
RENORMALIZATION

Consider a separable potential with a form factor t
does not guarantee the convergence of the integrals ne
to determine the scattering amplitude. An example of suc
potential is~from this point on we drop the angular mome
tum labell )

V~k,k8!5g~k!lg~k8! with g~k!5
1

~k21b2!1/4
. ~5!

The corresponding off-shellT-matrix is given by

T~k,k8;E1!5g~k!t~E1!g~k8!, ~6!

with

@t~E!#215l212I ~E!, ~7!

where the integralI (E) is

I ~E!5mE
0

`

dk k2
@g~k!#2

mE2k21 ih
. ~8!

Sinceg(k)→k21/2 ask→`, the integrand in Eq.~8! goes as
k21 for k→`, and the integralI (E) has a logarithmic diver-
gence.

Of course, if we had inserted the potential~2! in the
dimensionally-regulated Lippmann-Schwinger equati
then the only thing that would have changed in the ab
analysis is that Eqs.~7! and ~8! would have become

@te~E!#215le
212I e~E!, ~9!

I e~E!5mE
0

`

dk k22e
@g~k!#2

mE2k21 ih
. ~10!

This integral is now finite for anye greater than zero. The
logarithmically divergent part ofI e will stand revealed as a
1/e pole. Sincele is a function ofe here this pole can be
cancelled by making an appropriate choice ofle . Specifi-
cally, here we achieve this renormalization by demand
that one observable be reproduced, i.e. that the3S1 NN
channel have a bound state at energyEB522.2246 MeV.
This is done so that our interaction can be regarded as a
model of theNN potential in the deuteron channel. Th
model is extremely simple, but it has the only two featu
we are concerned with here: it leads to logarithmic div
gences in the Born series, and it has a shallow bound s
The renormalization condition which fixes the position
this bound state may be expressed as follows:

@te~E!#21[le
212I e~E!→0 as E→EB52B,0.

~11!
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To see how this removes the divergent part ofI e(E), we
write the form factorg(k) as

g~k![
1

Ak
h~k! with h~k!→1 as k→`. ~12!

Our singular integral can then be written as

I e~E!52mE
0

`

dk k(12e)
@h~k!#2

k22mE2 ih
. ~13!

We now define an integralĨ e(E) that retains the singular par
of I e(E) in the limit ase→0:

Ĩ e~E![2mE
0

`

dk
k(12e)

k22mE2 ih
. ~14!

This allows us to writeI e(E) in terms of a subtraction as

I e~E!52mE
0

`

dk k(12e)H @h~k!#2

k22mE2 ih
2

1

k21mB
J

1 Ĩ e~2B!

[Je~E!1 Ĩ e~2B!, ~15!

where the integralJe(E) is well defined in the limit ase
→0. Making use of the identity

E
0

`

dr
r b

~r 21A!a
5

1

2

GS b11

2 DGS a2
b11

2 D
Aa2(b11)/2G~a!

, ~16!

we have

Ĩ e~2B!52
m

e

G~12e/2!G~11e/2!

~mB!e/2
→2

m

e
ase→0.

~17!

This isolates the singularity ofI e(E) in the limit e→0. We
now need to renormalize the strength of the potentialle in
order to get a finite amplitude.

To do this we write the condition for a bound state~11! as

le
215I e~2B!, ~18!

i.e.,

le
2152

m

e

G~12e/2!G~11e/2!

~mB!e/2
1Je~2B!, ~19!

which makes it clear thatle
21 has both a divergent part

proportional to 1/e in DR, and other, finite, parts, that ar
dependent upon the particular bound-state energy we are
ing to reproduce. Equation~19! gives le for a givene and
from that we can then calculatete(E) and theT-matrix.

Alternatively, we can use Eq.~18! for le to write
2-3
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te
21~E!5I e~2B!2I e~E!. ~20!

Inserting Eq.~10! for I e and combining the integrands we s
that

te
21~E!5~E1B!E

0

`

dk k(12e)
@h~k!#2

~k2/m2E2 ih!~B1k2/m!
,

~21!

which implies that

Te~k8,k;E!5g~k8!
Se~E!

E1B
g~k!, ~22!

where

Se
21~E!5E

0

`

dk k(12e)
@h~k!#2

~k2/m2E2 ih!~B1k2/m!
~23!

is a finite quantity. SinceSe(E) is finite, the limit ase goes
to zero can be taken smoothly, and we never even nee
consider any quantity other thanS0(E), when the regulator
has been removed altogether. It is now trivial to obtain ph
shifts from Eqs.~22! and ~23!. Their relationship to the on
shell amplitude is just

tan~d!5
Im T~E;k0 ,k0!

ReT~E;k0 ,k0!
, ~24!

wherek0
25mE is the on-shell momentum.

IV. NUMERICAL RENORMALIZATION

The question motivating this study is whether numeri
techniques can be found that give the amplitudeTe(k8,k;E)
numerically when the LS equation is solved in less than th
dimensions. These techniques must be stable enough t
low the limit e→0 to be taken. For the simple potential~5!
the result of any such procedure must be given by Eqs.~22!
and~23!, where an ‘‘algebraic renormalization’’ making ex
plicit use of the potential’s separability has been carried o

In this section we implement an alternative strategy to t
algebraic renormalization, that of Sec. II, which we call ‘‘n
merical renormalization.’’ We solve the partial-wave L
equation in (32e) dimensions, Eq.~2!, directly. The
strengthle is adjusted to give the correct bound-state e
ergy, i.e., so thatTe(k,k8;E) has a pole atE52B. Once this
is done we calculate the phase shifts ase→0. Here the
dimensionally-regularized integral equation is being used
renormalize the strength of the potential. We do not have
explicitly carry through the subtractive, algebraic renorm
ization discussed in Sec. III, and the dimensional
regularized LS equation should give phase shifts as a fu
tion of e which are well-behaved in the limite→0.

The two signals we look for to determine the success
our numerical implementation of DR for our divergent int
gral equation are~1! le must have the behavior~19! in the
limit e→0; and~2! the results for phase shifts from nume
cal renormalization must be stable in the limite→0.
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These two tests should be applicable toany
dimensionally-regularized integral equation. However, in
case under investigation here the results of Eqs.~22! and~23!
provide an additional check on the accuracy of this num
cal renormalization using dimensional regularization.

To perform such tests, we need to solve the integral eq
tion for each value ofe for both the bound state problem an
the scattering problem with considerable accuracy.
achieve this accuracy, we first split the integral in t
Lippmann-Schwinger equation arbitrarily into a piece fro
zero to somekm and a piece fromkm to infinity. Then, on the
interval @km ,`) we make a change of variables to

t5e lnS k

km
D , ~25!

thereby enabling us to employ a logarithmic mesh wh
ensures the correct numerical integration when we ob
1/le . The variable transformation~25! introduces a factor
e2t into the integrand, and so Gauss-Laguerre quadrat
are chosen for the integration fromkm to infinity, since they
naturally build in this factor.

Meanwhile, ordinary Gauss-Legendre quadratures are
ployed for the integration on@0,km#. This was done in two
ways when we performed ‘‘numerical renormalization’’

~1! We deformed the contour of integration from the re
k-axis to that depicted in Fig. 1. Along the contour from ze
to kme2 if we divide the interval into two parts withn0
quadratures for 0→2k0e2 if and n1 quadratures for
2k0e2 if→kme2 if. Finally, we taken2 quadratures for the
part of the contour that returns us to the real axis, andn3 for
the interval@km ,`). In this way we can optimize the fou
different regions of the integration independently. For t
determination ofl by the requirement that the potential su
ports a bound state, we taken050, i.e. the contour of inte-
gration corresponds to takingk050. We have optimized the
number of quadratures on each of the intervals of integra
as well as the anglef and the point at which the contou
returns to the realk axis,km . We have found it necessary t
take n0516, n1580, n2510, n3515, f50.7, and km
550 fm21. We could have used a smaller number
quadratures on each interval, but to establish that DR is v
for the LS equation and for the two methods to giveidentical
results, we have not economized on the number of qua
tures.

FIG. 1. The rotated contour of integration. Herek0 is the on-
shell momentum.
2-4
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NUMERICAL RENORMALIZATION USING DIMENSIONAL . . . PHYSICAL REVIEW C 61 044002
~2! Instead of solving for theT-matrix we solved for the
K-matrix and used the relationship

Tl~E1!5Kl~E!2
1

2
ipmk0Kl~E!Tl~E1!, ~26!

to relate the two on-shell, and extract the phase shifts.
K-matrix is, of course, a purely real quantity, but the integ
equation defining it has a principal-value singularity atk
5k0, the on-shell point. To deal with this we placen0
Gauss-Legendre quadratures, distributed symmetric
aboutk5k0, on the interval@0,2k0#. We then also placen1
Gauss-Legendre quadratures on@2k0 ,km# and n3 Gauss-
Laguerre quadratures on@km ,`). Here we found it sufficient
to taken0516, n1560, n3515, andkm550 fm21.

Each of these methods for solving the integral equatio
accurate to four significant figures, provided thate.1026.
For very smalle only the second mesh produces resu
which are this stable.

FIG. 2. The behavior of the inverse of the bare couplingl as a
function of 1/e, as obtained using the dimensionally-regulariz
Lippmann-Schwinger equation.

FIG. 3. Phase shifts atElab524.0 MeV for the solution of the
LS equation as a function ofe for e→0.
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Note that only the first integration technique was e
ployed to do the integration in Eqs.~22! and ~23!, but there
the precise details are less important, since the integra
question is finite.

The first check that the dimensional regularization of t
integral equation is being done correctly is to see that
bare couplingl extracted by imposing the condition tha
there be a bound state atE52B on Eq. ~4! does behave
according to Eq.~19!. In Fig. 2 we plot the function 1/le
versus 1/e that is found when this condition is imposed o
Eq. ~4! in the case of the potential~5!. We choseB5
22.225 MeV, andb51.4489 fm21. The slope of the curve
is indeed,m, the nucleon mass, as per Eq.~19!.

Second, we can examine the convergence of the ph
shifts withe. In Figs. 3 and 4 we present the results obtain
from the Lippmann-Schwinger equation~4! with the poten-
tial ~5! for the phase shifts as a function of 1/e. In fact the
points calculated using the two different meshes descri
above are indistinguishable from one another on the s
shown. The calculation has been done for the nucle

TABLE I. Couplings and phase shifts for various values of t
distancee, away from three dimensions using the subtraction te
nique. All quantities are numerically accurate to four significa
figures. Generated withn0516; n1560; n3515, kmax550 fm21.

e l ~fm! d(24) d(96) d(352)

1.0 0.11928 57.352 37.151 22.553
2.531021 4.981731022 89.360 67.566 49.740
6.2531022 1.3034031022 97.748 76.120 58.067
1.562531022 3.2786731023 99.855 78.299 60.224
3.9062531023 8.2066231024 100.38 78.848 60.770
9.7656331024 2.0522431024 100.51 78.985 60.906
2.4414131024 5.1309431025 100.55 79.019 60.941
6.1035231025 1.2827631025 100.56 79.028 60.949
1.5258831025 3.2069131026 100.56 79.030 60.951
3.814731026 8.0172831027 100.56 79.031 60.952
9.5367431027 2.0043231027 100.56 79.031 60.952

FIG. 4. Phase shifts atElab5352.0 MeV for the solution of the
LS equation as a function ofe for e→0.
2-5
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D. R. PHILLIPS. I. R. AFNAN, AND A. G. HENRY-EDWARDS PHYSICAL REVIEW C61 044002
nucleon system in the3S1 channel at laboratory energies
24 and 352 MeV. The strength of the potentialle varies with
e as displayed in Fig. 2, having been adjusted so that
potential supports a bound state with a binding energy
2.225 MeV.

A detailed comparison of the phase shifts resulting fr
the solution of the dimensionally-regularized LS equat
with those found using the algebraic results of the previ
section shows that the agreement is good to four signific
figures until we get to very small (,1029) values ofe. Long
before that the phase shifts have converged as a functio
e. This comparison is presented in in Tables I and II, wh
the phase shifts obtained by these two methods at three
ergies, as well as the bare couplingle , are shown as a func
tion of e. Table I shows the results found by solving th
homogeneous, dimensionally-regularized LSE to getle and
then using that le to calculate phase shifts in th
dimensionally-regularized LSE.1 Table II gives the result for
phase shifts from Eqs.~22! and~23! as well as the result~18!
for le . We observe that there is agreement between the
gebraic and numerical renormalization to four significant fi
ures. Furthermore, there is convergence in the phase sh
e→0 to five significant figures, which is beyond the nume
cal accuracy of this calculation. All this indicates that t
dimensionally-regularized integral equation is giving
unique solution.

Finally, we should mention that there is some sensitiv
to the value ofkm that is chosen. This is a numerical effec
and reflects the wide spacing of quadratures in the loga
mic mesh abovek5km . In Fig. 5 we plotd at Elab5352
MeV for e56.103531025 over a range ofkms, using
meshes of the second type described above. Providedkm is
large enough the results are stable to four significant figu
The variations in other phase shifts, and inle , are smaller

1The results displayed in Table I were obtained using theK-matrix
method and the second of the two meshes described above.

TABLE II. Couplings and phase shifts for various values of t
distancee, away from three dimensions using the algebraic solut
of the separable potential and contour rotation. All quantities
numerically accurate to five significant figures. Generated withn0

516, n1580, n2510, n3515, f50.7, andkm550 fm21.

e l ~fm! d(24) d(96) d(352)

1.0 0.119286 57.356 37.154 22.555
2.531021 4.9816231022 89.355 67.563 49.738
6.2531022 1.3034031022 97.742 76.114 58.059
1.562531022 3.2786731023 99.849 78.297 60.222
3.9062531023 8.2066231024 100.38 78.845 60.768
9.7656331024 2.0522331024 100.51 78.983 60.905
2.4414131024 5.1309431025 100.54 79.017 60.939
6.1035231025 1.2827631025 100.55 79.026 60.948
1.5258831025 3.2069131026 100.55 79.028 60.950
3.814731026 8.0172831027 100.55 79.028 60.950
9.536731027 2.0043231027 100.55 79.028 60.950
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than that displayed in this plot.

V. CONCLUSION

From the above analysis and that of Ref.@10# we con-
clude that it is possible to use dimensional regularization
render divergent integral equations with logarithmic dive
gences finite, provided that a renormalization condition
imposed in order to fix one of the parameters of the poten
Although in the present investigation we have chosen
bound-state energy to fix the strength of the potential,
could just as easily have used the scattering length or
value of the on-shell amplitude at some finite energy as
renormalization condition.

At this point one might ask whether the ideas discus
here can be profitably employed if power-law divergenc
are involved. Of course, such divergences do not appear
plicitly when DR is implemented in analytic calculation
~see, e.g., Ref.@11#!. However, the numerical techniques di
cussed above simply will not eliminate ultraviolet dive
gences of degree greater than zero. The reason for this li
the way such divergences are eliminated in ‘‘standard’’ D
There the offending integral is analytically continued into
region wheree is large enough so that the divergences
longer appear. The resulting analytic form is thendefinedas
the value of the integral in the region where the integral w
formally divergent. It is this definition that eliminates th
power-law divergences, and, in contrast to the case wh
logarithmic divergences are present, the limite→0 cannot
be taken until this additional step is made. Since the work
this paper relies on being able to straightforwardly take
limit e→0 it is not clear that power-law divergences can
eliminated in ‘‘numerical’’ DR. It is possible that a numer
cal procedure analogous to the analytic one just descr
can be developed to make sense of integral equation
which power-law divergences appear in the scattering se
However, the working out of such a scheme is beyond
scope of this paper.

Although the present analysis is restricted to a simple

n
e

FIG. 5. Phase shifts atELab5352.0 MeV with e56.1035
31025, for the solution of the LS equation as a function ofkm .
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model which has only logarithmic divergences, we see
reason why it cannot be easily extended to other inte
equations of interest. Two examples which we believe to
particularly important are as follows.

~1! Effective field theory treatments of neutron-deuter
scattering in the doublet channel. The leading-order effec
field theory calculation produces Faddeev equations wh
kernel does not go to zero fast enough ask→` to make the
integral equation well-behaved. Normally this equation
regulated by a cutoff, but the techniques discussed h
could also be used. This problem is particularly interest
because it has recently been shown that unless a three-
force is added to the leading-order effective field theory c
culation the resultant amplitude is unduly sensitive to
value of the cutoff@17#. This three-body force introduces
new parameter into the calculation, which is fit to theNNN
doublet scattering length,2a. The integral equation is the
properly renormalized, in the sense that its solutions are
longer sensitive to physics at short distances in theNNN
. A

l.
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n
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system. However, formally it still contains divergences.
~2! The Bethe-Salpeter equation for pion-nucleon scat

ing @18,19#. In this case we would hope to use DR rath
than introduce form factors when solving the integral eq
tion. This might facilitate the introduction of electromagne
couplings into thep2N scattering problem.
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