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We present a translationally invariant formulation of the no-core shell model approach for few-nucleon
systems. We discuss a general method of antisymmetrization of the harmonic-os@i@jdrasis depending
on Jacobi coordinates. The use of a translationally invariant basis allows us to employ larger model spaces than
in traditional shell-model calculations. Moreover, in addition to two-body effective interactions, three- or
higher-body effective interactions as well as real three-body interactions can be utilized. In the present study
we apply the formalism to solve three and four nucleon systems interacting by the CD-Bonn nucleon-nucleon
(NN) potential in model spaces that include up tg:84and 16 HO excitations, respectively. Results of
ground-state as well as excited-state energies, rms radii, and magnetic moments are discussed. In addition, we
compare charge form factor results obtained using the CD-Bonn and ArgorindN/Botentials.

PACS numbgs): 21.45:+v, 21.60.Cs, 21.30.Fe, 27.Hh

[. INTRODUCTION we combined the no-core shell-model approach to the three-
and four-nucleon systems with the use of antisymmetrized

Various methods have been used to solve the few-nucleatmanslationally invariant HO basi48,19. That allowed us,
problem in the past. The Faddeev meth&fihas been suc- due to the omission of the center of mass, to extend the
cessfully applied to solve the three-nucleon bound-statshell-model calculations to model spaces ofi82 and
problem for different nucleon-nucleon potentighs-4]. For  144() excitations above the unperturbed ground state for the
the solution of the four-nucleon problem one can employA=3 andA=4 systems, respectively. In addition, that ap-
Yakubovsky’s generalization of the Faddeev formalish  proach made it possible to employ the three-body effective
as done, e.g., in Reff6] or [7]. Alternatively, other methods interactions in theA=4 calculations.
have also been successfully used in the past, such as, theln the present paper we simplify and generalize this ap-
correlated hyperspherical harmonics expansion mef8@  proach so that it is applicable to an arbitrary number of
or the Green’s function Monte Carlo meth¢d0]. Apart  nucleons. In particular, we discuss in detail how to construct
from the coupled cluster meth¢d1,12 applicable typically an antisymmetrized HO basis depending on Jacobi coordi-
to closed-shell nuclei, the Green’s function Monte Carlonates. We present an iterative formula for computing the
method is the only approach at the present time, for whictantisymmetrized basis fok nucleons from the antisymme-
exact solutions of systems with>4 interacting by realistic trized basis forA—1 nucleons. Further, we discuss how to
potentials can be obtained, with the current limit beildg transform the antisymmetrized states to bases containing dif-
=8. ferent antisymmetrized subclusters of nucleons.

On the other hand, when studying the properties of more We also describe the effective interaction derivation from
complex nuclei, one typically resorts to the shell model. Ina different perspective than in our previous papers. Namely,
that approach, the single-particle harmonic-oscillator basis igve point out the connections between the no-core shell-
used and the calculations are performed in a truncated modelodel approach and the unitary-model-operator approach
space. Instead of the frédN potential, one utilizes effective [20]. Let us remark that a fundamental feature of the effec-
interactions appropriate for the truncated model space. Exive interactions that we employ is the fact that with the
amples of such calculations are the large-basis no-core shellicreasing model-space size the effective interactions ap-
model calculations that have recently been performegroach the bar&N interaction. Therefore, in principle, our
[13,14. In these calculations, the effective interaction is de-approach converges to the exact few-nucleon solution.
termined for a system of two nucleons bound in a HO well The basic advantage of this formalism is, first, the fact
and interacting by the nucleon-nucleon potential. We notdhat larger model spaces can be utilized than in the standard
that the use of a HO basis is crucial for insuring that theshell-model calculations, because the center-of-mass degrees
center-of-mass motion of the nucleus does not mix with theof freedom are omitted and because a coupled basis with
internal motion of the nucleons. On the one hand, this apgoodJ and T is used. Second, due to the flexibility of HO
proach is limited by the model-space size, and, on the othestates depending on Jacobi coordinates, different recouplings
hand, by the fact that only a two-body effective interaction isof the basis are possible. Consequently, not only can two-
used despite the fact that higher-body effective interactionbody effective interactions be utilized, but also three- or
might not be negligible. higher-body effective interactions as well as real three-body

It is possible, however, to reformulate the shell-modelinteractions. On the other hand, because the antisymmetriza-
problem in a translationally invariant wa$5—17. Recently, tion procedure is computationally involved, the practical ap-

0556-2813/2000/64)/04400116)/$15.00 61 044001-1 ©2000 The American Physical Society



P. NAVRATIL, G. P. KAMUNTAVIéIUS, AND B. R. BARRETT PHYSICAL REVIEW C61 044001

plicability of the formalism is limited to light nuclei. In the The interaction term of the Hamiltonig@) depends only on
present formulation we expect that significant improvementhe relative coordinates. The one-body term in &y.can be
over the traditional shell-model results can be achieved forewritten as a sum of the center-of-mass term, and a term
A<6. depending on the relative coordinates.

We apply the formalism to solve three- and four-nucleon The shell-model calculations are performed in a finite
systems interacting by the non-local momentum-space CDmodel space. Therefore, the interaction term in @g.must
Bonn NN potential[21]. The present calculations are done in be replaced by an effective interaction. In general, for an
larger model spaces than those used in Rdf8,19. Also,  A-nucleon system, aA-body effective interaction is needed.
there have not been any published results so far forAthe In practice, the effective interaction is usually approximated
=4 system interacting by the CD-BomNN potential. In ad- by a two-body effective interaction. In the present study we
dition to the calculation of ground-state and excited-state enwill also employ a three-body effective interaction. As ap-
ergies, point-nucleon rms radii and magnetic moments, w@roximations are involved in the effective interaction treat-
evaluate electromagneti&EM) and strangeness form factors ment, large model spaces are desirable. In that case, the cal-
in the impulse approximation. We plan to present the resultsulation should be less affected by any imprecision of the
of calculations folrA=5 andA=6, using the present formal- effective interaction. The same is true for the evaluation of
ism, separately. any observable characterized by an operator. In the model

In Sec. Il, we discuss the standard no-core shell-mode$pace, renormalized effective operators are required. The
formulation, i.e., the Hamiltonian and effective interaction larger the model space, the less renormalization is needed.
calculation. The construction of the translationally invariant As the HamiItoniaer} (2) differs from the Hamiltonian
HO basis is described in Sec. Ill. Results #=3 andA  H, (1) only by a center-of-mass dependent term, no depen-
=4 systems interacting by the CD-BomN potential are dence onQ) should exist for the intrinsic properties of the
given in Sec. IV. In Sec. V, we present concluding remarksnucleus. However, because of the approximations involved
Technical details of evaluating matrix elements of one-, two4n the effective interaction derivation, a dependence(bn
and three-body interactions and operators are presented #ppears in our calculations. This dependence decreases as the

Appendixes A and B. size of the model-space is increased.
II. NO-CORE SHELL-MODEL APPROACH B. Effective interaction theory in Lee-Suzuki approach
A. Hamiltonian In our approach we employ the Lee-Suzuki similarity

In th hell-model h tart f th transformation method23,24], which yields a starting-
n the no-core shell-model approach we start from eenergy independent Hermitian effective interaction. In this
one- plus two-body Hamiltonian for th&-nucleon system,

subsection we recapitulate general formulation and basic re-

€., sults of this method. Applications of this method for compu-
A =2 A tation of two- or three-body effective interactions are de-
Ha= >, p_‘+ > VN(Fi_Fj)r (1)  scribed in the following subsections. _
=12 i<j=1 Let us consider ararbitrary Hamiltonian H with the
eigensystent,, k), i.e.,
wherem is the nucleon mass andy(r;—r;), the NN inter- HIK) = E,K). &)

action. In order to simplify the notation, the spin and isospin
dependence is omitted in the interaction term in &g. We
can use both coordinate-space dependihpotentials, such
as the Reid, Nijmegeh22], or Argonne[10] as well as
momentum-space dependéil potentials, such as the CD-
Bonn[21]. In the next step we modify the Hamiltonid) ! dl o

by adding to it the center-of-mass HO potenéaﬁlmﬂzﬁz, tiansformatmn operatorg satisfying t.he condition w

= A > . i i - ' . =QuwP. The transformation operator is then determined
R=(1/A)Z{_r;. This potential does not influence intrinsic fom the requirement of decoupling of the Q-space and the
properties of the many-body system. It allows us, howeverygde| space as follows:

to work with a convenient HO basis and provides a mean

field that facilitates the calculation of effective interactions. B

The modified Hamiltonian, depending on the HO frequency Qe “He”P=0. 4

), can be cast into the form

Let us further divide the full space into the model space
defined by a projectoP and the complementary space de-
fined by a projectoQ, P+Q=1. A similarity transforma-
tion of the Hamiltoniane™ “He® can be introduced with a

If we denote the model space basis state@a$, and those

A p? which belong to the Q-space, &&), then the relation
ng LS _m92r|2:| Qe “He“P|k)=0, following from Eq.(4), will be satisfied
=1(2m 2 for a particular eigenvectdk) of the Hamiltonian(3), if its

5 Q-space components can be expressed as a combination of
ST ILLLLAPE its P- ts with the help of the transformati
V(T =T ) — (ri—1)2]. (2)  its P-space components wi e help of the transformation
NUE j 2A i j .
operatorw, I.e.,
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A

A
(aglky=2 (aglw|ap)(ap|k). (5) HE=2 hit 3 V. (11)
ap = i 5=

If the dimension of the model spaceds, we may choose a

setK of dp eigenevectors, for which the relati¢d) will be According to Providencia and Shaki5], a unitary trans-

o 7 . formation of the Hamiltonian, which is able to accommodate
satisfied. Under the condition that thigx dp matrix (ap|k) the short-range two-body correlations in a nucleus, can be

for |k) X s invertible, the operatow can be determined o ,ced by choosing a two-body anti-Hermitian operator
from Eq. (5) as S, such that

<01Q|w|ap>:k§e;C (aolk){(K| ap), (6) H=e SHIeS. (12

Consequently, the transformed Hamiltonian can be expanded

where we denote by tilde the inverted matrix(efs|k), €.g., . .
in a cluster expansion

S, (Klap)(aplk')= 6y, for kk' e K.
The Hermi';ian effeptive Hamiltonian defined on the H=HO+H@D+H® 4. .. (13
model spacé® is then given byf24]

Har=[P(14 0'w)P]¥2PH(P+ QwP)[P(1+ ' w)P]~ 12 where the one-body, two-body, and three-body terms are
e :

iven as
@ °
By making use of the properties of the operatgr the ef- H(l)—ﬁ h (143
fective HamiltonianH¢ can be rewritten in an explicitly =
Hermitian form as
A
Her=[P(1+ 0 w)P] YAP+Pw'Q)H(QwP+P) HO= 3 ¥y, (14b)
i<]=1
X[P(1+ w'w)P] 2 (8)
A
With the help of the solution fow (6) we obtain a simple NON v (140
expression for the matrix elements of the effective Hamil- i<j<k=1 ik
tonian
with
(ap/Herlap)= 2 2 2 (apl(1+0'w) Y apn) -
kel apr apr Vip=e 31 h;+hy+Vi)edz—(hy+hy), (158
X(aplEK apr) Y, “S123hy +hy+ hy+ Vit Vigt Vo) eSiz
=e e
X<apm|(l+ (01‘(1))_1/2|(1p/>. (9) 123 ! 2 j ’];2 i3 2
) ) —(hy+hy+h3+Vio+Vig+ Vo), (15b
For computation of the matrix elements of {b'w) %2 S
we can use the relation andS;,s=S;,+ S,5+ Ss;. In the above equations, it has been
assumed that the basis states are eigenstates of the one-body,

(ap|(1+ o'w)|ap)= 2, (ap/K)(Klap),  (10)  inour case HO, Hamiltonial . ,h; .

Kek If the full space is divided into a model space and a
Q-space, using the projectoBand Q with P+Q=1, itis
possible to determine the transformation oper&grfrom
the decoupling condition

to remove the summation over tlspace basis states. The
effective Hamiltonian (9) reproduces the eigenenergies
E,ke K in the model space. We note that the relati®n

used together with Eq10) does not contain any summation
over theQ-space basis and, thus, represents a simplification

compared to the formulas we presented in our previous pa- . - _ B
pers[14,18,19, though it is fully equivalent. and the simultaneous restrlctlo[BQSlsz—QZSlZIQQ—O.
Note that two-nucleon-state projectors appear in @),

whose definitions follow from the definitions of the

A-nucleon projector®, Q. This approach, introduced by Su-

zuki and Okamoto and referred to as the unitary-model-
We now return to our problem, namely, to derive the ef-operator approaclUMOA) [20], has a solution that can be

fective interaction corresponding to a chosen model spacexpressed in the following form:

for the particular Hamiltonian Hﬁ (2). Let us write the

Hamiltonian(2) schematically as S;,=arctantio— '), (17)

Q,e S12(hy+ h,+V,,)eS2P,=0, (16)

C. Unitary transformation of the Hamiltonian
and the two-body effective interaction
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with the operatow satisfyingw=Q,wP,. This is the same proceed is to evaluate the three-body term appearing in Egs.
operator that solves Eq4) with H=h;+h,+V;,. More-  (13)—(15b). That term depends, throudgh »; in Egs. (153,
over, P,e” S12(h; + h,+ V,,)e12P, is given by Eq.(8) with and(15b) on the operatow, appearing in Eq(17), used for

H=h;+hy,+Vy,. the construction of the two-body effective interaction. It does
not, however, guarantee the model space andQ@space
D. Two-body effective interaction calculation decoupling for the three-nucleon system in a similar way as

in Eq. (16) for the two-nucleon system. To improve on this
point, we, therefore, choose a different way of deriving the
three-body effective interaction. In our previous pafEd]
we introduced a procedure applicable for nuclei witk4

We compute the two-body effective interaction according
to Eqg. (1539 using the decoupling conditiofiL6). For the
two-nucleon Hamiltonian we employ

2 g 02 that calculates the three-body correlations directly and guar-
HY=Hg,+ V12=p— + —mQZF2+VN( J2r) - m r2, antees the model space aQéespace decoupling for the three-
2 2 2 A
m nucleon system.
(18 In order to calculate the three-body effective interaction in

. .. . . this way, we first rewrite the two-body interaction term of
wherer = \/g(rl—rz) andp= \/g(pl— p,) and whereHgy,  the Hamiltonian(2) and (11) using
differs from h;+h, by the omission of the center-of-mass A
HO term of nucleons 1 and 2. Our calculations start with
exact solutions of the Hamiltoniafl8) and, consequently, iQEﬂ Vijzm i
we construct the operates and, then, the effective interac-
tion directly from these solutions by application of the rela-valid for A=3. Then, formally, our Hamiltonian consists
tions (6) and (9) with E,,|k) obtained from the solution of only of one-body and three-body terms. We now calculate
the Schrdinger equation3) for the HamiltonianHzHg. the three-body effective interaction that correspond¥/fo
The relative-coordinate two-nucleon HO states used in the-V; +Vj, from the three-nucleon system condition
calculation are characterized by quantum numbatsjt) s
with the radial and orbital HO quantum numbers correspond-  Qse (hy+hy+hg+Vip+ Vgt Vza)es( )P3=0,

ing to coordinater and momenturrﬁ. Typically, we solve (20
the two-nucleon Hamiltoniafl8) for all two-nucleon chan-
nels up toj=6. For the channels with highgronly the
kinetic-energy term is used in the many-nucleon calculation
The model space is defined by the maximal number of al
lowed HO excitationsN,,, from the condition 2+
<Nmax-
In order to construct the operater (6) we need to select ng hy+hy+ha+ Vot Vgt Vas. (22)
the set of eigenvector§. In the present application we se-
lect the lowest states obtained in each channel. It turns ouks the interaction depends only on the relative positions of
that these states also have the largest overlap with the modelicleons 1, 2 and 3, the three-nucleon center of mass can be
space. Their number is given by the number of basis stateseparated, when solving Schiinger equation withHY .
satisfying 21+ <N ax- Similarly as for the two-nucleon Hamiltonial8), the
Finally, the two-body effective interaction is determined center-of-mass term is not considered in the effective-
from the two-nucleon effective Hamiltonian, obtained from interaction calculation. We obtain the three-nucleon solu-
Eq.(9), asV,e= ﬁzeﬁ— Ho,. Apart from being a function of  tions corresponding to the Hamiltonid@1) by, first, intro-
the nucleon numbek, V..« depends on the HO frequengy  ducing Jacobi coordinates, as described later in this paper
and on the model-space defining paramétgg,. It has the and also as described in our previous papees19,26 and,

important property tha¥es— V1, for Npa—© following by, second, the intr_odu_cing for_ the interactidﬁ@z_,vlg,v23
from the fact thatw—0 for P—1. the two-body effective interactions corresponding to a large

space characterized bYsna.~ 30 and derived according to
the procedure described in the previous subsection. A space
of this size is sufficient for obtaining exact or almost exact
In the standard shell-model calculations the effective in-splutions of the three-nucleon probldiB]. We note that
teraction is limited to a two-body effective interaction. In our
approach the limitation to a two-body effective interaction
means that we us¥,.;, computed as discussed in the pre-
vious subsection, and neglect all the three- and higher-body
clusters appearing in the expansid®). The formalism laid yields a three-nucleon bound system fox 4. Therefore, as
out in the present paper allows us, however, to employ thregn the case of the two-body effective interaction calculation,
body or even higher-body interactions in a straightforwardthe Lee-Suzuki approach is applicable, as described in Sec.
manner. Therefore, we are in a position to go beyond thél B, in a straightforward way. We use the solutions of the
two-body effective interaction approximation. One way tothree-nucleon system to construct the operatand, then,

A

]_Zkzl (Vij+ViktVi), (19

_43)

in complete analogy to Eq16). Note thatS®) is different
from S;»3 and is determined by Eq20). The three-body
effective interaction is then obtained utilizing the solutions
of the three-nucleon system solutions from E@, (6), and

(9) for the Hamiltonian

E. Three-body effective interaction calculation

L
Vij=Vn(ri—r)— S (r=rps 0,j=123, (22)
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the three-body effective interaction directly from these solu- A. Jacobi coordinates

tions by applications of the relatiori6) and(9). The eigen- We work in the isospin formalism and consider nucleons

systemEy, |k) is obtained from the solution of Sctiimger  \yith the massn, A generalization to the proton-neutron for-

equation(3) for the Hamiltonian(21) with the interactions  5jism with unequal masses for the proton and the neutron

Vi; replaced byVaeri;j , where the two-body effective inter- g siraightforward. We will use Jacobi coordinates that are

action corresponds to the space definedNayax, as dis-  jnyroduced as an orthogonal transformation of the single-

cussed above. The model space, defined by the projBgfor y,cleon coordinates. In general, Jacobi coordinates are pro-

is characterized by the maximal allowed number of HO ex-yqrtional to differences of centers of mass of nucleon sub-

citations Ny, Where N <Ngmay. It is spanned by all  ysters.

states satisfying the conditioN3<Npa, With N3 given as For our purposes we need three different sets of Jacobi

N3z=2n+1+2N+ £ when basig29) is used, or, using the cqordinates. The first set, i.e.,

basis(32) N;=N. TheQ-space defined b§); is spanned by

states with total number of HO excitation,,,< N3 - 1. o -
§o= K[r1+r2+ st ral

<Njznax Typically, we solve the three-nucleon system and (243
construct the three-body effective interaction only for three-

nucleon channels witd;=1/2*,3/2* and T;=1/2. For all 1

other channels the two-body effective interaction glz \[E[F 1—F2], (24b)

Ef‘q:lVZeﬁ,ij corresponding to the model space character-
ized by N« is used instead.
In order to construct the operater (6) we need to select &)= \ﬁ E(f Fr,)—rT (249
the set of eigenvectork. As in the two-body effective in- 27 Ng2v 12 T3p
teraction calculation, the lowest states obtained in each chan-
nel are selected. Again, those states also have the largest
overlap with the model space. Their number is given by the

number of basis states with the total number of HO excita- _ A—2] 1 . . . .
tions N3<N,,.,. The three-body effective interaction is de-  §a-2= A1 ﬁ(rl‘*‘ Fot - +ra_2)—Ta-1],

termined from the three-nucleon effective Hamiltonian, ob- (240)
tained from Eq.9), asVae=Haei— Hoz With Hyz equal to

h;+h,+h; minus the three-nucleon center-of-mass HO . A—1] 1 . . . .

term. Like the two-body effective interactioW,, apart En1= T[m(rl+r2+ ceetra_q)—Tals
from being a function of the nucleon numbAr Vs de- (249

pends on the HO frequenc§2 and on the model-space
defining-parameteN.,. In addition, it also depends on the s used for the construction of the antisymmetrized HO basis.
choice 0fNgy,a. Obviously,N3,acmust be sufficiently large, Here, 50 is proportional to the center of mass of the

in order to make this dependence negligible. The IimitingA_nucleon system. On the other harfg is proportional to

roperties ofVse ar follows:Vaer— =2 Voerrii for : "
properties o 33“ are a;go ows f?’eﬁ_} i<j=1Veeftij 100 40 rolative position of thep(+ 1)st nucleon and the center
Nimax— Namax a0 Vaef— 2i<j - 1Vij 10r Nimax, Namax— . of mass of thep nucleons.

Another set that is suitable for the basis expansion, when

IIl. TRANSLATIONALLY INVARIANT two-body interaction matrix elements need to be calculated,
HARMONIC-OSCILLATOR BASIS is obtained by keepingy,&;, . . . £é4_3 and introducing two
As discussed in the previous sections, by using the effecdifferent variables, as follows:
tive interaction theory we arrive at a Hamiltonian that has the - o -
following structure: §0.61, a3, (259
AR . A1 L
HfAleﬁ:Z $+§m92r4 M—2=N\"a m(rl Fat - +ra2)
i=1
A mQ? B (25b)
.. - - A-1tTA) |,
+i > VN(ri_rj)__(ri_rj)z} , 2
i<j=1 2A
eff
- 1. -
23 Ia-1= \[E[VA—l_rA]- (259

with the interaction term depending on relative coordinates ) ) _

(and/or relative momenteaonly. The center-of-mass depen-  Eventually, a set suitable for the basis expansion, when
dence appears only in the one-body HO term. Consequentlwree'bOdy interaction matrix elements need to be calculated,
by performing a transformation to Jacobi coordinates, thes obtained by keepinéo,él, .. -5A74 and 77A,1 from the
center-of-mass degrees of freedom can be removed. previous set and introducing two other different variables
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Eo. &y Eas (263 previous papergl8,19,28. One starts by introducing a basis
e ’ following from Eq. (28) that depends on Jacobi coordinates
B, 3(A-3)[ 1 . . ) & andé,, defined in Eqs(24a—(24e, e.g.,
Jp_3= ﬁ A—_S(r1+r2+ ...+rA,3)
|(nlsjt;, NCJIT). (29

1

: (26b)

- §(rA—2+ Fa—1tra)
Heren,| and A, £ are the HO quantum numbers correspond-
. 21 . L ing to the harmonic oscillators associated with the coordi-
Gp-2= \@[E(rAﬁrA)—rAz , (260 nates(and the corresponding momenig, and &,, respec-
tively. The quantum numbesst,j describe the spin, isospin
. 1. and angular momentum of the relative-coordinate two-
NA-1= \[E[VA—1_VA] (260 nucleon channel of nucleons 1 and 2, whifas the angular
momentum of the third nucleon relative to the center of mass
Identical transformations, as in EqR48—(26d), are also of nucleons 1 and 2. Th& andT are the total angular mo-

introduced for the momenta. mentum and the total isospin, respectively. Note that the ba-
Let us note that the one-body HO potential in Eg3) sis (29) is antisymmetrized with respect to the exchanges of
transforms as nucleons 1 and 2, as the two-nucleon channel quantum num-
A Al bers are restricted by the condition-{)'*S™'=—1. It is
1 - 1 2 1 2 not, however, antisymmetrized with respect to the exchanges
—mQr2=-—mQ2&+ >, —mQ2&, 2 : ’ y P 9
;1 2 b2 & ,;1 2 & @ of nucleons 3 and 2-3. In order to construct a com-

o ) pletely antisymmetrized basis, one needs to obtain eigenvec-
and the kinetic term transforms in an analogous way. As theprs of the antisymmetrizer

interaction does not depend 63 or the center-of-mass mo-
mentum, the center-of-mass HO term can be omitted. More-

over, we can use the HO basis, depending on coordinates 1 0 .
£,,p=12...A-1, eg, X=3(1+TO+ T, (30)
A-1
£ Inl), 28
p:wl;[l (&lnyl,) 8 where 7(*) and 7(7) are the cyclic and the anticyclic per-

mutation operators, respectively. The antisymmetri¥és a
‘projector satisfying¥x'=X. When diagonalized in the basis
(29), its eigenvectors span two eigenspaces. One, corre-
ponding to the eigenvalue 1, is formed by physical, com-
. 7 . : pletely antisymmetrized states and the other, corresponding
tion of the type(28), as similar relations like E¢27) hold to the eigenvalue 0, is formed by spurious states. There are

for all the sets. Third, the basi28) is not antisymmetrized 4 . .
) . about twice as many spurious states as the physical ones
with respect to the exchanges of all nucleon pairs. The antiz

Y - . . - 126].
symmetrization procedure will be discussed in the following D h . ith h h
subsections. ue to the antisymmetry with respect to the exchanges

1+ 2, the matrix elements in the bag9) of the antisym-
metrizer X can be evaluated simply dst)=3(1—2(T3)),
where 7,5 is the permutation corresponding to the exchange

We discussed the antisymmetrization of the translationof nucleons 2 and 3. Its matrix element can be evaluated in a
ally invariant HO basis for the three-nucleon system in ourstraightforward way, e.g.,

for our calculations. First, let us remark that due to the oth
ogonality of the transformation®4a—(26d), the same HO
parameter is used for all HO wave functions. Second, wi
may use any of the set@4a—(26d) for the basis construc-

B. Antisymmetrization for the three-nucleon system

((nql181) 1t ; N1L1T)IT| Tog (ol 2S0) 2t N2 L2 T5) IT)

11 1 s1 1 l, s 11
= 5 U = = S
a2 2 Coon n a s . 1 1 2 2
= 0N, N, tat2 1 LES L*S%1)2J178182(— 1)) £ > J1 L, > T2 1
- T t - S 5
2 L S J L S J 2
XNyl JNLLILINSLonol oL )5, (31

whereN;=2n;+1;+ 2N+ £;, i=1,2; ]=\2j+1; and(n,l .N;L;L|N>L,n,l,L)5 is the general HO bracket for two par-
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ticles with mass ratio 3 as defined, e.g., in R&f]. The expressiok31) can be derived by examining the actionBf on the
basis state€9). That operator changes the sthié(£;),NL(£,),L) to|nl(€'1),NL(£",),L), whereg’, ,i=1,2 are defined as

Ei ,i=1,2 but with the single-nucleon indexes 2 and 3 exchanged. The primed Jacobi coordinates can be expressed as an
orthogonal transformation of the unprimed ones. Consequently, the HO wave functions depending on the primed Jacobi
coordinates can be expressed as an orthogonal transformation of the original HO wave functions. Elements of the transfor-
mation are the Talmi-Moshinsky HO brackets for two particles with the massaatiith d determined from the orthogonal
transformation of the coordinates, see, e.g., R&f].

The resulting antisymmetrized states can be classified and expanded in terms of the origin@%asigollows:

INIJTY=> (nIsjt; NLI||NiJT)|(nIsjt; NLI)IT), (32)

whereN=2n+1+ 2N+ £ and where we introduced an additional quantum nurmbeat distinguishes states with the same set
of quantum numberbl,J, T, e.g.,i=1,2,...r with r the total number of antisymmetrized states for a gidgd, T. It can be
obtained from computing the trace of the antisymmetrixd28]

r=Tr xNT, (33

C. Antisymmetrization for the A-nucleon system

The construction of a translationally-invariant antisymmetrized HO basis for four nucleons that contains an antisymme-
trized three-nucleon subcluster was described in our earlier peEl®24|. In this subsection we generalize and simplify this
construction to the case of an arbitrary number of nucle@nEhe starting point is a basis that contains an antisymmetrized
subcluster ofA—1 nucleons, e.g.,

|(Na-1ia1da1TA1 i DAl A1 TA)IT), (34

with the (A—1)-nucleon antisymmetrized staidl 1ia1Ja1Ta.1), depending on the Jacobi coordinads &y, . . . &a_»
(249 —(249 and the staténa.1l a1 Ja.1) that represents the last nucleon depending on the Jacobi coordipateFor a four
nucleon system the statBl 1ia1Ja.1Ta.1) iS identical to the state introduced in E®2). The basig34) is not antisymme-
trized with respect to exchanges of the last nucleon with the others. However, due to the antisymmet-ofi thecleon
subcluster, the matrix elements of the antisymmetriZen the basiq34) simplifies dramatically, e.g.,

1
<X>:K[l_(A_l)<7;\,Afl>] (35

with 7, o—; the transposition operator of thith and the A—1)st nucleon. Its matrix element can be computed in a
straightforward way as

((Na1iiardaaTaasinasdastdar )3T Zaaal(Na1ria1 rIaarTaariNa1 Rl A1 RTIALR)IT)
= 0N, ,NRE (Nazia2dazTaziNazilazidazclNaLiazIaa TaaL)

i . i T T Ta1+Taart +
X(Np2ia2Ja2Taz2iNa2rla2rTa2r INA1RI A1 RIAIRTALR) TAdl Tagr(— 1) TALL T TAIRT Ja2 Lt Tazr

jA-Z L:7A-2 R:7A-1 L:7A-1 RjA-leA-lRRZ jA-Z R K ~7A-1 L

‘]A-lR \7A-1 R J

3 Taz Tair
X 1
Jaar Ja2L 3

‘]A—Z jA—Z L ‘]A—l L [ [ K
- [ A-2L A-1R ]
% T TA—lL

IA-ZR IA-lL K {IA-lL lA-ZR K}
X
Iair Ja2r 3 llaar la2L L

£ 2 | | L
XLA(=1)'a2r A1 o na g Tag Nas a2 L LINa2 Rl a2 RNALRIALRL Y AGA-2) » (36)

044001-7



P. NAVRATIL, G. P. KAMUNTAVI(SIUS, AND B. R. BARRETT PHYSICAL REVIEW C61 044001

T T T T T T T T T T T T T T T

-7.2}4 B eact v 1 exact
4k ] ——hQ=19 MeV { —hQ=19 Mev
= 7o\ O\ { —hQ=22 Mev N 1 ——hQ=22 MeV
Q NN 1 ——hQ=24 MeV é’ §] — hQ=24 MeV
o e e ———— ] —— (=26 MeV o 1 ——hQ=26 MeV
2.2} = 1 —=—hQ=28 MeV C 1 ——nhQ=28 Mev
by e CD-Bonn ] —hQ=30Mev o CD-Bonn ] ——ha=30 Mev
sl ] T he=82MeV [ ] ——hQ=32 MeV
p é élx’ 1'0 1214 1I6 1I82I02I22;2I62I61’3I03I2 3'4 36 gt ]

12 14 16 18 20 22 24 26 28 30 32 34 36

Nmax NITIBX

FIG. 1. The dependence of tfiel ground-state energy, in MeV,
on the maximal number of HO excitations allowed in the model
space in the range froiN =4 to N.,= 34. The two-body effec-
tive interaction utilized was derived from the CD-BoNN poten-
tial. Results fors Q) =19, 22, 24, 26, 28, 30, and 32 MeV are
presented. The dotted line represents the exact restiBadd0 MeV
from a 34-channel Faddeev-equation calculafigt.

FIG. 2. The dependence of tiel ground-state energy, in MeV,
on the maximal number of HO excitations allowed in the model
space. The same points as in Fig. 1 for the range pm~=14 to
Nmax=34 are presented on a larger scale.

needed, as described in Appendix A. Evaluation of matrix
elements of one-body operators can, on the other hand, be
_ _ done using the expansidB7). It is convenient to introduce
where — Nx=Naix*2Mas1xtlasx, ~ X=LR  and one-body densities, as in the standard shell-model approach.

(Naa a1 Naz2 a2 LLINa2 Rl A2 RPAL R AL RL>A(A—2) is the ; ; ; : ;
general HO bracket for two particles with mass ratio equal toWe leave the discussion of this point to Appendix B.

A(A—2). The expressiofi36) reduces to Eq(19) in Ref.
[19] for A=4. Let us stress the important property of the IV. RESULTS FOR FEW-NUCLEON SYSTEMS

antisymmetrizer matrix, namely its diagonality MyA=N_  we have written a computer code for calculations using
=Ng. Consequently, we may impose a model space restrighe formalism presented in Secs. Il and Ill. We performed
tion of the typeN=Np,and still obtain all the antisymme-  test calculations for few-nucleon systems upAte-8. The
trized states within that model space. code reproduces results obtained using the many-fermion dy-
The antisymmetrized states are obtained by diagonalizingamics(MFD) shell-model codé30], when a two-body ef-
the antisymmetrize®t’ (35) in the basis(34) or, more effi-  fective interaction is employed and when the model space
ciently, by employing the method introduced in RE29]  does not require more than 9 major HO shells, i.e., the limits
that does not require us to compute all the matrix elements §f the version of the MED code we have. Due to the com-
the antisymmetrizer. In order to get the basis for theputational complexity of the antisymmetrization procedure
A-nucleon system we need to set up an iterative procedurge expect that the present formalism can, at the present time
that starts with the calculation of the three-nucleon be&25  and in the current formulation, improve significantly on the
and procceeds to four nucleons and so on up.tdhe re-  results obtainable by the MFD code <6 and to some
sulting antisymmetrized states can be classified and eXxtent forA=7 and A=8. Let us further remark that al-
panded in terms of the original basi4) similarly as in the  though the antisymmetrization is complicated it needs to be

three-nucleon case done only once for gived, N, J andT.

In this paper we present results fAr=3 andA=4 sys-
|NAiAJT>:2 (Np1ia1danTar;Natl arTaalINAI A T) tems, while calculations for largéx will be published sepa-
H '7~1 T T T T T T T T T T T

X|(Na—1ia-1Ja-1Ta-1:Ma-1la-1Ta-2)IT), I ——hQ=19 MeV
[ ——hQ=22 MeV

3 72 ]

7 s ——hQ=24 MeV
where Na=Np1+2np1+1a1. In Eqg. (37), the additional S ol 1 T hQ=26 MeV
quantum number, distinguishes states with the same set of iyt | —=—hQ=28 MeV
quantum numberbl, ,J, T, e.g.,ia=1,2, .. .r with r the to- A ] ——hQ=30 MeV
tal number of antisymmetrized states for givéh, ,J,T. 74 CD-Bonn
Again, it can be obtained from computing the trace of the I o ]
antisymmetrizett 732 14 16 18 20 22 24 26 28 30 32 34 36

r=TrxNaIT, (38) Nimex

. ) i ~ FIG. 3. The dependence of th#He ground-state energy, in
We note that the expansion of the antisymmetrized basisvev, on the maximal number of HO excitations allowed in the
given in Eq.(37), is not suitable for evaluating matrix ele- model space in the range froM, =14 t0 Ny=34. The two-
ments of two-body or three-body interactions or other operabody effective interaction utilized was derived from the CD-Bonn
tors. To facilitate calculations with such interactions and op-NN potential. Results foriQQ=19, 22, 24, 26, 28, and 30 MeV
erators, different expansions of the antisymmetrized basis ame presented.
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TABLE I. Results for the ground-state energies, point-proton, and point-neutron rms radii, and magnetic
moments obtained fotH, He, and*He using the CD-BoniNN potential are presented. Values shown are
based on the results calculated in the largest model spaces used in the presei,sipelg4 for 3H, 3He,
andN,..= 16 for *He, respectively. The errors were estimated from the dependences on the HO frequency
Q) and on the model-space size characterizedRy,.

CD-BonnNN potential Egs [MeV] \/<rp2> [fm] V(r2y [fm] o [und
5H —8.002(4) 1.608%) 1.7606) 2.612
*He —7.248(4) 1.8016) 1.6354) -1.779
“He —26.4(2) 1.44%) 1.4455)
rately at a later stage. We investigated the 3 andA=4 =19...32MeV. Our ground-state results are presented in

systems in the framework of the present formalism in twoFigs. 1-3. In Fig. 1 we show théH ground-state energy
previous paperEl8] and[19], respectively. However, as the dependence on the model-space size in the range from
newly developed code is more efficient, we were able toN,,=4 to N,.,= 34. Different full lines connect results ob-
extend the calculations to larger model spaces. In addition, itained with different HO frequencies. The dotted line repre-
this paper we present results obtained using the momenturgents the 34-channel Faddeev equation resi#t00 MeV
space dependent nonlocal CD-BAdNN potential[21]. There  [21]. It is apparent that our results converge to the Faddeev
are no published results for the four-nucleon system interactequation result a®l,,, increases. We note that the funda-
ing by CD-Bonn potential up to now. mental approximation used in our approach is the negligence
We work in the isospin formalism. As the CD-BoMNN  of the three-body clusters in the expansid@3). Such clus-
potential breaks the isospin and charge symmetry we corters can give both positive and negative contribution to the
struct an isospin invariant potential for tfie= 1 two-nucleon  ground-state energy. Our calculation is not a variational cal-
channels by taking combinations Wf,,, V,, andV,,. For  culation. Therefore, we cannot expect a convergence from
®H we take 5V, +3V,,, for *He we take3V,,+3V,,,  above. As seen from Fig. 1 our results converge both from
while for “He we use%Vnp+ %Vpp+ V... The Coulomb above or below, with some oscillations possible, depending
potential is added to the CD-BorW,, potential. Similarly, on the HO frequency employed. In Fig. 2 we present the
for the nucleon mass we use the proton and neutron masame as in Fig. 1 foN,,, in the range from 14 to 34 using
combinations, e.g.m=1/A(Zm,+Nm,) with Z andN the  an expanded energy scale. We can see that, even if a com-

number of protons and neutrons, respectively. plete convergence has not been achievedNfgr=34 in the
whole range of) used, it is possible to interpolate from the
A. 3H and 3He different curves to obtain the converged result. For example,

o the line corresponding th() =28 MeV remains almost con-
For theA=3 system we use the two-body effective inter- giant for N, 18 at the value about-8.00 MeV. We
action calculated as described in Sec. Il D. As the effectiv%)resent the interpolated results in Table I. Ol result
interaction depends on the model-space size, characteriz —‘18.002(4) MeV is in a good agreement with the 34-channel
by Nyay, and the HO frequencf), we investigate the de- raqgeey calculation. We note, however, that in our calcula-
pendence of observables on those two parameters. We pe[5,s we used all the two-nucleon channels up 466. We

formed calculations in the model spaces Wilhi,, Up 10 34 o014 therefore, compare with the resl8.014 MeV ob-
for a wide range of HO frequencie€}, e.g., #Q

-25

LN BN B B B N B S B S e m E w e e [ O NPT exact
i ¢ ] ——hQ=19 MeV o6}
—— Q=37 MeV V
] ——hQ=22 MeV o7k o MeV 3eft
3 1 —ho=2amev  F | e ey
N ] —he=26Mev  E | =40 Me
% . ] ——hQ=28 MeV w T -+=hQ=37 MeV
Rgt7/: ] ——hQ=30 MeV -a—hQ=34 MeV
L ] =31 -
14 _— CD—BOnn ] —— hQ=32 MeV sl . :
; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ] (IJ é 4" é é 1l0 1I2 1I4 1'6 18

1.3

-I 1
4 6 8 1012141618202224262830323436 Niax

Nmax

FIG. 5. The dependence of titHe ground-state energy, in

FIG. 4. The dependence of thed point-nucleon matter radius, MeV, on the maximal number of HO excitations allowed in the
in fm, on the maximal number of HO excitations allowed in the model space in the range froNy,,,=0 to N,,,= 16. The two-body
model space in the range froN},,,=4 toN,.,= 34. The two-body (dashed lingsand three-bodyfull line) effective interactions uti-

effective interaction utilized was derived from the CD-BoRNiN lized were derived from the Malfliet-Tjon MT-V potential. Results
potential. Results foh =19, 22, 24, 26, 28, 30, and 32 MeV for 4#Q)=34, 37, 40, and 43 MeV are presented. The dotted line
are presented. represents the exact result 6f31.36 MeV[32].
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-25 T T T T T T T 1 T
------ 43.0 o —1___ T ] —130%
| 00 —so g T
& o7t |l —=-370 E ] 2207
2 o310 310 o % 4 ] —s10%
S of — ° 8 4 'He 5
W o 22,0 =, -1sf E
hd 0 —220 ~ F E
= | 19.0 N ] ——400%
e 19 -20F - E
-301 CD-Bonn : CD Bonn ] e o,
1 1 1 1 1 '25:_ _:
31— 10 12 14 16 _— = | —o20",
_30' 1 1 1 1 1 ]
Npax 8 10 12 14 16 ——13 0%,
FIG. 6. The dependence of thtHe ground-state energy, in Nrmax

MeV, on the maximal number of HO excitations allowed in the
model space in the range froN},,= 8 to Nya= 16. The two-body
(dotted line$ and three-bodyfull lines) effective interactions uti-
lized were derived from the CD-BonNN potential. Results for
nQ =19, 22, 31, 37, 40, and 43 MeV are presented.

FIG. 8. The dependence of tH#le ground-state and the first-
excited 0'0 state energies, in MeV, on the maximal number of HO
excitations allowed in the model space in the range fidgm,=8
to Ni,a—= 16. The three-body effective interaction utilized was de-
rived from the CD-Bonn NN potential. Results for#()

. L =13, 22, 31, and 40 MeV are presented.

tained by Noggeet al. [4], where all channels with<6

were used. Consequently, it appears that we are missiNggiimates. In addition, the calculated magnetic moments are
about 10 keV in binding, most likely either due to impreci- 5155 presented. These can be compared to the experimental
sions in the two—n.ucle_on systems solutions used for construGz, es of+ 2.979 uy, for 3H and —2.128 uy, for 3He. The

tion of the ef_fect_lve interaction or due to _the fact that We calculated values were obtained using a one-Hddyopera-
qsed a comb_lnatlon O, Vpp, andV!m, while a combina- 4, with bare nucleory factors.

tion of t-matrices was used instead in REf].

In Fig. 3, we present the same dependence’fe as in
Fig. 2 for 3H. Our interpolated ground-state energy result
together with the error estimate is given in Table I. It should The calculations for*He were performed in the model
be noted that the CD-Bonn potential gives a realistic predicspaces up tdl .= 16 in a wide range of HO frequenciés
tion for the binding energy difference 6H and *He, which ~ This is an extension of our previo#s=4 calculationg19],
is experimentally 0.764 MeV. On the other hand, the absowhere model spaces only up g,,,= 14 were utilized and a
lute value of the binding energy is underestimated comparedarrower range of) was investigated. We performed sepa-
to the experimental values, 8.482 MeV féH and 7.718 rate calculations both with two-body effective interactions,
MeV for 3He, by about 400 keV. It is, however, only a half computed as described in Sec. Il D, and with three-body ef-
of what one gets with the local coordinate-space potentialé§ctive interactions, computed as discussed in Sec. Il E. The
like Nijmegen, Reid or Argonne. three-body effective interactions were calculated for the

The model-space size afitl dependence of théH point- three-nucleon channels Wit T;= 1= andJ3T,= $+1 ys-
nucleon matter rms radius is presented in Fig. 4. We observigg N,,.,,= 32 andNz.,= 28, respectively.

a convergence and a saturation with the model-space size |n order to test the applicability of our method to a four-

increase. In Table | we show point-proton and point-neutromycleon system, we performeki=4 calculations using the
rms radii for both®H and *He extrapolated from the calcu-

B. “He

lations in the largest model spaces together with the error — . . . 1 —130%,
3.0f // 1 — oo
-25 T T T T T T T T T T T L ] 2
E oqf ] ——310*
26 ——Npax=16 Vaep b 2.5 g 2
eeree Nipy=16 PR / ]
s & - woms Ny =14 1\7 2.0 4 .
E -28| ;:,.-" e o Nmax=12 [ He CD—BOHH ] —40 0+1
w ey i ]
1.5F 1 +
_ogl-* - /./ J Nmax=10 : —=—310 1
e CD-Bonn | e Nmax=8 b . . . .1 ——220%
: 8 10 12 14 16 — 130"
a1 1307,

1 1 1 1 1 1 1 1 1 1 1
13 16 19 22 25 28 31 34 37 40 43
hQ [MeV]

Nm ax

FIG. 9. The dependence of tféle ground-state and the first-
FIG. 7. The dependence of thtHe ground-state energy, in excited 0'0 state point-nucleon rms radius, in fm, on the maximal
MeV, on the HO energy in the range frofil)=13 MeV to A Q) number of HO excitations allowed in the model space in the range
=43 MeV. The two-body(dotted lineg and three-bodyfull lines) from Np.,=8 to N.,=16. The three-body effective interaction
effective interactions utilized were derived from the CD-BdWN utilized was derived from the CD-BonNN potential. Results for
potential. Results foN,.,=8, 10, 12, 14, and 16 are presented. A =13, 22, 31, and 40 MeV are presented.

044001-10



FEW-NUCLEON SYSTEMS IN A TRANSLATIONALLY ... PHYSICAL REVIEW C61 044001

central Malfliet-Tjon potential MT-\{31] that is frequently 10°
used for few-body-calculation tests and for which the 4 101
solutions have been obtained by several other methods, see,
e.g., Ref[32] and references therein. Our results are shown 102 |FC|

in Fig. 5. We present the ground-state energy dependence on

’H

-3
the model space size in the rangeNyf,,= 0 to N,,,,,= 16 for 10 \
different HO frequencies. Results obtained with both the 10+ V8 !
two-body and the three-body effective interactions are o ’
. . " 10
shown, with the latter manifesting a faster convergence. We -
CD-Bonn

observe good convergence as the model-space size increases 10

and, although some dependence @rremains even in the 107 1 e e ‘ . ‘ L

Nma=16 model space, we can interpolate to obtain a 0 1 2 3 4 5 6 7 8 9 10

ground-state energy of 31.28(8) MeV, in good agreement 4 [f!]

with the exact result of-31.36 MeV, found by other meth-

ods [32]. Similarly, our point-nucleon rms radius result,  FIG. 10. The elastic EM charge form factor #fl calculated in

1.4055) fm, compares well with the stochastic variational the impulse approximation. Results obtained using the Argonre V8

method result of 1.4087 fi{32]. (dotted ling and CD-Bonn(full line) NN potentials are compared.
Our ground-state energy results obtained with the CD-

Bonn NN potential are presented in Figs. 6 and 7. We invesHO basis used in our calculations. Although we cannot ex-

tigate the dependence on badth,,, and(). The two figures trapolate the energy or point-nucleon radius of this state, our

show mostly the same points, plotted in the first case as ealculations show that its excitation energy is below 21 MeV

function of N,,,,xand in the second case as a functior 6¥. and the radius is larger than 3 fm.

The dotted lines connect the results obtained using the two- Our ground-state results obtained with the CD-Badin

body effective interactions, while the full lines connect thepotential are summarized in Table I.

results obtained with the three-body effective interactions.

We observe a decrease of dependence on igth andz C. Charge form factors

as the model-space size increases. In particular, the curves in

Fig. 7 become more flat with increasimy, ... Similarly as

in our previous study19], it is apparent that calculations

A sensitive test of the wave functions obtained in our
calculations is the evaluation of form factors. In this subsec-

done with the three-body effective interaction show weake}Iorl we compare the_ charge form factors_ obt'c_nned W ith _the
CD-Bonn wave functions and those obtained in an identical

dependence on bofh andN,,,,and demonstrate faster con- . . . . .
vergence. Due to the higher complexity of those calculationscaICUIat'on with the Argor?”? VBNN po;entlal defined in
Ref.[10]. We note that a similar comparison was performed

we present results only fagrQ)= 13, 22, 231 and 40 MeV. by Ki . :
. y Kim et al.in Ref.[34] for the Bonn OBEPQ and the Reid
As can be seen from Figs. 6 and 7, fd less than about 40 NN potentials. In that paper, it was found that the and

MeV the binding energy decreases with increasing model- . )
. . . . . . He form factors differ for the twdNN potentials.
space size while .for. larget ) it begins to increase with Using the formalism of Ref[35] pWe calculated the
Z‘Erjazlg?grga%tﬁ"&[lﬁ :I/y aéyst(afr?tri;rev'\a/\;;’reS)i/ﬁth (?snigot;]?o charge EM form factors and ratio of charge strangeness and
oSy P ' P M form factors in the impulse approximation. The one-

interpolate the converged ground-state energy result, thou bdy contribution to the charge operator is given by €&)
with a lower accuracy. Based on the results presented in1 Ref.[35], e.g

Figs. 6 and 7, we estimate the CD-Bofihle ground-state
energy to be-26.4(2) MeV. The experimental binding en-
ergy of “He is 28.296 MeV. The CD-Bonn thus underbinds
“He by about 2 MeV. It is again only about a half of un- 101
derbinding that one gets with, e.g., Argonne V18 with the Y
calculated*He binding energy 24.1 MeY33]. 10
In our approach we obtain the ground state as well as the 1¢3 T
excited states by diagonalizing the Hamiltonian. In Figs. 8 8
and 9, we present the model-space-size dependence of both 104
the ground-state and the first excited@state energies and 10°5
point-nucleon rms radii, respectively, obtained in calcula- CD.B :
tions with the three-body effective interactions. Compared to 10°¢ -Donn
the ground state, we observe a much stronger dependenceby o7 . . .
the excned—statg energy anq nucleon rms radius on Qoth 0 1 2 3 4 5 6 7 8 9 10
andN .- The significantly different convergence rate of the q [fmr]
ground state and of the first excited O state manifests the
different nature of the two states. A possible interpretation of FIG. 11. The elastic EM charge form factor %fle calculated in
this observation is that the excited 0 state is associated the impulse approximation. Results obtained using the Argonrie V8
with a radial excitation and, thus, it is more sensitive to the(dotted ling and CD-Bonn(full line) NN potentials are compared.

10°
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10° 0.10 -
10" 0.00 1 3
102 8 4’He ¥
107 -0.10 + -
10+ 020 1 7 J4+-CD-Bonn
s tFceslFe ,
o 10 030 7 ) : V8 b
Ll:' 10-¢ 0401 0"1 -0 7 SN
.7 « T E l,/‘ \\\\\ \ ' |
;g.g -0.50 T ps = -2.0 ‘ !
10°° -0.60 T us = 023 W\
o -0.70 + hQ=22 MeV Ninax =16 |
10- i ]
-0.80 } } + + + 4 +
-12
53_13 0o 1 2 3 4 5 6 7 8 9
0 g [fm1]
q[fm'1] FIG. 14. The ratio of elastic strangeness and EM charge form

factor of *He calculated in the impulse approximation. Results ob-
FIG. 12. The elastic EM charge form factor tifle calculated in  tained using the Argonne V8dotted ling and CD-Bonn(full line)
the impulse approximation. Results obtained using the Argonrie V8NN potentials are compared. The calculations were performed using
(dotted ling and CD-Bonn(full line) NN potentials are compared. three-body effective interaction in the model space characterized by
The calculations were performed using three-body effective interN,,,=16 andA =22 MeV. Values of the strangeness radjus

action in the model space characterizedMy,,= 16 andh Q=22 =—2.0 and the strangeness magnetic momept 0.23 were em-
MeV. ployed.
- 1 & .| G&(7) and on the strangeness magnetic momegt Limits on
ME ()t =——= 3 OF{ ——==ioar) ; e o :
27 1 Ji+r these parameters are to be determined in the experiments at
the Thomas Jefferson Accelerator FacillJdNAF). The first
ji(ary strangeness magnetic-moment measurement was reported re-
+[GE (1) —2G{(n)]27 o Ly(, cently[36] and an experimental valye,= +0.23, obtained
with a large error. We use this value in our calculations.
(39 The elastic EM charge form factors dH and 3He are

presented in Figs. 10 and 11, respectively. We observe a
wherer=g2%/4my, L, is thekth nucleon orbital momentum, large sensitivity to the choice of theN potential. Let us
G@(7) andG{(7) are the one-body electric and magneticremark that we used the wave functions obtained in the
form factors, respectively. The superscrip) refers to(p) model space withN.,=34. We investigated the depen-
and(n) for proton and neutron EM form factor, respectively, dence of the form factors on bobf,,,,(=30,32,34) and.(}
or to (S) for the Strangeness form factor. The Opera’\w‘?) is and found that the dependence is below the rESO!Ution of the
equal to &+1,) ((3—t,)) for a=p(a=n) and it is equal to f|gur¢s. Our_ Argkc])nne V8results qomﬁare weill with thoge
1 fora=s. We use the parametrization of the one-body formObtalned using the Argonne V18 in the impulse approxima-

factors as discussed in R¢B5]. We note that the one-body tion presented, e.g., in Ref33]. We note that the experi-

strangeness form factors depend on the strangeness rad%_lrﬂ]ental position of the minima as about 3.6 fand 3.2
—1 3 3 ;
ps, for which we take the valups=—2.0 as in Ref[35] m = for "H and “He, respectively, see Ref33] and the

references therein.
The “He elastic EM charge form factor and the EM

12{_’1 H 4H cha_rge form factor corresponding_ to t_he transition to the first
€ excited 0"0 state are presented in Figs. 12 and 13, respec-
10° ¢ \Fc|li2 ™ tively. The three-body effective interactions were used and
107 4 Rz the N,.,= 16 model spaces. For the Argonne'YVéhe cur-
10% & or _om rent results can be compared to those presented in[ BHf.
19° % Nipax=16 \ obtained usingN,,,= 14. We note that a second minimum
109 [ %0=22 MeV CD-Bonn ‘*.::w" appears in our calculated charge form factors in a similar
107 e position as found in the VMC calculations presented in Ref.
0o 1 2 3 4 5 6 7 8 [37]. The elastic charge form factor sensitivity to bdh,,.

glfor'] and# () is weak forq below the secondary maximum but it

FIG. 13. The EM charge form factor diHe corresponding to increase;_f(_)r Iarge_xq. A_s to the inelastic form fz_actor, there
the transition to the first excited'® state calculated in the impulse the sensitivity is significantly stronger. We believe that the
approximation. Results obtained using the Argonné Vdotted ~ form factors presented in Fig. 13 are more realistic than the
line) and CD-Bonn(full line) NN potentials are compared. The inelastic ones given in Ref.19] that we obtained using
calculations were performed using three-body effective interactiorNmax= 14.
in the model space characterized My,,,= 16 and#Q =22 MeV. In general, for all®H, 3He, and*He the CD-Bonn results
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are further from the experimental data points than the resultseverse ordering of the Jacobi coordinat24a—(24¢ [39].
obtained using the Argonne V8This is in full agreement Then, however, the computation of the one-body densities,
with the calculations in Ref34] for ®H and *He. However, as described in Appendix B, would become very difficult.
in order to make any conclusion about the superiority of any We applied this formalism to solve for the properties of
of the potentials, one needs to calculate the meson exchandfege three- and four-nucleon systems interacting by the CD-
current contributions. onnNN potential in model spaces that included up té 4
Finally, in Fig. 14 we present the ratio of tHéle charge and 160 HO excitations, respectively. For the three-
strangeness and EM form factors calculated in the impuIsQUCIE’On system our method leads to the exact solution and
approximation using both the Argonne V&nd the CD- ©OUr results are in agreement with the calcula_tlons by other
Bonn NN potentials. The ratio of the elastic charge form Methods. For the four-nucleon system, we first performed
factors is particularly interesting, as it can be experimental est calculations using the MT-V potential that confirm con-

: o “vergence of our method. For the calculations with the CD-
o_btalned from the measurement of th(_e parity-violating left Bonn potential, we were able to interpolate the ground-state
right asymmetry for scattering of polarized electrons from a

4 . 4 energy solution from the model-space and HO-frequency de-
He target. Experiments of this type are now under prepar"jbendencies. Our result with an error estimate-ig6.4(2)
tion at TINAF.

MeV. There have not been any published results so far by
other methods for thé=4 system interacting by the CD-
V. CONCLUSIONS Bonn NN potential. However, we have learned of a prelimi-
nary result, —26.3 MeV, obtained by Nogga using the
We presented a translationally invariant formulation of Faddeev-Yakubovsky equation approdet®] that is in a
the no-core shell-model approach for few-nucleon systemgood agreement with our result. In addition to energies, rms
and introduced a general method of antisymmetrization of #adii and magnetic moments, we also compared charge form
HO basis depending on Jacobi coordinates. The latter procéactors obtained using the CD-Bonn and Argonne’ K8\
dure starts with the construction of the antisymmetrized basigotentials and found a substantial sensitivity to the choice of
for three nucleons, then procceeds to four and so on. Whe potential, in agreement with results published in Fe]
derived an iterative algebraic formula for computing the anfor calculations with similar potentials.
tisymmetrized basis foA nucleons from the antisymme- We_belleve that the method discussed in this paper has the
trized basis forA—1 nucleons. In addition, we discussed Potential to solve the few-nucleon problem beyohe: 4.

how to transform the antisymmetrized states to bases cor;l:he convergence can still be improved by employing four-

taining different antisymmetrized subclusters of nucleons?’ higher-body effective interactions in a similar fashion as

The chosen anproach has the advantage that the antisvmnide have used the three-body effective interaction. Also the
PP 9 Y n};1entisymmetrization procedure can be made more efficient.

trizer is very simple and that the dimensions of the startin%ur method has the advantage, compared to, e.g., the GFMC
basis, formed by th&— 1 nucleon antisymmetrized subclus- method, that we solve the S(':'Iuii(,)ger equation,by di,agonal-
ter and the last nucleon, are the lowest compared to basggyiion, Consequently, wave functions are obtained and ex-
with different subclustering. cited states with identical quantum numbers as the ground

There are two main advantages of the use of atate are computed. As calculations with the real three-body
translationally-invariant basis. First, it allows us to employinteractions are possible in the present formalism, we are
larger model spaces than in traditional shell-model calculag|ready working to include Tucson-Melbourne or Urbana
tions. Second, in addition to two-body effective interactions type interactions in our future studies. It would also be inter-
three- or higher-body effective interactions as well as reabsting to compare the present method with a new approach,
three-body interactions can be utilized. The use of higherrelying also on the HO basis, in which the effective interac-
body effective interactions reduces the dependence on thfn is constructed by solving the Bloch-Horowitz equation
HO frequency and speeds up the convergence of our ap41]. Calculations are now under way fér=5 and A=6

proach. _ o _ _ using the present formalism.
As the antisymmetrization procedure is computationally
involved, the practical applicability of the formalism is lim- ACKNOWLEDGMENTS

ited to light nuclei. In the present formulation we expect that

significant improvement over the traditional shell-model re- X
sults can be achieved fok<6 and to some extent foh  computer code for the CD-BorXiN potential. We also thank
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formations of Jacobi coordinates. That approach can be
adapted for the HO functions and should lead to a more
efficient antisymmetrization. Another issue is the transforma-
tion to A—2 plus 2 andA—3 plus 3 clusters as discussed in  The A-nucleon antisymmetrized basis, obtained in Sec.
Appendix A. In principle, it can be avoided by using the Ill C, is given as an expansion of the baé&s), as shown in

APPENDIX A: RECOUPLING TO BASIS CONTAINING
TWO- AND THREE-BODY CLUSTERS
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Eq. (37). In this form, it is not, however, in general suitable pending on the Jacobi coordinat@5g—(25¢) or consisting
for calculations with two-body or three-body interactions orof antisymmetrized subclusters &—3 and 3 nucleons
other operators. In order to facilitate the calculations withdepending on the Jacobi coordinatg@6g—(26d), respec-
two-body or three-body interactions we need to expand thévely.

antisymmetrized statedNAioJT) in @ HO basis consisting For a calculation for artA>3 system with a two-body
of antisymmetrized subclusters &2 and 2 nucleons de- interaction, we need the following expansion matrix element:

((Na2ip23p2Ta2; (NISJLNL) DITINAIAIT) = 2 (Natia1da1Ta1iNaal a1daal|NAiadT)

X (Npa2ia2da2Ta2:Na2l aoda2lINatia-1Ia1TA L) Tn1Tno 1) S(— 1) wat Iaatdnat IitLrstiaatlag(— 1)Ta2* THIT

1
1 IA—Z - \7A—2
TAZ = TAl 2 .
. 2 L lJA.z Inz JA-lHS J]IA_Z(HINELM | a-1Na2l Azl AD)
1o e 3 a0 gl gL AR AT
2
L s J

where we used an orthogonal transformation of the Jacobi coordirates,éx_; and 7a_»,7a_;. In the state
[(Nagip2dasTaz;(nIsjt, VL) 7)IT), the antisymmetrized subclustfaiaoJarTa) depends on the Jacobi coordinates
£1,&,, .. .&€a_3. The two-nucleon channel staftelsjt) depends on the Jacobi coordinajg_; and the HO stateVL) that
describes the relative motion of the two subclusters is associated with the Jacobi coof;gdlngt@iven in Eq.(25).

When this expansion ofNAinJT) is used a matrix element of a two-body interaction in the bfsjg,JT) can be
evaluated in a simple manner, e.g.,

A
1 -
< > vij>:§A<A—1><V<ﬁnAl>>, (A2)

i<j=1
and the matrix element on the right-hand side is diagonal in all quantum numbers of the state
| (N i a0dasTaz;(nIsjt, VL) 7)IT) exceptn,l for an isospin invariant interaction.

Similarly, for a calculation for arA>5 system with a three-body interaction, we need the following expansion matrix
element:

((Nasia3IaaTas;(N3izdsTs, NL)DITINAIAIT)= > (Na2ia2daaTaz;(NISit N L") T [|NAi aIT)

X (NasiaadasTaziNaalasdasl|NasiazdazTa2)(NISitnaslasTaslINaizdsTa) Tasd asdT Inzda

) Trs 3 |
X ( _ 1)J’+JA-3+J+]+|A-3+ 1/2( _ 1)TA-3+T3+T?A_2-’[\-3 TA_3 z TA_Z [JA_/S J Jj } RZ( _ 1)K lIA'3 L L
CT T J" Taz Idaz % 7 K
J" lasz K 7 K
A-3 i ’ ’ ’
Xy 1 { - /}LZ(_1)L<nA-3lA-SNELlnA-BlA-}/v,’C L) 2a-3)/A - (A3)
> J Jas| L ] L

Here we used an orthogonal transformation of the Jacobi coordifiatessa_, andd,_3,9a_, given in Eqs.(25a—(260).

In the state|(Na.giasdaaTasz;(NsizdsTs, NC)7)JIT), the antisymmetrized subclust@iXagiaslasTas) depends on the
Jacobi coordinateél,éz, .. .EA,4. The three-nucleon antisymmetrized subclufitéyi ;J;T3) depends on the Jacobi coordi-
natesf}A,z , ;;A,l and the HO state\L) that describes the relative motion of the two subclusters is associated with the Jacobi
coordinated ,_3, given in Eq.(26).
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When this expansion ofNAixJT) is used a matrix element of a three-body interaction in the Hais,JT) can be
evaluated in a straightforward way, e.g.,

. 1
<i<§kl vijk> = AA=1)(A=2)(V(Ia-2,74-1)). (A4)

and the matrix element on the right-hand side is diagonal in all quantum numbers of the state
|(NagiaszdasTas;(NsigdsTs, NC)JNIT), exceptN; andig, for an isospin invariant interaction.

APPENDIX B: ONE-BODY DENSITIES

In the formalism of the translationally-invariant shell model, one can introduce one- or higher-body densities, as in the
standard shell-model formulation. Let us consider a general one-body operator, e.g.,

A
OkI=3 0K )(r,—R,a;,7). (B1)
=1

Its matrix element between antisymmetrized states depending on the Jacobi coof@#hate@4e can be written schemati-
cally as

In a more detailed form, we can express a reduced matrix element between two eigenstates of a Hamiltonain corresponding to
A-nucleon system as

(AEITT]| O(kT)| ||AE" W,T/> = 2 (A;EITT[(NaqiaadaaTar:Naal aada)dT)

o an NJNETRV/NCTRN L B
X<(NA-liA—l‘]A—lTA—l;n,A-lllA-1k7/,\-1)‘]’T,|A;E,‘J’W T’>JJ,(—1)JA'1+K+J+‘7;-\-1{ 21 31 5 ’TT/(_l)TA_l+T+T+1/2
A-1
T 1 T
AL 5 . AT, o o
X 1 Naala1daa|||AO - A éa-1,0a,7a| ||| Naal A1 Taa ) (B3)
T T >

where we used expansions of the eigenstates in the (&8isApparently, the matrix elemefiB3) factorizes into products of
one-body reduced matrix elements and one-body densities.
One can introduce two- or higher-body densities in a similar way.
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