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Few-nucleon systems in a translationally invariant harmonic oscillator basis
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We present a translationally invariant formulation of the no-core shell model approach for few-nucleon
systems. We discuss a general method of antisymmetrization of the harmonic-oscillator~HO! basis depending
on Jacobi coordinates. The use of a translationally invariant basis allows us to employ larger model spaces than
in traditional shell-model calculations. Moreover, in addition to two-body effective interactions, three- or
higher-body effective interactions as well as real three-body interactions can be utilized. In the present study
we apply the formalism to solve three and four nucleon systems interacting by the CD-Bonn nucleon-nucleon
~NN! potential in model spaces that include up to 34\V and 16\V HO excitations, respectively. Results of
ground-state as well as excited-state energies, rms radii, and magnetic moments are discussed. In addition, we
compare charge form factor results obtained using the CD-Bonn and Argonne V88 NN potentials.

PACS number~s!: 21.45.1v, 21.60.Cs, 21.30.Fe, 27.10.1h
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I. INTRODUCTION

Various methods have been used to solve the few-nuc
problem in the past. The Faddeev method@1# has been suc
cessfully applied to solve the three-nucleon bound-s
problem for different nucleon-nucleon potentials@2–4#. For
the solution of the four-nucleon problem one can emp
Yakubovsky’s generalization of the Faddeev formalism@5#
as done, e.g., in Refs.@6# or @7#. Alternatively, other methods
have also been successfully used in the past, such as
correlated hyperspherical harmonics expansion method@8,9#
or the Green’s function Monte Carlo method@10#. Apart
from the coupled cluster method@11,12# applicable typically
to closed-shell nuclei, the Green’s function Monte Ca
method is the only approach at the present time, for wh
exact solutions of systems withA.4 interacting by realistic
potentials can be obtained, with the current limit beingA
58.

On the other hand, when studying the properties of m
complex nuclei, one typically resorts to the shell model.
that approach, the single-particle harmonic-oscillator bas
used and the calculations are performed in a truncated m
space. Instead of the freeNN potential, one utilizes effective
interactions appropriate for the truncated model space.
amples of such calculations are the large-basis no-core s
model calculations that have recently been perform
@13,14#. In these calculations, the effective interaction is d
termined for a system of two nucleons bound in a HO w
and interacting by the nucleon-nucleon potential. We n
that the use of a HO basis is crucial for insuring that
center-of-mass motion of the nucleus does not mix with
internal motion of the nucleons. On the one hand, this
proach is limited by the model-space size, and, on the o
hand, by the fact that only a two-body effective interaction
used despite the fact that higher-body effective interacti
might not be negligible.

It is possible, however, to reformulate the shell-mod
problem in a translationally invariant way@15–17#. Recently,
0556-2813/2000/61~4!/044001~16!/$15.00 61 0440
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we combined the no-core shell-model approach to the th
and four-nucleon systems with the use of antisymmetri
translationally invariant HO basis@18,19#. That allowed us,
due to the omission of the center of mass, to extend
shell-model calculations to model spaces of 32\V and
14\V excitations above the unperturbed ground state for
A53 andA54 systems, respectively. In addition, that a
proach made it possible to employ the three-body effec
interactions in theA54 calculations.

In the present paper we simplify and generalize this
proach so that it is applicable to an arbitrary number
nucleons. In particular, we discuss in detail how to constr
an antisymmetrized HO basis depending on Jacobi coo
nates. We present an iterative formula for computing
antisymmetrized basis forA nucleons from the antisymme
trized basis forA21 nucleons. Further, we discuss how
transform the antisymmetrized states to bases containing
ferent antisymmetrized subclusters of nucleons.

We also describe the effective interaction derivation fro
a different perspective than in our previous papers. Nam
we point out the connections between the no-core sh
model approach and the unitary-model-operator appro
@20#. Let us remark that a fundamental feature of the eff
tive interactions that we employ is the fact that with t
increasing model-space size the effective interactions
proach the bareNN interaction. Therefore, in principle, ou
approach converges to the exact few-nucleon solution.

The basic advantage of this formalism is, first, the fa
that larger model spaces can be utilized than in the stan
shell-model calculations, because the center-of-mass deg
of freedom are omitted and because a coupled basis
good J and T is used. Second, due to the flexibility of HO
states depending on Jacobi coordinates, different recoupl
of the basis are possible. Consequently, not only can t
body effective interactions be utilized, but also three-
higher-body effective interactions as well as real three-bo
interactions. On the other hand, because the antisymmet
tion procedure is computationally involved, the practical a
©2000 The American Physical Society01-1
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plicability of the formalism is limited to light nuclei. In the
present formulation we expect that significant improvem
over the traditional shell-model results can be achieved
A<6.

We apply the formalism to solve three- and four-nucle
systems interacting by the non-local momentum-space
BonnNN potential@21#. The present calculations are done
larger model spaces than those used in Refs.@18,19#. Also,
there have not been any published results so far for thA
54 system interacting by the CD-BonnNN potential. In ad-
dition to the calculation of ground-state and excited-state
ergies, point-nucleon rms radii and magnetic moments,
evaluate electromagnetic~EM! and strangeness form facto
in the impulse approximation. We plan to present the res
of calculations forA55 andA56, using the present formal
ism, separately.

In Sec. II, we discuss the standard no-core shell-mo
formulation, i.e., the Hamiltonian and effective interacti
calculation. The construction of the translationally invaria
HO basis is described in Sec. III. Results forA53 andA
54 systems interacting by the CD-BonnNN potential are
given in Sec. IV. In Sec. V, we present concluding remar
Technical details of evaluating matrix elements of one-, tw
and three-body interactions and operators are presente
Appendixes A and B.

II. NO-CORE SHELL-MODEL APPROACH

A. Hamiltonian

In the no-core shell-model approach we start from
one- plus two-body Hamiltonian for theA-nucleon system,
i.e.,

HA5(
i 51

A pW i
2

2m
1 (

i , j 51

A

VN~rW i2rW j !, ~1!

wherem is the nucleon mass andVN(rW i2rW j ), the NN inter-
action. In order to simplify the notation, the spin and isos
dependence is omitted in the interaction term in Eq.~1!. We
can use both coordinate-space dependentNN potentials, such
as the Reid, Nijmegen@22#, or Argonne @10# as well as
momentum-space dependentNN potentials, such as the CD
Bonn @21#. In the next step we modify the Hamiltonian~1!

by adding to it the center-of-mass HO potential1
2 AmV2RW 2,

RW 5(1/A)( i 51
A rW i . This potential does not influence intrins

properties of the many-body system. It allows us, howev
to work with a convenient HO basis and provides a me
field that facilitates the calculation of effective interaction
The modified Hamiltonian, depending on the HO frequen
V, can be cast into the form

HA
V5(

i 51

A F pW i
2

2m
1

1

2
mV2rW i

2G
1 (

i , j 51

A FVN~rW i2rW j !2
mV2

2A
~rW i2rW j !

2G . ~2!
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The interaction term of the Hamiltonian~2! depends only on
the relative coordinates. The one-body term in Eq.~2! can be
rewritten as a sum of the center-of-mass term, and a t
depending on the relative coordinates.

The shell-model calculations are performed in a fin
model space. Therefore, the interaction term in Eq.~2! must
be replaced by an effective interaction. In general, for
A-nucleon system, anA-body effective interaction is needed
In practice, the effective interaction is usually approximat
by a two-body effective interaction. In the present study
will also employ a three-body effective interaction. As a
proximations are involved in the effective interaction tre
ment, large model spaces are desirable. In that case, the
culation should be less affected by any imprecision of
effective interaction. The same is true for the evaluation
any observable characterized by an operator. In the mo
space, renormalized effective operators are required.
larger the model space, the less renormalization is need

As the HamiltonianHA
V ~2! differs from the Hamiltonian

HA ~1! only by a center-of-mass dependent term, no dep
dence onV should exist for the intrinsic properties of th
nucleus. However, because of the approximations invol
in the effective interaction derivation, a dependence onV
appears in our calculations. This dependence decreases a
size of the model-space is increased.

B. Effective interaction theory in Lee-Suzuki approach

In our approach we employ the Lee-Suzuki similar
transformation method@23,24#, which yields a starting-
energy independent Hermitian effective interaction. In t
subsection we recapitulate general formulation and basic
sults of this method. Applications of this method for comp
tation of two- or three-body effective interactions are d
scribed in the following subsections.

Let us consider anarbitrary Hamiltonian H with the
eigensystemEk ,uk&, i.e.,

Huk&5Ekuk&. ~3!

Let us further divide the full space into the model spa
defined by a projectorP and the complementary space d
fined by a projectorQ, P1Q51. A similarity transforma-
tion of the Hamiltoniane2vHev can be introduced with a
transformation operatorv satisfying the condition v
5QvP. The transformation operator is then determin
from the requirement of decoupling of the Q-space and
model space as follows:

Qe2vHevP50. ~4!

If we denote the model space basis states asuaP&, and those
which belong to the Q-space, asuaQ&, then the relation
Qe2vHevPuk&50, following from Eq.~4!, will be satisfied
for a particular eigenvectoruk& of the Hamiltonian~3!, if its
Q-space components can be expressed as a combinatio
its P-space components with the help of the transformat
operatorv, i.e.,
1-2
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FEW-NUCLEON SYSTEMS IN A TRANSLATIONALLY . . . PHYSICAL REVIEW C61 044001
^aQuk&5(
aP

^aQuvuaP&^aPuk&. ~5!

If the dimension of the model space isdP , we may choose a
setK of dP eigenevectors, for which the relation~5! will be
satisfied. Under the condition that thedP3dP matrix ^aPuk&
for uk&PK is invertible, the operatorv can be determined
from Eq. ~5! as

^aQuvuaP&5 (
kPK

^aQuk&^k̃uaP&, ~6!

where we denote by tilde the inverted matrix of^aPuk&, e.g.,
(aP

^k̃uaP&^aPuk8&5dk,k8 , for k,k8PK.
The Hermitian effective Hamiltonian defined on th

model spaceP is then given by@24#

H̄eff5@P~11v†v!P#1/2PH~P1QvP!@P~11v†v!P#21/2.
~7!

By making use of the properties of the operatorv, the ef-
fective HamiltonianH̄eff can be rewritten in an explicitly
Hermitian form as

H̄eff5@P~11v†v!P#21/2~P1Pv†Q!H~QvP1P!

3@P~11v†v!P#21/2. ~8!

With the help of the solution forv ~6! we obtain a simple
expression for the matrix elements of the effective Ham
tonian

^aPuH̄effuaP8&5 (
kPK (

aP9
(
aP-

^aPu~11v†v!21/2uaP9&

3^aP9uk̃&Ek^k̃uaP-&

3^aP-u~11v†v!21/2uaP8&. ~9!

For computation of the matrix elements of (11v†v)21/2,
we can use the relation

^aPu~11v†v!uaP9&5 (
kPK

^aPuk̃&^k̃uaP9&, ~10!

to remove the summation over theQ-space basis states. Th
effective Hamiltonian ~9! reproduces the eigenenergi
Ek ,kPK in the model space. We note that the relation~9!
used together with Eq.~10! does not contain any summatio
over theQ-space basis and, thus, represents a simplifica
compared to the formulas we presented in our previous
pers@14,18,19#, though it is fully equivalent.

C. Unitary transformation of the Hamiltonian
and the two-body effective interaction

We now return to our problem, namely, to derive the
fective interaction corresponding to a chosen model sp
for the particular Hamiltonian HA

V ~2!. Let us write the
Hamiltonian~2! schematically as
04400
-

n
a-

-
ce

HA
V5(

i 51

A

hi1 (
i , j 51

A

Vi j . ~11!

According to Providencia and Shakin@25#, a unitary trans-
formation of the Hamiltonian, which is able to accommoda
the short-range two-body correlations in a nucleus, can
introduced by choosing a two-body anti-Hermitian opera
S, such that

H5e2SHA
VeS. ~12!

Consequently, the transformed Hamiltonian can be expan
in a cluster expansion

H5H (1)1H (2)1H (3)1•••, ~13!

where the one-body, two-body, and three-body terms
given as

H (1)5(
i 51

A

hi , ~14a!

H (2)5 (
i , j 51

A

Ṽi j , ~14b!

H (3)5 (
i , j ,k51

A

Ṽi jk , ~14c!

with

Ṽ125e2S12~h11h21V12!e
S122~h11h2!, ~15a!

Ṽ1235e2S123~h11h21h31V121V131V23!e
S123

2~h11h21h31Ṽ121Ṽ131Ṽ23!, ~15b!

andS1235S121S231S31. In the above equations, it has bee
assumed that the basis states are eigenstates of the one-
in our case HO, Hamiltonian( i 51

A hi .
If the full space is divided into a model space and

Q-space, using the projectorsP and Q with P1Q51, it is
possible to determine the transformation operatorS12 from
the decoupling condition

Q2e2S12~h11h21V12!e
S12P250, ~16!

and the simultaneous restrictionsP2S12P25Q2S12Q250.
Note that two-nucleon-state projectors appear in Eq.~16!,
whose definitions follow from the definitions of th
A-nucleon projectorsP, Q. This approach, introduced by Su
zuki and Okamoto and referred to as the unitary-mod
operator approach~UMOA! @20#, has a solution that can b
expressed in the following form:

S125arctanh~v2v†!, ~17!
1-3
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with the operatorv satisfyingv5Q2vP2. This is the same
operator that solves Eq.~4! with H5h11h21V12. More-
over, P2e2S12(h11h21V12)e

S12P2 is given by Eq.~8! with
H5h11h21V12.

D. Two-body effective interaction calculation

We compute the two-body effective interaction accord
to Eq. ~15a! using the decoupling condition~16!. For the
two-nucleon Hamiltonian we employ

H2
V5H021V125

pW 2

2m
1

1

2
mV2rW21VN~A2rW !2

mV2

A
rW 2,

~18!

where rW5A1
2 (rW12rW2) and pW 5A1

2 (pW 12pW 2) and whereH02

differs from h11h2 by the omission of the center-of-mas
HO term of nucleons 1 and 2. Our calculations start w
exact solutions of the Hamiltonian~18! and, consequently
we construct the operatorv and, then, the effective interac
tion directly from these solutions by application of the re
tions ~6! and ~9! with Ek ,uk& obtained from the solution o
the Schro¨dinger equation~3! for the HamiltonianH5H2

V .
The relative-coordinate two-nucleon HO states used in
calculation are characterized by quantum numbersunls jt&
with the radial and orbital HO quantum numbers correspo
ing to coordinaterW and momentumpW . Typically, we solve
the two-nucleon Hamiltonian~18! for all two-nucleon chan-
nels up to j 56. For the channels with higherj only the
kinetic-energy term is used in the many-nucleon calculati
The model space is defined by the maximal number of
lowed HO excitationsNmax from the condition 2n1 l
<Nmax.

In order to construct the operatorv ~6! we need to selec
the set of eigenvectorsK. In the present application we se
lect the lowest states obtained in each channel. It turns
that these states also have the largest overlap with the m
space. Their number is given by the number of basis st
satisfying 2n1 l<Nmax.

Finally, the two-body effective interaction is determine
from the two-nucleon effective Hamiltonian, obtained fro
Eq. ~9!, asV2eff5H̄2eff2H02. Apart from being a function of
the nucleon numberA, V2eff depends on the HO frequencyV
and on the model-space defining parameterNmax. It has the
important property thatV2eff→V12 for Nmax→` following
from the fact thatv→0 for P→1.

E. Three-body effective interaction calculation

In the standard shell-model calculations the effective
teraction is limited to a two-body effective interaction. In o
approach the limitation to a two-body effective interacti
means that we useV2eff , computed as discussed in the pr
vious subsection, and neglect all the three- and higher-b
clusters appearing in the expansion~13!. The formalism laid
out in the present paper allows us, however, to employ th
body or even higher-body interactions in a straightforwa
manner. Therefore, we are in a position to go beyond
two-body effective interaction approximation. One way
04400
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proceed is to evaluate the three-body term appearing in E
~13!–~15b!. That term depends, throughS123 in Eqs. ~15a!,
and~15b! on the operatorv, appearing in Eq.~17!, used for
the construction of the two-body effective interaction. It do
not, however, guarantee the model space and theQ-space
decoupling for the three-nucleon system in a similar way
in Eq. ~16! for the two-nucleon system. To improve on th
point, we, therefore, choose a different way of deriving t
three-body effective interaction. In our previous paper@19#
we introduced a procedure applicable for nuclei withA>4
that calculates the three-body correlations directly and gu
antees the model space andQ-space decoupling for the three
nucleon system.

In order to calculate the three-body effective interaction
this way, we first rewrite the two-body interaction term
the Hamiltonian~2! and ~11! using

(
i , j 51

A

Vi j 5
1

A22 (
i , j ,k51

A

~Vi j 1Vik1Vjk!, ~19!

valid for A>3. Then, formally, our Hamiltonian consist
only of one-body and three-body terms. We now calcul
the three-body effective interaction that corresponds toVi j
1Vik1Vjk from the three-nucleon system condition

Q3e2S(3)
~h11h21h31V121V131V23!e

S(3)
P350,

~20!

in complete analogy to Eq.~16!. Note thatS(3) is different
from S123 and is determined by Eq.~20!. The three-body
effective interaction is then obtained utilizing the solutio
of the three-nucleon system solutions from Eqs.~3!, ~6!, and
~9! for the Hamiltonian

H3
V5h11h21h31V121V131V23. ~21!

As the interaction depends only on the relative positions
nucleons 1, 2 and 3, the three-nucleon center of mass ca
separated, when solving Schro¨dinger equation withH3

V .
Similarly as for the two-nucleon Hamiltonian~18!, the
center-of-mass term is not considered in the effecti
interaction calculation. We obtain the three-nucleon so
tions corresponding to the Hamiltonian~21! by, first, intro-
ducing Jacobi coordinates, as described later in this pa
and also as described in our previous papers@18,19,26# and,
by, second, the introducing for the interactionsV12,V13,V23
the two-body effective interactions corresponding to a la
space characterized byN3max'30 and derived according to
the procedure described in the previous subsection. A sp
of this size is sufficient for obtaining exact or almost exa
solutions of the three-nucleon problem@18#. We note that

Vi j 5VN~rW i2rW j !2
mV2

2A
~rW i2rW j !

2, i , j 51,2,3, ~22!

yields a three-nucleon bound system forA>4. Therefore, as
in the case of the two-body effective interaction calculatio
the Lee-Suzuki approach is applicable, as described in
II B, in a straightforward way. We use the solutions of t
three-nucleon system to construct the operatorv and, then,
1-4
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the three-body effective interaction directly from these so
tions by applications of the relations~6! and ~9!. The eigen-
systemEk , uk& is obtained from the solution of Schro¨dinger
equation~3! for the Hamiltonian~21! with the interactions
Vi j replaced byV2eff,i j , where the two-body effective inter
action corresponds to the space defined byN3max, as dis-
cussed above. The model space, defined by the projectoP3,
is characterized by the maximal allowed number of HO
citations Nmax, where Nmax,N3max. It is spanned by all
states satisfying the conditionN3<Nmax with N3 given as
N352n1 l 12N1L when basis~29! is used, or, using the
basis~32! N3[N. TheQ-space defined byQ3 is spanned by
states with total number of HO excitationsNmax,N3
<N3max. Typically, we solve the three-nucleon system a
construct the three-body effective interaction only for thre
nucleon channels withJ351/26,3/26 and T351/2. For all
other channels the two-body effective interacti
( i , j 51

3 V2eff,i j corresponding to the model space charac
ized byNmax is used instead.

In order to construct the operatorv ~6! we need to selec
the set of eigenvectorsK. As in the two-body effective in-
teraction calculation, the lowest states obtained in each c
nel are selected. Again, those states also have the la
overlap with the model space. Their number is given by
number of basis states with the total number of HO exc
tions N3<Nmax. The three-body effective interaction is d
termined from the three-nucleon effective Hamiltonian, o
tained from Eq.~9!, asV3eff5H̄3eff2H03 with H03 equal to
h11h21h3 minus the three-nucleon center-of-mass H
term. Like the two-body effective interactionV2eff , apart
from being a function of the nucleon numberA, V3eff de-
pends on the HO frequencyV and on the model-spac
defining-parameterNmax. In addition, it also depends on th
choice ofN3max. Obviously,N3maxmust be sufficiently large
in order to make this dependence negligible. The limiti
properties ofV3eff are as follows:V3eff→( i , j 51

3 V2eff,i j for
Nmax→N3max andV3eff→( i , j 51

3 Vi j for Nmax,N3max→`.

III. TRANSLATIONALLY INVARIANT
HARMONIC-OSCILLATOR BASIS

As discussed in the previous sections, by using the ef
tive interaction theory we arrive at a Hamiltonian that has
following structure:

HAeff
V 5(

i 51

A F pW i
2

2m
1

1

2
mV2rW i

2G
1H (

i , j 51

A FVN~rW i2rW j !2
mV2

2A
~rW i2rW j !

2G J
eff

,

~23!

with the interaction term depending on relative coordina
~and/or relative momenta! only. The center-of-mass depen
dence appears only in the one-body HO term. Conseque
by performing a transformation to Jacobi coordinates,
center-of-mass degrees of freedom can be removed.
04400
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A. Jacobi coordinates

We work in the isospin formalism and consider nucleo
with the massm. A generalization to the proton-neutron fo
malism with unequal masses for the proton and the neu
is straightforward. We will use Jacobi coordinates that
introduced as an orthogonal transformation of the sing
nucleon coordinates. In general, Jacobi coordinates are
portional to differences of centers of mass of nucleon s
clusters.

For our purposes we need three different sets of Jac
coordinates. The first set, i.e.,

jW05A1

A
@rW11rW21•••1rWA#, ~24a!

jW15A1

2
@rW12rW2#, ~24b!

jW25A2

3 F1

2
~rW11rW2!2rW3G , ~24c!

. . .

jWA225AA22

A21 F 1

A22
~rW11rW21•••1rWA22!2rWA21G ,

~24d!

jWA215AA21

A F 1

A21
~rW11rW21•••1rWA21!2rWAG ,

~24e!

is used for the construction of the antisymmetrized HO ba
Here, jW0 is proportional to the center of mass of th
A-nucleon system. On the other hand,jW r is proportional to
the relative position of the (r11)st nucleon and the cente
of mass of ther nucleons.

Another set that is suitable for the basis expansion, w
two-body interaction matrix elements need to be calculat
is obtained by keepingjW0 ,jW1 , . . . jWA23 and introducing two
different variables, as follows:

jW0 ,jW1 ,•••jWA23 , ~25a!

hW A225A2~A22!

A F 1

A22
~rW11rW21•••1rWA22!

2
1

2
~rWA211rWA!G , ~25b!

hW A215A1

2
@rWA212rWA#. ~25c!

Eventually, a set suitable for the basis expansion, w
three-body interaction matrix elements need to be calcula
is obtained by keepingjW0 ,jW1 , . . . jWA24 and hW A21 from the
previous set and introducing two other different variables
1-5
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jW0 ,jW1 ,•••jWA24 , ~26a!

qW A235A3~A23!

A22 F 1

A23
~rW11rW21 . . . 1rWA23!

2
1

3
~rWA221rWA211rWA!G , ~26b!

qW A225A2

3F1

2
~rWA211rWA!2rWA22G , ~26c!

hW A215A1

2
@rWA212rWA#. ~26d!

Identical transformations, as in Eqs.~24a!–~26d!, are also
introduced for the momenta.

Let us note that the one-body HO potential in Eq.~23!
transforms as

(
i 51

A
1

2
mV2rW i

25
1

2
mV2jW0

21 (
r51

A21
1

2
mV2jW r

2 , ~27!

and the kinetic term transforms in an analogous way. As
interaction does not depend onjW0 or the center-of-mass mo
mentum, the center-of-mass HO term can be omitted. Mo
over, we can use the HO basis, depending on coordin
jW r ,r51,2 . . .A21, e.g.,

)
r51

A21

^jW runrl r&, ~28!

for our calculations. First, let us remark that due to the o
ogonality of the transformations~24a!–~26d!, the same HO
parameter is used for all HO wave functions. Second,
may use any of the sets~24a!–~26d! for the basis construc
tion of the type~28!, as similar relations like Eq.~27! hold
for all the sets. Third, the basis~28! is not antisymmetrized
with respect to the exchanges of all nucleon pairs. The a
symmetrization procedure will be discussed in the followi
subsections.

B. Antisymmetrization for the three-nucleon system

We discussed the antisymmetrization of the translati
ally invariant HO basis for the three-nucleon system in o
04400
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previous papers@18,19,26#. One starts by introducing a bas
following from Eq. ~28! that depends on Jacobi coordinat

jW1 andjW2, defined in Eqs.~24a!–~24e!, e.g.,

u~nls jt;NLJ!JT&. ~29!

Heren,l andN,L are the HO quantum numbers correspon
ing to the harmonic oscillators associated with the coor

nates~and the corresponding momenta! jW1 and jW2, respec-
tively. The quantum numberss,t, j describe the spin, isospin
and angular momentum of the relative-coordinate tw
nucleon channel of nucleons 1 and 2, whileJ is the angular
momentum of the third nucleon relative to the center of m
of nucleons 1 and 2. TheJ andT are the total angular mo
mentum and the total isospin, respectively. Note that the
sis ~29! is antisymmetrized with respect to the exchanges
nucleons 1 and 2, as the two-nucleon channel quantum n
bers are restricted by the condition (21)l 1s1t521. It is
not, however, antisymmetrized with respect to the exchan
of nucleons 1↔3 and 2↔3. In order to construct a com
pletely antisymmetrized basis, one needs to obtain eigen
tors of the antisymmetrizer

X5
1

3
~11T (2)1T (1)!, ~30!

whereT (1) and T (2) are the cyclic and the anticyclic per
mutation operators, respectively. The antisymmetrizerX is a
projector satisfyingXX5X. When diagonalized in the basi
~29!, its eigenvectors span two eigenspaces. One, co
sponding to the eigenvalue 1, is formed by physical, co
pletely antisymmetrized states and the other, correspon
to the eigenvalue 0, is formed by spurious states. There
about twice as many spurious states as the physical o
@26#.

Due to the antisymmetry with respect to the exchan
1↔2, the matrix elements in the basis~29! of the antisym-
metrizerX can be evaluated simply as^X&5 1

3 (122^T23&),
whereT23 is the permutation corresponding to the exchan
of nucleons 2 and 3. Its matrix element can be evaluated
straightforward way, e.g.,
r-
^~n1l 1s1 j 1t1 ;N1L1J1!JTuT23u~n2l 2s2 j 2t2 ;N2L2J2!JT&

5dN1 ,N2
t̂1 t̂2H 1

2

1

2
t1

1

2
T t2

J (
LS

L̂2Ŝ2 ĵ 1 ĵ 2Ĵ1Ĵ2ŝ1ŝ2~21!LH l 1 s1 j 1

L1
1

2
J1

L S J

J H l 2 s2 j 2

L2
1

2
J2

L S J

J H 1

2

1

2
s1

1

2
S s2

J
3^n1l 1N1L1LuN2L2n2l 2L&3 , ~31!

whereNi52ni1 l i12Ni1Li , i 51,2; ĵ 5A2 j 11; and ^n1l 1N1L1LuN2L2n2l 2L&3 is the general HO bracket for two pa
1-6
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ticles with mass ratio 3 as defined, e.g., in Ref.@27#. The expression~31! can be derived by examining the action ofT23 on the
basis states~29!. That operator changes the stateunl(jW1),NL(jW2),L& to unl(j8W 1),NL(j8W 2),L&, wherej8W i ,i 51,2 are defined as
jW i ,i 51,2 but with the single-nucleon indexes 2 and 3 exchanged. The primed Jacobi coordinates can be express
orthogonal transformation of the unprimed ones. Consequently, the HO wave functions depending on the prime
coordinates can be expressed as an orthogonal transformation of the original HO wave functions. Elements of the
mation are the Talmi-Moshinsky HO brackets for two particles with the mass ratiod, with d determined from the orthogona
transformation of the coordinates, see, e.g., Ref.@27#.

The resulting antisymmetrized states can be classified and expanded in terms of the original basis~29! as follows:

uNiJT&5( ^nls jt;NLJuuNiJT&u~nls jt;NLJ!JT&, ~32!

whereN52n1 l 12N1L and where we introduced an additional quantum numberi that distinguishes states with the same
of quantum numbersN,J,T, e.g.,i 51,2, . . .r with r the total number of antisymmetrized states for a givenN,J,T. It can be
obtained from computing the trace of the antisymmetrizerX @28#

r 5Tr X NJT. ~33!

C. Antisymmetrization for the A-nucleon system

The construction of a translationally-invariant antisymmetrized HO basis for four nucleons that contains an antis
trized three-nucleon subcluster was described in our earlier papers@19,26#. In this subsection we generalize and simplify th
construction to the case of an arbitrary number of nucleonsA. The starting point is a basis that contains an antisymmetr
subcluster ofA21 nucleons, e.g.,

u~NA-1i A-1JA-1TA-1 ;nA-1l A-1JA-1!JT&, ~34!

with the (A21)-nucleon antisymmetrized stateuNA-1i A-1JA-1TA-1&, depending on the Jacobi coordinatesjW1 ,jW2 , . . . jWA22

~24a!–~24e! and the stateunA-1l A-1JA-1& that represents the last nucleon depending on the Jacobi coordinatejWA21. For a four
nucleon system the stateuNA-1i A-1JA-1TA-1& is identical to the state introduced in Eq.~32!. The basis~34! is not antisymme-
trized with respect to exchanges of the last nucleon with the others. However, due to the antisymmetry of theA21 nucleon
subcluster, the matrix elements of the antisymmetrizerX in the basis~34! simplifies dramatically, e.g.,

^X &5
1

A
@12~A21!^TA,A21&# ~35!

with TA,A21 the transposition operator of theAth and the (A21)st nucleon. Its matrix element can be computed in
straightforward way as

^~NA-1 Li A-1 LJA-1LTA-1L ;nA-1 Ll A-1 LJA-1 L!JTuTA,A-1u~NA-1 Ri A-1 RJA-1RTA-1R ;nA-1 Rl A-1 RJA-1 R!JT&

5dNL ,NR( ^NA-2i A-2JA-2TA-2 ;nA-2 Ll A-2 LJA-2 LuuNA-1 Li A-1 LJA-1LTA-1L&

3^NA-2i A-2JA-2TA-2 ;nA-2 Rl A-2 RJA-2 RuuNA-1 Ri A-1 RJA-1RTA-1R&T̂A-1LT̂A-1R~21!TA-1L1TA-1R1JA-2 L1JA-2 R

3H 1
2 TA-2 TA-1R

1
2 T TA-1L

J ĴA-2 LĴA-2 RĴA-1 LĴA-1 RĴA-1LĴA-1RK̂2H JA-2 JA-2 L JA-1 L

JA-2 R K JA-1 L

JA-1R JA-1 R J
J H l A-2 L l A-1 R K

JA-1 R JA-2 L
1
2
J

3H l A-2 R l A-1 L K

JA-1 L JA-2 R
1
2
J H l A-1 L l A-2 R K

l A-1 R l A-2 L L J
3L̂2~21! l A-2 R1 l A-1 L1L^nA-1 Ll A-1 LnA-2 Ll A-2 LLunA-2 Rl A-2 RnA-1 Rl A-1 RL&A(A-2) , ~36!
044001-7
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where NX5NA-1 X12nA-1 X1 l A-1 X , X5L,R and
^nA-1 Ll A-1 LnA-2 Ll A-2 LLunA-2 Rl A-2 RnA-1 Rl A-1 RL&A(A-2) is the
general HO bracket for two particles with mass ratio equa
A(A22). The expression~36! reduces to Eq.~19! in Ref.
@19# for A54. Let us stress the important property of t
antisymmetrizer matrix, namely its diagonality inNA[NL
5NR. Consequently, we may impose a model space res
tion of the typeNA<Nmax and still obtain all the antisymme
trized states within that model space.

The antisymmetrized states are obtained by diagonaliz
the antisymmetrizerX ~35! in the basis~34! or, more effi-
ciently, by employing the method introduced in Ref.@29#
that does not require us to compute all the matrix element
the antisymmetrizer. In order to get the basis for t
A-nucleon system we need to set up an iterative proced
that starts with the calculation of the three-nucleon basis~32!
and procceeds to four nucleons and so on up toA. The re-
sulting antisymmetrized states can be classified and
panded in terms of the original basis~34! similarly as in the
three-nucleon case

uNAi AJT&5( ^NA-1i A-1JA-1TA-1 ;nA-1l A-1JA-1uuNAi AJT&

3u~NA21i A21JA21TA21 ;nA21l A21JA21!JT&,

~37!

where NA5NA-112nA-11 l A-1 . In Eq. ~37!, the additional
quantum numberi A distinguishes states with the same set
quantum numbersNA ,J,T, e.g.,i A51,2, . . .r with r the to-
tal number of antisymmetrized states for givenNA ,J,T.
Again, it can be obtained from computing the trace of t
antisymmetrizerX

r 5Tr X NAJT. ~38!

We note that the expansion of the antisymmetrized ba
given in Eq.~37!, is not suitable for evaluating matrix ele
ments of two-body or three-body interactions or other ope
tors. To facilitate calculations with such interactions and o
erators, different expansions of the antisymmetrized basis

FIG. 1. The dependence of the3H ground-state energy, in MeV
on the maximal number of HO excitations allowed in the mo
space in the range fromNmax54 to Nmax534. The two-body effec-
tive interaction utilized was derived from the CD-BonnNN poten-
tial. Results for\V519, 22, 24, 26, 28, 30, and 32 MeV ar
presented. The dotted line represents the exact result of28.00 MeV
from a 34-channel Faddeev-equation calculation@21#.
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needed, as described in Appendix A. Evaluation of ma
elements of one-body operators can, on the other hand
done using the expansion~37!. It is convenient to introduce
one-body densities, as in the standard shell-model appro
We leave the discussion of this point to Appendix B.

IV. RESULTS FOR FEW-NUCLEON SYSTEMS

We have written a computer code for calculations us
the formalism presented in Secs. II and III. We perform
test calculations for few-nucleon systems up toA58. The
code reproduces results obtained using the many-fermion
namics~MFD! shell-model code@30#, when a two-body ef-
fective interaction is employed and when the model sp
does not require more than 9 major HO shells, i.e., the lim
of the version of the MFD code we have. Due to the co
putational complexity of the antisymmetrization procedu
we expect that the present formalism can, at the present
and in the current formulation, improve significantly on th
results obtainable by the MFD code forA<6 and to some
extent for A57 and A58. Let us further remark that al
though the antisymmetrization is complicated it needs to
done only once for givenA, NA , J andT.

In this paper we present results forA53 andA54 sys-
tems, while calculations for largerA will be published sepa-

l
FIG. 2. The dependence of the3H ground-state energy, in MeV

on the maximal number of HO excitations allowed in the mod
space. The same points as in Fig. 1 for the range fromNmax514 to
Nmax534 are presented on a larger scale.

FIG. 3. The dependence of the3He ground-state energy, in
MeV, on the maximal number of HO excitations allowed in th
model space in the range fromNmax514 to Nmax534. The two-
body effective interaction utilized was derived from the CD-Bo
NN potential. Results for\V519, 22, 24, 26, 28, and 30 MeV
are presented.
1-8
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TABLE I. Results for the ground-state energies, point-proton, and point-neutron rms radii, and ma
moments obtained for3H, 3He, and4He using the CD-BonnNN potential are presented. Values shown a
based on the results calculated in the largest model spaces used in the present study,Nmax534 for 3H, 3He,
andNmax516 for 4He, respectively. The errors were estimated from the dependences on the HO freq
V and on the model-space size characterized byNmax.

CD-BonnNN potential Egs @MeV# A^r p
2& @fm# A^r n

2& @fm# m @mN#

3H 28.002(4) 1.608~4! 1.760~6! 2.612
3He 27.248(4) 1.802~6! 1.635~4! 21.779
4He 226.4(2) 1.445~5! 1.445~5!
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rately at a later stage. We investigated theA53 andA54
systems in the framework of the present formalism in t
previous papers@18# and@19#, respectively. However, as th
newly developed code is more efficient, we were able
extend the calculations to larger model spaces. In addition
this paper we present results obtained using the momen
space dependent nonlocal CD-BonnNN potential@21#. There
are no published results for the four-nucleon system inter
ing by CD-Bonn potential up to now.

We work in the isospin formalism. As the CD-BonnNN
potential breaks the isospin and charge symmetry we c
struct an isospin invariant potential for theT51 two-nucleon
channels by taking combinations ofVnp, Vpp, andVnn. For
3H we take 1

3 Vnp1
2
3 Vnn, for 3He we take 1

3 Vnp1
2
3 Vpp,

while for 4He we use1
3 Vnp1

1
3 Vpp1

1
3 Vnn. The Coulomb

potential is added to the CD-BonnVpp potential. Similarly,
for the nucleon mass we use the proton and neutron m
combinations, e.g.,m51/A(Zmp1Nmn) with Z and N the
number of protons and neutrons, respectively.

A. 3H and 3He

For theA53 system we use the two-body effective inte
action calculated as described in Sec. II D. As the effec
interaction depends on the model-space size, characte
by Nmax, and the HO frequencyV, we investigate the de
pendence of observables on those two parameters. We
formed calculations in the model spaces withNmax up to 34
for a wide range of HO frequenciesV, e.g., \V

FIG. 4. The dependence of the3H point-nucleon matter radius
in fm, on the maximal number of HO excitations allowed in t
model space in the range fromNmax54 to Nmax534. The two-body
effective interaction utilized was derived from the CD-BonnNN
potential. Results for\V519, 22, 24, 26, 28, 30, and 32 MeV
are presented.
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519 . . . 32MeV. Our ground-state results are presented
Figs. 1–3. In Fig. 1 we show the3H ground-state energy
dependence on the model-space size in the range f
Nmax54 to Nmax534. Different full lines connect results ob
tained with different HO frequencies. The dotted line rep
sents the 34-channel Faddeev equation result28.00 MeV
@21#. It is apparent that our results converge to the Fadd
equation result asNmax increases. We note that the fund
mental approximation used in our approach is the neglige
of the three-body clusters in the expansion~13!. Such clus-
ters can give both positive and negative contribution to
ground-state energy. Our calculation is not a variational c
culation. Therefore, we cannot expect a convergence f
above. As seen from Fig. 1 our results converge both fr
above or below, with some oscillations possible, depend
on the HO frequency employed. In Fig. 2 we present
same as in Fig. 1 forNmax in the range from 14 to 34 using
an expanded energy scale. We can see that, even if a c
plete convergence has not been achieved forNmax534 in the
whole range ofV used, it is possible to interpolate from th
different curves to obtain the converged result. For exam
the line corresponding to\V528 MeV remains almost con
stant for Nmax.18 at the value about28.00 MeV. We
present the interpolated results in Table I. Our3H result
28.002(4) MeV is in a good agreement with the 34-chan
Faddeev calculation. We note, however, that in our calcu
tions we used all the two-nucleon channels up toj 56. We
should, therefore, compare with the result28.014 MeV ob-

FIG. 5. The dependence of the4He ground-state energy, in
MeV, on the maximal number of HO excitations allowed in th
model space in the range fromNmax50 to Nmax516. The two-body
~dashed lines! and three-body~full line! effective interactions uti-
lized were derived from the Malfliet-Tjon MT-V potential. Resul
for \V534, 37, 40, and 43 MeV are presented. The dotted l
represents the exact result of231.36 MeV@32#.
1-9
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tained by Noggaet al. @4#, where all channels withj <6
were used. Consequently, it appears that we are mis
about 10 keV in binding, most likely either due to imprec
sions in the two-nucleon systems solutions used for const
tion of the effective interaction or due to the fact that w
used a combination ofVnp, Vpp, andVnn, while a combina-
tion of t-matrices was used instead in Ref.@4#.

In Fig. 3, we present the same dependence for3He as in
Fig. 2 for 3H. Our interpolated ground-state energy res
together with the error estimate is given in Table I. It shou
be noted that the CD-Bonn potential gives a realistic pred
tion for the binding energy difference of3H and 3He, which
is experimentally 0.764 MeV. On the other hand, the ab
lute value of the binding energy is underestimated compa
to the experimental values, 8.482 MeV for3H and 7.718
MeV for 3He, by about 400 keV. It is, however, only a ha
of what one gets with the local coordinate-space potent
like Nijmegen, Reid or Argonne.

The model-space size andV dependence of the3H point-
nucleon matter rms radius is presented in Fig. 4. We obs
a convergence and a saturation with the model-space
increase. In Table I we show point-proton and point-neut
rms radii for both3H and 3He extrapolated from the calcu
lations in the largest model spaces together with the e

FIG. 6. The dependence of the4He ground-state energy, in
MeV, on the maximal number of HO excitations allowed in t
model space in the range fromNmax58 to Nmax516. The two-body
~dotted lines! and three-body~full lines! effective interactions uti-
lized were derived from the CD-BonnNN potential. Results for
\V519, 22, 31, 37, 40, and 43 MeV are presented.

FIG. 7. The dependence of the4He ground-state energy, in
MeV, on the HO energy in the range from\V513 MeV to \V
543 MeV. The two-body~dotted lines! and three-body~full lines!
effective interactions utilized were derived from the CD-BonnNN
potential. Results forNmax58, 10, 12, 14, and 16 are presented
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estimates. In addition, the calculated magnetic moments
also presented. These can be compared to the experim
values of12.979mN for 3H and22.128mN for 3He. The
calculated values were obtained using a one-bodyM1 opera-
tor with bare nucleong factors.

B. 4He

The calculations for4He were performed in the mode
spaces up toNmax516 in a wide range of HO frequenciesV.
This is an extension of our previousA54 calculations@19#,
where model spaces only up toNmax514 were utilized and a
narrower range ofV was investigated. We performed sep
rate calculations both with two-body effective interaction
computed as described in Sec. II D, and with three-body
fective interactions, computed as discussed in Sec. II E.
three-body effective interactions were calculated for

three-nucleon channels withJ3
pT35 1

2
6 1

2 andJ3
pT35 3

2
6 1

2 us-
ing N3max532 andN3max528, respectively.

In order to test the applicability of our method to a fou
nucleon system, we performedA54 calculations using the

FIG. 8. The dependence of the4He ground-state and the first
excited 010 state energies, in MeV, on the maximal number of H
excitations allowed in the model space in the range fromNmax58
to Nmax516. The three-body effective interaction utilized was d
rived from the CD-Bonn NN potential. Results for \V
513, 22, 31, and 40 MeV are presented.

FIG. 9. The dependence of the4He ground-state and the first
excited 010 state point-nucleon rms radius, in fm, on the maxim
number of HO excitations allowed in the model space in the ra
from Nmax58 to Nmax516. The three-body effective interactio
utilized was derived from the CD-BonnNN potential. Results for
\V513, 22, 31, and 40 MeV are presented.
1-10
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central Malfliet-Tjon potential MT-V@31# that is frequently
used for few-body-calculation tests and for which theA54
solutions have been obtained by several other methods,
e.g., Ref.@32# and references therein. Our results are sho
in Fig. 5. We present the ground-state energy dependenc
the model space size in the range ofNmax50 to Nmax516 for
different HO frequencies. Results obtained with both
two-body and the three-body effective interactions
shown, with the latter manifesting a faster convergence.
observe good convergence as the model-space size incr
and, although some dependence onV remains even in the
Nmax516 model space, we can interpolate to obtain
ground-state energy of231.28(8) MeV, in good agreemen
with the exact result of231.36 MeV, found by other meth
ods @32#. Similarly, our point-nucleon rms radius resu
1.405~5! fm, compares well with the stochastic variation
method result of 1.4087 fm@32#.

Our ground-state energy results obtained with the C
BonnNN potential are presented in Figs. 6 and 7. We inv
tigate the dependence on bothNmax andV. The two figures
show mostly the same points, plotted in the first case a
function ofNmax and in the second case as a function of\V.
The dotted lines connect the results obtained using the t
body effective interactions, while the full lines connect t
results obtained with the three-body effective interactio
We observe a decrease of dependence on bothNmax and\V
as the model-space size increases. In particular, the curv
Fig. 7 become more flat with increasingNmax. Similarly as
in our previous study@19#, it is apparent that calculation
done with the three-body effective interaction show wea
dependence on bothV andNmax and demonstrate faster con
vergence. Due to the higher complexity of those calculatio
we present results only for\V5 13, 22, 231 and 40 MeV
As can be seen from Figs. 6 and 7, for\V less than about 40
MeV the binding energy decreases with increasing mod
space size while for larger\V it begins to increase with
increasingNmax. Similarly as for theA53 system and the
A54 system with MT-V potential, we are in a position
interpolate the converged ground-state energy result, tho
with a lower accuracy. Based on the results presente
Figs. 6 and 7, we estimate the CD-Bonn4He ground-state
energy to be226.4(2) MeV. The experimental binding en
ergy of 4He is 28.296 MeV. The CD-Bonn thus underbin
4He by about 2 MeV. It is again only about a half of u
derbinding that one gets with, e.g., Argonne V18 with t
calculated4He binding energy 24.1 MeV@33#.

In our approach we obtain the ground state as well as
excited states by diagonalizing the Hamiltonian. In Figs
and 9, we present the model-space-size dependence of
the ground-state and the first excited 010 state energies an
point-nucleon rms radii, respectively, obtained in calcu
tions with the three-body effective interactions. Compared
the ground state, we observe a much stronger dependen
the excited-state energy and nucleon rms radius on botV
andNmax. The significantly different convergence rate of t
ground state and of the first excited 010 state manifests the
different nature of the two states. A possible interpretation
this observation is that the excited 010 state is associate
with a radial excitation and, thus, it is more sensitive to
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HO basis used in our calculations. Although we cannot
trapolate the energy or point-nucleon radius of this state,
calculations show that its excitation energy is below 21 M
and the radius is larger than 3 fm.

Our ground-state results obtained with the CD-BonnNN
potential are summarized in Table I.

C. Charge form factors

A sensitive test of the wave functions obtained in o
calculations is the evaluation of form factors. In this subs
tion we compare the charge form factors obtained with
CD-Bonn wave functions and those obtained in an ident
calculation with the Argonne V88 NN potential defined in
Ref. @10#. We note that a similar comparison was perform
by Kim et al. in Ref. @34# for the Bonn OBEPQ and the Rei
NN potentials. In that paper, it was found that the3H and
3He form factors differ for the twoNN potentials.

Using the formalism of Ref.@35#, we calculated the
charge EM form factors and ratio of charge strangeness
EM form factors in the impulse approximation. The on
body contribution to the charge operator is given by Eq.~15!
in Ref. @35#, e.g.,

FIG. 10. The elastic EM charge form factor of3H calculated in
the impulse approximation. Results obtained using the Argonne8
~dotted line! and CD-Bonn~full line! NN potentials are compared

FIG. 11. The elastic EM charge form factor of3He calculated in
the impulse approximation. Results obtained using the Argonne8
~dotted line! and CD-Bonn~full line! NN potentials are compared
1-11
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M̂00
(a)~q! [1]5

1

2Ap
(
k51

A

Ôk
(a)H GE

(a)~t!

A11t
j 0~qrk!

1@GE
(a)~t!22GM

(a)~t!#2t
j 1~qrk!

qrk
sk•L kJ ,

~39!

wheret5q2/4mN
2 , L k is thekth nucleon orbital momentum

GE
(a)(t) andGM

(a)(t) are the one-body electric and magne
form factors, respectively. The superscript~a! refers to~p!
and~n! for proton and neutron EM form factor, respective
or to ~s! for the strangeness form factor. The operatorÔ(a) is

equal to (12 1tz) „( 1
2 2tz)… for a[p(a[n) and it is equal to

1 for a[s. We use the parametrization of the one-body fo
factors as discussed in Ref.@35#. We note that the one-bod
strangeness form factors depend on the strangeness r
rs , for which we take the valuers522.0 as in Ref.@35#

FIG. 12. The elastic EM charge form factor of4He calculated in
the impulse approximation. Results obtained using the Argonne8
~dotted line! and CD-Bonn~full line! NN potentials are compared
The calculations were performed using three-body effective in
action in the model space characterized byNmax516 and\V522
MeV.

FIG. 13. The EM charge form factor of4He corresponding to
the transition to the first excited 010 state calculated in the impuls
approximation. Results obtained using the Argonne V88 ~dotted
line! and CD-Bonn~full line! NN potentials are compared. Th
calculations were performed using three-body effective interac
in the model space characterized byNmax516 and\V522 MeV.
04400
ius

and on the strangeness magnetic momentms . Limits on
these parameters are to be determined in the experimen
the Thomas Jefferson Accelerator Facility~TJNAF!. The first
strangeness magnetic-moment measurement was reporte
cently @36# and an experimental valuems510.23, obtained
with a large error. We use this value in our calculations.

The elastic EM charge form factors of3H and 3He are
presented in Figs. 10 and 11, respectively. We observ
large sensitivity to the choice of theNN potential. Let us
remark that we used the wave functions obtained in
model space withNmax534. We investigated the depen
dence of the form factors on bothNmax(530,32,34) and\V
and found that the dependence is below the resolution of
figures. Our Argonne V88 results compare well with thos
obtained using the Argonne V18 in the impulse approxim
tion presented, e.g., in Ref.@33#. We note that the experi
mental position of the minima as about 3.6 fm21 and 3.2
fm21 for 3H and 3He, respectively, see Ref.@33# and the
references therein.

The 4He elastic EM charge form factor and the E
charge form factor corresponding to the transition to the fi
excited 010 state are presented in Figs. 12 and 13, resp
tively. The three-body effective interactions were used a
the Nmax516 model spaces. For the Argonne V88, the cur-
rent results can be compared to those presented in Ref.@19#
obtained usingNmax514. We note that a second minimum
appears in our calculated charge form factors in a sim
position as found in the VMC calculations presented in R
@37#. The elastic charge form factor sensitivity to bothNmax
and\V is weak forq below the secondary maximum but
increases for largerq. As to the inelastic form factor, ther
the sensitivity is significantly stronger. We believe that t
form factors presented in Fig. 13 are more realistic than
inelastic ones given in Ref.@19# that we obtained using
Nmax514.

In general, for all3H, 3He, and4He the CD-Bonn results

8

r-

n

FIG. 14. The ratio of elastic strangeness and EM charge fo
factor of 4He calculated in the impulse approximation. Results o
tained using the Argonne V88 ~dotted line! and CD-Bonn~full line!
NN potentials are compared. The calculations were performed u
three-body effective interaction in the model space characterize
Nmax516 and\V522 MeV. Values of the strangeness radiusrs

522.0 and the strangeness magnetic momentms50.23 were em-
ployed.
1-12
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are further from the experimental data points than the res
obtained using the Argonne V88. This is in full agreement
with the calculations in Ref.@34# for 3H and 3He. However,
in order to make any conclusion about the superiority of a
of the potentials, one needs to calculate the meson exch
current contributions.

Finally, in Fig. 14 we present the ratio of the4He charge
strangeness and EM form factors calculated in the impu
approximation using both the Argonne V88 and the CD-
Bonn NN potentials. The ratio of the elastic charge for
factors is particularly interesting, as it can be experiment
obtained from the measurement of the parity-violating le
right asymmetry for scattering of polarized electrons from
4He target. Experiments of this type are now under prepa
tion at TJNAF.

V. CONCLUSIONS

We presented a translationally invariant formulation
the no-core shell-model approach for few-nucleon syste
and introduced a general method of antisymmetrization o
HO basis depending on Jacobi coordinates. The latter pr
dure starts with the construction of the antisymmetrized b
for three nucleons, then procceeds to four and so on.
derived an iterative algebraic formula for computing the a
tisymmetrized basis forA nucleons from the antisymme
trized basis forA21 nucleons. In addition, we discusse
how to transform the antisymmetrized states to bases
taining different antisymmetrized subclusters of nucleo
The chosen approach has the advantage that the antisym
trizer is very simple and that the dimensions of the start
basis, formed by theA21 nucleon antisymmetrized subclu
ter and the last nucleon, are the lowest compared to b
with different subclustering.

There are two main advantages of the use of
translationally-invariant basis. First, it allows us to empl
larger model spaces than in traditional shell-model calcu
tions. Second, in addition to two-body effective interactio
three- or higher-body effective interactions as well as r
three-body interactions can be utilized. The use of high
body effective interactions reduces the dependence on
HO frequency and speeds up the convergence of our
proach.

As the antisymmetrization procedure is computationa
involved, the practical applicability of the formalism is lim
ited to light nuclei. In the present formulation we expect th
significant improvement over the traditional shell-model
sults can be achieved forA<6 and to some extent forA
57 andA58. However, different paths of antisymmetriz
tion than that realized here can be chosen for more com
nuclei. On the other hand, there exists a sophisticated
proach for antisymmetrization of hyperspherical functio
depending on Jacobi coordinates developed by Barnea
Novoselsky@38#. It makes use of the orthogonal group tran
formations of Jacobi coordinates. That approach can
adapted for the HO functions and should lead to a m
efficient antisymmetrization. Another issue is the transform
tion to A22 plus 2 andA23 plus 3 clusters as discussed
Appendix A. In principle, it can be avoided by using th
04400
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reverse ordering of the Jacobi coordinates~24a!–~24e! @39#.
Then, however, the computation of the one-body densit
as described in Appendix B, would become very difficult.

We applied this formalism to solve for the properties
the three- and four-nucleon systems interacting by the C
BonnNN potential in model spaces that included up to 34\V
and 16\V HO excitations, respectively. For the thre
nucleon system our method leads to the exact solution
our results are in agreement with the calculations by ot
methods. For the four-nucleon system, we first perform
test calculations using the MT-V potential that confirm co
vergence of our method. For the calculations with the C
Bonn potential, we were able to interpolate the ground-s
energy solution from the model-space and HO-frequency
pendencies. Our result with an error estimate is226.4(2)
MeV. There have not been any published results so far
other methods for theA54 system interacting by the CD
Bonn NN potential. However, we have learned of a prelim
nary result, 226.3 MeV, obtained by Nogga using th
Faddeev-Yakubovsky equation approach@40# that is in a
good agreement with our result. In addition to energies, r
radii and magnetic moments, we also compared charge f
factors obtained using the CD-Bonn and Argonne V88 NN
potentials and found a substantial sensitivity to the choice
the potential, in agreement with results published in Ref.@34#
for calculations with similar potentials.

We believe that the method discussed in this paper has
potential to solve the few-nucleon problem beyondA54.
The convergence can still be improved by employing fo
or higher-body effective interactions in a similar fashion
we have used the three-body effective interaction. Also
antisymmetrization procedure can be made more effici
Our method has the advantage, compared to, e.g., the GF
method, that we solve the Schro¨dinger equation by diagonal
ization. Consequently, wave functions are obtained and
cited states with identical quantum numbers as the gro
state are computed. As calculations with the real three-b
interactions are possible in the present formalism, we
already working to include Tucson-Melbourne or Urba
type interactions in our future studies. It would also be int
esting to compare the present method with a new appro
relying also on the HO basis, in which the effective intera
tion is constructed by solving the Bloch-Horowitz equati
@41#. Calculations are now under way forA55 and A56
using the present formalism.
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APPENDIX A: RECOUPLING TO BASIS CONTAINING
TWO- AND THREE-BODY CLUSTERS

The A-nucleon antisymmetrized basis, obtained in S
III C, is given as an expansion of the basis~34!, as shown in
1-13
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Eq. ~37!. In this form, it is not, however, in general suitab
for calculations with two-body or three-body interactions
other operators. In order to facilitate the calculations w
two-body or three-body interactions we need to expand
antisymmetrized statesuNAi AJT& in a HO basis consisting
of antisymmetrized subclusters ofA22 and 2 nucleons de
04400
r

e

pending on the Jacobi coordinates~25a!–~25c! or consisting
of antisymmetrized subclusters ofA23 and 3 nucleons
depending on the Jacobi coordinates~26a!–~26d!, respec-
tively.

For a calculation for anA.3 system with a two-body
interaction, we need the following expansion matrix eleme
es

state

atrix

i-
acobi
^„NA-2i A-2JA-2TA-2 ;~nls jt,NL!J…JTuNAi AJT&5( ^NA-1i A-1JA-1TA-1 ;nA-1l A-1JA-1uuNAi AJT&

3^NA-2i A-2JA-2TA-2 ;nA-2l A-2JA-2uuNA-1i A-1JA-1TA-1&ĴA-1ĴA-2ĴĴA-1 ĵ ŝ(21)JA-21JA-11JA-21J1 j 1L1s1 l A-11 l A-2(21)TA-21T11T̂A-1t̂

3H TA-2
1

2
TA-1

1

2
T t

J 5
l A-2

1

2
JA-2

l A-1
1

2
JA-1

L s J
6 H JA-2 JA-2 JA-1

JA-1 J J J H s l j

L J LJ L̂2^nlNLLunA-1l A-1nA-2l A-2L&A/(A-2) , ~A1!

where we used an orthogonal transformation of the Jacobi coordinatesjWA22 ,jWA21 and hW A22 ,hW A21. In the state
u„NA-2i A-2JA-2TA-2 ;(nls jt,NL)J…JT&, the antisymmetrized subclusteruNA-2i A-2JA-2TA-2& depends on the Jacobi coordinat
jW1 ,jW2 , . . . jWA23. The two-nucleon channel stateunls jt& depends on the Jacobi coordinatehW A21 and the HO stateuNL& that
describes the relative motion of the two subclusters is associated with the Jacobi coordinatehW A22, given in Eq.~25!.

When this expansion ofuNAi AJT& is used a matrix element of a two-body interaction in the basisuNAi AJT& can be
evaluated in a simple manner, e.g.,

K (
i , j 51

A

Vi j L 5
1

2
A~A21!^V~A2hW A21!&, ~A2!

and the matrix element on the right-hand side is diagonal in all quantum numbers of the
u„NA-2i A-2JA-2TA-2 ;(nls jt,NL)J…JT& exceptn,l for an isospin invariant interaction.

Similarly, for a calculation for anA.5 system with a three-body interaction, we need the following expansion m
element:

^~NA-3i A-3JA-3TA-3 ;~N3i 3J3T3 ,NL!J!JTuNAi AJT&5( ^NA-2i A-2JA-2TA-2 ;~nls jt,N8L8!J8uuNAi AJT&

3^NA-3i A-3JA-3TA-3 ;nA-3l A-3JA-3uuNA-2i A-2JA-2TA-2&^nls jt;nA-38 l A-38 JA-38 uuN3i 3J3T3&ĴA-3Ĵ 8A-3ĴĴ 8ĴA-2Ĵ3

3~21!J81JA-31J1 j 1 l A-31 1/2~21!TA-31T31TT̂A-2T̂3H TA-3
1

2
TA-2

t T T3

J H JA-3 J J
J 8 JA-3 JA-2

J K̂2~21!K5
J A-38 J3 j

l A-38 L L

1

2
J K6

3H J 8 l A-3 K

1

2
J JA-3

J HJ 8 l A-3 K

L j L8
J L̂2~21!L^nA-38 l A-38 NLLunA-3l A-3N8L8L&2(A-3)/A . ~A3!

Here we used an orthogonal transformation of the Jacobi coordinatesjWA23 ,hW A22 andqW A23 ,qW A22 given in Eqs.~25a!–~26d!.
In the stateu„NA-3i A-3JA-3TA-3 ;(N3i 3J3T3 ,NL)J…JT&, the antisymmetrized subclusteruNA-3i A-3JA-3TA-3& depends on the
Jacobi coordinatesjW1 ,jW2 , . . . jWA24. The three-nucleon antisymmetrized subclusteruN3i 3J3T3& depends on the Jacobi coord
natesqW A22 ,hW A21 and the HO stateuNL& that describes the relative motion of the two subclusters is associated with the J
coordinateqW A23, given in Eq.~26!.
1-14



state

in the

-

onding to

f

FEW-NUCLEON SYSTEMS IN A TRANSLATIONALLY . . . PHYSICAL REVIEW C61 044001
When this expansion ofuNAi AJT& is used a matrix element of a three-body interaction in the basisuNAi AJT& can be
evaluated in a straightforward way, e.g.,

K (
i , j ,k51

A

Vi jk L 5
1

6
A~A21!~A22!^V~qW A22 ,hW A21!&, ~A4!

and the matrix element on the right-hand side is diagonal in all quantum numbers of the
u„NA-3i A-3JA-3TA-3 ;(N3i 3J3T3 ,NL)J…JT&, exceptN3 and i 3, for an isospin invariant interaction.

APPENDIX B: ONE-BODY DENSITIES

In the formalism of the translationally-invariant shell model, one can introduce one- or higher-body densities, as
standard shell-model formulation. Let us consider a general one-body operator, e.g.,

Ô(kt)5(
i 51

A

Ô(kt)~rW i2RW ,sW i ,tW i !. ~B1!

Its matrix element between antisymmetrized states depending on the Jacobi coordinates~24a!–~24e! can be written schemati
cally as

^Ô(kt)&5AK Ô(kt)S 2AA21

A
jWA21 ,sW A ,tWAD L . ~B2!

In a more detailed form, we can express a reduced matrix element between two eigenstates of a Hamiltonain corresp
A-nucleon system as

^A;EJpTuuuÔ(kt)uuuA;E8J8p8T8&5( ^A;EJpTu~NA-1i A-1JA-1TA-1 ;nA-1l A-1JA-1!JT&

3^~NA-1i A-1JA-1TA-1 ;nA-18 l A-18 JA-18 !J8T8uA;E8J8p8T8&ĴĴ8~21!JA-11K1J1JA-18 H JA-1 JA-18 J8

K J JA-1
J T̂T̂8~21!TA-11t1T11/2

3H TA-1
1

2
T8

t T
1

2

J K nA-1l A-1JA-1UUUAÔ(kt)S 2AA21

A
jWA21 ,sW A ,tWAD UUUnA-18 l A-18 JA-18 L , ~B3!

where we used expansions of the eigenstates in the basis~37!. Apparently, the matrix element~B3! factorizes into products o
one-body reduced matrix elements and one-body densities.

One can introduce two- or higher-body densities in a similar way.
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