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Isoscalar giant quadrupole resonance state in a relativistic approach
with the momentum-dependent self-energies
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We study the excitation energy of the isoscalar giant quadrupole resonance by the scaling method in the
relativistic many-body framework with the momentum dependent parts of the Dirac self-energies arising from
the one-pion exchange. It is shown that this momentum dependence enhances the Landau mass significantly
and thus suppresses the quadrupole resonance energy while the Dirac effective mass is kept to a reasonable
value.
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The past decades have seen many successes in the rel@mework for the monopole vibration modl&3].
tivistic treatment of the nuclear many-body problem. The Let us consider infinite nuclear matter system with the
relativistic framework has big advantages in several aspecisospin symmetry. The nucleon propagator in the self-energy
[1]: a useful Dirac phenomenology for the description ofZ is given by
nucleon-nucleus scatterirg,3], the natural incorporation of
the spin-orbit forcd1] and the structure of extreme nuclei S Hp)=p—M-32(p), (N

[4]. These results have shown that there are large attractive

scalar and repulsive vector fields, and that the nucleon effedvhereX(p) has a Lorentz scalar patts(p) and a Lorentz
tive mass becomes small in the medium. vector partU ,(p) as 2(p)=—Uy(p) +y*U,(p). For the

The small effective mass enlarges the Fermi velocity, an(ljutL_lre convenience we define the effective mass and the ki-
it causes troubles in some observables. For example, tHelic momentum as follows:
isoscalar giant quadrupole resonarft®GQR) state is pre- M* (p)=M —U(p)
dicted at too high an excitation energy due to the large Fermi s\Eh
velocity [5]. In this subject, it is assumed that the momentum ,(p)=p,—U,(p) %)
dependence of the Dirac fields is negligible in the low energy m A
region, particularly below the Fermi level. In fact, only very ysing the on-mass-shell conditioH2(p) — M*2(p) =0, the
small momentum dependence has appeared in the relativistighgle particle energy with momentupis defined as
Hartree-Fock(RHF) calculation though the Fock contribu-
tion is not small[6,7]. Thus the Fock contributions are 8(p):p0|on—mass—shef‘/Hz(p)+M*z(p)+uo(p)- 3
thought to be incorporated into the relativistic Hart(&aH)
approximation by introducing complicated density- Next we consider the variation of the total energy in the
dependent interaction and fitting paramefer$,8|. quadrupole deformation in order to discuss ISGQR with the
On the other hand, the vector-fields must become vergcaling method. Using the scaling method, first, we vary the
small in the high energy region to explain the saturation ofdensity-distribution from the normal nuclear matter distribu-
the optical potential for proton-nucleus elastic scatteringion Eo(f) as
[2,9] and the transverse flow in the heavy-ion collisiph@].

A Dirac-Bruckner-Hartree-Fock(DBHF) calculation has Po()—por(r)=po(e x,e My, e?z). (4)
shown that the momentum dependence changes the nuclear
equation of state noticeab[sL1]. Furthermore, Webeet al.  In the uniform nuclear matter it is equivalent to the variation

[9] have suggested that the Fermi velocity does not corresf the momentum distribution(p) as

spond to the effective mass uniquely when introducing the

momentum dependence of the Dirac fields. No(P)— N(P) =N, (p) =No(Py) =No(€"py.€"py e *"p,),
We can easily suppose that it is the one-pion exchange )

force which produces the major momentum dependence be- . )

cause the interaction range is largest. In this paper, thus, w¥heréno(p) = 6(pe— |pl) with the Fermi momentunpg at

introduce the momentum dependence to the Dirac fields dulf'® Saturation density,. o

to the one-pion exchange, and discuss how the Fock parts With the variation of the momentum distribution as

given by the one-pion exchange affects the excitation energfo(P) —No(p) + ny, the single-particle energy(p) is ob-

of ISGQR. Actually we use the scaling method in the way oft@ined in the Hartree-Fock framework by

Ref.[5] which is proved to give consistent results with RPA

for the giant multipole states in the nonrelativistic framework e(p)= % =\JI(p)2+M*2(p)+ Uo(p)| ey (6
[12]. This relation has been confirmed also in the relativistic Ny Pome?

—2\
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From this relation we get the following equations:

4Ty
o=\ T IA 13
9Er d*p [ an(p) M#r2
N =4Qf 3| (E@=0, (D
M0 (2m) r=0 where(Ty') is the nonrelativistic averaged kinetic energy as
2 3 (TRY=(p?/(2M)). This expression completely coincides
JIEr :4Qf d°p [ on(p) (D,2(0)]s_o} with that of the nonrelativistic modg[L4]
N |, 2m3| N | o] ol We substitute the empirical experimental values,
7 @®  ~63A"*MeV, (T')~25 MeV andr,~1.125 fm into Eq.

(13) and obtain the value of the Landau ma$5s] as
The derivative of the single particle energycan be written

as M /M~0.85. (14)
Py de Consequently we do not find any difference in the expres-
Dye(py M) = Kvpf +51 (9  sion of ISGQR between the relativistic and nonrelativistic

frameworks. The main problem is whether we can give the
where the total derivativ , is defined on the on-mass-shell above value oM{ while keeping consistency to other ob-
condition: po=¢&(p). In this equation the second term of the Servables; the usual analyses indicate thW&l/M=0.55
right-hand sideje/dn corresponds to the derivative with the —0.7, which givesM{ ~0.6—0.75 in RH.
variation of the self-energies at the fixed momentum by As a next step we explain the details of our calculation in
changing the momentum distribution. This term holds thethis work. We consider a model of the usuwakw modelplus
spherical symmetry at the limit of—0, and does not con- the Fock part of the one-pion exchange.
tribute to the integral of the right-hand side in E§). Along this line we define a Lagrangian density in the

Substituting Eq(9) into Eq.(8), hence, the restoring force system as

of ISGQRCq becomes ! L
L=Y(ib=M) i+ 50, b0 o= 5 M badhs

PETIA
Q 0)\2 A=0 1 I v 2
+ E&Moﬂ“o— Ulo]— Zwlww'“ + Emwwﬂw”
40 1 dp p’—3p7| [ P°—3p;
:_Tf > 35(|p|_pF) |p| M* i — — _
(2m) L Uy Y Talbdu bat Qo b= QoY o,
2
_ 12 E' (10) (15
5 Mf .
with v,,=d,0,—d,w,, where, ¢, o and w are the
where nucleon, pion, sigma-meson and omega-meson fields, re-
spectively. In the above expression we use the pseudovector
d -1 coupling form as an interaction between nucleon and pion.
M = ZFS(IO)> : (11)  The self-energy potential of the field U[ ] is taken here
P Ipl=pr [10] as
which is the so-called ttandau masscorresponding to the _ %m§02+ iB,0%+ :C, 0"
effective mass in the nonrelativistic framework. Ulo]= . 5 . (16)
In Ref.[5] the mass parameter of ISGQR is givenBas 1+ zA.0
=2¢¢(r?) with the Fermi energy ¢, and then the frequency
of ISGQR is obtained as The symbolan_., m,, andm, are the masses of, o, and
® mesons, respectively.
C 6p2 Next we calculate the nucleon self-energies. The nucleon
©o= [ZQ_ [ _“FF (12)  self-energies are separated into the local part and the
Bo 5M{ ep(r?) momentum-dependent partds,(p) =U%+UMP(p), where

a=s,u. The o- and w-meson exchange parts produce only
This expression is the same as that of R&f with RH  yery small momentum dependence of nucleon self-energies
except the Landau masst} = \/pZ+M*2 in RH. [6,7] as their masses are large. In fact the RH and RHF
At the saturation density, the Fermi energy agrees withapproximations do not give any different results in nuclear
the total energy per nucleon whose value is almost the sam®eatter properties after fitting parameters @fand o ex-
as that of nucleon massg=E{/A~M, In addition, nuclear changeg6]. On the other hand the one-pion exchange force
radii are scaled to be proportional t&Y® as (r?) is a long range one, and makes for a large momentum de-
=3/5r§A2’3 and then we get the frequenay, as pendence while it does not contribute to the local part in the
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spin-saturated system. Thus we make the local part by RH of Dirac Potential
the o- and w-meson exchanges, and the momentum- e o L B R B S R —
dependent part by RHF of the pion exchange. Such a sepa- :
rated method can keep the consistency for the energy- ~
momentum tensoi9]. 2
In this model the local part of the self-energies are given > 280
as
Us=0,(a), 17)
9.2 220
UL= 80,5 ph. (18 s
m (]
@ =
where(o) is the scalar mean-field obtained as 5 210
iy = (19
) [{)]=Gops. 0 200 400 600 800
. . p (MeV/c)
In the above equations the scalar dengifyand the vector
Hartree densityp, are given by FIG. 1. Momentum dependence of the scdfrand vecton(b)
3 % self-energies. The solid and dashed lines indicate the results in PF1
:4f dp n(p Mz (p) (20) and PM1, respectively. The dotted line denotes the position of the
Ps (2m)3 ﬁo(p) ' Fermi momentum apg= po.

d*p ITy(p) Using the above formulation we get the total energy den-
PH= J 2 )3” P)= , (21 sity of the spin-isospin saturated nuclear matter with the mo-
m Io(p) mentum distributiom(p) as

wheren(p) is the momentum distribution, arﬁll,t(p) is de- Pp
fined by ET/Q=4J sn(p)e(p)+U[o]
~ 1 (27)
Hﬂ(p)=§@[ﬂz(p)—M*2(p)]- (22 J &*p oo M*(p)UQAD(f))—H”(p)U”(p)
(2m)? Mo(p) ’

As a next step we define the momentum-dependent parts
of the self-energies as the Fock parts with the one-pion ex- (26)
change. When using the pseudovectBV) coupling the )
Fock parts do not become zero at the infinite limit of theWith the system volumé). _ _
momentum|p|. One usually erases these contributions by Let us show the calculgted results in our r_nodel using t_he
introducing the cutoff parameter. In this work, instead of Momentum-dependent Dirac self-energies with the one-pion
that, we subtract these contributions from the momentum&Xchange. In this calculation we fit the paramet&gl) for
dependent partéthese contributions can be renormalized € o andw exchanges to reproduce the saturation properties
into the Hartree panisU,—U,—U_(p—=). Thus we ob- that the binding energi E=_16 MeV, the incompressibility
tain the momentum-dependent parts of the self-energies af< =200 MeV and the effective mas4*/M =0.7 at the satu-

) ration densitypo=0.17 frm 3.
wo, . 3fa [ d%k M* (k) In Fig. 1 we draw the momentum dependence of the sca-
Us (p)_TJ (277)3”( )ﬁ (K) An(p—k), (23 lar self-energyU¢(p) and the time component of the vector
0 self-energyU,(p). It can be seen that the variation of the

3fi d3k II,(k) momentum-dependent self-energies is only 2.5% at most be-
UMP(p)=— - sN(K)="——A,(p—k), (24  low Fermi level, which looks very small.
(2m) (k) In Fig. 2 we show the density dependence of the Dirac

self-energiedJ, and U, on the Fermi surfacéa) and the
Landau masgb) with the parameter sets of PF1 and PML1.
Though two results ol andU, almost agree together, we
An(q)= 2 (25) can see rather large difference in the Landau mass: the value
q K at pg=pg is M}/M=0.85 in PF1 which is consistent with

In the above vector self-energies we omit the tensorihe value expected by the analysis of ISGQR as shown pre-
coupling part involving[TI(k) - (p—k)](p—k) . This term  viously. On the contrary, the momentum-independent calcu-
is very small if the self-energy is independent of momenturation (PM1) gives M{'/M =0.74 which overestimates the
[6], and their momentum dependence is actually very smalkxcitation energy of ISGQR. Hence it is shown that the very
as shown later. small momentum dependence in the nucleon self-energies

where theA .(q) is the pion propagator defined as
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enhances the Fermi velocity about 15%, and gives a signifi-
cant difference in the Landau mass. Furthermore we can also

see an interesting behavior Mff in PF1, namely, its value 04r- . T
agrees with the bare massm~ 0.5, and becomes larger s I U, ]
with the decrease of the density. Effects of small Dirac ef- 3

fective mass are largely canceled at low density by the mo- 0.2 Uo 7
mentum dependence created by the one-pion exchange. This L _
fact implies that the nonlocality of the self-energies affects 00 D et

nuclear surface properties such as the isovector magnetic
moment, whose value is still larger than the Schmidt value
[16].

Here we should give a further comment. Bagtal. have
shown in Ref[17] that the Landau mass is reduced by the
one-pion exchange, which is opposite to ours. In this calcu-
lation Benzet al. have used the pseudoscalRS coupling,
and the sign oUl“f'D was taken to be opposite to ours. The
full HF calculation with the PS coupling makes too large a
contribution to the Dirac self-energi¢3] while Bentzet al.
calculated the Fock term the perturbative way. Thus a calcu-
lation with the PV coupling must be more reliable than that FIG. 2. Density dependence of the Dirac self-energigsand
with the PS coupling. U, on the Fermi surfacé) and the Landau magb). The solid and

We still have some ambiguities in this work. For exampledashed lines indicate the results for PF1 and PM1, respectively, and
the bulk density of finite nuclei is smaller than the saturationthe full square in(b) denotes the value expected empirically from
density, so that we may discuss the value of the Landau masSGQR.
at lower density. In Ref[18], furthermore, it has been re-
ported that the time-dependent mean-field calculations havef self-energies and hence the density dependence of the to-
explained the excited energies of ISGQR 80 and“°Ca.  tal energy are affected very little. Thus the approximation to
These results are inconsistent with the macroscopic theoryeglect the nonlocality of the Dirac field should be correct in
The treated nuclei may be too small or their calculationgdiscussions of many aspects of the nuclear structure in the
involve other correlation beyond the macroscopic theoryDirac approach. However, as for some physical quantities
Thus we should not make a quantitative conclusion on thesuch as Fermi velocity, we will have to take account of the
ISGQR state before investigating it in finite nuclei. Thoughnonlocality effects in the Dirac approach. This effect cannot
we still have ambiguities, nevertheless, we can conclude thdte involved even if the density-dependent parameters are in-
the momentum dependence largely affects the Fermi velodroduced into the RH approximatid#,8].
ity, particularly in the low density region. The authors would like to thank Professor S. Nishizaki

Here we should note that although the introduction of theand Dr. Guangjun Mao for stimulating discussions on this
momentum dependence changes the Landau mass, the deptbrk.
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