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Isoscalar giant quadrupole resonance state in a relativistic approach
with the momentum-dependent self-energies
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We study the excitation energy of the isoscalar giant quadrupole resonance by the scaling method in the
relativistic many-body framework with the momentum dependent parts of the Dirac self-energies arising from
the one-pion exchange. It is shown that this momentum dependence enhances the Landau mass significantly
and thus suppresses the quadrupole resonance energy while the Dirac effective mass is kept to a reasonable
value.

PACS number~s!: 24.10.Jv, 21.65.1f, 24.30.Cz
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The past decades have seen many successes in the
tivistic treatment of the nuclear many-body problem. T
relativistic framework has big advantages in several asp
@1#: a useful Dirac phenomenology for the description
nucleon-nucleus scattering@2,3#, the natural incorporation o
the spin-orbit force@1# and the structure of extreme nucl
@4#. These results have shown that there are large attrac
scalar and repulsive vector fields, and that the nucleon ef
tive mass becomes small in the medium.

The small effective mass enlarges the Fermi velocity, a
it causes troubles in some observables. For example,
isoscalar giant quadrupole resonance~ISGQR! state is pre-
dicted at too high an excitation energy due to the large Fe
velocity @5#. In this subject, it is assumed that the moment
dependence of the Dirac fields is negligible in the low ene
region, particularly below the Fermi level. In fact, only ve
small momentum dependence has appeared in the relativ
Hartree-Fock~RHF! calculation though the Fock contribu
tion is not small @6,7#. Thus the Fock contributions ar
thought to be incorporated into the relativistic Hartree~RH!
approximation by introducing complicated densit
dependent interaction and fitting parameters@4,6,8#.

On the other hand, the vector-fields must become v
small in the high energy region to explain the saturation
the optical potential for proton-nucleus elastic scatter
@2,9# and the transverse flow in the heavy-ion collisions@10#.
A Dirac-Bruckner-Hartree-Fock~DBHF! calculation has
shown that the momentum dependence changes the nu
equation of state noticeably@11#. Furthermore, Weberet al.
@9# have suggested that the Fermi velocity does not co
spond to the effective mass uniquely when introducing
momentum dependence of the Dirac fields.

We can easily suppose that it is the one-pion excha
force which produces the major momentum dependence
cause the interaction range is largest. In this paper, thus
introduce the momentum dependence to the Dirac fields
to the one-pion exchange, and discuss how the Fock p
given by the one-pion exchange affects the excitation ene
of ISGQR. Actually we use the scaling method in the way
Ref. @5# which is proved to give consistent results with RP
for the giant multipole states in the nonrelativistic framewo
@12#. This relation has been confirmed also in the relativis
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framework for the monopole vibration mode@13#.
Let us consider infinite nuclear matter system with t

isospin symmetry. The nucleon propagator in the self-ene
S is given by

S21~p!5p”2M2S~p!, ~1!

whereS(p) has a Lorentz scalar partUs(p) and a Lorentz
vector partUm(p) as S(p)52Us(p)1gmUm(p). For the
future convenience we define the effective mass and the
netic momentum as follows:

M* ~p!5M2Us~p!,

Pm~p!5pm2Um~p!. ~2!

Using the on-mass-shell condition,P2(p)2M* 2(p)50, the
single particle energy with momentump is defined as

«~p!5p0uon-mass-shell5AP2~p!1M* 2~p!1U0~p!. ~3!

Next we consider the variation of the total energy in t
quadrupole deformation in order to discuss ISGQR with
scaling method. Using the scaling method, first, we vary
density-distribution from the normal nuclear matter distrib
tion r̃0(r) as

r̃0~r!→ r̃0l~r!5 r̃0~e2lx,e2ly,e2lz!. ~4!

In the uniform nuclear matter it is equivalent to the variati
of the momentum distributionn(p) as

n0~p!→n~p!5nl~p!5n0~pl!5n0~elpx ,elpy ,e22lpz!,
~5!

wheren0(p)5u(pF2upu) with the Fermi momentumpF at
the saturation densityr0.

With the variation of the momentum distribution a
n0(p)→n0(p)1dnp , the single-particle energy«(p) is ob-
tained in the Hartree-Fock framework by

«~p!5
dET

dnp
5AP~p!21M* 2~p!1U0~p!up05«(p) . ~6!
©2000 The American Physical Society01-1
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From this relation we get the following equations:

]ET

]l U
l50

54VE d3p

~2p!3 H ]n~p!

]l U
l50

J «~p!50, ~7!

]2ET

]l2 U
l50

54VE d3p

~2p!3 H ]n~p!

]l U
l50

J $Dl«~p!ul50%.

~8!

The derivative of the single particle energy« can be written
as

Dl«~pl ,l!5
]pl

]l
¹pl

«1
]«

]l
, ~9!

where the total derivative¹p is defined on the on-mass-she
condition:p05«(p). In this equation the second term of th
right-hand side]«/]l corresponds to the derivative with th
variation of the self-energies at the fixed momentum
changing the momentum distribution. This term holds
spherical symmetry at the limit ofl→0, and does not con
tribute to the integral of the right-hand side in Eq.~8!.

Substituting Eq.~9! into Eq.~8!, hence, the restoring forc
of ISGQRCQ becomes

CQ5
]2ET /A

]l2 U
l50

52
4V

A E d3p

~2p!3
d~ upu2pF!S p223pz

2

upu D S p223pz
2

ML*
D

5
12

5

pF
2

ML*
, ~10!

where

ML* 5S 2
d

dp2
«~p!D 21U

upu5pF

, ~11!

which is the so-called ‘‘Landau mass’’ corresponding to the
effective mass in the nonrelativistic framework.

In Ref. @5# the mass parameter of ISGQR is given asBQ
52«F^r2& with the Fermi energy«F , and then the frequenc
of ISGQR is obtained as

vQ5ACQ

BQ
5A 6pF

2

5ML* «F^r2&
. ~12!

This expression is the same as that of Ref.@5# with RH
except the Landau mass;ML* 5ApF

21M* 2 in RH.
At the saturation density, the Fermi energy agrees w

the total energy per nucleon whose value is almost the s
as that of nucleon mass:«F5ET /A'M , In addition, nuclear
radii are scaled to be proportional toA1/3 as ^r2&
53/5r 0

2A2/3 and then we get the frequencyvQ as
03730
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vQ'A4^TK
nr&

ML* r 0
2

A21/3, ~13!

where^TK
nr& is the nonrelativistic averaged kinetic energy

^TK
nr&5^p2/(2M )&. This expression completely coincide

with that of the nonrelativistic model@14#
We substitute the empirical experimental valuesvQ

'63A21/3 MeV, ^TK
nr&'25 MeV andr 0'1.125 fm into Eq.

~13! and obtain the value of the Landau mass@15# as

ML* /M'0.85. ~14!

Consequently we do not find any difference in the expr
sion of ISGQR between the relativistic and nonrelativis
frameworks. The main problem is whether we can give
above value ofML* while keeping consistency to other ob
servables; the usual analyses indicate thatM* /M50.55
20.7, which givesML* '0.620.75 in RH.

As a next step we explain the details of our calculation
this work. We consider a model of the usuals-v modelplus
the Fock part of the one-pion exchange.

Along this line we define a Lagrangian density in th
system as

L5c̄~ i ]”2M !c1
1

2
]mfa]mfa2

1

2
mp

2 fafa

1
1

2
]ms]ms2Ũ@s#2

1

4
vmnvmn1

1

2
mv

2 vmvm

1 i
f p

mp
c̄g5gmtac]mfa1gsc̄cs2gvc̄gmcvm,

~15!

with vmn5]mvn2]nvm , where c, f, s and v are the
nucleon, pion, sigma-meson and omega-meson fields,
spectively. In the above expression we use the pseudove
coupling form as an interaction between nucleon and pi
The self-energy potential of thes field Ũ@s# is taken here
@10# as

Ũ@s#5

1
2 ms

2s21 1
3 Bss31 1

4 Css4

11 1
2 Ass2

. ~16!

The symbolsmp , ms , andmv are the masses ofp, s, and
v mesons, respectively.

Next we calculate the nucleon self-energies. The nucl
self-energies are separated into the local part and
momentum-dependent part asUa(p)5Ua

L1Ua
MD(p), where

a5s,m. The s- andv-meson exchange parts produce on
very small momentum dependence of nucleon self-ener
@6,7# as their masses are large. In fact the RH and R
approximations do not give any different results in nucle
matter properties after fitting parameters ofs and v ex-
changes@6#. On the other hand the one-pion exchange fo
is a long range one, and makes for a large momentum
pendence while it does not contribute to the local part in
1-2
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spin-saturated system. Thus we make the local part by RH
the s- and v-meson exchanges, and the momentu
dependent part by RHF of the pion exchange. Such a s
rated method can keep the consistency for the ene
momentum tensor@9#.

In this model the local part of the self-energies are giv
as

Us
L5gs^s&, ~17!

Um
L 5d0m

gv
2

mv
2

rH , ~18!

where^s& is the scalar mean-field obtained as

]

]^s&
Ũ@^s&#5gsrs . ~19!

In the above equations the scalar densityrs and the vector
Hartree densityrH are given by

rs54E d3p

~2p!3
n~p!

Ma* ~p!

P̃0~p!
, ~20!

rH54E d3p

~2p!3
n~p!

P0~p!

P̃0~p!
, ~21!

wheren(p) is the momentum distribution, andP̃m(p) is de-
fined by

P̃m~p!5
1

2

]

]pm
@P2~p!2M* 2~p!#. ~22!

As a next step we define the momentum-dependent p
of the self-energies as the Fock parts with the one-pion
change. When using the pseudovector~PV! coupling the
Fock parts do not become zero at the infinite limit of t
momentumupu. One usually erases these contributions
introducing the cutoff parameter. In this work, instead
that, we subtract these contributions from the momentu
dependent parts~these contributions can be renormaliz
into the Hartree parts!: Ua→Ua2Ua(p→`). Thus we ob-
tain the momentum-dependent parts of the self-energies

Us
MD~p!5

3 f p
2

2 E d3k

~2p!3
n~k!

M* ~k!

P̃0~k!
Dp~p2k!, ~23!

Um
MD~p!52

3 f p
2

2 E d3k

~2p!3
n~k!

Pm~k!

P̃0~k!
Dp~p2k!, ~24!

where theDp(q) is the pion propagator defined as

Dp~q!5
1

q22mp
2

. ~25!

In the above vector self-energies we omit the tens
coupling part involving@P(k)•(p2k)#(p2k)m . This term
is very small if the self-energy is independent of moment
@6#, and their momentum dependence is actually very sm
as shown later.
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Using the above formulation we get the total energy d
sity of the spin-isospin saturated nuclear matter with the m
mentum distributionn(p) as

ET /V54E d3p

~2p!3
n~p!«~p!1Ũ@s#

1 2E d3p

~2p!3
n~p!

M* ~p!Us
MD~p!2Pm~p!Um~p!

P̃0~p!
,

~26!

with the system volumeV.
Let us show the calculated results in our model using

momentum-dependent Dirac self-energies with the one-p
exchange. In this calculation we fit the parameters~PF1! for
thes andv exchanges to reproduce the saturation proper
that the binding energyBE516 MeV, the incompressibility
K5200 MeV and the effective massM* /M50.7 at the satu-
ration densityr050.17 fm23.

In Fig. 1 we draw the momentum dependence of the s
lar self-energyUs(p) and the time component of the vecto
self-energyU0(p). It can be seen that the variation of th
momentum-dependent self-energies is only 2.5% at most
low Fermi level, which looks very small.

In Fig. 2 we show the density dependence of the Di
self-energiesUs and U0 on the Fermi surface~a! and the
Landau mass~b! with the parameter sets of PF1 and PM
Though two results ofUs andU0 almost agree together, w
can see rather large difference in the Landau mass: the v
at rB5r0 is ML* /M50.85 in PF1 which is consistent with
the value expected by the analysis of ISGQR as shown
viously. On the contrary, the momentum-independent ca
lation ~PM1! gives ML* /M50.74 which overestimates th
excitation energy of ISGQR. Hence it is shown that the ve
small momentum dependence in the nucleon self-ener

FIG. 1. Momentum dependence of the scalar~a! and vector~b!
self-energies. The solid and dashed lines indicate the results in
and PM1, respectively. The dotted line denotes the position of
Fermi momentum atrB5r0.
1-3
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enhances the Fermi velocity about 15%, and gives a sig
cant difference in the Landau mass. Furthermore we can
see an interesting behavior ofML* in PF1, namely, its value
agrees with the bare mass atrB'0.5r0 and becomes large
with the decrease of the density. Effects of small Dirac
fective mass are largely canceled at low density by the m
mentum dependence created by the one-pion exchange.
fact implies that the nonlocality of the self-energies affe
nuclear surface properties such as the isovector magn
moment, whose value is still larger than the Schmidt va
@16#.

Here we should give a further comment. Benzet al. have
shown in Ref.@17# that the Landau mass is reduced by t
one-pion exchange, which is opposite to ours. In this ca
lation Benzet al. have used the pseudoscalar~PS! coupling,
and the sign ofUm

MD was taken to be opposite to ours. Th
full HF calculation with the PS coupling makes too large
contribution to the Dirac self-energies@3# while Bentzet al.
calculated the Fock term the perturbative way. Thus a ca
lation with the PV coupling must be more reliable than th
with the PS coupling.

We still have some ambiguities in this work. For examp
the bulk density of finite nuclei is smaller than the saturat
density, so that we may discuss the value of the Landau m
at lower density. In Ref.@18#, furthermore, it has been re
ported that the time-dependent mean-field calculations h
explained the excited energies of ISGQR for16O and 40Ca.
These results are inconsistent with the macroscopic the
The treated nuclei may be too small or their calculatio
involve other correlation beyond the macroscopic theo
Thus we should not make a quantitative conclusion on
ISGQR state before investigating it in finite nuclei. Thou
we still have ambiguities, nevertheless, we can conclude
the momentum dependence largely affects the Fermi ve
ity, particularly in the low density region.

Here we should note that although the introduction of
momentum dependence changes the Landau mass, the
o

l
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of self-energies and hence the density dependence of th
tal energy are affected very little. Thus the approximation
neglect the nonlocality of the Dirac field should be correct
discussions of many aspects of the nuclear structure in
Dirac approach. However, as for some physical quanti
such as Fermi velocity, we will have to take account of t
nonlocality effects in the Dirac approach. This effect cann
be involved even if the density-dependent parameters are
troduced into the RH approximation@4,8#.

The authors would like to thank Professor S. Nishiza
and Dr. Guangjun Mao for stimulating discussions on t
work.

FIG. 2. Density dependence of the Dirac self-energiesUs and
U0 on the Fermi surface~a! and the Landau mass~b!. The solid and
dashed lines indicate the results for PF1 and PM1, respectively,
the full square in~b! denotes the value expected empirically fro
ISGQR.
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