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For the lineare model with quarks we derive renormalization group flow equations for finite temperature
and finite baryon density using the heat kernel cutoff. At zero temperature we evolve the effective potential to
the Fermi momentum and compare the solutions of the full evolution equation with those in the mean field
approximation. We find a first order phase transition either from a massive constituent quark phase to a mixed
phase, where both massive and massless quarks are present, or from a metastable constituent quark phase at
low density to a stable massless quark phase at high density. In the latter solution, the formation of droplets of
massless quarks is realized even at low density.

PACS numbes): 24.85+p, 11.10.Hi, 12.39.Fe, 21.65f

[. INTRODUCTION quarks is a good model to investigate the dynamics below a
momentum scale ok<k,=1.2 GeV! Such a hybrid ap-
Recently a transparent approach to the evolution of a had?roach has been already used at finite temperature with suc-
ronic system with resolution has been constructed using §€SS- In this paper we will treat pure quark matter and con-
Schwinger proper time representation of the fluctuation deSentrate on chiral symmetry aspects of the transition. We
terminants of quarks and chiral mesoft§. This method N€dlect quark confinement but assume the gluons to be con-
gives a picture of the transformation of constituent quarks agre‘ego':;? dtahrz dm:é,zr\;vsﬁe}g]e (fl%nen%ﬁti;znggrngﬁlzaerngfttgr _W'”
low resolution into partonic massless quarks at high resolu="- =~ ~. h - I yor f}’ y
tion observed in deep inelastic scatter{ij. At finite tem- namics Is much more sensitive to neglecting confinement
e than the finite temperature dynamics. Indeed it is known that,
perature the same type of renormalization gréB®) flow

: i NN ) ... e.g., the Nambu—Jona-Lasin{dblJL) model gives a first or-
equations give critical indices for the chiral phase transitionyq phase transition at unrealistically low baryon density
in agreement with th€©(4) model[1,3]. Present finite tem-

) , ) =1L [8,9]. Without confining quark forces, which repel quarks
perature QCD lattice simulations seem to indicate such alipled in neutral nucleons from each othag], the linearo

O(4) type behavior, with some uncertainty. model with quarks probably overestimates the binding en-
Simulation of QCD at finite baryon density on a lattice is ergy per baryon of nuclear matter.
still a challenge: In Euclidean space the chemical potential \We use renormalization group flow equations in the pres-
gives rise to a complex action which forbids Monte Carloence of finite quark density. As a first step, we start with the
calculations. Quenched simulations at finite density suffeheat kernel representation of the effective potential using the
from additional shortcomingfst]. The challenge is therefore cutoff function of the earlier finite temperature calculation
to come up with a calculational scheme for finite baryon[1]. The extension of this technique to finite density is
density which has a well controlled predictive power. Theo-straightforward in contrary to the cutoff function introduced
retical studies of high density matter given in this work areby the Wetterich groug11] for finite temperature studies.
indispensable to understand what is going on with high-However, the proposed method has its shortcomifigsthe
energy heavy ion C0||isions Wh|Ch probe not On|y h|gh exci_heat kernel CutOff IS a LOI’(—?‘ntZ |nVar|a:nt putOff, and as Su'Ch
tation energy(perhaps temperaturdut also high baryonic does not zoom to the Fermi surface with increasing evolution
density. Recent studies have suggested a very rich pha§iePs. In principle the goal of the renormalization group ap-
structure at high baryon densif$,6]. There has been con- proach for finite fermllon density @2]. to treat the_ c_:rmcal _
siderable work devoted to extract the equation of state olong wave length particle hole excitations of the finite Fermi
nuclear matter in terms of nucleon-nucleon potentials. Théystem towards the end of the evolution. These particle hole
problem is to link the high density region accessed by higtfxcitations are generated at the Ferm_l su_rface. In th_e relativ-
energy heavy ion collisions with the low density nuclearistic case W|_th G(_)Idstone bosons this final evolution step
physics region. should coincide W|_th the treatment of the Zero mass k_)osons.
At low density it is probably not very efficient to describe (2) Extra terms which reduce the ultraviolet sensitivity in our
baryonic matter by quarks, but in an intermediate regionheat kernel cut-off function result in an integration pole at
quarks and mesonic bound states may be the right degrees € Fermi surface, making the numerical integration difficult.

freedom. The mesons are formed by the strong gluonic at- !N this paper we concentrate on deriving the formalism for
traction in certain channels. The chiral linearmodel with @ finite density calculation with finite temperature. We solve

*On leave from HAS Research Group for Theoretical Physics, The definition of this momentum scale depends on the renormal-
Eotvos University, Pamany P. s. 1/A, Budapest, H-1117 Hungary. ization group scheme.
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the flow equations for finite density at temperatire 0 — - 4

leaving our final goal, the determination of the phase dia- ZM:O]ZJ DquD"D”eXp{ _J d X(£F+£B)]
gram in the whole T,u) plane to another paper. Further- 1)
more, we compare our renormalization group results with the

mean field approximation. . _— .
As a description of choice in this work we use the linear with a fermionicLg, and a bosonid’s, part

model. We think that this model can play the role of a sim- -

plified theory showing the effects of relativistic field theory Le=q(x)[ yede+9(o+iTmys)]1q(x), (2
at finite density as a kind of Ising model for nuclear physics.

The equation of state improved by the renormalization group 1

in the one loop gives clear signals on what is happening in Lo==[(0,0)2+(3,m)2]+F(a?+ 72 3)
the finite density system. The main message is the intricate

connection between the effective mass of the fermions and

the effective masses of the mesons exchanged between tiffie Yukawa coupling of the constituent quarks to the me-

fermions. In classical nonrelativistic nuclear physics the timesons is denoted by. The parameters of the linearmodel at

scale of the meson exchange is short in comparison with thg=0 are chosen in the same way as in Rgfs3]. We as-

time scale of the nucleon dynamics. At normal nuclear densume that at an ultraviolet scatg,, the full QCD dynamics

sity the mesons will not be modified drastically by the reduces to a hybrid description in terms of quarks and chiral

nuclear medium. In the quark picture the time scale for thébound states. The gluons are assumed to be frozen in the

exchange of a meson is not different from the time scalgesidual mesonic degrees of freedom and their couplings.

connected to the rearrangement of the fermion momenta. The At the beginning of the evolution &, =1.2 GeV we

mesons cannot be taken into account as potentials, which agdoose the effective potential density, to be of the follow-

turned into effective interactions, due to the quark rescattering form:

ing in the medium. The mesons participate fully in the reor-

ganization of the chiral symmetric phase with increasing . om? A R

density. The quark many body problem is therefore very dif- Fo(d)= 7¢2+ Z¢4’ with  ¢?=o?+ 72, (4)

ferent from the nuclear physics problem where the nucleon

dynamics largely decouples form the meson dynamics. The

only possible tool we have to solve such an intrinsicallywhere the positive mass squared=0.4 Ge\” reflects a

nonlinear problem in field theory is the renormalization Symmetric ground state, i.e., the minimum of the potential

group, therefore it is worth to study this technique in nucleadies at the origin. The four boson coupling at this scala is

physics to get a better understanding of the phase structure 630 [1,3]. The values correspond to a critical temperature

baryonic matter. T.~150 MeV, and a chiral symmetry breaking sc#lg
The paper is organized as follows. In Sec. Il we review™1 GeV which one obtains after performing the RG proce-

the derivation of the renormalization group flow equation fordure- _ _ _

the effective potential at zero density and temperature. The e effective potential densit(¢), can be evolved1]

extension of this method to finite temperature and baryor’TJSing the heat kernel method. For this purpose the one loop

density is presented in Sec. lll. At the end of this section Weeffectlve potential is calculated with a cutoff function

show a first result from the RG flow equation at finite den-f(sz)' which contains the evolution scake
sity. In Sec. IV we discuss the mean field approximation to

the linearo model and in Sec. V we present our results for

two sets of mean field couplings, obtained from the RG evo- f(x=k*r)=e"*
lution. Here we study the finite baryon density phase transi-

tion of the linearo model in the mean field approximation.

In Sec. VI we compare the results of the grid and the meafP0ing this, the couplings of the effective potential become
field calculations. Section VIl is devoted to a summary andscale dependentn=m(k) and\ =X (k).

to the conclusions. In the Appendixes we discuss the connec- Using the the Schwinger proper time representation the
tion between the fermionic part of the flow equations and théermionic F* contribution to the effective potential density is
mean field result and give a detailed derivation of the flow
equations at finite temperature and density.

1,
1+x+ EX . (5)

o 4
FF:EJ d—Tf<k27)J T4 1y g rtesaa?
2)o 7 (2m)4
II. EVOLUTION OF THE LINEAR o MODEL

! AT 2 d*q — 102+ g2¢?]
We consider the chiral constituent quark model with = §4Ncfoo — f(k T)f 2 )46 (6)
quarks,o, and7 mesons. At zero temperature and chemical &

potential in Euclidean space the partition function or the gen-

erating functional without external sourcAs is given by and correspondingljl] the bosonic part is
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o 4 ture T and chemical potentigk is
FB=—1 d—Tf(kzr)f & Tr e~ 7la*+#Folagiid)]
2Jo 7 (2m)* T “dr
QO =§4Ncfo Tf(k T)
1(=dr d*q 0
0 (2) xS J qae—r[(vn+m)2+q2+gz¢2], (10)
Xe*f[qz][38772F6+e*r[2F6+4Fg¢2]], (7) n (277)
, with the cutoff functionf(x) given by Eq.(5), and the Mat-
with subara frequenciesv,=(2n+1)=T for fermions. The
5 bosonic part is the one already examined in R&f,
Fo=Fo(d2K), Fo=® pp=tT0 ®)
0 0 IV 0 &d)z’ 0 (,}’¢2)2 . T r=dr , d3q
0P=—Z| —fk >, Py
The total effective potential density is the sum of these ° " (2m)
two termsF=F8+ FF. The evolution equation of this poten- X e~ T(w§+&2)[3ef 200 | o= T(znc’,+4ng)¢2)] (11)

tial results from the derivative of the potential with respect to

k. In the spirit of the renormalization group improved one-with Matsubara frequencies,,=2n=T for bosons. The de-
loop approximation the derivative only acts on the cutoffrivatives in the potential are taken again with respecto
function and the potential densitlyy, is replaced by the The total effective potential density is the sum of the two
evolving potential densitf. The evolution equation for the termsQ=QB+QF.

linear o model then has the following simple form: An advantage of the heat kernel regulator is that the cal-
culation of derivatives with respect to the momentum s&ale
aF k® 3 1 8N, can be performed analytically to yield compact formulas. As
ﬁ_szwz K2+ 2F' +k2+2F’+4F”¢>2 B K2+ g2 ' shown in Appendix A, we have
© 90" NN; , d de P
In the approximation to the RG evolution used here only the  sk2 872  dk2Jo qa[ N(Eq) = N(Equ],
effective potential density, evolves with the scal& The (12

Yukawa couplingg=3.23 is assumed to be constant. The _

limitation of this approach will be discussed later. Note thatwhere Eg = JaZ+k*+g%¢p? and n(x) and n(x) are the
during the evolution one passes from the region with  Fermi-Dirac distribution functions for particles and antipar-
>0, where the potential is symmetric, to the regimA<0 ticles. Evaluating the derivative with respect k6 on the
where the potential has a mexican hat shape. The denomintight hand side, we obtain

tors of the meson loop ternfs.g., the first two terms on the

left-hand side(LHS) of Eq. (9)] indicate a limitation of the 0 NNy °° 1 —
&(LHS) of Eq. (9)] o N k4f dg) 5~ [1-N(Eqy) ~N(Eqy)]

q,k

one loop renormalization flow. The one loop corrections are K2 3272
of order O(%) in an expansion in%. In the regimek?

+2F'=<0, however, the usual Gaussian fixed point is un- 1

stable and a non-Gaussian fixed point should be considered — ——{N(Eq)[1—N(Eg )]
bringing in O(4°) effects[13]. With our choice of param- TEqk
eters this happens &t<k;, ;=200 MeV.

+N(Eq[1-N(Eq 1} |- (13

IIl. EVOLUTION EQUATION AT FINITE DENSITY

The renormalization group flow equations give a well de-We notice that the distribution functions explicitly show how
termined shape of the effective potential with which we will the temperature and the baryonic density modify Te0
work in this section. Since they are formulated in the con-2ndpg=0 result: The right hand side of the evolution equa-
tinuum, the finite baryon densitys can be implemented. tions in vacuum is diminishedl) by the Pauli blocking ef-
Although the primary aim of the present work is to discussfect as seen in the first bracket a® by the thermally
the chiral transition at finite baryonic density, we shall €xcited states as seen in the second bracket. Similarly, the
present the master formulas for finite temperaftirand fi- ~ bosonic part aff #0 is evaluated as shown in Appendix A,
nite pg and then take the limit—0. where 9Q8/9k? is expressed in terms of the Bose-Einstein

We start our derivation from Eq$6),(7) extending them distribution function.
to finite temperature and finite chemical potential. Since we Although formula(13) is generally valid forT#0 and
are working now with fixed temperature and chemical potenps# 0, it is not useful when the temperature is set to zero
tial, one should replace the potential dendityby the ther- due to the facto ! in the second bracket. The zero tem-
modynamical potential densif($?). The fermionic part of ~perature formula is obtained easily from Efj2) making the
the effective potential density generalized to finite temperasubstitutions n(Eq ) — 6(u—Eqyx) and n(Eqy)—0:
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9OF N.N;  Kk® P 5 T T T T T —
_ | == 1— 45k -
2 121 242 Vi — K= 2 .
K, 8 K+gie n -k -g¢ AL i
— 35k -
X0 (u— K2+ g24?)|. 14 £
> 3 372)
2.5F #1 %2 = 2NAK3
Here again we see how the evolution equation at finite o B
baryon density is modified by Pauli blocking. In Appendix B i : A ; : t
we show how the integral of the finite density part of Eqg. 1'50 02 04 06 08 1 1.2 1.4
(14) gives the mean field result, which will be presented in z
Sec. IV. FIG. 1. The functiorg(z) with z=x /k, which allows us to find

For the charge neutral syste@ero bosonic chemical po-  the solutions of the constraint E@2) at a fixed density.
tential) at T=0 the bosonic term is the same as in vacuum.
Adding both contributions, we have the zero temperaturerhe same procedure is repeated at each stdp Bhe ex-
flow equation for finite baryon density as follows: plicit evaluation of the LHS at a finite evolution sc&leising
Eqg. (10) yields

QK 3 1
K|, 32m2 [K24+20"  K2+20Q" +4Q" ¢ 2Ng( 5 3., 3K
N = — R
p= 3|t ket g o). 19)
ANGN, "
K2+ g2?\ T (i Ke—gig? with

XO(u—\k*+g°¢%)

(15

} X~ =G 20

An analysis of the solutiong(xg) from Eq. (19) shows
that at k=0 this equation has a unique solution

We stress that such a compact form is obtained for the flow > —7 . . )
equation in the heat-kernel method; the Pauli blocking effect 9°¢ kg, with the Fermi momenturk. defined byp

L 3/n 2 L -
due to the presence of the Fermi sea is explicitly representeﬁlZNFkF/:’tW - For kq&_o It is advar!tageous to discuss the
by a6 function. This is certainly an advantage of the method SOIUtions in terms oz=xg/k. Equation(19) then reads

However, the presence of the function makes numerical

evaluations difficult because its derivatives produce singular p= 2N, k3g(2) (21)
terms which are not easy to control in the numerical analysis. 372 ’

As an attempt to circumvent this difficulty, we let the
chemical potential run during the evolution; so the chemicalwith
potential will be a function of the scalar field and the mo-
mentum scalew= u(¢,k), as proposed by Shankar in Ref. 5. 3.3
[14]. In fact, it turns out that no singularities of the fermion 9(2)=2"+ §Z+ 8z (22
terms appear in the evolution with a runnipg In the func-
tional integral for QO we explicitly insert ak-dependent The behavior ofg(z) is shown in Fig. 1;,9(z) has the
chemical potential. minimum

The method is best explained starting fréew 0. At the
end of the evolution the transition to the free energy density 1 \/5+1 23
can be made via a Legendre transformation Omin=5 —F7———

2 J\3-1

F(k=0,¢")=Q(k=0,¢%) +pu(k=0,4, (16
o o atz=1v\3-1=z,. At finite evolution scale the line of
where u(k=0) has to be eliminated from(k=0,¢) via  constant 3r2p/2N .k will in general cut the constraint func-
the equation tion at two pointsz, andz,. It is necessary for the equation
to have real solutions that
90(k=0)

T —o - P 17)
du(k=0) (3772;; /—\/5_1) 13 k
= Kth -

N¢ \/§+1

. At k=k, the line of constant 32p/2N_k® is tangential to
L L (19 9(2) at z=z,. Cormesponding to the two solutions, the
(k) (k) p- chemical potential has two different values at fixed density:

. k< (24
Now we make a small change of infrared cut-off sdaknd

adjustu (k) in such a way that the density remains constant:
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wi(K)=Vk’z(k)>+ K>+ g?¢® (i=1,2). (25) Q)
ok

k> 3 1

= +

o , uo 3277 | K2+2Q07 KP+2Q" +40" $?
The derivatives)u; / Jk are calculated by demanding that the
baryon density found ak=0 remains the sam@depen- 8N,

dently of the evolution scald. Thus thek derivative of the

+ 2 (-1)

CL2n 22| 4
LHS of Eq.(19) is zero, leading to k°+g°¢°) =12
Ne k' p P k
Imi_ i; (26) Am? K2+ g2p? Zi i 8Z'+4Z7—1
ak mi 8z +47°—1
X0 (kipn—k). (33

Applying the chain rule one can calculate the flow equationrhe reason of the presence of thdunction in Eq.(33) is
for the thermodynamic potential with running chemical po'apparent from Eq(10). Note that the term 1/(5‘4— 47°
R . 1

tential —1) is singular ak=ky, but can be integrated analytically.
Equation (33) is the evolution equation with running
9 du(k) 9 ~ du(k) chemical potential(k) at zero temperature for the thermo-
o dk  ak P79k ' dynamic potential density. In order to follow the minimum
” (27 of the order parameter at fixed density we need the free en-

ergy density. Recall that &=0 there is only one solution to

or rearranging this formula for each k we get the equivalenf® constraint equatiofl9) which is related ta,, therefore

free energy at eack we can calculgte the fr_ee energy dengitat k=0 from the

thermodynamic potential densify(k=0) and the chemical

potential u(k=0):

Q) Q)

K| 9K

wm=const =const

oF
ok

_d(Q+pu) 90
e —

w(k) oK

9 F(k=042)=0(k=06%+pu(k=04?), (34

u(k=0,¢?) = ke +g? .

Due to the theta term in E¢33) the k evolution of (k)
and F(k) is the same tillky, and does not feel the baryon
_ density. Belowky, the density effects set in with the contri-
1= f dfolf(z)]. (29 butions of a shell of fermions. During the course of evolution
the outside radius of the shell increases and the inside radius
with diminishes until the longest wavelengths in the fermi sea are
integrated. The effect arising from the fermi sea is classical,
5N hence®(%#° and dominates the RG flow equation. For large
f(z)= —k3g(2)— p. (300  enough densities=0.45,, we haveky> ki and Eq.(9) is
3m? replaced by the density driven evolution without unstable
boson terms.

Pg = const

We can eliminate the chemical potential in the flow-equation
at eachk via a é function

The evolution equatiof27) with running chemical potential W solved Eq(33) numerically on a grid: the full poten-
has two terms=1,2 corresponding to the two roots of the tial density(), is discretized as a function @f* on a grid of
constraint equation hundred points between<0¢?<0.05 Ge\f. The resulting
hundred differential equations are solved with a Runge-Kutta
method.
@ :f df 8[f(2)] & @ﬂ“_(k) As we discussed earlier at the end of Sec. Il the meson
K1 K| const OB K terms in the flow equation33) develop singularities due to
(31 the instability of the effective potential. This behavior is well
known in the literaturg¢15,16], the mesonic effective poten-
of  lofl 1 tial in the one loop approximation generates tachyonic me-
= E f —dz—| 8(z—z) son masses. The renormalization group skalavoids these
i=12J dz ]9z poles for some part of the evolution, but cannot get rid of
90 I (k) them totally. The singularities in the boson denominators of
X K P | (32)  the evolution equation appear kf.+2Q’=0, indicating
w=const the disappearance of the Gaussian fix ppl3]. As our stud-

ies show the inclusion of the non-Gaussian fixed point does

Note that at the two zeros of the functifre, andz,, the  not change the position of the minimum considerably at zero

Jacobians have opposite sigfsee Fig. 1 leading to some temperature. Hence in this paper we neglect the singular me-
cancellation. Thus we arrive at the final flow equation sonic contributions beyonki=k;,s; in the evolution equation
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. grid calculation TABLE |. Effective meson potentials used. The fit range and the
0.98 ' ' ' ' ] mass parameten?,- are in GeV, the oy, BY* and the mass of the
0.96 L o meson are in GeV.
el R i — —
S 092 Type Fitrangep” mye Awe o, 3go, BY m,
i 0or 7 X [0,00§ —0.260 30.0 0.0940 0.902 0.15554 0.720
3 Sl 1 v [0,0.0] —0.082 9.18 0.0945 0.906 0.11633 0.405
N 0.84 i grid 0.0944 0.906
0.82 e Dhase ——o- T
0.8 1 1 1
0 1 2 po/pB 3 4 5 (Y). The resulting parameters are summarized in Table I.

FIG. 2. Normalized energy per baryon plotted against invers The coarse graln.ed potential and the two fits ar,e shown In
densitypg *, normalized to normal nuclear densjiy=0.16 fm 3, 19 4. The negative values of the mass squared indicate that

in the broken phas@lashed lingand in the symmetric phagsolid @t the scal&=kg we already entered the broken phase, with
line). The evolution Eq(33) is solved on the grid. The energy of a nonvanishing expectation value of thefield, o. A mean
the broken phase at zero densityejs field solution with these potentials is straightforward by
) ] evaluating the Hamiltoniai, in the presence of the Fermi
leaving t_he more exact solution toa future work. The resu!tssea and then minimizingl with respect tor. Since we have
OT the grid calculaﬂoq are ?hOW” in Figures. 2 and 3. We W!"already taken into account quantum fluctuations from the
discuss them extenswe_zly in Sec. Vi an_d compare them W'ﬂbirac sea and the bosons in the evolution, we do not need to
the mean field calculations presented in the next section. consider these pure quantum fluctuations any longer. Their
effects are assumed to be of higher scale thaand there-
IV. COARSE GRAINED POTENTIAL IN MEAN FIELD fore they are integrated up in the coarse grained potential. Of
APPROXIMATION course, we are missing typical quantum many body fluctua-
tions not included in the mean field approximation of the
%any body system.
The mean field solution of the resultintf theory is stan-
dard. The Hamiltonian reads

Since the numerical solution of the RG flow equations ha
difficulties at small momentum scale we discuss another
approximation to the low momentum region in this section.
We evolve the vacuum theory from the ultraviolet sckle
=k,y down tok=kg corresponding to normal nuclear matter
densitypg= po. Thereby we obtain a coarse grained potential

2
which is appropriate for the dynamics at these low momenta. H :f d3x qT(&5+gﬁ;)q+ mMF;er Mp . (35)
This potential contains the vacuum loop effects of the quarks 2 4

and bosons integrated out up to this scale. Then we solve this

coarse grained linear sigma model in mean field approxima-

tion. Using a plane-wave basis for the quarks one can rewrite the
To keep the mean field approximation transparent we apHamiltonian as an integral over momenta. In the ground-

proximate the coarse grained potential with the originalstate,T=0, the Fermi sphere is filled from the bottom up to

fourth order form of Eq(4) with renormalized parameters. the Fermi momenturke . The energy density is evaluated to

These parameters depend on the rangé?mvhere the fitto  be

the coarse grained potential is done. We have chosen two

sets: a fit on a wider region ig? (X) and a narrower one 0.033 | ' | | : : :
— grid y/
. . | ---- couplings (X !
03 | gl:ld calculatul)n | 0.0328 -~~~ c ouglings EYZ 'Il
’ [/
s 0.0326 P
>N — 7
& 02 ‘:.; 0.0324 -
S
0.15 | © i
5 S 00322
| 0.1 [ o ,.‘
& 0.032 ]
AL
= g 0 BN e e i 0.0318 -
S
v N - tric ph -
0-05 ) . Y proken glllgzg ----- 0.0316 - 1 1 1 L 1 1 1
-0.1
0 1 2 3 4 5 0 0.02 0.04 0.06, 0.0 0.1 012 0.14
pB/po ¢2[GeV82]

FIG. 3. The binding energy per baryon calculated from the evo- FIG. 4. The potential)(#?) at momentum scalk=ky,, from
lution equation on the grid is shown as a functiorpgfnormalized  the grid calculatior{solid line) and the fitted curves with mean field
to normal nuclear density,. parameter (dashesandY (dashed-dotted line See Table I.
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mean field calculation (X) mean field calculation (Y)
1.02 I I ] 1 1 I I ] I
0.95 FIG. 5. The energy per baryon plotted against
N 1 ) pg' in units of normal nuclear densityg
3 0.9 =0.16 fm 2 for mean field parametrizatioX
S 0.98 0.85 (left) and Y (right). Note the different energy
;2\5 08 scales in the figures. The dashed line in the left
3 0.96 ’ plot represents the Maxwell construction which
: 0.75 determines the region of coexistence between
0.94 Pl L L2 0.7 ] 1 1 1 broken and chiral symmetric phase.
0 1 2 3 4 5 ] 1 2 3 4 5
po/pB po/pB
2\ 1/3
E 4NC kF = — l — )\MF— 9 97T 4/3
_ B k21 221 — 2 2 4 =— 4
V (27]-)3]0 d k k +g g +2mMF(T + 4 g esym 4 2NC pB ( O)
N with a minimum of the normalized energy per baryon
c — _ —
=—| 2ke VKE+ 02023 —g%0? ke VKE+ %02 )— 372\ U4/ md) V4
4 esyn{PB €0 ™
—| =3 - (41
I — Ps min 2Nc A
12 kF+ g20'2+ k|: 1 2 )\MF—4
—g°o |Ogg—; + EmMFo' +TO' . at
(36) L[ 2NG| M me 3 4o
pB,sym_3 37T2 N ( )

The quark Fermi momentum is fixed by the quark-density
p=3pg, In the constituent quark phase the asymptotic value of the
energy per baryon is three times the quark mass:
3 2
ke=\ . 37 éulp)~ o
2Nc PB

=3gay. (43)

min

The meano-field configuration is calculated by minimiz- Therefore in order to have a stable broken phase at low den-
ing Eq. (36) with respect too. One ends up with a self- Sity the following condition is necessafiut not sufficient,
consistent equation for the mean fietgl (3772)\) 1/4

>g.

2N,

(44)

—| = = T Mypo T Anpo . We note, that withg=3.23 this condition is fulfilled for pa-
do (2m)%J0 k?+g%0? rametrization(X) but not for (Y). As a result the latter does
(39 not have a stable homogeneous phase with broken chiral
symmetry. In the following section we present our numerical
There is always the trivial solutioor=0 corresponding to results.
the symmetric phase. At zero density the nontrivial solution

oo=1/—m?\ has a lower energy and represents the sponta- V. RESULTS IN MEAN FIELD APPROXIMATION
neous broken phase. At higher density, the chirally symmet-

. S In this section we discuss the results of the mean field
ric phase hf_is lower energy. The energy density in the brOkeE'alculations shown in Figs. 5-7, before we compare them
phase relative to the symmetric one is ' '

with the grid calculation in the next section. In Fig. 5 we
present the energy per baryon as a function of the inverse
density relative to the energy of the broken phase at zero
baryon density. In the low density limit, the energy per
baryon of the broken phase slowly approaches three times

whereby we defin® as a kind of bag constant. It gives the the constituent quark mass3=3go,. This is the preferred
amount of energy density by which the partonic vacuum liesstate at low densities, where we have a noninteracting dilute
above the constituent quark vacuum. We estimate the sensdystem of constituent quarks. Since our coupling congjant
tivity of the calculation to the input coarse grained potentialis fixed from the beginning to yield a constituent quark mass
by comparing the minima of the energy per baryon in bothof 300 MeV, the vacuum mass of the “nucleon” is smaller
phases. The massless partofigmmetri¢ phase has an en- than 938 MeV in both caséX) and(Y) (see Table)l In the
ergy density chiral limit which we pursue here the nucleon is lighter than

m?
EOEGbr(PBZO):_K:_By (39
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mean field calculation (X) mean field calculation (Y) FIG. 6. The pressure as a function of inverse
2 T T T T T T T T baryon density, calculated for mean field param-
_ 1F N etrizationsX (left) andY (right). The thick dashed
L 0Py line in the left plot is the Maxwell construction.
3 -lF . . In the caseY (right) no Maxwell construction ex-
T 2k - ists. Note that the negative values of the pressure
= 3k \'\ . are solutions of the equations but have now
AN N N physical interpretation. In both cases the pressure
5k | \"I‘ ~~~~~~ e e . . . . . for the symmetric phases(=0) asymptotically
0 9 3 4 5 1 9 3 4 5 approaches the bag pressiBdsee Table )l for
po/pB po/pB small densitie§dashed-dotted line

the real one. In the upper left corner of both plots the pa- For both parametrizationéX) and (Y) we calculate the
rabola represents the partonic phase. pressure from Eq(47). The result is shown in Fig. 6. It
For the couplinggX) condition (44) is fulfilled, thus the shows clearly the stable broken phase for parametrization
phase diagram may be obtained using the Maxwell construd-X). For parametrizatiohY) there is no stable broken phase.
tion (dashed ling For a first order phase transition the equi- At low densities the pressure is always negative, thus it is
librium condition for a given temperaturén our caseT  More advantageous to pack the quarks into droplets of mass-

=0) and pressure is less quarks with nonperturbative vacuum between them than
to have loosely bound constituent quarks associated with
G(T,P,N)=min. (45) nucleons.

In Fig. 7 we present the binding energy per baryon sub-
In the region of coexistence between the two phdlsqsar- tracting the “baryon mass”’ mQ’ from the energy per
tonic) and (II: constituent quark the temperature, pressure paryon. Note that in the cas¥) the system is unbound, the
and chemical potential have to be equal to each other. Hen%hergy of the partonic phase has a minimum-at.8 times
normal nuclear density. This minimum lies on the edge of
,u'B’"=iG(T,P,NB)= i(FJr PV)= i+ pi, the cpexistence region. In thg case of couplih‘@sthe sys-
Ng Np Ng  ps tem is strongly bound, the minimum of the partonic phase is
(46)  pg=0.78,.

The difference between the two ca$&$ and(Y) demon-
strates that the form of the coarse grained potefilianhflu-
ences the physics at low momentum scale drastically. In the

Jpean field approximation it is mainly the sigma mas§

where the pressuiis constant in the coexistence region. At
zero temperature the free energy per barlféNg equals the
energy per baryo/N=¢/pg and we can read off from the
tangent construction the energy per baryon as a function

the inverse baryon density in the mixed phase: =2\o5 which determines the amount of attraction, i.e.,
binding or unbinding of baryonic matter. Recall the attrac-
E 1 tion in nonrelativistic Hartree approximation varies as

Ng Pg tue. 47 _g2p22m?. Potential(X) with a higho mass of 0.728 GeV

is less attractive than the potent{a) with a o mass of 0.404
The slope is the negative pressure and the intercept with th@eV. The meson-meson interaction tenn also fixes the
vertical axis is the baryon chemical potential at the phasetructure of the intermediate density region. A laiggives
transition. The dashed line in Fig. 5 connects the low densitya mixed phase as produced by potenti§lsee Eq(44). The
constituent phase with the high density partonic one. Therid calculation shares the low field strength region with the
phase transition takes place between 0.27 and 1.90 timgmtential (Y), and has the mass of tllemeson in between of
normal nuclear density. In between the two phases coexistthe ones from the potential¥) and(Y) (see Fig. 4. There-
The couplings(Y) do not fulfill condition (44), e.g., we fore we expect that the equation of state on the grid lies
have no stable broken phase. Hence there is no Maxwebetween the extremes determined by the potentiélsand

construction in this case. (Y).
mean field calculation (X) mean field calculation (Y)
0.3 ) I | 1 0.3 1 I I i

S 0.25
S
g 0.2 FIG. 7. Binding energy per baryon is plotted
S 015 againstpg in units of normal nuclear densityy,
R ol for the couplingsX (left pane) and Y (right
e pane).
8% 0.05

0

0 2 3 5
pB/po
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1.2 o
L.15
L1H
1.05 H

1
0.95
0.9

zero, i.e., we have a first order phase transition.

Since the minimum of the energy per particle in the par-
tonic phase is below the minimum of the broken phase, no
Maxwell construction is possible and the broken phase is not
stable even at lower densities for both the grid calculation
and model ). This phase starts from zero density and per-
i sists untilpg=1.17p, for the grid and untilpg=0.78, for
i the mean field calculationY(). At these densities the droplets
085 fill up the whole volume. They are bound by74 MeV

0.8 fel dgrild Cf'alqulatig(n ----7 (grid) and~172 MeV (mean field, respectively, per baryon
0.75 | mean fie g cacuation {5) —— number. If ones compresses the system above this density
0.7 ; ; é . - " the fermi pressure pushes the equation of state higher up in
po/pB energy. _
Contrary to these cases there exists a Maxwell construc-

FIG. 8. Normalized energy per baryon, calculated on the gridtion for potential(X) as we have seen in the previous section.
(dashed lingand in the mean field calculations with couplings  The region of coexistence between the stable constituent
(upper solid curveandY (lower solid curve, is shown as a func-  quark phase and the partonic phase ranges frompg.&Y
tion of inverse densityg*, normalized to normal nuclear density. 1.9Q,.

In Fig. 9 we show the equation of state for the three
VI. COMPARISON OF MEAN FIELD RESULTS WITH calculations. The coarse-grained couplittgsas well as the
GRID CALCULATIONS grid calculation yield bound systems. However, in both cases

. . ) the binding is too strong, 74 MeV per baryon in the grid and
In this section we compare the results obtained from the 75 \ev per baryon in the mean field calculation with

mean field approximations with the ones from the grid cal-,qg (Y). The saturation densities lie near normal nuclear

culation. The main results are shown in Figs. 8 and 9. yensity, but baryonic matter is already in a chirally symmet-
In Fig. 8 we present the energy per baryon obtained in the; . phase.

(X) parametrization of the mean fieldpper curvg the (Y)
parametrization(lower curve, and the grid calculations
(dashed ling The three curves show a very similar behavior. VII. SUMMARY AND CONCLUSION

Al low density the energy per particle is approaching the We have calculated a coarse grained effective potential

same limit of three times the mass of the constituent quarksf S . ;
E)m renormalization group flow equations in a quark model

as we discussed in the previous section. The nucleon massW|th explicit meson fields. At the Fermi momentum scale we
~900 MeV in both cases. With increasing density, one ar- P '

rives at the point where no broken phase is supported ancontinug the .e.v.olution in_cluding Pauli blocking. To avoid
longer, i.e., the mean field E(B8) does not have a nontrivial Meson instabilities we switched off the meson loop terms at

: ) i kiv=kg. The resulting quark matter overbinds and is in a
o solution and qnly the ma;sless parftonlc phase exists. FQiyirg symmetric phase. We presented two mean field ap-
the coarse grained couplingsY), this happens alpg  proximations to the full grid calculation with different sets of
=0.32,, while for the grid calculation §ig=0.56 po. The  ¢ouplings. The grid solution of the flow equation, with the
parametrization(X) leads to highest transition point @ eyolution of the meson effective potential omitted belyy
=1.32,. In all three cases the order parameter drops iQies in between the result of these two mean field approxi-
mations.

[GeV]

e(pr)—¢o
PB

phase of partonic quarks. In the effective potential the deter-
mining equation is the relation between the energy per quark
in the partonic phase and the constituent quark njsse
"""""""""""""""""""""""""""""""""""""""""" Egs.(41),(43)].

0.3 P The many body physics found here is very similar to the
0.25 ': NJL model where one finds a first order phase transition with
0.2 |1 either a mixed phase or a droplet ph&8g Also the instan-
0.15 ‘.l ton induced quark interaction of R¢b] produces a droplet

0.1
0.05
0

— 3mg[GeV]

e(pB)—*t0
PB

=005\ N . The shape of the droplets in the low density phase have to
0.1} grid calculation ==-- 7] be determined from an independent calculation including
—0.15 | mean field calculation (X - surface effects. The bag produced by the lineanodel does
mean field calculation (Y) — ) . . .
0.2 L I L not confine. It has a finite height, outside the massless quarks
0 1 2 3 4 5 acquire a constituent quark mass. Otherwise the solution of

po/po the evolution equation is similar to a MIT bag type solution

FIG. 9. Binding energy per baryon, calculated on the grid and inwith massless quarks inside. Up to now attempts to model
the mean field approximation with potentia{upper curvgandY  the nucleon as a soliton in the linear sigma model have failed
(lower curve, is shown as a function gfg normalized to normal due to the instability of the sigma solution arising from the
nuclear density. integration over the sea quarks. The evolution equation may
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be helpful in finding such a soliton solution too. alF 5 o, .
In our approximation we used lowest order in two cases to K —2k TZ fo drr?e” T tim +Eq
n.g

address the finite density problem: the coupling consgant
was fixed during the evolution and the wave function renor- d\? 1
malization Z was set to one. A recent publication of the = —2k5T(—> z _—
Wetterich groug11] uses a running meson-quark coupling dk?/ hg (vatip)?+EG,
and obtains a solution with a mixed phase extending from
very low to very high density. In fact the evolution of the
coupling constant at finite density is not necessarily the same
as at zero density. The equations for the wave function renor-
malization and the coupling are modified at finite density.with
Important effects such as pion condensafibr] may appear
after the wave function renormalization. One therefore has to
make more extended calculations to know the full result for . > T . 2
the linear sigma model at finite density. (vntim)*+Eqy (vn—im)*+Eqy
In quark matter the linear sigma model with only attrac- (AS)

tive sigma mesons and pions is not sufficient to capture thgnere yse of the fact has been made in the last equality that

nuclear physics. _Repulsive effects an(_j confinemen_t iNtQhe sum with respect to the Matsubara frequenciesioes
nucleons play an important role. To monitor the transition to, change when the sign of the frequencies is changed.
the deconfined phase one needs an order parameter which o the nice point is that the sum B(q,k) can be per-

keeps track of this transition. Since the lineamodel with
quarks is already a hybrid model, it is not unnatural to in-
clude also nucleon degrees of freedom explicitly and trace
the transition of nucleon to quark degrees of freedom di-
rectly. This has been done in a separate papker

=—K°T (Ad)

d 2
— | > S(q,k)
dk2> a

1

S (q.k)=>

n

formed analytically, as follows:

d
sF<q.k>=§ 2 [In[ (vy+ipm)2+x2]

+In[(vy—im) 2+ Xx?] ]y
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APPENDIX A: CALCULATION OF 9QF/dK AND 9QB/ 9K (A7)
In this appendix, we calculate the derivative of the ther-Now utilizing the formula
modynamical potentials in the heat kernel method. .
The fermionic part of the flow equatianEhe fermion part 1 1 X
of the thermodynamical potential is written as n;x 22 TR (A8)
n
F_ F
Q7= NNt ™ (k), AL e end up with
with
1 Eqk— Eqxt
v ) St(q,k) = >TE | tanh qu ® 1 tanh q;T al
|F(k)=2TE J' —Tf(kZT)e*T[(Vn+i,u)2+q2+92¢2]. q,k (Ag)
ng 70 T
(A2) InsertingSF(q,k) into (A4), we have
Using the fact that -
" kS( ‘ )Zf 99 L 1o n(Eg0-niE)]
2 —=—-k’| — —— = [1-n(Eqx)—N(Eq )],
df(k T) — _k57.3e—k27', (A3) dk de (277)3 Eq,k a q
dk (A10)

and puttingEj ,=g%¢*+q?+k?, the derivatived!™/dk is
evaluated to be

wheren(x) [H(x)] is the Fermi-Dirac distribution function,
respectively,
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1 —

1
SR’ n(X)Zm- (Al11) Ng(X)= ———. (A18)

n(x)= e¥T_1
Now let us calculate the derivative with respectk®yy ~ Taking the limitT— 0+, we obtain

which may be put into the integral; sin&é appears only in 508 " 1

the combinatiorg®+ k2, the derivative can be converted to _ (A19)
the one with respect tg?. Then making a partial integration, ok? 64w m?2+k?
we obtain

APPENDIX B: CONNECTION BETWEEN THE MEAN

aF FIELD AND THE FLOW EQUATION RESULT

% 872 dsz q_[l n(Eqk) n(Eqk)]

Let us regard only the density dependent part of the evo-
(A12) lution equationg Eq. (14)]. If this part decouples from the

Inserting Eq.(A12) into Eq. (A1), we finally reach the for- meson evolution, we can integrate this equation analytically:
mula presented in the text:

F 0 dQF 2
ﬂQF N Nf 4 Kinitial dk

K2 8w dK

f q—[l N(Eqk) — n(Eqk)]
N [0 k*dk2
(A13) = f (B2)

2 M2—92¢2(k2+92¢2)\/;2__k2__92?.

The integral gives the following result:

The bosonic part of the flow equatior&milarly, with the
fermion part, the boson part of the thermodynamical poten-
tial involves the integral:

N
o=~ —5 ( 2u = g?$?— Aug®¢? - g?¢?
0P(k=— = 3, fwd_Tf(kzr)e‘T[‘”ﬁ*‘iZ*mZ] o
2 - [ '
n,q

2 +Vp?—g%¢?
(A14) g VT T 2P og ha)
with w,, being the Matsubara frequencies for bosons. Here (B3)

we shall confine ourselves to the case where the boson has
no chemical potential. The extention to the case with finiteSince one can do the replacements
chemical potential is easy.

_ 2
The derivative with respect t& can be performed as p=ke+g?¢?,
much the same way as the fermion part. The only difference
comes in with the formula ke=u*—g°¢
0 1 1 the potential takes the following form:
X
2 5= STt (A15)
o wi+x?2 2Tx T N
T enTX QE:O=4—;2 2keVkE+ 9292 3~ g2 ke kE+ 922
Thus we obtain ,
4.4 VKE+ g7 + ke
9QB -g'¢ |Ogg—¢
— = —coth— A16
ok®>  32m? dsz dag (AL6)
\/k2+g »°KE. (B4)
with EJ ,=q?+k2+m?. C4q23YF

Performing the derivative as before, we have . .
g Recalling the relation betweel andF

908 Kk 1 1 Q=F-3 B5)
K 6an?|miric f dq[ Na(Eqx) et (
moLm q,k we can identify the term in brackets with and this is in-
1 deed the fermionic part of our mean field result E2p).
+ ———np(Eq[ 1+ nB(Eq,k)]] 1 (A17) We can also do this independent check for E3), but
.k because of the complicated form of our constraint equation

this can not be done analytically. Numerical integration of
whereng(x) is the Bose-Einstein distribution function given the density dependent part in E@3) reproduces again the
by mean field results.
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