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Renormalization group flow equation at finite density
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For the linears model with quarks we derive renormalization group flow equations for finite temperature
and finite baryon density using the heat kernel cutoff. At zero temperature we evolve the effective potential to
the Fermi momentum and compare the solutions of the full evolution equation with those in the mean field
approximation. We find a first order phase transition either from a massive constituent quark phase to a mixed
phase, where both massive and massless quarks are present, or from a metastable constituent quark phase at
low density to a stable massless quark phase at high density. In the latter solution, the formation of droplets of
massless quarks is realized even at low density.

PACS number~s!: 24.85.1p, 11.10.Hi, 12.39.Fe, 21.65.1f
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I. INTRODUCTION

Recently a transparent approach to the evolution of a h
ronic system with resolution has been constructed usin
Schwinger proper time representation of the fluctuation
terminants of quarks and chiral mesons@1#. This method
gives a picture of the transformation of constituent quarks
low resolution into partonic massless quarks at high res
tion observed in deep inelastic scattering@2#. At finite tem-
perature the same type of renormalization group~RG! flow
equations give critical indices for the chiral phase transit
in agreement with theO(4) model@1,3#. Present finite tem-
perature QCD lattice simulations seem to indicate such
O(4) type behavior, with some uncertainty.

Simulation of QCD at finite baryon density on a lattice
still a challenge: In Euclidean space the chemical poten
gives rise to a complex action which forbids Monte Ca
calculations. Quenched simulations at finite density su
from additional shortcomings@4#. The challenge is therefor
to come up with a calculational scheme for finite bary
density which has a well controlled predictive power. The
retical studies of high density matter given in this work a
indispensable to understand what is going on with hi
energy heavy ion collisions which probe not only high ex
tation energy~perhaps temperature! but also high baryonic
density. Recent studies have suggested a very rich p
structure at high baryon density@5,6#. There has been con
siderable work devoted to extract the equation of state
nuclear matter in terms of nucleon-nucleon potentials. T
problem is to link the high density region accessed by h
energy heavy ion collisions with the low density nucle
physics region.

At low density it is probably not very efficient to describ
baryonic matter by quarks, but in an intermediate regi
quarks and mesonic bound states may be the right degre
freedom. The mesons are formed by the strong gluonic
traction in certain channels. The chiral linears model with
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Eötvös University, Pa´zmány P. s. 1/A, Budapest, H-1117 Hungar
0556-2813/2000/61~3!/035202~12!/$15.00 61 0352
d-
a
-

t
-

n

n

al

r

-

-
-

se

f
e
h
r

,
of

t-

quarks is a good model to investigate the dynamics belo
momentum scale ofk,kuv51.2 GeV.1 Such a hybrid ap-
proach has been already used at finite temperature with
cess. In this paper we will treat pure quark matter and c
centrate on chiral symmetry aspects of the transition.
neglect quark confinement but assume the gluons to be
fined into the mesons. The connection to nuclear matter
be considered elsewhere@7#. The finite baryon density dy-
namics is much more sensitive to neglecting confinem
than the finite temperature dynamics. Indeed it is known th
e.g., the Nambu–Jona-Lasinio~NJL! model gives a first or-
der phase transition at unrealistically low baryon dens
@8,9#. Without confining quark forces, which repel quar
tripled in neutral nucleons from each other@10#, the linears
model with quarks probably overestimates the binding
ergy per baryon of nuclear matter.

We use renormalization group flow equations in the pr
ence of finite quark density. As a first step, we start with
heat kernel representation of the effective potential using
cutoff function of the earlier finite temperature calculatio
@1#. The extension of this technique to finite density
straightforward in contrary to the cutoff function introduce
by the Wetterich group@11# for finite temperature studies
However, the proposed method has its shortcomings.~1! The
heat kernel cutoff is a Lorentz invariant cutoff, and as su
does not zoom to the Fermi surface with increasing evolut
steps. In principle the goal of the renormalization group a
proach for finite fermion density is@12# to treat the critical
long wave length particle hole excitations of the finite Fer
system towards the end of the evolution. These particle h
excitations are generated at the Fermi surface. In the rela
istic case with Goldstone bosons this final evolution s
should coincide with the treatment of the zero mass boso
~2! Extra terms which reduce the ultraviolet sensitivity in o
heat kernel cut-off function result in an integration pole
the Fermi surface, making the numerical integration difficu

In this paper we concentrate on deriving the formalism
a finite density calculation with finite temperature. We sol

, 1The definition of this momentum scale depends on the renorm
ization group scheme.
©2000 The American Physical Society02-1
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the flow equations for finite density at temperatureT50
leaving our final goal, the determination of the phase d
gram in the whole (T,m) plane to another paper. Furthe
more, we compare our renormalization group results with
mean field approximation.

As a description of choice in this work we use the lineas
model. We think that this model can play the role of a si
plified theory showing the effects of relativistic field theo
at finite density as a kind of Ising model for nuclear physi
The equation of state improved by the renormalization gro
in the one loop gives clear signals on what is happening
the finite density system. The main message is the intric
connection between the effective mass of the fermions
the effective masses of the mesons exchanged betwee
fermions. In classical nonrelativistic nuclear physics the ti
scale of the meson exchange is short in comparison with
time scale of the nucleon dynamics. At normal nuclear d
sity the mesons will not be modified drastically by th
nuclear medium. In the quark picture the time scale for
exchange of a meson is not different from the time sc
connected to the rearrangement of the fermion momenta.
mesons cannot be taken into account as potentials, which
turned into effective interactions, due to the quark rescat
ing in the medium. The mesons participate fully in the re
ganization of the chiral symmetric phase with increas
density. The quark many body problem is therefore very d
ferent from the nuclear physics problem where the nucl
dynamics largely decouples form the meson dynamics.
only possible tool we have to solve such an intrinsica
nonlinear problem in field theory is the renormalizati
group, therefore it is worth to study this technique in nucle
physics to get a better understanding of the phase structu
baryonic matter.

The paper is organized as follows. In Sec. II we revi
the derivation of the renormalization group flow equation
the effective potential at zero density and temperature.
extension of this method to finite temperature and bar
density is presented in Sec. III. At the end of this section
show a first result from the RG flow equation at finite de
sity. In Sec. IV we discuss the mean field approximation
the linears model and in Sec. V we present our results
two sets of mean field couplings, obtained from the RG e
lution. Here we study the finite baryon density phase tran
tion of the linears model in the mean field approximation
In Sec. VI we compare the results of the grid and the m
field calculations. Section VII is devoted to a summary a
to the conclusions. In the Appendixes we discuss the con
tion between the fermionic part of the flow equations and
mean field result and give a detailed derivation of the fl
equations at finite temperature and density.

II. EVOLUTION OF THE LINEAR s MODEL

We consider the chiral constituent quark model w
quarks,s, andp mesons. At zero temperature and chemi
potential in Euclidean space the partition function or the g
erating functional without external sourcesD, is given by
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Z@D50#5E DqDq̄DsDpW expH 2E d4x~LF1LB!J
~1!

with a fermionicLF , and a bosonicLB , part

LF5q̄~x!@gE]E1g~s1 i tWpW g5!#q~x!, ~2!

LB5
1

2
@~]ms!21~]mpW !2#1F~s21pW 2!. ~3!

The Yukawa coupling of the constituent quarks to the m
sons is denoted byg. The parameters of the linears model at
T50 are chosen in the same way as in Refs.@1,3#. We as-
sume that at an ultraviolet scalekuv , the full QCD dynamics
reduces to a hybrid description in terms of quarks and ch
bound states. The gluons are assumed to be frozen in
residual mesonic degrees of freedom and their couplings

At the beginning of the evolution atkuv51.2 GeV we
choose the effective potential densityF0, to be of the follow-
ing form:

F0~fW !5
m2

2
f21

l

4
f4, with f25s21pW 2, ~4!

where the positive mass squaredm250.42 GeV2 reflects a
symmetric ground state, i.e., the minimum of the poten
lies at the origin. The four boson coupling at this scale isl
530 @1,3#. The values correspond to a critical temperatu
Tc'150 MeV, and a chiral symmetry breaking scalekbr
'1 GeV which one obtains after performing the RG proc
dure.

The effective potential densityF(f), can be evolved@1#
using the heat kernel method. For this purpose the one l
effective potential is calculated with a cutoff functio
f (k2t), which contains the evolution scalek:

f ~x5k2t!5e2xS 11x1
1

2
x2D . ~5!

Doing this, the couplings of the effective potential becom
scale dependent:m5m(k) andl5l(k).

Using the the Schwinger proper time representation
fermionicFF contribution to the effective potential density

FF5
1

2E0

`dt

t
f ~k2t!E d4q

~2p!4
Tr e2t[q21g2f2]

5
1

2
4NcNfE

0

`dt

t
f ~k2t!E d4q

~2p!4
e2t[q21g2f2] ~6!

and correspondingly@1# the bosonic part is
2-2
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RENORMALIZATION GROUP FLOW EQUATION AT . . . PHYSICAL REVIEW C61 035202
FB52
1

2E0

`dt

t
f ~k2t!E d4q

~2p!4
Tr e2t[q21]2F0 /]f i]f j ]

52
1

2E0

`dt

t
f ~k2t!E d4q

~2p!4

3e2t[q2]@3e2t2F081e2t[2F0814F09f2] #, ~7!

with

F05F0~f2,k!, F085
]F0

]f2
, F095

]2F0

~]f2!2
. ~8!

The total effective potential density is the sum of the
two termsF5FB1FF. The evolution equation of this poten
tial results from the derivative of the potential with respect
k. In the spirit of the renormalization group improved on
loop approximation the derivative only acts on the cut
function and the potential densityF0, is replaced by the
evolving potential densityF. The evolution equation for the
linear s model then has the following simple form:

]F

]k
5

k5

32p2 H 3

k212F8
1

1

k212F814F9f2
2

8Nc

k21g2f2J .

~9!

In the approximation to the RG evolution used here only
effective potential densityF, evolves with the scalek. The
Yukawa couplingg53.23 is assumed to be constant. T
limitation of this approach will be discussed later. Note th
during the evolution one passes from the region withm2

.0, where the potential is symmetric, to the regionm2,0
where the potential has a mexican hat shape. The denom
tors of the meson loop terms@e.g., the first two terms on th
left-hand side~LHS! of Eq. ~9!# indicate a limitation of the
one loop renormalization flow. The one loop corrections
of order O(\) in an expansion in\. In the regimek2

12F8<0, however, the usual Gaussian fixed point is u
stable and a non-Gaussian fixed point should be consid
bringing in O(\0) effects @13#. With our choice of param-
eters this happens atk<kinst'200 MeV.

III. EVOLUTION EQUATION AT FINITE DENSITY

The renormalization group flow equations give a well d
termined shape of the effective potential with which we w
work in this section. Since they are formulated in the co
tinuum, the finite baryon densityrB can be implemented
Although the primary aim of the present work is to discu
the chiral transition at finite baryonic density, we sh
present the master formulas for finite temperatureT and fi-
nite rB and then take the limitT→0.

We start our derivation from Eqs.~6!,~7! extending them
to finite temperature and finite chemical potential. Since
are working now with fixed temperature and chemical pot
tial, one should replace the potential densityF, by the ther-
modynamical potential densityV(f2). The fermionic part of
the effective potential density generalized to finite tempe
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VF5
T

2
4NcNfE

0

`dt

t
f ~k2t!

3(
n
E d3q

~2p!3
e2t[(nn1 im)21qW 21g2f2] , ~10!

with the cutoff functionf (x) given by Eq.~5!, and the Mat-
subara frequenciesnn5(2n11)pT for fermions. The
bosonic part is the one already examined in Ref.@1#,

VB52
T

2E0

`dt

t
f ~k2t!(

n
E d3q

~2p!3

3e2t(vn
2
1qW 2)@3e2t2V081e2t(2V0814V08f2)# ~11!

with Matsubara frequenciesvn52npT for bosons. The de-
rivatives in the potential are taken again with respect tof2.
The total effective potential density is the sum of the tw
termsV5VB1VF.

An advantage of the heat kernel regulator is that the c
culation of derivatives with respect to the momentum scak
can be performed analytically to yield compact formulas.
shown in Appendix A, we have

]VF

]k2
5

NcNf

8p2
k4

d

dk2E0

`

dq
1

Eq,k
@12n~Eq,k!2n̄~Eq,k!#,

~12!

where Eq,k5Aq21k21g2f2 and n(x) and n̄(x) are the
Fermi-Dirac distribution functions for particles and antipa
ticles. Evaluating the derivative with respect tok2 on the
right hand side, we obtain

]VF

]k2
52

NcNf

32p2
k4E

0

`

dqF 1

Eq,k
3 @12n~Eq,k!2n̄~Eq,k!#

2
1

TEq,k
2 $n~Eq,k!@12n~Eq,k!#

1n̄~Eq,k!@12n̄~Eq,k!#%G . ~13!

We notice that the distribution functions explicitly show ho
the temperature and the baryonic density modify theT50
andrB50 result: The right hand side of the evolution equ
tions in vacuum is diminished~1! by the Pauli blocking ef-
fect as seen in the first bracket and~2! by the thermally
excited states as seen in the second bracket. Similarly,
bosonic part atTÞ0 is evaluated as shown in Appendix A
where]VB/]k2 is expressed in terms of the Bose-Einste
distribution function.

Although formula ~13! is generally valid forTÞ0 and
rBÞ0, it is not useful when the temperature is set to ze
due to the factorT21 in the second bracket. The zero tem
perature formula is obtained easily from Eq.~12! making the
substitutions n(Eq,k)→u(m2Eq,k) and n̄(Eq,k)→0:
2-3
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]VF

]k U
m

52
NcNf

8p2

k5

k21g2f2 F12
m

Am22k22g2f2

3Q~m2Ak21g2f2!G . ~14!

Here again we see how the evolution equation at fin
baryon density is modified by Pauli blocking. In Appendix
we show how the integral of the finite density part of E
~14! gives the mean field result, which will be presented
Sec. IV.

For the charge neutral system~zero bosonic chemical po
tential! at T50 the bosonic term is the same as in vacuu
Adding both contributions, we have the zero temperat
flow equation for finite baryon density as follows:

]V

]k U
m

5
k5

32p2 H 3

k212V8
1

1

k212V814V9f2

2
4NcNf

k21g2f2 S 12
m

Am22k22g2f2

3Q~m2Ak21g2f2!D J . ~15!

We stress that such a compact form is obtained for the fl
equation in the heat-kernel method; the Pauli blocking eff
due to the presence of the Fermi sea is explicitly represe
by au function. This is certainly an advantage of the meth
However, the presence of theu function makes numerica
evaluations difficult because its derivatives produce sing
terms which are not easy to control in the numerical analy

As an attempt to circumvent this difficulty, we let th
chemical potential run during the evolution; so the chemi
potential will be a function of the scalar field and the m
mentum scalem5m(f,k), as proposed by Shankar in Re
@14#. In fact, it turns out that no singularities of the fermio
terms appear in the evolution with a runningm. In the func-
tional integral for V we explicitly insert a k-dependent
chemical potential.

The method is best explained starting fromk50. At the
end of the evolution the transition to the free energy den
can be made via a Legendre transformation

F~k50,f2!5V~k50,f2!1rm~k50,f2!, ~16!

wherem(k50) has to be eliminated fromV(k50,f2) via
the equation

]V~k50!

]m~k50!
52r. ~17!

Now we make a small change of infrared cut-off scalek and
adjustm(k) in such a way that the density remains consta

]V

]m~k!
52

]VF

]m~k!
52r. ~18!
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The same procedure is repeated at each step ofk. The ex-
plicit evaluation of the LHS at a finite evolution scalek using
Eq. ~10! yields

r5
2Nc

3p2 S xF
31

3

2
k2xF1

3

8

k4

xF
D , ~19!

with

xF5Am22k22g2f2. ~20!

An analysis of the solutionsm(xF) from Eq. ~19! shows
that at k50 this equation has a unique solutionm
5Ag2f21kF

2, with the Fermi momentumkF defined byr
52NckF

3/3p2. For kÞ0 it is advantageous to discuss th
solutions in terms ofz5xF /k. Equation~19! then reads

r5
2Nc

3p2
k3g~z!, ~21!

with

g~z!5z31
3

2
z1

3

8z
. ~22!

The behavior ofg(z) is shown in Fig. 1;g(z) has the
minimum

gmin5
1

2

A311

AA321
~23!

at z5 1
2
AA321[zm . At finite evolution scalek the line of

constant 3p2r/2Nck
3 will in general cut the constraint func

tion at two pointsz1 andz2. It is necessary for the equatio
to have real solutions that

k<S 3p2r

Nc

AA321

A311
D 1/3

[kth . ~24!

At k5kth the line of constant 3p2r/2Nck
3 is tangential to

g(z) at z5zm . Corresponding to the two solutions, th
chemical potential has two different values at fixed dens

FIG. 1. The functiong(z) with z5xF /k, which allows us to find
the solutions of the constraint Eq.~22! at a fixed densityr.
2-4
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m i~k!5Ak2zi~k!21k21g2f2 ~ i 51,2!. ~25!

The derivatives]m i /]k are calculated by demanding that th
baryon density found atk50 remains the sameindepen-
dentlyof the evolution scalek. Thus thek derivative of the
LHS of Eq. ~19! is zero, leading to

]m i

]k
52

1

m i

k

8zi
414zi

221
. ~26!

Applying the chain rule one can calculate the flow equat
for the thermodynamic potential with running chemical p
tential

]V

]k U
m(k)

5
]V

]k U
m5const

1
]V

]m

]m~k!

]k
5

]V

]k U
m5const

2r
]m~k!

]k
,

~27!

or rearranging this formula for each k we get the equival
free energy at eachk:

]F

]k U
rB

5
]~V1rm!

]k U
m(k)

5
]V

]k U
m5const

. ~28!

We can eliminate the chemical potential in the flow-equat
at eachk via a d function

15E d fd@ f ~z!#, ~29!

with

f ~z!5
2Nc

3p2
k3g~z!2r. ~30!

The evolution equation~27! with running chemical potentia
has two termsi 51,2 corresponding to the two roots of th
constraint equation

]V

]k U
m(k)

5E d f d@ f ~z!#F]V

]k U
m5const

1
]V

]m

]m~k!

]k G
~31!

5 (
i 51,2

E ] f

]z
dzU] f

]zU
21

d~z2zi !

3F]V

]k U
m5const

2r
]m~k!

]k G . ~32!

Note that at the two zeros of the functionf, z1 andz2, the
Jacobians have opposite signs~see Fig. 1! leading to some
cancellation. Thus we arrive at the final flow equation
03520
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]V

]k U
m(k)

5
k5

32p2 H 3

k212V8
1

1

k212V814V9f2

2
8Nc

k21g2f2J 1 (
i 51,2

~21! i

3H Nc

4p2

k4

k21g2f2

m i

zi
1

r

m i

k

8zi
414zi

221
J

3Q~kth2k!. ~33!

The reason of the presence of theu function in Eq.~33! is
apparent from Eq.~10!. Note that the term 1/(8zi

414zi
2

21) is singular atk5kth but can be integrated analytically
Equation ~33! is the evolution equation with running

chemical potentialm(k) at zero temperature for the thermo
dynamic potential density. In order to follow the minimu
of the order parameter at fixed density we need the free
ergy density. Recall that atk50 there is only one solution to
the constraint equation~19! which is related toz2, therefore
we can calculate the free energy densityF at k50 from the
thermodynamic potential densityV(k50) and the chemica
potentialm(k50):

F~k50,f2!5V~k50,f2!1rm~k50,f2!, ~34!

m~k50,f2!5AkF
21g2f2.

Due to the theta term in Eq.~33! thek evolution ofV(k)
and F(k) is the same tillkth and does not feel the baryo
density. Belowkth the density effects set in with the contr
butions of a shell of fermions. During the course of evoluti
the outside radius of the shell increases and the inside ra
diminishes until the longest wavelengths in the fermi sea
integrated. The effect arising from the fermi sea is classi
henceO(\0) and dominates the RG flow equation. For lar
enough densitiesr*0.45r0, we havekth.kinst and Eq.~9! is
replaced by the density driven evolution without unsta
boson terms.

We solved Eq.~33! numerically on a grid: the full poten
tial densityV, is discretized as a function off2 on a grid of
hundred points between 0,f2,0.05 GeV2. The resulting
hundred differential equations are solved with a Runge-Ku
method.

As we discussed earlier at the end of Sec. II the me
terms in the flow equation~33! develop singularities due to
the instability of the effective potential. This behavior is we
known in the literature@15,16#, the mesonic effective poten
tial in the one loop approximation generates tachyonic m
son masses. The renormalization group scalek2 avoids these
poles for some part of the evolution, but cannot get rid
them totally. The singularities in the boson denominators
the evolution equation appear atkinst

2 12V850, indicating
the disappearance of the Gaussian fix point@13#. As our stud-
ies show the inclusion of the non-Gaussian fixed point d
not change the position of the minimum considerably at z
temperature. Hence in this paper we neglect the singular
sonic contributions beyondk5kinst in the evolution equation
2-5
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leaving the more exact solution to a future work. The resu
of the grid calculation are shown in Figures. 2 and 3. We w
discuss them extensively in Sec. VI and compare them w
the mean field calculations presented in the next section

IV. COARSE GRAINED POTENTIAL IN MEAN FIELD
APPROXIMATION

Since the numerical solution of the RG flow equations h
difficulties at small momentum scalek, we discuss anothe
approximation to the low momentum region in this sectio
We evolve the vacuum theory from the ultraviolet scalek
5kuv down tok5kF corresponding to normal nuclear matt
densityrB5r0. Thereby we obtain a coarse grained poten
which is appropriate for the dynamics at these low mome
This potential contains the vacuum loop effects of the qua
and bosons integrated out up to this scale. Then we solve
coarse grained linear sigma model in mean field approxi
tion.

To keep the mean field approximation transparent we
proximate the coarse grained potential with the origi
fourth order form of Eq.~4! with renormalized parameters
These parameters depend on the range inf2 where the fit to
the coarse grained potential is done. We have chosen
sets: a fit on a wider region inf2 ~X! and a narrower one

FIG. 2. Normalized energy per baryon plotted against inve
densityrB

21 , normalized to normal nuclear densityr050.16 fm23,
in the broken phase~dashed line! and in the symmetric phase~solid
line!. The evolution Eq.~33! is solved on the grid. The energy o
the broken phase at zero density ise0.

FIG. 3. The binding energy per baryon calculated from the e
lution equation on the grid is shown as a function ofrB normalized
to normal nuclear densityr0.
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~Y!. The resulting parameters are summarized in Table
The coarse grained potential and the two fits are shown
Fig. 4. The negative values of the mass squared indicate
at the scalek5kF we already entered the broken phase, w

a nonvanishing expectation value of thes field, s̄. A mean
field solution with these potentials is straightforward
evaluating the HamiltonianH, in the presence of the Ferm
sea and then minimizingH with respect tos̄. Since we have
already taken into account quantum fluctuations from
Dirac sea and the bosons in the evolution, we do not nee
consider these pure quantum fluctuations any longer. T
effects are assumed to be of higher scale thankF and there-
fore they are integrated up in the coarse grained potential
course, we are missing typical quantum many body fluct
tions not included in the mean field approximation of t
many body system.

The mean field solution of the resultingf4 theory is stan-
dard. The Hamiltonian reads

H5E d3xFq†~aW pW 1gbs̄!q1
mMF

2

2
s̄21

lMF

4
s̄4G . ~35!

Using a plane-wave basis for the quarks one can rewrite
Hamiltonian as an integral over momenta. In the groun
state,T50, the Fermi sphere is filled from the bottom up
the Fermi momentumkF . The energy density is evaluated
be

e

- FIG. 4. The potentialV(f2) at momentum scalek5kth , from
the grid calculation~solid line! and the fitted curves with mean fiel
parametersX ~dashes! andY ~dashed-dotted line!. See Table I.

TABLE I. Effective meson potentials used. The fit range and

mass parametermMF
2 are in GeV2, the s̄0 , B1/4 and the mass of the

s meson are in GeV.

Type Fit rangef2 mMF
2 lMF s̄0 3gs̄0

B1/4 ms

X @0,0.05# 20.260 30.0 0.0940 0.902 0.15554 0.72
Y @0,0.01# 20.082 9.18 0.0945 0.906 0.11633 0.40
grid 0.0944 0.906
2-6
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FIG. 5. The energy per baryon plotted again
rB

21 in units of normal nuclear densityr0

50.16 fm23 for mean field parametrizationX
~left! and Y ~right!. Note the different energy
scales in the figures. The dashed line in the l
plot represents the Maxwell construction whic
determines the region of coexistence betwe
broken and chiral symmetric phase.
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e5
E

V
5

4Nc

~2p!3E0

kF
d3kAkW21g2s̄21

1

2
mMF

2 s̄21
lMF

4
s̄4

5
Nc

4p2 S 2kFAkF
21g2s̄232g2s̄2 kFAkF

21g2s̄2

2g4s̄4log
AkF

21g2s̄21kF

gs̄
D 1

1

2
mMF

2 s̄21
lMF

4
s̄4.

~36!

The quark Fermi momentum is fixed by the quark-dens
r53rB ,

kF5A3 3p2r

2NC

. ~37!

The means-field configuration is calculated by minimiz
ing Eq. ~36! with respect tos̄. One ends up with a self
consistent equation for the mean fields̄,

S ]e

]s̄
D

V

5
4Nc

~2p!3
E

0

kF
d3k

g2s̄

AkW21g2s̄2
1mMF

2 s̄1lMFs̄35
!

0.

~38!

There is always the trivial solutions̄50 corresponding to
the symmetric phase. At zero density the nontrivial solut
s̄05A2m2/l has a lower energy and represents the spo
neous broken phase. At higher density, the chirally symm
ric phase has lower energy. The energy density in the bro
phase relative to the symmetric one is

e0[ebr~rB50!52
m4

4l
52B, ~39!

whereby we defineB as a kind of bag constant. It gives th
amount of energy density by which the partonic vacuum
above the constituent quark vacuum. We estimate the se
tivity of the calculation to the input coarse grained poten
by comparing the minima of the energy per baryon in b
phases. The massless partonic~symmetric! phase has an en
ergy density
03520
y

n
a-
t-
en

s
si-
l
h

esym5
9

4 S 9p2

2Nc
D 1/3

rB
4/3 ~40!

with a minimum of the normalized energy per baryon

esym~rB!2e0

rB
U

min

53S 3p2

2Nc
D 1/4S m4

l D 1/4

~41!

at

rB,sym
min 5

1

3 S 2Nc

3p2D 1/4S m4

l D 3/4

. ~42!

In the constituent quark phase the asymptotic value of
energy per baryon is three times the quark mass:

ebr~r!2e0

rB
U

min

53gs̄0 . ~43!

Therefore in order to have a stable broken phase at low d
sity the following condition is necessary~but not sufficient!,

S 3p2l

2Nc
D 1/4

.g. ~44!

We note, that withg53.23 this condition is fulfilled for pa-
rametrization~X! but not for (Y). As a result the latter doe
not have a stable homogeneous phase with broken c
symmetry. In the following section we present our numeri
results.

V. RESULTS IN MEAN FIELD APPROXIMATION

In this section we discuss the results of the mean fi
calculations, shown in Figs. 5–7, before we compare th
with the grid calculation in the next section. In Fig. 5 w
present the energy per baryon as a function of the inve
density relative to the energy of the broken phase at z
baryon density. In the low density limit, the energy p
baryon of the broken phase slowly approaches three ti
the constituent quark mass 3mQ53gs̄0. This is the preferred
state at low densities, where we have a noninteracting di
system of constituent quarks. Since our coupling constang,
is fixed from the beginning to yield a constituent quark ma
of 300 MeV, the vacuum mass of the ‘‘nucleon’’ is small
than 938 MeV in both cases~X! and~Y! ~see Table I!. In the
chiral limit which we pursue here the nucleon is lighter th
2-7
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FIG. 6. The pressure as a function of inver
baryon density, calculated for mean field param
etrizationsX ~left! andY ~right!. The thick dashed
line in the left plot is the Maxwell construction
In the caseY ~right! no Maxwell construction ex-
ists. Note that the negative values of the press
are solutions of the equations but have no
physical interpretation. In both cases the press

for the symmetric phase (s̄50) asymptotically
approaches the bag pressureB ~see Table I! for
small densities~dashed-dotted line!.
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the real one. In the upper left corner of both plots the
rabola represents the partonic phase.

For the couplings~X! condition ~44! is fulfilled, thus the
phase diagram may be obtained using the Maxwell const
tion ~dashed line!. For a first order phase transition the equ
librium condition for a given temperature~in our caseT
50) and pressure is

G~T,P,N!5min. ~45!

In the region of coexistence between the two phases~I: par-
tonic! and ~II: constituent quark!, the temperature, pressu
and chemical potential have to be equal to each other. He

mB
I,II5

1

NB
G~T,P,NB!5

1

NB
~F1PV!5

F

NB
1P

1

rB
,

~46!

where the pressureP is constant in the coexistence region.
zero temperature the free energy per baryonF/NB equals the
energy per baryonE/N5«/rB and we can read off from the
tangent construction the energy per baryon as a functio
the inverse baryon density in the mixed phase:

E

NB
52P

1

rB
1mB . ~47!

The slope is the negative pressure and the intercept with
vertical axis is the baryon chemical potential at the ph
transition. The dashed line in Fig. 5 connects the low den
constituent phase with the high density partonic one. T
phase transition takes place between 0.27 and 1.90 t
normal nuclear density. In between the two phases coex

The couplings~Y! do not fulfill condition ~44!, e.g., we
have no stable broken phase. Hence there is no Max
construction in this case.
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For both parametrizations~X! and ~Y! we calculate the
pressure from Eq.~47!. The result is shown in Fig. 6. I
shows clearly the stable broken phase for parametriza
(X). For parametrization~Y! there is no stable broken phas
At low densities the pressure is always negative, thus i
more advantageous to pack the quarks into droplets of m
less quarks with nonperturbative vacuum between them t
to have loosely bound constituent quarks associated w
nucleons.

In Fig. 7 we present the binding energy per baryon s
tracting the ‘‘baryon mass’’ 3mQ , from the energy per
baryon. Note that in the case~X! the system is unbound, th
energy of the partonic phase has a minimum at;1.8 times
normal nuclear density. This minimum lies on the edge
the coexistence region. In the case of couplings~Y! the sys-
tem is strongly bound, the minimum of the partonic phase
rB50.78r0.

The difference between the two cases~X! and~Y! demon-
strates that the form of the coarse grained potentialV influ-
ences the physics at low momentum scale drastically. In
mean field approximation it is mainly the sigma massms

2

52ls̄0
2 which determines the amount of attraction, i.

binding or unbinding of baryonic matter. Recall the attra
tion in nonrelativistic Hartree approximation varies
2g2rs

22ms
2 . Potential~X! with a highs mass of 0.728 GeV

is less attractive than the potential~Y! with a s mass of 0.404
GeV. The meson-meson interaction terml, also fixes the
structure of the intermediate density region. A largel gives
a mixed phase as produced by potential~X! see Eq.~44!. The
grid calculation shares the low field strength region with t
potential (Y), and has the mass of thes meson in between o
the ones from the potentials~X! and ~Y! ~see Fig. 4!. There-
fore we expect that the equation of state on the grid
between the extremes determined by the potentials~X! and
(Y).
d
FIG. 7. Binding energy per baryon is plotte
againstrB in units of normal nuclear densityr0,
for the couplingsX ~left panel! and Y ~right
panel!.
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VI. COMPARISON OF MEAN FIELD RESULTS WITH
GRID CALCULATIONS

In this section we compare the results obtained from
mean field approximations with the ones from the grid c
culation. The main results are shown in Figs. 8 and 9.

In Fig. 8 we present the energy per baryon obtained in
~X! parametrization of the mean field~upper curve!, the ~Y!
parametrization~lower curve!, and the grid calculations
~dashed line!. The three curves show a very similar behavi
At low density the energy per particle is approaching
same limit of three times the mass of the constituent qua
as we discussed in the previous section. The nucleon ma
;900 MeV in both cases. With increasing density, one
rives at the point where no broken phase is supported
longer, i.e., the mean field Eq.~38! does not have a nontrivia
s̄ solution and only the massless partonic phase exists.
the coarse grained couplings (Y), this happens atrB
50.32r0, while for the grid calculation atrB50.56 r0. The
parametrization~X! leads to highest transition point atrB
51.32r0. In all three cases the order parameter drops

FIG. 8. Normalized energy per baryon, calculated on the g
~dashed line! and in the mean field calculations with couplingsX
~upper solid curve! andY ~lower solid curve!, is shown as a func-
tion of inverse densityrB

21 , normalized to normal nuclear densit

FIG. 9. Binding energy per baryon, calculated on the grid and
the mean field approximation with potentialsX ~upper curve! andY
~lower curve!, is shown as a function ofrB normalized to normal
nuclear density.
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zero, i.e., we have a first order phase transition.
Since the minimum of the energy per particle in the p

tonic phase is below the minimum of the broken phase,
Maxwell construction is possible and the broken phase is
stable even at lower densities for both the grid calculat
and model (Y). This phase starts from zero density and p
sists untilrB51.17r0 for the grid and untilrB50.78r0 for
the mean field calculation (Y). At these densities the droplet
fill up the whole volume. They are bound by'74 MeV
~grid! and'172 MeV~mean field!, respectively, per baryon
number. If ones compresses the system above this de
the fermi pressure pushes the equation of state higher u
energy.

Contrary to these cases there exists a Maxwell const
tion for potential~X! as we have seen in the previous sectio
The region of coexistence between the stable constitu
quark phase and the partonic phase ranges from 0.27r0 to
1.90r0.

In Fig. 9 we show the equation of state for the thr
calculations. The coarse-grained couplings~Y! as well as the
grid calculation yield bound systems. However, in both ca
the binding is too strong, 74 MeV per baryon in the grid a
172 MeV per baryon in the mean field calculation wi
model (Y). The saturation densities lie near normal nucle
density, but baryonic matter is already in a chirally symm
ric phase.

VII. SUMMARY AND CONCLUSION

We have calculated a coarse grained effective poten
from renormalization group flow equations in a quark mod
with explicit meson fields. At the Fermi momentum scale w
continue the evolution including Pauli blocking. To avo
meson instabilities we switched off the meson loop terms
kth'kF . The resulting quark matter overbinds and is in
chiral symmetric phase. We presented two mean field
proximations to the full grid calculation with different sets
couplings. The grid solution of the flow equation, with th
evolution of the meson effective potential omitted belowkth ,
lies in between the result of these two mean field appro
mations.

The many body physics found here is very similar to t
NJL model where one finds a first order phase transition w
either a mixed phase or a droplet phase@9#. Also the instan-
ton induced quark interaction of Ref.@5# produces a drople
phase of partonic quarks. In the effective potential the de
mining equation is the relation between the energy per qu
in the partonic phase and the constituent quark mass@see
Eqs.~41!,~43!#.

The shape of the droplets in the low density phase hav
be determined from an independent calculation includ
surface effects. The bag produced by the linears model does
not confine. It has a finite height, outside the massless qu
acquire a constituent quark mass. Otherwise the solutio
the evolution equation is similar to a MIT bag type solutio
with massless quarks inside. Up to now attempts to mo
the nucleon as a soliton in the linear sigma model have fa
due to the instability of the sigma solution arising from t
integration over the sea quarks. The evolution equation m

d

n

2-9
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be helpful in finding such a soliton solution too.
In our approximation we used lowest order in two cases

address the finite density problem: the coupling constang,
was fixed during the evolution and the wave function ren
malization Z was set to one. A recent publication of th
Wetterich group@11# uses a running meson-quark couplin
and obtains a solution with a mixed phase extending fr
very low to very high density. In fact the evolution of th
coupling constant at finite density is not necessarily the sa
as at zero density. The equations for the wave function re
malization and the coupling are modified at finite dens
Important effects such as pion condensation@17# may appear
after the wave function renormalization. One therefore ha
make more extended calculations to know the full result
the linear sigma model at finite density.

In quark matter the linear sigma model with only attra
tive sigma mesons and pions is not sufficient to capture
nuclear physics. Repulsive effects and confinement
nucleons play an important role. To monitor the transition
the deconfined phase one needs an order parameter w
keeps track of this transition. Since the linears model with
quarks is already a hybrid model, it is not unnatural to
clude also nucleon degrees of freedom explicitly and tr
the transition of nucleon to quark degrees of freedom
rectly. This has been done in a separate paper@7#.
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APPENDIX A: CALCULATION OF ­VF Õ­K AND ­VBÕ­K

In this appendix, we calculate the derivative of the th
modynamical potentials in the heat kernel method.

The fermionic part of the flow equations. The fermion part
of the thermodynamical potential is written as

VF5NcNfI
F~k!, ~A1!

with

I F~k!52T(
n,qW

E
0

`dt

t
f ~k2t!e2t[(nn1 im)21qW 21g2f2] .

~A2!

Using the fact that

d f~k2t!

dk
52k5t3e2k2t, ~A3!

and puttingEq,k
2 5g2f21qW 21k2, the derivativedIF/dk is

evaluated to be
03520
o

-

e
r-
.

to
r

-
e

to
o
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-
e
i-

e
r-

l

-

]I F

]k
522k5T(

n,qW
E

0

`

dtt2e2t[(nn1 im)21Eq,k
2 ]

522k5TS d

dk2D 2

(
n,qW

1

~nn1 im!21Eq,k
2

52k5TS d

dk2D 2

(
qW

SF~q,k! ~A4!

with

SF~q,k!5(
n

F 1

~nn1 im!21Eq,k
2

1
1

~nn2 im!21Eq,k
2 G ,

~A5!

where use of the fact has been made in the last equality
the sum with respect to the Matsubara frequenciesnn does
not change when the sign of the frequencies is changed

Now the nice point is that the sum inS(q,k) can be per-
formed analytically, as follows:

SF~q,k!5
d

dx2 (
n

@ ln@~nn1 im!21x2#

1 ln@~nn2 im!21x2##x5E
q,k
2 ,

5
d

dx2 (
n

@ ln@nn
21~x2m!2#

1 ln@nn
21~x1m!2##x5E

q,k
2 . ~A6!

Then evaluating the derivative, we have

SF~q,k!5
1

Eq,k
(

n52`

` F Eq,k2m

nn
21~Eq,k2m!2

1
Eq,k1m

nn
21~Eq,k1m!2G .

~A7!

Now utilizing the formula

(
n52`

`
1

nn
21x2

5
1

2Tx
tanh

x

2T
, ~A8!

we end up with

SF~q,k!5
1

2TEq,k
F tanh

Eq,k2m

2T
1tanh

Eq,k1m

2T G .
~A9!

InsertingSF(q,k) into ~A4!, we have

]I F

]k
52k5S d

dk2D 2E dqW

~2p!3

1

Eq,k
@12n~Eq,k!2n̄~Eq,k!#,

~A10!

wheren(x) @ n̄(x)# is the Fermi-Dirac distribution function
respectively,
2-10
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n~x!5
1

e(x2m)/T11
, n̄~x!5

1

e(x1m)/T11
. ~A11!

Now let us calculate the derivative with respect tok2,
which may be put into the integral; sincek2 appears only in
the combinationq21k2, the derivative can be converted
the one with respect toq2. Then making a partial integration
we obtain

]I F

]k2
5

k4

8p2

d

dk2E0

`

dq
1

Eq,k
@12n~Eq,k!2n̄~Eq,k!#.

~A12!

Inserting Eq.~A12! into Eq. ~A1!, we finally reach the for-
mula presented in the text:

]VF

]k2
5

NcNf

8p2
k4

d

dk2E0

`

dq
1

Eq,k
@12n~Eq,k!2n̄~Eq,k!#.

~A13!

The bosonic part of the flow equations. Similarly, with the
fermion part, the boson part of the thermodynamical pot
tial involves the integral:

VB~k!52
T

2 (
n,qW

E
0

`dt

t
f ~k2t!e2t[vn

2
1qW 21m2] ,

~A14!

with vn being the Matsubara frequencies for bosons. H
we shall confine ourselves to the case where the boson
no chemical potential. The extention to the case with fin
chemical potential is easy.

The derivative with respect tok can be performed a
much the same way as the fermion part. The only differe
comes in with the formula

(
n52`

`
1

vn
21x2

5
1

2Tx
coth

x

2T
. ~A15!

Thus we obtain

]VB

]k2
5

k4

32p2

d

dk2E0

`

dq
1

Eq,k
coth

Eq,k

2T
, ~A16!

with Eq,k
2 5q21k21m2.

Performing the derivative as before, we have

]VB

]k2
5

k4

64p2 F 1

m21k2
12E

0

`

dqH 1

Eq,k
3

nB~Eq,k!

1
1

TEq,k
2

nB~Eq,k!@11nB~Eq,k!#J G , ~A17!

wherenB(x) is the Bose-Einstein distribution function give
by
03520
-

e
as

e

e

nB~x!5
1

ex/T21
. ~A18!

Taking the limitT→01, we obtain

]VB

]k2
5

k4

64p2

1

m21k2
. ~A19!

APPENDIX B: CONNECTION BETWEEN THE MEAN
FIELD AND THE FLOW EQUATION RESULT

Let us regard only the density dependent part of the e
lution equations@Eq. ~14!#. If this part decouples from the
meson evolution, we can integrate this equation analytica

Vk50
F 5E

kinitial

0 dVF

dk2
dk2 ~B1!

5
Ncm

8p2Em22g2f2

0 k4dk2

~k21g2f2!Am22k22g2f2
. ~B2!

The integral gives the following result:

Vk50
F 52

Nc

8p2 S 2m3Am22g2f224mg2f2Am22g2f2

2
2

3
mAm22g2f2 312~g2f2!2log

m1Am22g2f2

gf D .

~B3!

Since one can do the replacements

m5AkF
21g2f2,

kF5Am22g2f2,

the potential takes the following form:

Vk50
F 5

Nc

4p2 S 2kFAkF
21g2f2 32g2f2 kFAkF

21g2f2

2g4f4log
AkF

21g2f21kF

gf
D

2
Nc

4p2

8

3
AkF

21g2f2kF
3 . ~B4!

Recalling the relation betweenV andF

V5F23rBm, ~B5!

we can identify the term in brackets withF, and this is in-
deed the fermionic part of our mean field result Eq.~36!.

We can also do this independent check for Eq.~33!, but
because of the complicated form of our constraint equa
this can not be done analytically. Numerical integration
the density dependent part in Eq.~33! reproduces again the
mean field results.
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