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Multiboson effects in multiparticle production
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The influence of multiboson effects on pion multiplicities, single-pion spectra, and two-pion correlation
functions is discussed in terms of an analytically solvable model. The applicability of its basic factorization
assumption is clarified. An approximate scaling of the basic observables with the phase space density is
demonstrated in the low density~gas! limit. This scaling and also its violation at high densities due to the
condensate formation is described by approximate analytical formulas which allow, in principle, for the
identification of the multiboson effects among others. For moderate densities indicated by the experimental
data, a fast saturation of multiboson effects with the number of contributing cumulants is obtained, allowing for
the account of these effects in realistic transport code simulations. At high densities, the spectra are mainly
determined by the universal condensate term and the initially narrow Poisson multiplicity distribution ap-
proaches a wide Bose-Einstein one. As a result, the intercepts of the inclusive and fixed-n correlation functions
~properly normalized to 1 at large relative momenta! approach 2 and 1, respectively, and their widths loga-
rithmically increase with the increasing phase space density. It is shown that the neglect of energy-momentum
constraints in the model is justified except near a multipion threshold, where these constraints practically
exclude the possibility of a very cold condensate production. It is argued that spectacular multiboson effects are
likely to be observed only in the rare events containing sufficiently high density~speckle! fluctuations.

PACS number~s!: 25.75.Gz, 05.30.Jp, 24.10.Nz
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I. INTRODUCTION

In future heavy ion experiments at the Relativistic Hea
Ion Collider ~RHIC! and the Large Hadron Collider~LHC!
one expects to obtain thousands of pions per a unit rapi
interval. Since the pions are bosons there can be multibo
effects enhancing the production of pions with low relati
momenta thus increasing the pion multiplicities, soften
their spectra, and modifying the correlation function
Though the present data does not point to any spectac
multiboson effects, one can hope to observe new interes
phenomena such as boson condensation or speckles in
rare events or in eventually overpopulated kinematic regi
with the pion density in the six-dimensional phase spacef
5(2p)3d6n/d3p d3x, of the order of unity~see, e.g., Refs
@1–8#!.

In the low-density limit (f !1), the mean phase spac
density at a given momentump can be estimated as the me
number of pions interfering with a pion of momentump
~rapidity y and transverse momentumpt) and building the
Bose-Einstein~BE! enhancement in the two-pion correlatio
function @7,8#: ^ f &p;p3/2N(p)/V, where N(p)5d3n/d3p
andV5r xr yr z is the interference volume defined in terms
the outward (r x), sideward (r y), and longitudinal (r z) inter-
ferometry radii. Typically^ f &p;0.1 for midrapidities and
pt;^pt& @7#. The data are also consistent with the pha
space density of pions near the local thermal equilibrium@9#.

At Alternating Gradient Synchrotron~AGS! and Super
Proton Synchrotron~SPS! energies the interference volum
V seems to scale withdn/dy ~see, e.g., Refs.@10,11#! point-
ing to the freeze-out of the pions at a constant phase s
0556-2813/2000/61~3!/034901~19!/$15.00 61 0349
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density.1 If this trend will survive then there will be no spec
tacular multiboson effects in the ordinary events at RHIC
even at LHC. In such a situation the standard two-parti
interferometry technique could be used to measure the sp
time intervals between the production points also in the
ture collider experiments. The corresponding interferome
radii for lead-lead collisions at LHC would be, howeve
rather large—about 20 fm.

The multiboson effects can show up, however, in cert
classes of events. An example is a rapidly expanding sys
with the entropy much smaller than in the case of total eq
librium. Then a strong transverse flow can lead to rat
dense gas of soft pions in the central part of the hydro
namic tube at the final expansion stage~see, e.g., Ref.@13#!.
Another reason can be the formation of quark-gluon plas
or mixed phase. Due to large gradients of temperature
velocity the hydrodynamic layer near the boundary w
vacuum can decay at a large phase space density and le
pion speckles even at moderate transverse momenta@14#.

The dramatic difference in behavior of Boltzman-lik
gases and dense multiboson systems can lead to se
problems for transport models such as RQMD, VENUS, e
ignoring actually the statistical properties of the partic
both in intermediate and final states. In these models
most intensive particle production happens at relatively ea
evolution ~expansion! stage when rather large pion pha
space densities can be achieved at RHIC or LHC energi

1A similar effect was also observed for protons produced
hadron- and electron-nucleus interactions@12#.
©2000 The American Physical Society01-1



ex
r-
tr
a

yt
-
ou
.
e
nd
al

o
a

ou
n

ar
s

za
lt
e
fo
ca

on
o

ns
ow
at
d

to
o-

r-
f
pl

ov
rg
ar

ro-
se
ion

s

e
e

me

e

-

ility

e

not
the

R. LEDNICKY et al. PHYSICAL REVIEW C 61 034901
Generally, the account of the multiboson effects is an
tremely difficult task. Even on the neglect of particle inte
action in the final state the requirement of the BE symme
zation leads to severe numerical problems which incre
factorially with the number of produced bosons@3,4#. In such
a situation, it is important that there exists a simple anal
cally solvable model@5# allowing for a study of the charac
teristic features of the multiboson systems under vari
conditions including those near the Bose condensation
this paper we use this model to demonstrate the influenc
the multiboson effects on pion multiplicities, spectra, a
two-pion correlation functions. In addition to the origin
papers@5,6#, similar studies can also be found in Refs.@15–
17#. Particularly, some of the new aspects of the multibos
effects, such as the scaling behavior with the phase sp
density or the behavior of the~semi!inclusive correlation
functions near the condensation limit were studied in
unpublished paper@15#. The present work represents a
elaborated version of the latter.

In Sec. II we introduce the space-time description of p
ticle production in terms of Wigner-like densities and discu
their physical meaning and the conditions of their factori
tion in the model of classical one-particle sources. The mu
boson formalism in the factorizable case is set forth in S
III. Using this formalism and the simple Gaussian ansatz
the emission function, we present in Sec. IV the analyti
solutions~partly in terms of the recurrence relations! for the
multiplicity distribution, single-boson spectra and two-bos
correlation functions. In Sec. V we compare the results
numerical calculations with the analytical approximatio
accounting for the approximate scaling behavior in the l
density~gas! limit as well as for the condensate formation
high densities. The results are discussed and summarize
Sec. VI.

II. SPACE-TIME PICTURE OF PARTICLE PRODUCTION

A. Wigner-like density

Let us first consider a process in which, in addition
others, justn nonidentical particles of given types are pr
duced with the four-momentapi5$Ei ,pi% and Lorentz fac-
torsg i5Ei /mi ~to simplify the notation, we assume that pa
ticles are spinless!. The inclusive differential cross section o
this process is described by the invariant production am
tudeTn(p1 , . . . ,pn ;a):

g1•••gn

d3nsn

d3p1•••d3pn

5(
a

uTn~p1 , . . . ,pn ;a!u2

[g1•••gnsnPn~p1 , . . . ,pn!,

~1!

where the sum over the quantum numbersa, describing the
rest of the produced system, contains also an integration
the momenta of the other produced particles with the ene
momentum conservation taken into account. The noninv
ant production probabilityPn(p1 , . . . ,pn) is normalized to
unity.
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If the particles are identical spinless bosons, then the p
duction amplitude has to satisfy the requirement of Bo
symmetry. Formally, this can be achieved by the substitut
of the nonsymmetrized amplitudeTn(p1 , . . . ,pn ;a) ~corre-
sponding to the ‘‘switched off’’ effect of quantum statistic!
by a properly symmetrized one:

Tn~p1 , . . . ,pn ;a!→~n! !21/2(
s

Tn~ps1
, . . . ,psn

;a!,

~2!

where the sum is over alln! permutationss of the sequence
$1,2, . . .n,%.

In the following we will neglect particle interaction in th
final state.2 Then the nonsymmetrized amplitud
Tn(p1 , . . . ,pn ;a)[Tn(P;a) is related to the amplitude in
the space-time representationTn(x1 , . . . ,xn ;a)[Tn(X;a)
~describing production of the particles in the space-ti
points with the four-coordinatesX5$x1 , . . . ,xn%) by the
usual Fourier transform

Tn~P;a!5E dX eiPXTn~X;a!. ~3!

Inserting Eq.~3! into Eq. ~1! and introducing the space-tim
density matrix@19# rn(X;X8)5(aTn(X;a)T n* (X 8;a) and
its partial Fourier transform~emission function!—an analogy
of the Wigner density@20#:

D̃n~p1 ,x̄1 ; . . . ;pn ,x̄n![g1•••gnsnDn~p1 ,x̄1 ; . . . ;pn ,x̄n!

5E dd eiPdrnS X̄1
1

2
d;X̄2

1

2
d D ,

~4!

whereX̄5 1
2 (X1X8), d5X2X8, we can rewrite the produc

tion cross section~1! in the absence of BE effects as

d3nsn

d3p1•••d3pn

[snPn~p1 , . . . ,pn!

5snE d4x̄1•••d4x̄n Dn~p1 ,x̄1 ; . . . ;pn ,x̄n!.

~5!

SinceDn is a real~though not positively defined! function
normalized to unity, in accordance with Eq.~5! it can be
considered as an approximation to the emission probab
of the particles with given four-momentapi in the average
space-time pointsx̄i5

1
2 (xi1xi8).

The insertion of the symmetrized amplitude~2! into the
cross section formula~1! leads to the substitution of th

2This is a more or less valid assumption for neutral pions but
for the charged ones. For the treatment of multiboson effects in
case of interacting pions see, e.g., Ref.@18#.
1-2
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probability Pn by a BE modified onePn
c . For example, in

case of a two-boson production process, instead of Eq.~5!
we have

P2
c~p1 ,p2!5E d4x1 d4x2@D2~p1 ,x1 ;p2 ,x2!

1D2~p,x1 ;p,x2!cos~qx!#, ~6!

where p5 1
2 (p11p2), q5p12p2, and x5x12x2. Clearly,

for n.1 the probabilityPn
c is no longer normalized to unity

The integral over this probability yields the BE weightvn of
an n-boson event produced in the absence of the effec
quantum statistics (v05v151, vn.1 for n.1):

vn5E d3p1•••d3pn Pn
c~p1 , . . . ,pn!Y E d3p1•••d3pn

3Pn~p1 , . . . ,pn!. ~7!

We will also use the differential BE weight
vn

(k)(p1 , . . . ,pk) defined as in Eq.~7! except for a skipped
integration over the momenta of particles 1,2, . . . ,k.

The multiboson problem greatly simplifies~see Sec. III!
in the factorizable case when then-particle emission function
and, as a consequence, the nonsymmetrized production p
ability can be written as products of the single-particle on

Dn~p1 ,x1 ; . . . ;pn ,xn!5D~p1 ,x1!•••D~pn ,xn!,

Pn~p1 , . . . ,pn!5P~p1!•••P~pn!. ~8!

Consequently, the BE weights are expressed through a
versal functionFi j ~see, e.g., Ref.@18#!

vn
(n)~p1 ,p2 , . . .pn!5(

s
)
i 51

n

Fis i
, ~9!

where

Fi j 5E d4xD~pi j ,x!•exp~ iqi j x!/@P~pi !P~pj !#
1/2,

~10!

pi j 5
1
2 (pi1pj ) andqi j 5pi2pj . The sum in Eq.~9! is over

n! possible permutationss of the sequence$1,2, . . . ,n%. For
example, in the two-boson case, we have

v2
(2)~p1 ,p2!5F11F221F12F21[11K2

(2)~p1 ,p2!, ~11!

where K2
(2)5F12F21 is so-called differential cumulant~see

Sec. III!.

B. One-particle sources

To clarify the physical meaning of the emission functi
and the factorization assumption~8!, let us follow Kopylov
and Podgoretsky~see, e.g., Ref.@1#! and assume that par
ticles 1,2, . . . , areemitted by one-particle sourcesA,B, . . . ,
which are considered as classical so they can be treate
parameters and not by amplitudes. Thus the four-coordin
of the source centersxA ,xB , . . . , andother source character
03490
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istics in the model can be considered as a part of the qu
tum numbersa[$xA ,xB , . . . ,a8%. It was pointed out by
Kopylov and Podgoretsky that the BE effect is mainly det
mined by the phase factor exp(ip1xA1 ip2xB1•••) con-
tained in the amplitudeTn(p1 , . . . ,pn ;a).

Let us first consider the production of only one boso
Assuming the translation invariance of the decay amplitu
ũ, we can write the single-boson amplitude in the fou
coordinate representation as

T~x1 ;a![ t̃ ~x12xA ;a!5ũ~x12xA ;a8!v~a!, ~12!

wherea5$xA ,a8% anda85$A, . . . %. Inserting Eq.~12! into
Eq. ~3! and introducing the Fourier transform

t~p;a!5E d4j eipj t̃ ~j;a![u~p;a8!v~a!, ~13!

we obtain the Kopylov-Podgoretsky ansatz

T~p;a!5eipxAt~p;a![eipxAu~p;a8!v~a!. ~14!

For the production probability we have

Pc~p!5P~p![E d4xA W~p,xA!

5E d4xA(
a8

ut~p;$xA ,a8%!u2, ~15!

where we have introduced the~true! emission probability
W(p,xA). Similarly, if two bosons are produced, the produ
tion probability takes the form

P2
c~p1 ,p2!5E d4xA d4xB(

a8
$ut~p1 ,p2 ;a!u2

1Re@ t~p1 ,p2 ;a!t* ~p2 ,p1 ;a!eiqx#%.

~16!

Note that herex5xA2xB and, as usual,q5p12p2.
The emission functionD can be expressed through th

Kopylov-Podgoretsky amplitudest(p;a) continued off mass
shell. Using the inverted Fourier transform in Eq.~13!, we
get from Eq.~4! @18#

D~p,x̄1!5
1

~2p!4 (
a8

E d4xA d4k eik(xA2 x̄1)

3tS p1
1

2
k;$xA ,a8% D t* S p2

1

2
k;$xA ,a8% D

5
1

~2p!4 (
a8

E d4xA d4keik(xA2 x̄1)

3uS p1
1

2
k;a8Du* S p2

1

2
k;a8D uv~a!u2.

~17!

It is clear from Eq.~13! that the momentum dependenc
of the amplitudet(p;a) is determined by the space-tim
1-3
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R. LEDNICKY et al. PHYSICAL REVIEW C 61 034901
extent of the one-particle source. For example, assuming
the source emits a particle independently of the quan
numbers a8 except for the source typeA: ũ(j;a8)
5ũ(j;A) and that the distribution of the emission points
the source rest frame is given by a simple Gaussian with
width parametersr A andtA characterizing the proper spac
time sizes of the sourceA, we obtain in case of a source
rest:3

t~p;a!;expS 2
1

2
r A

2p22
1

2
tA

2p0
2D v~a!. ~18!

The probabilityuv(a)u2 describes the production of partic
sources and depends on the four-coordinatesxA of the source
centers. In the following we will take it also in a simp
Gaussian form with the width parametersr̃ 0 and t̃0 charac-
terizing the space-time extent of the source production
gion.

Comparing Eqs.~15! and ~17!, it can be seen that th
emission functionD is more spread in space and time th
the emission probabilityW. In particular, the Gaussian pa
rametrizations ofũ(j;A) and uv(a)u2 yield

W~p,x!;exp~2r A
2p22tA

2p0
2!expS 2

x2

2r̃ 0
2

2
x0

2

2t̃0
2D ~19!

and

D~p,x!;exp~2r A
2p22tA

2p0
2!expS 2

x2

2r̃ 0
21r A

2
2

x0
2

2t̃0
21tA

2 D .

~20!

Clearly, the factorized form~8! for the emission function
is recovered in case of independent sources~i.e., sources
having no quantum numbers in common! assuming a unique
mechanism of their production. Generally, the latter con
tion may not be fulfilled, e.g., in case of heavy ion collisio
without selection of the impact parameter. Then, even
independent sources, Eq.~8! will be substituted by a
weighted sum of factorized terms corresponding to differ
single-particle emission functions.

The single-particle density generally contains contrib
tions from the sources of different type~e.g., different reso-
nances!. It is interesting to note that in case of only on
source type~i.e., universal source parameters! and on condi-
tion of sufficiently slow relative motion of the sources co
tributing to low-uqu pairs ~e.g., due to limited source deca
momentum!, the BE correlation effect in the two-boson ca
is solely determined by the characteristic space-time dista
between the source centers

3Note that Eq.~18! is also valid off mass shell whenp0ÞE. For a
source moving with a nonrelativistic velocitybA , the substitution
p→p2pA has to be done in Eq.~18!, wherepA5mbA is a mean
three-momentum of the particle emitted by a sourceA.
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P2
c~p1 ,p2!5P~p1!P~p2!@11exp~2 r̃ 0

2q22 t̃0
2q0

2!#.
~21!

This result follows from Eq.~6! or, in terms of the Kopylov-
Podgoretsky emission amplitudes, immediately from E
~16!. If the sources of interfering bosons move with no
relativistic velocitiesbA[pA /m and the distribution of their
characteristics is given by a product of exp(2pA

2/2D0
2) and

the same Gaussian as before~i.e., the residual slow relative
motion decouples from other source characteristics!, we still
arrive at Eqs. ~19!,~20!, up to a substitution r A

2p2

→r A
2p2/@2(r AD0)211# corresponding to a widening of th

momentum distribution due to the source relative motio
Note that the factorized form of the multiparticle density
not destroyed by this motion. The latter, however, influen
the two-boson correlation function which now becomes s
sitive to the source sizer A even in case of one source typ
Eq. ~21! being modified by the substitutionr̃ 0

2→ r̃ 0
21r A

2/@2
1(r AD0)22#.

The space-time extent of one-particle sources can be
ally considered much smaller than the characteristic spa
time distance between their centers (r A! r̃ 0 , tA! t̃0). The
four-momentum dependence of one-particle amplitudes
then negligible when varying the particle four-momenta
the amount; r̃ 0

21 ,t̃0
21 characteristic for the interference e

fect. On such asmoothnesscondition, there is practically no
difference between the emission functionD and the emission
probability W and both Eqs.~6! and ~16! yield the well-
known result of Kopylov-Podgoretsky for the productio
probability of two identical bosons

P2
c~p1 ,p2!8P~p1 ,p2!$11^cos@q~x12x2!#&%. ~22!

III. MULTIBOSON FORMALISM
IN FACTORIZABLE CASE

The multiboson effects can be practically treated provid
that we can neglect particle interaction in the final state a
assume independent emission of noninterfering particle~a
valid assumption for heavy ion collisions!, supplemented by
the requirement of a universal single-particle emission fu
tion D(p,x) for the detected class of events. We can then
Eq. ~8! expressing then-particle emission function as a prod
uct of the single-particle ones. Then, similar to Refs.@5,6# it
is convenient to define the functions

G1~p1 ,p2!5E d4x DF1

2
~p11p2!,xGexp@ i ~p12p2!x#,

Gn~p1 ,p2!5E d3k2•••d3kn G1~p1 ,k2!•••G1~kn ,p2!

[E d3k2 Gn21~p1 ,k2!G1~k2 ,p2!,

gn5E d3p Gn~p,p!. ~23!
1-4
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The functionG1 at equal momenta is just the initial~not
affected by the multiboson effects! single-boson spectrum
normalized to unity

P~p!5G1~p,p!, E d3p P~p![g151. ~24!

The related quantities are so-called cumulants

Kn
(2)~p1 ,p2!5~n22!! (

i 51

n21

Gi~p1 ,p2!

3Gn2 i~p2 ,p1!/@P~p1!P~p2!#,

Kn
(1)~p!5~n21!!Gn~p,p!/P~p!,

Kn5~n21!!gn . ~25!

It can be shown that the BE weight of an event withn iden-
tical spin-zero bosons is determined through the cumula
K j by the recurrence relation@18#

vn5C0
n21K1vn211C1

n21K2vn221•••1Cn21
n21Knv0

~26!

with v05v151; Ci
n215(n21)!/@ i !(n212 i )! # are the

usual combinatorial numbers. For example,v2511K2 and
v35113K21K3. One can check thatvn5n! provided that
all the elementary one-particle sources are situated at
and the same space-time point so that all the single-bo
states are identical andK j 115 j !.4 In the other extreme cas
of a large phase space volume andn2K2!1, we can neglect
the contribution of the higher order cumulants except for
first power ofK2 and write

vn811C2
nK2 . ~27!

Given the initial multiplicity distributionw̃(n), the BE
affected one is easily calculated using the BE weightsvn :

w~n!5vnw̃~n!Y (
j 50

`

v j w̃~ j !. ~28!

Particularly, assuming the initial Poissonian distribution w
the mean multiplicityh: w̃(n)5e2hhn/n!, we get

w~n!5vn

hn

n! Y (
j 50

`

v j

h j

j !
. ~29!

4This situation is similar~flat correlation function! though differ-
ent from the case of the emission of so called coherent boson
which there is no enhancement factor. In fact, when the one-par
sources become closer and closer, so that their distances are
than the wavelength of the emitted bosons, they can no mor
considered as independent ones and a multiparticle source of
interfering bosons has to be introduced@21#. To quantify the tran-
sition to the noninterfering bosons a concept of the cohere
length can be used@22#.
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Similarly, the BE affected single- and two-boson spect
respectively normalized ton andn(n21), can be written as

Nn
(1)~p![Nn~p!5nvn

(1)~p!•P~p!/vn ~30!

and

Nn
(2)~p1 ,p2!5n~n21!vn

(2)~p1 ,p2!P~p1!P~p2!/vn ,
~31!

where the differential BE weightsvn
(1)(p) and vn

(2)(p1 ,p2)
are expressed through the differential cumulantsKn

(1)(p) and
Kn

(2)(p1 ,p2) @15#:

vn
(1)~p![E d3p8 vn

(2)~p,p8!P~p8!

5 (
j 50

n21

Cj
n21K j 11

(1) ~p!vn212 j ,

vn
(2)~p1 ,p2!5 (

j 50

n22

Cj
n22vn222 j

3F(
l 50

j

Cl
jKl 11

(1) ~p1!K j 2 l 11
(1) ~p2!

1K j 12
(2) ~p1 ,p2!G . ~32!

The differential weightvn
(2)(p1 ,p2) can be considered a

a two-particle correlation function measuring the BE effe
on the initial uncorrelated two-particle spectru
Ñn

(2)(p1 ,p2)5n(n21)P(p1)P(p2), with the normalization

E d3p1 d3p2 vn
(2)~p1 ,p2!P~p1!P~p2!5vn . ~33!

Usually the correlation function is normalized to unity at
largeuqu. Such a normalization is approximately satisfied f
the correlation function defined as

Rn~p1 ,p2!5Nn
(2)~p1 ,p2!/Ñn

(2)~p1 ,p2![vn
(2)~p1 ,p2!/vn .

~34!

In practice, the two-particle correlation function is defin
through the observable spectra as

Rn~p1 ,p2!5cnNn
(2)~p1 ,p2!/@Nn

(1)~p1!Nn
(1)~p2!#. ~35!

Similarly, the~semi!inclusive correlation function is define
as

R~p1 ,p2!5cN(2)~p1 ,p2!/@N(1)~p1!N(1)~p2!#, ~36!

where

N(1)~p!5(
n

w~n!Nn
(1)~p!,

for
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less
be
n-

e
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N(2)~p1 ,p2!5(
n

w~n!Nn
(2)~p1 ,p2! ~37!

are the corresponding~semi!inclusive single- and two-
particle spectra,w(n) is the normalized multiplicity distribu-
tion accounting for the BE effect according to Eq.~28!. Later
on, using an analytical Gaussian model for the emiss
function, we show that the normalization constantcn can be
expressed through the BE weights as

cn5nvn21
2 /@~n21!vnvn22# ~38!

and thatc51 for the inclusive correlation function provide
a Poissonian multiplicity distribution of the initially uncorre
lated bosons.

As one can see from formulas~30!–~32!, the multiboson
correlations lead to distortions of the initial single- and tw
particle distributions. Such distortions are small in the c
of interference of only two or three identical particles. Ho
ever, they can become essential for the events with a la
number of identical bosons due to factorially increas
number of the correction terms@3# ~see also Refs.@1# and
@5#!. For the processes characterized by a high (.0.1) phase
space density of the identical bosons at the freeze-out
the multiboson effects can no more be considered as a
rection @3#.

To account for the multiboson symmetrization effect
the event simulators, a phase space weighting procedure
used with weights in the form of a normalized square of
sum ofn! plane waves@3,4#. This procedure, however, doe
not appear practical for a largen due to the factorially large
number of the terms to be computed to calculate the we
and, due to large weight fluctuations. These fluctuations
be substantially reduced by weighting only in the moment
space. The corresponding BE weights are given in Eq.~9!.
They are expressed through the universal function~10!
which is simply related with the functionG1:

Fi j 5G1~pi ,pj !/@P~pi !P~pj !#
1/2. ~39!

On the condition of sufficient smoothness of the sing
particle spectra, we can put

Fi j 8E d4x D~pi j ,x!exp~ iqi j x!Y E d4x D~pi j ,x!,

~40!

where pi j 5
1
2 (pi1pj ) and qi j 5pi2pj . This function can

then be calculated as suggested in Ref.@18#:

Fi j 5^exp~ iqi j xk!&pi j
, ~41!

where the averaging is done over all simulated phase s
points $pk ,xk% such that pk is close to a given three
momentumpi j . However, there is still the problem with fac
torially large number of the terms required to calculate
weight according to Eq.~9!.

Fortunately, when calculating only single- or two-partic
distributions according to Eqs.~30! or ~31!, this number is
strongly reduced@eaten by the combinatorial numbersCj

m in
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Eqs. ~32!#. We should, however, perform integration ov
momenta of one or more particles to determine the integra
cumulantsKn

(2)(p1 ,p2), Kn
(1)(p), andKn .

The numerical averaging of the cumulants of all orders
a difficult task. In the case of large multiplicities of identic
bosons (n.20) this is practically possible in the mode
with a symmetric emission function~allowing to use a spe-
cial Monte Carlo technique! @3# or with a simple analytical
parametrization of this function@5,6#. For example, in Ref.
@6# the corrections to multiplicity distributions, single
particle spectra and two-particle correlation functions w
calculated using the relativistic Bjorken model@23# for the
emission function. To compute cumulants up to tenth ord
the integration was performed analytically over the spa
time coordinates and numerically over the momenta.

Generally, for realistic models used to predict partic
production in ultrarelativistic heavy-ion collisions, the n
merical limitations allow to determine only a few lowe
order cumulants~up to about the fourth order! @18#. Fortu-
nately, since the interferometry measurements point out
moderate pion freeze-out phase space density of;0.1, the
lowest order cumulant approximation appears to be reas
able for typical events in present and likely also in futu
heavy-ion experiments~see Sec. V!. At the same time, even
in the absence of strong multiboson effects, their account
still be important for realistic simulations of heavy ion co
lisions @18#.

IV. ANALYTICAL MODEL

To study the multiboson effects in a dense pion gas,
use a simple model assuming independent particle emis
@see Eq.~8!# with the Gaussian ansatz for the single-bos
emission functionD(p,x) @5#:

D~p,x!5
1

~2pr 0D!3
expS 2

p2

2D2
2

r2

2r 0
2D d~ t !. ~42!

Note that this ansatz corresponds to the independent
particle sources of Kopylov and Podgoretsky, all of the sa
type, characterized by a universal size of;(2D)21, with the
centers distributed according to a Gaussian of a disper
r̃ 0

25r 0
22(2D)22 @see Eq.~20!#. Then, in the low density

limit but regardless of the validity of thesmoothnesscondi-
tion r̃ 0@(2D)21 @see, however, the footnote after Eq.~26!
concerning the independence assumption#, the correlation
function of two noninteracting identical particles measu
the dispersion of the relative four-coordinatesx̃ of the cen-
ters of the one-particle sources as the inverse width squ
of the correlation effect seen in the relative momentaq5p1
2p2 @1#. For spin-0 bosons

R~p1 ,p2!511^cos~qx̃!&511exp~2 r̃ 0
2q2!. ~43!

In this model the initial boson phase space density~not
affected by the BE effect! is given by
1-6
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f̃ n~p,x!5
n

~r 0D!3
expS 2

p2

2D2
2

x2

2r 0
2D . ~44!

The mean densities at a fixed boson momentump and aver-
aged over all phase space are

^ f̃ n&p[E d3x~ f̃ n!2 Y E d3x f̃ n5
n

~A2r 0D!3
expS 2

p2

2D2D
~45!

and

^ f̃ n&[E d3x d3p~ f̃ n!2Y E d3x d3p f̃ n5n/~2r 0D!3,

~46!

respectively. Similarly, the initial inclusive densitiesf̃ (p,x),

^ f̃ &p , and ^ f̃ & are given by Eqs.~44!–~46! with the multi-
plicity n substituted by the initial mean multiplicity.

It is worth noting an approximate equality~see also a
model independent prove in Ref.@7#! between the mean
phase space density in the low density limit

^ f̃ &p5
h

~A2r 0D!3
expS 2

p2

2D2D 8
p3/2

r 0
3

N~p! ~47!

and the mean number of pions building the BE enhancem
in the two-pion correlation function

E d3q@R~p1 ,p2!21#N~p1!N~p2!/N~p!

5
p3/2

r̃ 0
3

N~p!'^ f̃ &p , ~48!

p1,25p6q/2. This equality is valid up to relative correction
O@(r 0D)22# and O(^ f̃ &p), the latter representing an impa
of the BE correlations on the single-boson spectrum~see
Sec. V B!.

It is important that the Gaussian ansatz in Eq.~42! allows
us to express the functionsGn(p1 ,p2) and the integralsgn
@see Eqs.~23!# in simple analytical forms@15#

Gn~p1 ,p2!5~2pD2An!23/2exp@2bn
1~p11p2!2

2bn
2~p12p2!2#,

gn5~8D2Anbn
1!23/2, ~49!

whereAn , bn
1, andbn

2, are given by the recurrence relation

An52D2An21~bn21
1 1bn21

2 1b1
11b1

2!,

1/bn
151/~bn21

1 1b1
1!11/~bn21

2 1b1
2!,

bn
25b1

1b1
2/bn

1 , ~50!
03490
nt

with A151, b1
151/(8D2) andb1

25r 0
2/2. The recurrence re

lations of this type allow for the analytical solution@17#. In
our case it reads

bn
15b1

1e21~12rn!/~11rn!,
~51!

An5b2n/3e~12r2n!, gn5b2n~12rn!23,

wheree2152r 0D, r5(12e)/(11e) and the parameter

b5~r 0D11/2!3 ~52!

can be considered as a characteristic phase space volum
For example, forn52 and 3, we haveA25(11e22)/2,

A35(113e22)2/16, b2
152b1

1/(11e2), b3
153b1

1(1
1e2/3)/(113e2), g25e3, g35@4e2/(31e2)#3. Recall that
the cumulants related tog2 and g3 are @see Eq.~25!# K2
5g2 andK352g3.

It follows from the recurrence relations~50! or their ana-
lytical solutions~51! that the slope parametersbn

1 and bn
2

approach each other with increasingn. In the large-n (n
.r 0D) limit we then have@15#

bn
1→bn

2→r 0 /~4D!, An→b2n/3/~2r 0D!, gn→b2n

~53!

and

Gn~p1 ,p2!→b2nS r 0

pD D 3/2

expS 2
r 0

4D
~4p21q2! D .

~54!

In very large-n (n.eb) limit, using the large-n behavior
of the parametersgn , we can get from the recurrence rel
tion ~26! the following behavior of the BE weight@15#:

vn→c~b!n!/bn, ~55!

where c(b) is a function factorially increasing withb,
c(1)51.5

It is worth noting that the large-n limits become equalities
at b51 (r 0D51/2) when gn5An51, Kn5(n21)!, vn

5n!, andbn
25bn

15r 0 /(4D). Recall thatb51 corresponds
to the minimal possible phase space volume when all
particle emitters are situated at one and the same space
point so that the size (2D)21 of the elementary source de
termines not only the width of the single-particle spectru
but also the characteristic distance between the produc
points @see, however, the footnote after Eq.~26! and also
Ref. @18# for a more detailed discussion#. In such a caser̃ 0
50 and the correlation function equals 2 for any value ofq.

In the low-n (n,r 0D) limit, i.e., in the case of a large
phase space volume, it follows from Eqs.~50! or ~51! that
the slope parameterbn

1 increases linearly withn up to the
correctionsO@(2r 0D)22# and that, atn.2r 0D, this increase

5A good approximation isc(b)8bd(b), d(b)5a11a2ba3, a1

50.617,a250.621, anda350.788.
1-7
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saturates atr 0 /(4D). Similar behavior shows the paramet
An /b2n/3. Thus, atn!2r 0D, we have

bn
15b1

1b1
2/bn

28nb1
1 , An8n~r 0D!2(n21),

~56!
gn8n23~r 0D!23(n21).

Comparing the low-n approximations~56! for the parameters
bn

1 , An , andgn with the large-n ones in Eqs.~53!, we can
see that they tail each other atn52r 0D, r 0D/2, and r 0D,
respectively. Correspondingly, the low-n approximation for
the Gn function

Gn~p1 ,p2!8r 0
3~r 0D!23n~2pn!23/2

3exp~2p2n/2D22q2r 0
2/2n! ~57!

tails with the large-n one in Eq. ~54! at n5nt , 1/2
,nt /(r 0D),2.

Consider now the correlation functionRn defined in Eq.
~35!. To determine the normalization constantcn , it is con-
venient to rewrite the single- and two-boson spectra a
fixed multiplicity n as

Nn
(1)~p!5 (

j 50

n21
vn212 j /~n212 j !!

vn /n!
Gj 11~p,p!

[ (
j 50

n21
w~n212 j !

w~n!
G̃j 11~p,p!,

Nn
(2)~p1 ,p2!5 (

j 50

n22
vn222 j /~n222 j !!

vn /n!

3(
l 50

j

@Gl 11~p1 ,p1!Gj 2 l 11~p2 ,p2!

1Gl 11~p1 ,p2!Gj 2 l 11~p2 ,p1!#

[ (
j 50

n22
w~n222 j !

w~n! (
l 50

j

@G̃l 11~p1 ,p1!

3G̃j 2 l 11~p2 ,p2!

1G̃l 11~p1 ,p2!G̃j 2 l 11~p2 ,p1!#, ~58!

wherew(n), defined in Eq.~29!, coincides with the BE af-
fected multiplicity distribution arising from the Poissonia
one characterized by the initial mean multiplicityh and
G̃i(p1 ,p2)5h iGi(p1 ,p2). Noting further thatbn

1 approaches
the limiting value r 0 /(4D) from below, while bn

2 does it
from above, we can see from Eq.~49! that, at largeq, all
terms in Eqs.~58! for Nn

(1)(p1,2) and Nn
(2)(p1 ,p2) (p1,25p

6q/2) can be neglected except for those containing the l
est slope b1

1 . For the normalization constantcn

5 limq→`@Nn
(1)(p1)Nn

(1)(p2)/Nn
(2)(p1 ,p2)# in Eq. ~35! for the

correlation function we thus get@15#
03490
a

-

cn5@w~n21!#2/@w~n!w~n22!#

[nvn21
2 /@~n21!vnvn22#. ~59!

Note thatc252/v2P(1,2); with the increasing multiplic-
ity cn decreases and, according to Eq.~55!, cn81 for n
.eb. For large phase space volumes~whenvn81 at small
n), the normalizationcn8n/(n21), and the exclusive cor
relation functionRn , normalized to 1 at largeuqu, becomes
close to the usual definition as a ratio of the two-parti
spectrum to the product of the single-particle ones, b
spectra normalized to 1. Generally, the latter definition
however, not reliable since it leads to the plateau heigh
vnvn22 /vn21

2 .1 which, in case of a small phase spa
volumeb and a smalln, can be substantially larger than
For example, forn52 this height isv2 and can reach a
value of 2 if b→1.

Regarding the~semi!inclusive single- and two-boson
spectra, they can be written in a form similar to Eqs.~58!
only in the initially Poissonian case

N(1)~p!5(
n

(
j 50

n21

w~n212 j !G̃j 11~p,p!Y (
n

w~n!,

N(2)~p1 ,p2!5(
n

(
j 50

n22

w~n222 j !

3(
l 50

j

@G̃l 11~p1 ,p1!G̃j 2 l 11~p2 ,p2!

1G̃l 11~p1 ,p2!G̃j 2 l 11~p2 ,p1!#Y (
n

w~n!.

~60!

The normalization constant in Eq.~36! for the ~semi!inclu-
sive correlation function is then@15#

c5F(
n

w~n21!G2Y F(
n

w~n!(
n

w~n22!G . ~61!

Clearly, in the completely inclusive case~when the sums
include all n from 0 to ` and (nw(n2 j )51), we havec
51 and

^n&5(
j 50

`

g̃ j 11[g̃,

N(1)~p!5(
j 50

`

G̃j 11~p,p![G̃~p,p!,

N(2)~p1 ,p2!5(
j 50

`

(
l 50

j

@G̃l 11~p1 ,p1!G̃j 2 l 11~p2 ,p2!

1G̃l 11~p1 ,p2!G̃j 2 l 11~p2 ,p1!#

[G̃~p1 ,p1!G̃~p2 ,p2!1G̃~p1 ,p2!G̃~p2 ,p1!,

~62!
1-8
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whereg̃n5hngn . For the inclusive correlation function~36!
we have@15#

R~p1 ,p2!511
G̃~p1 ,p2!G̃~p2 ,p1!

G̃~p1 ,p1!G̃~p2 ,p2!
. ~63!

Thus, in the considered case of the initially Poissonian m
tiplicity distribution, the interceptR(p,p)[R(0)52 in
agreement with the result generally valid for thermaliz
systems@8#. Note that Eq.~63! coincides with similar expres
sions in Refs. @16,17# up to a normalization facto
^n&2/^n(n21)&. With the increasing density, the latter d
creases from 1 to 1/2 and, for dense systems, forces the
responding correlation function to 1. Such a behavior w
incorrectly interpreted@16,17# as a coherent effect~see also
the discussion in Sec. VI!.

V. RESULTS

A. Multiplicity distributions

We will consider here the multiplicity distribution~29!
resulting due to the BE effect on the initially Poissonian o
with the mean multiplicityh. In accordance with the large-n
behavior of the BE weights in Eq.~55!, it takes on the fol-
lowing limiting form at n.eb @15#:

w~n!→const8jn j5h/b. ~64!

The large-n behavior of the multiplicity distribution in
Eq. ~64! indicates that it approaches the BE one:

wBE~n!5nn/~11n!n11, n5j/~12j!, ~65!

with the mean multiplicityn.6 This is demonstrated in Figs.
and 2. Thus, atr 052.1 fm andD50.25 GeV/c, the BE
effect transforms the initial Poissonian multiplicity distrib
tion with h530 @dotted curve in Fig. 1~a!# to the one with
much higher mean and dispersion values@solid curve in Fig.
1~a!#. The exponential tail expected for the BE distribution
clearly seen in Fig. 1~b! where the results are presented
logarithmic scale forh510, D50.25 GeV/c, and r 051.5
fm. One may see that Eq.~64! ~dashed line! becomes an
excellent approximation forn.30, which is close to the con
dition n.eb537.6 for the present choice of paramete
The slope parameterb in the exponential fit w(n)
5const exp(2bn) of this tail at largen should be, according
to Eq. ~64!, only a function of the variablej: b52 ln(j).
Such a scaling is demonstrated in Fig. 2~a! for various values

6This is in accordance with the appearance of the Bose-conden
in a dense ideal Bose gas@24#. The fluctuations of the number o
particles in the condensate are very large—they are described b
well-known Einstein formula for identical bosons in the same qu
tum state. The corresponding BE multiplicity distribution in E
~65! turns to the Reley one for very large mean multiplicities. Th
type of BE condensate should not be mixed up with the multibo
coherent~laser! state in which the BE correlations are absent a
the multiplicity distribution corresponds to the Poisson law.
03490
l-

or-
s

e
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of h, D, and r 0. Note thatj50.95 and 0.72 for Figs. 1~a!
and 1~b!, corresponding tob50.02 and 0.27, respectively.7

It should be noted that the experimental data point to
moderate value of the density parameterj. Thus, taking 0.2
as an estimate of the inclusive phase space density atp50
from AGS and SPS experiments and using Eq.~47!, we get
~see the last section! j'0.420.5.

Using Eq.~62! for ^n& and tailing the large- and small-n
approximations of the integralsgn at nt5r 0D @see Eqs.~53!
and ~56!#, we can approximate the mean multiplicity as

^n&8@11 j̃/231•••1 j̃nt21/nt
3#h1jntn[^n&g1^n&c ,

~66!

where j̃5h/(r 0D)3.j; the density parametersj̃ andj co-
incide at r 0D@1. At large phase space volumes, (r 0D)3

@1, the two terms in Eq.~66! can be considered as contr
butions of the BE gas and BE condensate, respectively
can be seen that the condensate dominates on condition^n&
.b.

Note that in the rare gas limitj̃!1, we have^n&8@1
1 j̃/23#h[h1K2h2, i.e., the increase of the mean mult
plicity is dominated by the contribution of the second ord
cumulant K25(2r 0D)23. The corresponding multiplicity
distribution then becomes somewhat wider than
Poissonian one @see Eqs. ~27!,~29!#: w(n)5const(1
1C2

nK2)hn/n!.
In Fig. 2~c! we demonstrate the approach of the me

multiplicity ^n& to the limiting scaling valuen5j/(12j),
though only forj very close to the explosion pointj51
(j.0.99). Instead, in the region ofj,0.9 indicated by
present experiments, we can see, in agreement with Eq.~66!
an approximatej scaling of the ratiô n&/h @Fig. 2~b!#.

Since, in the realistic event generators, the multibos
effects can be accounted for only in the lowest order cum
lant approximation@18#, it is instructive to study the satura
tion of these effects with the increasing numberNcum of the
contributing cumulants. In Fig. 3 we show theNcum depen-
dence of the ratiôn&/h of the BE affected mean multiplicity
to the initial one for different values of the density parame
j. For example, atj50.8 this ratio saturates atNcum;10
(;40% increase of̂n&). At Ncum54, representing a practi
cal limit due to the numerical problems@18#, the effect is
underestimated by;25% (̂ n&/h'1.3 instead of 1.4!. The
situation is more optimistic for lower densities. Thus atj
50.5 the effect (;15% increase of̂n&) practically saturates
at Ncum54.

Up to now, we have considered the symmetrization eff
on the production of only one type of identical bosons. Fo

ate

the
-

n
d

7At the explosion pointj51 the tail of the multiplicity distribu-
tion becomes a constant (b50) so that the mean multiplicitŷn&
would go to infinity provided that there are no energy-moment
constraints. Note that the corresponding critical initial mean mu
plicity hcr5b[(r 0D11/2)3 is close but different than that give
in Eq. ~9! of Ref. @5#. For the origin of this difference see th
discussion in Sec. VI.
1-9
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system of charged and neutral pions, the total symmetr
tion weight in the model coincides with a product of th
separate BE weightsvn1

, vn2
, andvn0

provided the pions
are emitted in unpolarized and uncorrelated isospin sta
the effect of their FSI is negligible and there are practica

FIG. 1. The multiplicity distribution of neutral pions for~a! D
50.25 GeV/c, r 052.1 fm, h530 and ~b! D50.25 GeV/c, r 0

51.5 fm, h510, whereh is the mean multiplicity of the initial
Poissonian distributions~dotted curves!. The dashed line corre
sponds to Eq.~64!.

FIG. 3. The ratio of the mean multiplicity to the initial Poiss
nian one as a function of the number of the contributing cumula
for different values of the density parameterj.
03490
a-

s,
no restrictions due to energy-momentum and isospin c
straints. The latter assumption may be reasonable at
energies when the subsystem of interfering pions represe
small part of the produced multiparticle system. The init
distribution of pion species is then a trinomial on
strongly peaked at n15n25n05n/3: w(n1 ,n2 ,n0)
5n!/(3nn1!n2!n0!). After the symmetrization in the large
n condensate limit (vni

8ni !/b
ni), it becomes independen

of ni and yields a substantial probability$2(n2n011)/@(n
11)(n12)#% of any value ofn0 at a fixed total pion multi-
plicity n. Particularly, the production of so-called Centau
~anti-Centauro! events containing mainly charged~neutral!
pions then becomes possible. The probability of the extre
charge configurations can be enhanced even stronger in
of isospin constraints, for example, if pions were produced
isosinglet pairs@5,6,25#. The latter mechanism can be of pa
ticular importance in the near-threshold multipio
production,8 due to the limited total isospin and charge. U
fortunately, then! enhancement of the near-threshold co
densate production will be more than compensated by
phase space suppression factor of (p̄n /D)3n;(n!) 23/2,
where p̄n5@2m(As2( imi)/n#1/2 is the mean pion momen
tum near threshold.

8A proposal of an experimental study of the near-threshold m
tipion system at Serpukhov accelerator was recently discusse
Nikitin. A similar idea was also communicated to us by Nemen

FIG. 2. The slope parameterb of the exponential tail
c exp(2bn) of the multiplicity distribution~a!, the ratio of the mean
multiplicity to the initial Poissonian one~b!, and the mean multi-
plicity ~c! as functions of the density parametersj5h/b and
j/(12j); D50.25 GeV/c. The curve in~a!: b52 ln j, the curves
in ~b!,~c! are calculated according to the tailing approximation
Eq. ~66!, the line in~c!: ^n&5j/(12j)[n.

ts
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B. Single-particle spectra

The influence of the BE effect on the single-boson sp
trum for a given boson multiplicityn, can be seen from Eqs
~25!–~30!, ~32!, and ~49!. At sufficiently large momenta
when the local densitŷf n&p remains small even at largen,
this spectrum is dominated by the contributionbnP(p), bn
5nvn21 /vn , of the initial spectrum. In such a rare ga
limit, jn,p[jn exp(2p2/2D2)!1, we can write@see Eqs.
~25!, ~32!, and~27!#

Nn~p!8n
vn21

vn
G1~p,p!1n~n21!

vn22

vn
G2~p,p!

8n@12~n21!K2#G1~p,p!1n~n21!G2~p,p!

8nP~p!1n~n21!K2@23/2P~21/2p!2P~p!#.
~67!

Otherwise, at large local densities,Nn(p) is determined by
the asymptotic large-density spectrum@15#

Nn~p!→nS r 0

pD D 3/2

expS 2
r 0

D
p2D[nPc~p!, ~68!

associated with the BE condensate and corresponding to
asymptotic~large-n) value r 0 /(4D) of the slope parameter
bn

6 . Note thatPc(p) is normalized to unity and that, atb
51, it coincides with the initial distributionP(p).

It is clear from Eqs.~54!, ~55!, and ~58! that for small
momenta,p,D(r 0D21/2)21/2, the condensate regime i
Eq. ~68! settles on conditionjn.e. For larger momenta, we
must take into account that the condensate contribution v
ishes much faster than that of BE gas, thus leading to m
stronger condition of the condensate dominance:

jn.~2r 0D!23/2exp@~2r 0D21!p2/2D2#. ~69!

Similar to the fixed multiplicity case, the inclusive singl
boson spectrum at small local densities tends tohP(p)
[G̃1(p,p) and, at large ones, it approaches the asympt
high-density spectrum@see Eq.~68!#:

N~p!→^n&Pc~p!. ~70!

The transfer of the initial spectrum to the high-density one
demonstrated for the inclusive distribution in Fig. 4~a! and,
more clearly, forj closer to the explosion pointj51, in Fig.
4~b!.9

Tailing the large- and small-n behavior of the
Gn-functions atnt;r 0D @see Eqs.~54! and ~57!#, we can
approximate the inclusive single-boson spectrum in Eq.~62!
as

9These results agree with those obtained in Refs.@5,6# ~see also
Refs.@8,18#, and references therein! except for an incorrect conclu
sion @5# that the width of the narrow peak due to the BE ‘‘conde
sate’’ is of 1/r 0.
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N~p!8@11 j̃p/2
3/21•••1 j̃p

nt21/nt
3/2#hP~p!1jntnPc~p!

[Ng~p!1Nc~p!, ~71!

where j̃p5(2p)3/2hP(p)/r 0
3[j̃ exp(2p2/2D2). Clearly,

for large phase space volumes, (r 0D)3@1, the two terms in
Eq. ~71! can be interpreted as contributions of the BE g
and BE condensate, respectively. As in the fixed multiplic
case, the condensate dominates on condition~69! with the
substitutionn→^n& (jn→^n&/b).

In Fig. 4 we compare the inclusive single-boson spec
with the approximate formula~71!. A good agreement is
obtained despite the calculations were done for not v
large phase space volumes. Some underestimation ofN(p) at
intermediate local densitiesj̃p @Fig. 4~a!# and the corre-
sponding underestimation of̂n& at moderate densitiesj
@Fig. 2~b!# become weaker for larger systems@larger multi-
plicities in Fig. 2~b!# due to increasing numbernt;r 0D of
the terms in Eqs.~66!,~71! and thus—decreasing relativ
contribution of the tailing region. We may conclude that t
accuracy of Eqs.~66! and~71! is reasonable for the system
produced in heavy ion collisions at SPS and that it will
even better for larger systems at RHIC and LHC. Expe
mentally the effect of BE ‘‘condensate’’ was searched for
SPS CERN as a low-pt enhancement, however, with rath
uncertain results~see, e.g.,@26#!.

It follows from Eq. ~71! that for sufficiently large (nt
5r 0D@1) and not very dense (j!1) systems, similarly to

FIG. 4. The inclusive single-particle spectra corresponding
the density parameters~a! j50.89 and~b! j50.95, 0.99, and 0.998
~the radiusr 0 slightly varies near 2 fm!; the corresponding mean
multiplicities are~a! 64.3 and~b! 33.5, 113.7, and 433.8. The his
tograms represent the exact result, the full curves are calcul
according to the tailing approximation~71!, the dotted ones repre
sent the contributions of the two~BE gas and BE condensate! terms
in Eq. ~71! and the dashed curves correspond to the rare gas
hP(p).
1-11
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the j scaling of ^n&/h @see Fig. 2~b!#, the ratio
N(p)/@hP(p)# scales with the local density parameterj̃p . It
appears that analogical scaling takes place also at fixed
tiplicity n.10 In Fig. 5 we show the ratio of the single-partic
spectrum at fixedn to the dominant large-p contribution
bnP(p) of the initial spectrum calculated atp50 as a func-
tion of jn for various multiplicitiesn. An approximatejn
scaling is seen up tojn of the order of unity. At largerjn this
ratio approaches the condensate limit (2r 0D)3/2jn which no
more scales withjn @see the corresponding curves in Fi
5~b!#. What scales at largejn is not the ratio of the two
contributions but the ratio of their integrals,n/bn , the lim-
iting value of which is just equal tojn5n/b since, according
to Eq. ~55!, bn5nvn21 /vn→b for n.eb.

Note that, in the absence of simple analytical approxim
tions for the fixed-n spectra, the approximatejn or jn,p scal-
ing can be used to overcome technical problems with fa
rially large numbers at high multiplicities. For exampl
Nn(0) at a given densityjn,1 can be obtained by calcula
ing Nn8(0) at a smaller multiplicityn8,n keeping the
same density jn85jn and then rescaling to
Nn(0)8(bn /bn8)Nn8(0), wherebn /bn881 for n8.eb.
pe
-

03490
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C. Correlation functions

It follows from Eqs.~35! and ~49!–~59! that, for a given
multiplicity n, the correlation function interceptRn(p,p)
[Rn(0) decreases and the correlation function width
creases with the increasingn or decreasing momentump,
both corresponding to the increasing local density param
jn,p .

In fact, for large local densities@see Eq.~69!#, the con-
densate behavior is achieved@see the curves in Fig. 5~b!# and
the correlation function tends to unity not only at large b
also at smallq2. Indeed, in this limit the normalization con
stantcn→1 @see Eqs.~38! and ~55!# and the nominator and
denominator of the correlation function~35! consist of about
the same number ;n2 of the condensate term
(r 0 /pD)3 exp@2(4p21q2)r 0/2D# @see Eqs.~54!,~55!, and
~58!#.11 The well-known@3–5# lowering and widening of the
correlation function with the increasing multiplicity is dem
onstrated, in the considered model, in Fig. 6.

Note, however, that in the rare gas limit,jn,p!1, the
change of the form of the correlation function with the i
creasing density is rather weak. Thus, writing in this limit
Nn
(2)~p1 ,p2!8n~n21!

vn22

vn
@G1~p1 ,p1!G1~p2 ,p2!1G1~p1 ,p2!G1~p2 ,p1!#

1n~n21!~n22!
vn23

vn
@G1~p1 ,p1!G2~p2 ,p2!1G1~p1 ,p2!G2~p2 ,p1!

1G2~p1 ,p1!G1~p2 ,p2!1G2~p1 ,p2!G1~p2 ,p1!#

8n~n21!@12~2n23!K2#P~p1!P~p2!@11exp~2 r̃ 0
2q2!#

1n~n21!~n22!23/2K2H P~p1!P~21/2p2!F11expS 2
3

4
r̃ 0

2q21
pq

2D2D G
1P~p2!P~21/2p1!F11expS 2

3

4
r̃ 0

2q22
pq

2D2D G J , ~72!
or
e is

limit
ct
Eq.

ich
r̃ 0
25r 0

2@12(2r 0D)22#, we get for the correlation function
intercept ann-independent value close to 2:Rn(0)82(1
2e1). Here we have introduced the density parameter

e j5 j •25/2K2 exp~2p2/2D2!8221/2j j ,p . ~73!

10In this case, due to the explicit dependence of the particle s
tra on the complicated BE weightsvn , there is no analytical ap
proximation similar to Eq.~71!.
It should be noted that the correlation functionRn(q) be-
comes less than unity at intermediateq values and ap-
proaches the limiting value of 1 from below. This behavi
and also the related suppression of the intercept valu

c-

11Of course, the absence of the correlation in the condensate
at fixed multiplicity has nothing to do with the coherence effe
which is absent in the considered model. See the footnote after
~26! and the discussion of the inclusive correlation function wh
appears to be different from 1 at whatever high densities.
1-12
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caused by the BE correlation effect on the single-part
spectra entering the denominator of the correlation funct
Sometimes this distortion is corrected for by a special ite
tive procedure. Its result can be described by a simple lowq2

correction factor12

Rn
cor~p1 ,p2!8~An2Bnq2!Rn~p1 ,p2!. ~74!

In the low density limit of our model, we have

An511en21 , Bn5en21@12~p/D!2 cos2 c#/8D2, ~75!

wherec is the angle between the vectorsp andq. At small
q2, the corrected correlation function~properly normalized to
unity at largeq2) is then

12The iterative correction procedure is usually used for sm
acceptance detectors triggered by the requirement of at least
identical pions in the detector. The mixed reference sample t
differs from the product of the single-particle spectra, being mu
more influenced by the residual BE correlations. The residual
relations can substantially affect also single-particle spectra in
case of a small effective emission volume, e.g., ine1e2 collisions.
There are also other reasons for the low-q2 correction factor, such
as energy-momentum constraints or presence of dynamical cor
tions ~e.g., in jets! which are destroyed in the mixed referen
sample. For this reason the correction factor similar to that in
~74! is often introduced as a pure phenomenological one withAn

51 andBn treated as a free parameter.

FIG. 5. The ratios of the BE affected single-particle spectrum
the dominant large-p contributionbnN1(p), bn5nvn21 /vn , cal-
culated atp50 as functions of the density parameterjn5n/b. The
curves represent the large-jn limit: (2 r 0D)3/2jn[@2(n/jn)1/3

21#3/2jn .
03490
e
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Rn
cor~p1 ,p2!811exp~2 r̃ 0

2q2!1en22F11expS 2
3

4
r̃ 0

2q2D G
~76!

and can be represented in the usual single-Gaussian for13

Rn
cor~p1 ,p2!811ln exp~2r n

2q2!,

ln5112en22 , r n
25 r̃ 0

2S 12
5

4
en22D . ~77!

We see that with the increasingn the effective interferometry
parametersln and r n , respectively, increase and decrea
slightly, starting from the zero density values of 1 andr̃ 0.

In the low-density limit, simple Eqs.~76!,~77! or directly
Eqs.~67! and~72! allow one to determine the radius param
eter r 0 by fitting the correlation functionsRn

cor or Rn . At
higher densities, however, there is no simple analytical
pression for the correlation functionRn and the eventual fit
would require the use of rather complicated equations~58!.
Another possibility is still a simple single-Gaussian fit
sufficiently smallq, giving the effective interferometry pa
rametersln

eff,1 and r n
eff,r 0, both vanishing with the in-

creasing local density. The low-density radiusr 0 and the
density can then be determined comparingln

eff and r n
eff with

the model predictions as functions ofr 0 andD.

l-
wo
n

h
r-
e

la-

. 13Note that in Ref.@17# a similar parametrization was used for th
uncorrected correlation function. This led to different estimates
the interferometry parametersln and r n in the considered model.

o
FIG. 6. The two-pion correlation functions for the multiplicitie

increasing fromn52 to 362 with a step of 60~the corresponding
density parameterjn ranging from 0.04 to 7.2 with a step of 1.2!.
The higher the multiplicity the lower the intercept of the correlati
function and the larger its width.
1-13
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In Fig. 7 we show the intercept as a function of the m
tiplicity n and the local density parameterjn,p for several
values of the mean momentump50, 0.1, 0.2, and
0.4 GeV/c. As expected, the intercept is practically consta
at low local densities~small n or high p). As condensate
develops, the intercept sharply falls down. The sharpnes
this drop is, however, less pronounced at higher mome
even if plotted as a function of the local density parame
jn,p . Clearly, this lack of density scaling is related to
strong decrease of the condensate contribution with the
creasing momentum. In fact, for the momentap.D(r 0D
21/2)21/2 the low-density parameterjn,p strongly overesti-
mates the local density in the region of the condensate do
nance@see Eq.~69!#. To demonstrate the possibility of th
observation of the condensate effect for a speckle of a la
number of soft pions not following the ordinary proportio
ality rule between the freeze-out phase space volume
pion multiplicity, in Fig. 7 we indicate by the arrows th
intercept values corresponding tojn53j51.5 (n'3^n&).

In the inclusive case corresponding to the initial Pois
nian multiplicity distribution, the correlation function inter
cept is equal to 2 for any local densities@see Eq.~63!#. At
very large local densities the two-boson spectrum approa
twice the product of the single-boson ones@see Eqs.~54! and
~62!# so that the inclusive correlation function tends to t
limiting value of 2 even at rather large relative momen
The corresponding increase of the width of the correlat
function with the increasing density parameterj is demon-
strated in Fig. 8.

Note that at high local densities both the nominator a
denominator of the correlation function at smallq2 are domi-
nated, as in the case of a fixed multiplicity, by the univer

FIG. 7. The intercept of the two-pion correlation functions a
function of the multiplicity n and the density parameterjn,p for
several valuesp50, 0.1, 0.2, and 0.4 GeV/c of the mean momen-
tum of the two pions. The arrows on the interpolating curves in
cate the intercept values corresponding tojn53j51.5 (n'3^n&).
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condensate terms, their numbers being about^n(n21)& and
^n&2, respectively. The difference between the inclusive a
fixed multiplicity correlation functions,R→2 andRn→1, is
due to the fact that at high densities the initially Poisson
multiplicity distribution approaches a much wider BE on
for which ^n(n21)&52^n&2.

Tailing the approximate equations~54! and ~57! for the
Gn functions atnt;r 0D, we can analytically follow the be-
havior of the functionG̃(p1 ,p2) @determining, according to
Eq. ~62!, the inclusive two-boson spectrumN(p1 ,p2)] simi-
lar to Eq. ~71!, modifying it by the substitutions:j̃p

n21

→ j̃p
n21 exp(2q2r 0

2/2n) and Pc(p)→Pc(p)exp(2q2r 0/4D).
Particularly, for large systems@(2r 0D)2@1#, we have atq
→0,

G̃~p1 ,p2!8Ng~p!exp~2q2r g
2/2!1Nc~p!exp~2q2r c

2/2!,
~78!

wherer c
25r 0 /(2D) and

r g
28r 0

2(
n51

nt

j̃p
nn25/2Y (

n51

nt

j̃p
nn23/2. ~79!

Note that at low local densities (j̃p!1) the effective radius
r g coincides withr̃ 08r 0 . With the increasing local phas
space density it slightly decreases. The maximal reduc
factor of 1/A2 is achieved for large (r 0D@1) and dense (j
→1, p→0) systems. Considering the limitq→0 and r 0D
@1, we can neglect theq dependence of the condensate te
(r c!r g) and of the product of the single-particle spectra
the denominator of the correlation function and, using E
~63! and ~78!, write

-

FIG. 8. The inclusive two-pion correlation functions demo
strating the increase of the correlation width with the increas
density parameterj. The differentj values are achieved by sligh
variations of the radiusr 0 around 2 fm.
1-14
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R~p1 ,p2!811expS 2
Ng~p!

Ng~p!1Nc~p!
r g

2q2D . ~80!

It follows from Eq. ~80! that the condensate contributio
leads to an additional reduction of the interferometry rad
squared~defined as a low-q2 slope of the correlation func
tion! as compared with the case of a pure BE gas. In cas
a dominant BE condensate the interferometry radius tend
zero whatever large is the geometric size of the system.

Note, however, that due to the non-Gaussian characte
the correlation functions at large phase space densities,
real width is determined by the large-q2 behavior which
reads

R~p1 ,p2!811S Nc~p!

Ng~p! D
2

exp~2r c
2q2!. ~81!

RequiringR(qeff)5111/e, we get for the corresponding e
fective radius squared

r eff
2[qeff

225r c
2/$112 ln@Nc~p!/Ng~p!#%. ~82!

Thus, compared with the vanishing of the low-q2 slope of the
correlation function@as (12j)], the effective radius square
vanishes at large phase space densities much slowe~as
1/u ln(12j)u) ~see Fig. 8!.

It should be noted that Eqs.~62! and~63! assume that the
initial Poissonian multiplicity distribution extends to any a
bitrarily large number of bosons. In reality, however, th
number is limited due to the finite available energy~for a
study of the energy constraint effect on pion multiplicity s
second paper in Ref.@16#!. It is therefore interesting to se
how fast the semi-inclusive spectra approach the inclus
limit with the increasing numbernmax of the included pions.
In Fig. 9 we demonstrate thenmax dependence of the sem
inclusive correlation functions for a fixed value of the de
sity parameterj50.95 and, in Fig. 10, thenmax dependence
of the correlation function intercepts for differentj values.
We can see that the width of the semi-inclusive correlat
function increases with the increasingnmax, while its inter-
cept decreases at smallnmax, reaching a minimum atnmax
'^n&, and then approaches the limiting value of 2 roughly
lognmax. The inclusive behavior is practically saturated a
moderate number of the included pionsnmax5k^n&, wherek
increases with the density parameterj from about 3 atj
50.89 to about 5 atj50.99.14 Thus the neglect of the
energy-momentum constraints in Eqs.~62! and ~63! can be
justified provided^n&!As/m, e.g., in the usual case of
logarithmic increase of the mean multiplicity with the c.m
energyAs. The situation can change in the case of very la
and dense systems dominated by a soft condensate. The
regime ^n&;As can settle, the energy-momentum co
straints leading to the reduction of the maximal effect

14The increase of the saturation pointnmax/^n& with the density is
related with the increasing condensate contribution which, for
ideal BE gas, is characterized by very large multiplicity fluctu
tions.
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number of produced pions tonmax;^n& and, as a result, to
the suppression of the measured inclusive correlation fu
tion. Clearly, such an eventual suppression has nothing
common with the coherence effect.

e
-

FIG. 9. The semi-inclusive correlation functions including t
pion multiplicities from 0 tonmax for different values ofnmax. The
dotted curve is the inclusive (nmax→`) correlation function. The
conditions are the same as in Fig. 8 for the density parametj
50.95.

FIG. 10. The intercepts of the semi-inclusive correlation fun
tion including the pion multiplicities from 0 tonmax as functions of
nmax for different values of the density parameterj50.89, 0.95,
0.99, and 0.998; the arrows indicate the corresponding mean
tiplicities ^n&522.3, 33.5, 113.7, and 433.8. The conditions are
same as in Fig. 8.
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VI. DISCUSSION AND CONCLUSION

We have illustrated an approximate scaling of multibos
effects with the density parametersj,jn , . . . ~see, e.g., Figs
2 and 5!. It means that though our numerical results we
obtained for typical AGS or SPS multiplicities of the ord
of tens or hundreds of pions, they are approximately va
also for higher multiplicities expected at RHIC or LHC e
ergies.

The value of the density parameterj can be estimated
with the help of Eq.~48! relating the phase space density
the rare gas limit with the integrated correlation functio
Thus using the usual Gaussian parametrization for the co
lation function in the longitudinally comoving system
~LCMS!:

R~p1 ,p2!511l exp~2r x
2qx

22r y
2qy

22r z
2qz

2!, ~83!

wherex, y (yiz3p) andz denote the outward, sideward, an
longitudinal directions, respectively, and parametrizing
single-particle spectra as

N~p!5
dn

dy

exp@2~mt2m!/T#

2pT~T1m!mt coshy
, ~84!

we arrive at the mean pion phase-space density

^ f &p5
lp3/2

V
N~p!coshy5l

Ap

2

exp@2~mt2m!/T#

VT~T1m!mt

dn

dy
,

~85!

where V5r xr yr z is the LCMS interference volume.15 For
soft pions (pt'0 andy'0) at SPS energies this quantity
typically ;0.2. Since this value is sufficiently small, we ca
compare it with the model phase space density in the rare
limit ^ f̃ &p50'h/(A2r 0D)3 @see Eq.~47!# and getj'0.4
20.5. For such values of the density parameter our calc
tions point to rather small multiboson effects in the ordina
events. These effects can show up, however, in the ev
containing sufficiently high density fluctuations. Particular
the condensate effects could be seen in certain high m
plicity events ~see, e.g., Fig. 7! in which the phase spac
volume or subvolume;(r 0D)3 does not follow the increas
ing multiplicity ~as it presumably does in the ordina
events! and remains sufficiently small to guarantee a non
nishing factorj r 0D determining the condensate size@see Eqs.
~66! and ~71!#.

Since at present energies the LCMS interference volu
V seems to scale withdn/dy, the freeze-out of the pion
occurs on average at approximately constant phase s
density@see Eq.~85!#. In the rare gas regime, based on t
density scaling one can then expect about the same rel
size of the multiboson effects also at RHIC and LHC en
gies, up to a slight increase inj due to the vanishing of the
finite-size corrections with the increasing phase space

15A better estimate may require the substitution@9# l→l1/2 in Eq.
~85!.
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ume of the emitting system. At the same time, the grow
phase space volume will lead to suppression of the ave
condensate contribution, determined by the factorj r 0D.

Considering the multiboson effects in the low~BE gas!
and the large~BE condensate! density limits, we have ob-
tained simple analytical formulas accounting for the fin
size of the phase space volume and allowing to follow
dependence of the mean multiplicities, single-boson spec
and two-boson correlation functions on the phase space
sity parameters. In principle, these formulas provide a po
bility to identify multiboson effects among others. Partic
larly, the width of the low-pt enhancement due to the B
condensation decreases with the size of the system asr 0

21/2

and this narrowing makes the observation of the effect eas
The results of the considered simple model should not

taken, however, too literally because of the following.
~a! Due to its static character, the model does not exp

itly account for the experimental indications on a const
freeze-out phase space density and the related expansio
the emission volume. The qualitative application of o
model to heavy ion collisions is, however, possible in t
limited phase space regions. For example, the pions wi
rapidity difference greater than about unity have to be c
sidered as originating from different static sources; As d
cussed in Sec. II B, the residual slow relative motion, if d
coupled from other source characteristics, merely leads
wider momentum dependence of the emission function
Eq. ~42!: D2→D21D0

2.
~b! Due to a mixture of different production process

~e.g., due to contribution of different impact parameters!, the
real multiplicity distribution and particle spectra will b
rather weighted sums of those in Eqs.~29!–~31! calculated
with different sets of the parametersh i ,r 0

i ,D i . As a result,
near the condensate limit, the multiplicity distribution can
wider than the BE one and the intercepts of the inclusive
fixed-n correlation functions can differ from the respectiv
single-process values of 2 and 1.

~c! When estimating the freeze-out phase space den
from the experimental data, the multiboson system is con
ered as a homogeneous medium. However, there can be
local density fluctuations, speckles, which can give rise
noticeable multiboson effects even at a moderate value of
mean phase space density.

~d! On the other hand, the multiboson effects can
somewhat suppressed due to a possible violation of the
torization assumption in Eq.~8! or due to the lack of the
reflection symmetry of the emission volume. In the lat
case the functionsGn(p1 ,p2) are no more real.

~e! For identical charged pions, the BE effects are a
suppressed due to the Coulomb repulsion. Since this re
sion is important only in a weakly populated region of ve
small relative momenta determined by the pair Bohr rad
a5387 fm, the suppression of the global BE weightsvn is
rather small. For example, forv2 this suppression, being
about (ar0D2)21, is usually less than one per mill. The Co
lomb distortion of the global multiboson effects is therefo
negligible in the rare gas limit. Nevertheless, since the C
lomb repulsion destroys the formation of the condensa
made up from positive and negative pions in the disjo
1-16
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phase space regions, it can lead to noticeable differen
between charged and neutral pions in dense systems. Pa
larly, we can expect a decrease of the charge-to-neutral m
tiplicity ratio with the increasing phase space density.

Because of large numbers of positive and negative pi
produced in heavy ion collisions, one could also raise a qu
tion about importance of the Coulomb screening effects v
lating standard two-body treatment of the correlations in
low density limit. There are, however, arguments show
that the screening will be of minor importance even at LH
@15# ~see also Ref.@27#!. Note that in the scenario with
constant phase-space density the corresponding Debye r

r D5@4p~r11r2!e2/T#21/2, ~86!

wheree251/137 andr11r2 is the total density of charge
pions in the configuration space, will be also constant, up
a weak energy dependence due to the temperatureT. Assum-
ing that pions with a rapidity difference greater than un
come from spatially disjoint regions of phase space, we
put @15#

r15S l

~2p!3D 1/2
dn1 /dy

V
5

A2

Alp2
T3^ f 1&y ~87!

and obtainr D'15 fm at ^ f 1&y'0.1 andT'200 MeV/c
(r D;1/T). Thus at LHC energies we can expect the char
teristic distances between the pion production points com
rable or larger than the screening radiusr D leading to a sup-
pression of the usual two-particle Coulomb effects. In fa
two charged pions produced at a distancer * .r D start to feel
their Coulomb field only after some time when the dens
decreases to a value corresponding to Debye radius la
than r * . During this time the vector of the relative distan
between the pion emission points increases by@15#

Dr* ;
k*

~mT!1/2
V1/3F S r *

r D
D 2/3

21G . ~88!

Substitutingr* by r* 1Dr* in the argument of the Coulom
wave function, we can see, however, that the suppressio
the Coulomb effect can be substantial only in the region
large relative momentak* .(mT)1/2 where the correlations
due to QS and FSI are already negligible~see, e.g., Refs
@19,28#!.

Finally, to make easier the understanding of our result
the context of other papers and, for the reader’s convenie
we compare our results~including those in Ref.@15#! with
the results of Refs.@5,6,16,17# and the recent papers@29–
34,36–39# which appeared either after the present work w
basically completed or during the process of its evaluatio

In the pioneering papers@5,6#, the analytically solvable
model discussed in Sec. IV was introduced. A simple al
rithm was given allowing to calculate BE modified multiplic
ity distribution, single- and two-boson spectra in terms of
quantitiesCn

Pratt5g̃n /n, Gn
Pratt(p1 ,p2)5G̃n(p1 ,p2). The de-

tails of the calculation of theGn functions and of the two-
boson spectra were not given in Refs.@5,6#. They can be
found in Refs.@15–18# ~see also Refs.@29,30#!. In Ref. @29#
this technique was extended to the spectra and correlation
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three or more pions. It was shown that, in the inclusive ca
the old formalism, not accounting for the multiboson effec
can be recovered by a redefinition of the Wigner-like dens
which then becomes more narrow both in momentum a
configuration space.

Regarding the choice of the Wigner-like densityD(p,x),
in the original papers@5,6# and in Ref.@16#, it was slightly
different from that in Eq.~42!, corresponding to the subst
tution exp(2q2/2D2)→exp(2p0 /T), where T5D2/m. This
choice is, in fact, in contradiction with the uncertainty pri
ciple, the latter requiring an energy independent density
the considered case of a fixed emission timet50 @see Eq.
~20!#. ~For the same reason, the freedom in the choice of
parametersr 0 ,D is limited by the inequalityr 0D>1/2, the
equality corresponding to the zero distance between
emitter centers.! The incorrect choice of the Wigner-like
density in Refs.@5,6,16# can be cured by the substitutionr 0

2

→r 0
22(2D)22. To recover the recurrence relations in Eq

~50!, in addition to this substitution, one has to take in
account that the width and the slope parameters used, e.
Ref. @16# are related to ours asR0

252r 0
2 ,p0

25D2,an5bn
1

1bn
2 ,gn52(bn

12bn
2) and that a factor ofR0

2 is missing in
Eq. ~66! for gn11 in Ref. @16#.

The analytical solution for theGn functions has been
found in Refs.@17,30,31#. In Ref. @17# the same form of the
Wigner-like density as in Eq.~42! was used with the param
etersReff

2 5r 0
2 and sT

252D2. However, since the analytica
solution was derived based on the recurrence relations
Ref. @16#, it has also to be cured by the substitutionr 0

2→r 0
2

2(2D)22. Particularly, after this substitution, Eq.~200! in
the preprint version of Ref.@17# for the critical multiplicity
hc @coinciding with Eq. ~9! in Ref. @5# corrected for the
misprints @17## then reduces to the simple result@15# hc
5b. In Ref. @30#, the analytical solution given in Eqs.~2.14!
corresponds to the emission function in Eq.~42! with the
parametersr 0

25R2/21(2p0)22, D25p0
2.16 Requiring a ma-

trix algebra, this solution is, however, less transparent co
pared with that in Ref.@17#. In Ref. @31#, the analytical so-
lution was obtained using the technique of the density ma
in the one-dimensional momentum space. Generalizing
solution to three dimensions„by substituting the normaliza
tion factors l0

n/@12(12l0)n# and (2pD̂n
2)21/2 by their

cubes… and relating the notation of Ref.@31# to ours: D̂n
22

58bn
1 , R̂n

252bn
2 , vn

BZ5(12l0)n5rn, L(p1 ,p2)

5G̃n(p1 ,p2), one can see that it then coincides with t
solution in Eqs.~51!.

As for the analytical approximations of the mean mul
plicity, single- and two-boson inclusive spectra, similar r

16Equations~2.14b! and~2.14d! have to be corrected for the mis
prints by the substitutions 1/4→(11c/2)/4 and (11c)→(11c/2),
respectively. Note that the other solution given in Eqs.~4.3!,~4.4! of
Ref. @30# presumably contains an error since, corresponding t
Gaussian factorizable model, it does not reduce to the genera
lution in Eqs.~49!–~51! ~particularly, it shows no condensate b
havior at high densities!.
1-17
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sults as in Ref.@15# have been obtained in Ref.@17# in both
the low and high density regimes. The behavior of the sing
boson spectrum in the low density limit was also stud
numerically in Ref.@32#—a linear increase of the relativ
correction with the phase space density was found@in agree-
ment with Eq.~71! at smallj̃p]. The condensate behavior a
very high densities was also obtained in Ref.@31#. A com-
ment requires the effective radius squared, estimated as@31#
r eff

2 5(2^q2&)21, where the averaging over the correlatio
term is assumed. With the increasing mean multiplicity,r eff

2

decreases fromr 0
2 to r 0

2/(2r 0D). Note, however, that at high
densities,r eff

2 has little to do with the interferometry radiu
squared. The latter accounts also for the change of the sin
boson spectrum and, with the increasing density, decre
from r 0

22(2D)22 to 0.
A special comment requires the normalization of the c

relation functions. There are two popular definitions of t
two-particle correlation function, both representing a ratio
the two-particle spectrum to the product of the single-part
ones, but differing in the normalization. In case~I! the spec-
tra are normalized to 1 while in case~II ! they are normalized
to the numbers of single- and two-particle counts. Th
definitions correspond to Eqs.~35! or ~36! with ~I! cn
5n/(n21) or c5^n&2/^n(n21)& and~II ! cn5c51. In the
inclusive case, based on the thermal-type models@see the
comment after Eq.~63!#, the second choice was advocat
@33,34#. Recall that the first choice~I! would be preferable in
case of a fixed pion multiplicity provided a large phase sp
volume @see discussion after Eq.~59!#. Generally, however,
there is no well-defined normalization and, for a reliab
comparison with the experimental correlation functions
free normalization parameter, depending on the produc
mechanism~not necessarily a single thermal one! and experi-
mental conditions, has to be introduced@15#.

The role of the normalization was misunderstood
@16,17#, where the decrease of the intercept of the inclus
correlation function~I! with the increasing phase space de
sity, obtained in the factorizable Gaussian model, was inc
rectly interpreted as a coherent laser behavior. Recall
pions in a coherent state would have a narrow Poisson m
tiplicity distribution, while the BE condensate is characte
ized by very wide multiplicity fluctuations. Clearly, the co
herent pion production requires a special mechanism~not
present in the model!, similar to that leading to possible for
mation of the disoriented chiral condensate~DCC! ~for a
review, see Ref.@35#!. Possibilities of experimental invest
gations of BE condensate and DCC phenomena have
recently discussed in Ref.@36#. A discussion of statistica
physics aspects of the multiboson effects can be found
Refs. @5,17,30,34,37–39#. In conclusion we summarize th
results.
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The influence of the multiboson effects on boson mu
plicities, single-boson spectra, and two-boson correlatio
including an approximate scaling behavior of some of th
characteristics with the phase space density@e.g.,^n&/h vs j
or Nn(0)/bn vs jn], has been demonstrated using the an
lytically solvable Gaussian model.

The approximate analytical formulas are given allowi
to follow the dependence of these quantities on the ph
space density parameters thus providing a possibility for
identification of the multiboson effects among others.

The meaning and the applicability conditions of the mod
factorization assumption are clarified using the physica
transparent Kopylov-Podgoretsky ansatz of classical o
particle sources. For heavy ion collisions, the factorizati
assumption is expected to be valid in case of an impact
rameter selection.

The lowest order cumulant approximation, suggested fo
practical account of multiboson effects in realistic transp
code simulations@18#, has been shown to be reasonable
moderate densities indicated by the experimental data.

At high densities, the spectra are mainly determined
the universal condensate termPc(p) @e.g., Nn

(1)(p)
→nPc(p) and Nn

(2)(p1 ,p2)→n(n21)Pc(p1)Pc(p2)] and
the initially narrow Poisson multiplicity distribution ap
proaches a wide BE onên(n21)&→2^n&2. As a result, the
intercepts of the inclusive and fixed-n correlation functions
~properly normalized to 1 at largeuqu) approach 2 and 1
respectively, and their low-q2 slopes rapidly vanish with in-
creasing density; the corresponding increase of the appa
correlation function width is, however, rather slow
logarithmic in the density.

It is found that, even near the condensate regime, the
clusive characteristics saturate at rather moderate multip
ties of some multiples of̂n& thus justifying the neglect of
energy-momentum constraints in the considered analyt
model. The latter are, however, important near a multip
threshold, particularly making impossible the production o
very cold BE condensate.

Though spectacular multiboson effects are hardly to
expected in typical events of heavy ion collisions in pres
and perhaps also in future heavy ion experiments, they
clearly show up in certain classes of events containing su
ciently high density fluctuations.
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