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Multiboson effects in multiparticle production
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The influence of multiboson effects on pion multiplicities, single-pion spectra, and two-pion correlation
functions is discussed in terms of an analytically solvable model. The applicability of its basic factorization
assumption is clarified. An approximate scaling of the basic observables with the phase space density is
demonstrated in the low densitgas limit. This scaling and also its violation at high densities due to the
condensate formation is described by approximate analytical formulas which allow, in principle, for the
identification of the multiboson effects among others. For moderate densities indicated by the experimental
data, a fast saturation of multiboson effects with the number of contributing cumulants is obtained, allowing for
the account of these effects in realistic transport code simulations. At high densities, the spectra are mainly
determined by the universal condensate term and the initially narrow Poisson multiplicity distribution ap-
proaches a wide Bose-Einstein one. As a result, the intercepts of the inclusive and éeaedation functions
(properly normalized to 1 at large relative momerapproach 2 and 1, respectively, and their widths loga-
rithmically increase with the increasing phase space density. It is shown that the neglect of energy-momentum
constraints in the model is justified except near a multipion threshold, where these constraints practically
exclude the possibility of a very cold condensate production. It is argued that spectacular multiboson effects are
likely to be observed only in the rare events containing sufficiently high de(sigckle fluctuations.

PACS numbegs): 25.75.Gz, 05.30.Jp, 24.10.Nz

[. INTRODUCTION density? If this trend will survive then there will be no spec-
tacular multiboson effects in the ordinary events at RHIC or
In future heavy ion experiments at the Relativistic Heavyeven at LHC. In such a situation the standard two-particle
lon Collider (RHIC) and the Large Hadron CollidétHC) interferometry technique could be used to measure the space-
one expects to obtain thousands of pions per a unit rapiditjime intervals between the production points also in the fu-
interval. Since the pions are bosons there can be multibosdtre collider experiments. The corresponding interferometry
effects enhancing the production of pions with low relativeradii for lead-lead collisions at LHC would be, however,
momenta thus increasing the pion multiplicities, softeningrather large—about 20 fm.
their spectra, and modifying the correlation functions. The multiboson effects can show up, however, in certain
Though the present data does not point to any spectacul&@asses of events. An example is a rapidly expanding system
multiboson effects, one can hope to observe new interestingith the entropy much smaller than in the case of total equi-
phenomena such as boson condensation or speckles in sofffium. Then a strong transverse flow can lead to rather
rare events or in eventually overpopulated kinematic region§ense gas of soft pions in the central part of the hydrody-
with the pion density in the six-dimensional phase spdce, hamic tube at the final expansion stdgee, e.g., Ref13)).
=(2m)%d®n/d®p d3x, of the order of unity(see, e.g., Refs. Another reason can be the formation of quark-gluon plasma
[1-8)). or mixed phase. Due to large gradients of temperature or
In the low-density limit f<1), the mean phase space velocity the hydrodynamic layer near the bou_ndary with
density at a given momentumcan be estimated as the mean Vacuum can decay at a large phase space density and lead to
number of pions interfering with a pion of momentym Pion speckles even at moderate transverse monjéata
(rapidity y and transverse momentup) and building the The dramatic dlffere.nce in behavior of Boltzman—hkg
Bose-Einsteir(BE) enhancement in the two-pion correlation 98S€S and dense multiboson systems can lead to serious
function [7,8]: (f),~ 7¥2N(p)/V, where N(p)=d3n/d3p problems for transport models such as RQMD, VENUS, etc.,

andV=r,r,r, is the interference volume defined in terms of ignoring actually the statistical properties of the particles

the outward (,), sideward ¢,), and longitudinal ¢,) inter- both in mte_rmedlaye and f|nal_ states. In these models the

ferometry radii. Typically(f),~0.1 for midrapidities and most intensive partlcle production happens at rela_mvely early

pi~(py) [7]. The data are also consistent with the phaséavolutlon (e?<_pan5|0|)1 stage _when rather large pion pha_se

space density of pions near the local thermal equilibfigin ~ SPace densities can be achieved at RHIC or LHC energies.
At Alternating Gradient SynchrotrofAGS) and Super

Proton SynchrotrofSPS energies the interference volume

V seems to scale witln/dy (see, e.g., Ref$10,11]) point- 1A similar effect was also observed for protons produced in

ing to the freeze-out of the pions at a constant phase spa¢eadron- and electron-nucleus interactighg].
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Generally, the account of the multiboson effects is an ex- If the particles are identical spinless bosons, then the pro-
tremely difficult task. Even on the neglect of particle inter- duction amplitude has to satisfy the requirement of Bose
action in the final state the requirement of the BE symmetrisymmetry. Formally, this can be achieved by the substitution
zation leads to severe numerical problems which increasef the nonsymmetrized amplitudg,(p1, - . . ,pn; @) (corre-
factorially with the number of produced bosdi®s4]. In such  sponding to the “switched off” effect of quantum statistics
a situation, it is important that there exists a simple analytity a properly symmetrized one:
cally solvable mode[5] allowing for a study of the charac-
teristic features of the multiboson systems under various B
conditions including those near the Bose condensation. In  Tn(P1: -+ - :Pni@)=(n) 1/2; Tn(Pays -+ Pasa),
this paper we use this model to demonstrate the influence of ?)
the multiboson effects on pion multiplicities, spectra, and
two-pion correlation functions. In addition to the original where the sum is over afi! permutationss of the sequence
papers5,6], similar studies can also be found in Ref85—- {12 .. .n,}.

17]. Particularly, some of the new aspects of the multiboson |n the following we will neglect particle interaction in the
effects, such as the scaling behavior with the phase spadggal state?® Then the nonsymmetrized amplitude
density or the behavior of thésemjinclusive correlation T (py,....p,:a)=T,(P;a) is related to the amplitude in
functions near the condensation limit were studied in outhe space-time representaticGfi(Xy, ... X, a)=T (X a)
unpublished papefl15]. The present work represents an (describing production of the particles in the space-time

elaborated version of the latter. points with the four-coordinatest={x,, ... x,}) by the
In Sec. Il we introduce the space-time description of parysual Fourier transform

ticle production in terms of Wigner-like densities and discuss

their physical meaning and the conditions of their factoriza- _

tion in the model of classical one-particle sources. The multi- Ta(Pra)= f dxeP'T (X, a). )
boson formalism in the factorizable case is set forth in Sec.

[ll. Using this formalism and the simple Gaussian ansatz fOﬂnserting Eq.(3) into Eqg. (1) and introducing the space-time
the emission function, we present in Sec. IV the analyticaljensity matrix[19] pn(X:X') =3 ,Z(X:a)T5 (X ;a) and

solutions(partly in terms of the recurrence relatiorfer the  jis partial Fourier transforrtemission functiop—an analogy
multiplicity distribution, single-boson spectra and two-bosongf the Wigner density20]:

correlation functions. In Sec. V we compare the results of
numerical calculations with the analytical approximationsB

accounting for the approximate scaling behavior in the low n(P1,X15 . Pn Xn) = Y1+ ¥n0nDn(P1, X415 - - - iPn s Xn)

density(gas limit as well as for the condensate formation at ps (= 1 = 1
high densities. The results are discussed and summarized in Zf doe'™py| X+ 55;X— 55 ,
Sec. VI

4
II. SPACE-TIME PICTURE OF PARTICLE PRODUCTION wherex= %(X-I— X'), 8= X— X', we can rewrite the produc-
A. Wigner-like density tion cross sectiortl) in the absence of BE effects as

Let us first consider a process in which, in addition to gon
others, justn nonidentical particles of given types are pro- In
duced with the four-momentg,={E; ,p;} and Lorentz fac-  d%p;---d®p,
tors y,= E; /m; (to simplify the notation, we assume that par-
ticles are spinlegsThe inclusive differential cross section of _ f d*x. iy - . n v

. . i . : : . = X1+ -d*%, D WX1; iPnXn) -
this process is described by the invariant production ampli- In ! nDn(P1.: P Xn)

tudeT,(Py, - .. ,Pn;a): (5)

=0,Pn(P1s -+ .Pn)

d*o, = IT.(p Py a)|? SinceD,, is a real(though not positively defingdfunction
d3p,---d3p, & mTbm normalized to unity, in accordance with E() it can be
considered as an approximation to the emission probability
=71 ¥nOnPn(P1, - - - Pn), of the particles with given four-momenta in the average
(1)  space-time pointg;=3(X;+X{).

The insertion of the symmetrized amplitu¢® into the
where the sum over the quantum numberglescribing the €TSS section formuldl) leads to the substitution of the
rest of the produced system, contains also an integration over
the momenta of the other produced particles with the energy-
momentum conservation taken into account. The noninvari- 2This is a more or less valid assumption for neutral pions but not
ant production probability?,(p,, . . . ,pn) is normalized to  for the charged ones. For the treatment of multiboson effects in the
unity. case of interacting pions see, e.g., Hé8].

Y1 Vn
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probability P,, by a BE modified oneP,. For example, in
case of a two-boson production process, instead of(&q.
we have

PS(p1.p2) = f d*x; d*X,[Do(P1,X1;P2.X2)

(6)

wherep=3(p;+p2), q=p1— P, andx=x;—x,. Clearly,
for n>1 the probabilityPy; is no longer normalized to unity.
The integral over this probability yields the BE weight of

+Dy(p,X1;p,X2)cogqx) ],

an n-boson event produced in the absence of the effect O\‘;vhereaz{xA a'} anda’ ={A, .

guantum statisticsdg=w;=1, w,>1 forn>1):

wn=fd3p1---d3pn Pﬁ(pl,---,pn)/ fdgpl---d%n

XPp(P1, -+ Pn). (7)
We will also use the differential BE weights
wﬁk)(pl, ...,px) defined as in Eq(7) except for a skipped

integration over the momenta of particles,1,2 k.
The multiboson problem greatly simplifiésee Sec. I
in the factorizable case when theparticle emission function

and, as a consequence, the nonsymmetrized production prob-
ability can be written as products of the single-particle ones

P Xn) =D(P1,X1) - - - D(Pn Xn)s
1pn): P(pl)’ c P(pn)-

Dn(p1,X1; - -

Pn(P1;-- - (8)

PHYSICAL REVIEW ®1 034901

istics in the model can be considered as a part of the quan-
tum numbersa={Xa,Xg,-..,a’}. It was pointed out by
Kopylov and Podgoretsky that the BE effect is mainly deter-
mined by the phase factor eXxpgxa+ipsxg+---) con-
tained in the amplitud@,(py, . . . .pPn; ).

Let us first consider the production of only one boson.
Assuming the translation invariance of the decay amplitudes
U, we can write the single-boson amplitude in the four-
coordinate representation as

T(X1; @) =1(X1—Xa; @) =U(X;—Xp; @'V (@), (12

..}. Inserting Eq(12) into
Eqg. (3) and introducing the Fourier transform

t(p;a)=f d*¢ePit(&a)=u(p;a’)v(a), (13

we obtain the Kopylov-Podgoretsky ansatz

T(p;a)=€P*at(p;a)=ePau(p;a’)v(a). (14
For the production probability we have
PC(D)ZP(D)EJ d*xa W(p,Xa)
:f d4XAZ [t(p;{Xa.a'})|?, (19

where we have introduced thérue) emission probability
W(p,Xa). Similarly, if two bosons are produced, the produc-

Consequently, the BE weights are expressed through a unfilon probability takes the form

versal functionF;; (see, e.g., Re{.18])

o (P1,P2, - P =2 11 Fio, )

where

Fij:f d*xD(pjj ,X) - exp(iqi;x)/[P(pi) P(p;) 12
(10

Pij =%(pi+pj) andq;j=p;—p;. The sum in Eq(9) is over
n! possible permutations of the sequencgl,2, ... n}. For
example, in the two-boson case, we have

0P(py1,pa) =F1iF oot F1oF =1+ K2 (py,py), (12)

where K =F,F,; is so-called differential cumularfsee
Sec. llI).

PS(p1.p2) = J' d*xa dAXBZ {|t(p1,p2;a)|2

+RAt(P1,P2; ) t* (py,py;a)e' ¥}
(16)

Note that herex=x,—Xg and, as usualy=p;—p,.

The emission functiorD can be expressed through the
Kopylov-Podgoretsky amplitudegp; «) continued off mass
shell. Using the inverted Fourier transform in E43), we
get from Eq.(4) [18]

s

(2m)* &

D(p!;].): f d4XA d4K eiK(XA_;l)

Xt

p+ ;K:{XA,a’})t*<p— %K;{XAia,})

1 =
B. One-particle sources = (2 Z f d*xa g4 el K(xa—x1)
To clarify the physical meaning of the emission function 1 1
and the factorization assumptid8), let us follow Kopylov VA P I 2
and Podgoretskysee, e.g., Refl1]) and assume that par- xuipr o WP V()]
ticles 1,2..., areemitted by one-particle sourcédsB, .. ., 17)

which are considered as classical so they can be treated by
parameters and not by amplitudes. Thus the four-coordinates It is clear from Eq.(13) that the momentum dependence
of the source centers,,Xg, . . . , andother source character- of the amplitudet(p;«) is determined by the space-time
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extent of the one-particle source. For example, assuming that c _ _T2. 2 T2.2
the source emitspa particle independentlyIo of the quagtum 2(P1:P2) =P(py)P(p2)[ 1+ exp — 150" 7605) ] (21)
numbers o’ except for the source typeA: u(¢a’)
=U(&A) and that the distribution of the emission points in This result follows from Eq(6) or, in terms of the Kopylov-
the source rest frame is given by a simple Gaussian with thEodgoretsky emission amplitudes, immediately from Eq.
width parameters, and 7, characterizing the proper space- (16). If the sources of interfering bosons move with non-
time Sizes Of the Sourcé, we Obtain in case Of a source at relativistic VelOCitieSﬁAE pA/m and the distribution of their
rest3 characteristics is given by a product of exmﬁ/ZAS) and
the same Gaussian as befdre., the residual slow relative
1 1 motion decouples from other source characteristiog still
t(p;a)~eXF< - Efipz—iipg v(a). (18)  arrive at Egs. (19),(20), up to a substitutionrip?
—rap?/[2(rpAg)?+ 1] corresponding to a widening of the
momentum distribution due to the source relative motion.
Note that the factorized form of the multiparticle density is
not destroyed by this motion. The latter, however, influences

centers. In the following we will take it also in a simple . ; ;

G an f ith the width i~ 4% ch the two-boson correlation function which now becomes sen-
aussian form with the width parametegandro charac- - g6 16 the source size, even in case of one source type,

terizing the space-time extent of the source production re-

gion. Eq. (21) being modified by the substitutiorf—T2+r4/[2
Comparing Egs(15) and (17), it can be seen that the T (rafo) 1. , ,
emission functiorD is more spread in space and time than 1€ Space-time extent of one-particle sources can be usu-
the emission probabilityV. In particular, the Gaussian pa- ally considered much smaller than the~charact~er|st|c space-
rametrizations ofi(¢:A) and|v(a)|? yield time distance between their centelsA{éro,. TA<KTY). _The _
four-momentum dependence of one-particle amplitudes is
5 9 then negligible when varying the particle four-momenta by
2.2 2.2 X Xo A isti i :
W(p,X)~exp(—rap°— TApo)eXP( - = TZ) (19  the amount~T,*, 75" characteristic for the interference ef
ro 27 fect. On such amoothnessondition, there is practically no
difference between the emission functibrand the emission
and probability W and both Eqgs(6) and (16) yield the well-
known result of Kopylov-Podgoretsky for the production
probability of two identical bosons

The probability|v(«)|? describes the production of particle
sources and depends on the four-coordinatesf the source

x? x3

D(p,x)~exp —rip?—r2p2)exp — —= - —
PRSI APIOR ~ 2 o 2

(20 P3(p1.p2) =P(p1.p){1+(cogq(x1=xz) )} (22

IIl. MULTIBOSON FORMALISM

Clearly, the factorized forn(8) for the emission function IN FACTORIZABLE CASE

is recovered in case of independent sour@ies, sources

having no quantum numbers in comm@ssuming a unique ) i ,

mechanism of their production. Generally, the latter condi- 1he multiboson effects can be practically treated provided

tion may not be fulfilled, e.g., in case of heavy ion collisions that we can neglect partlc_:le_lnteractlon_ in the_flnal sta_lte and

without selection of the impact parameter. Then, even fo@SSUme independent emission of noninterfering partices

independent sources, Ed8) will be substituted by a Vvalid assumption for heavy ion collisionsupplemented by

weighted sum of factorized terms corresponding to differenfn® requirement of a universal single-particle emission func-

single-particle emission functions. tion D(p,x) for fche detectec_j class _of _events. We can then use
The single-particle density generally contains contribu-Ed- (8) expressing the-particle emission function as a prod-

tions from the sources of different tyge.qg., different reso- Uct of the single-particle ones. Then, similar to R¢&6] it

nances It is interesting to note that in case of only one IS convenient to define the functions

source typdi.e., universal source parameteasid on condi-

tion of sufficiently slow relative motion of the sources con- (P1,p ):f d*x D

tributing to low{q| pairs (e.g., due to limited source decay BFLF2

momentun), the BE correlation effect in the two-boson case

is solely determined by the characteristic space-time distance

between the source centers Gn(pl,p2)=f d®ks- - - d%k, G1(p1.k2) - - - Ga(Ky,P2)

exdi(p1—p2)x],

1
(P11 P2),X

EJ dky Gy 1(P1.K2)G1(K2,p2),
3Note that Eq(18) is also valid off mass shell whem,+# E. For a

source moving with a nonrelativistic velocif§,, the substitution
p—p—pa has to be done in Eq18), wherepy,=mp, is a mean _ 3

three-momentum of the particle emitted by a soukce Yn d*p Gn(p.p). (23
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The functionG; at equal momenta is just the initi@ghot ~ Similarly, the BE affected single- and two-boson spectra,
affected by the multiboson effegtsingle-boson spectrum respectively normalized to andn(n—1), can be written as
normalized to unity

NE(P)=Ny(p)=nw{P(p)- P(p)/w, (30)
The related quantities are so-called cumulants N®(py,p2)=n(n—1)w{?(p1,p2) P(p1)P(p2) wp,
1 (31)
KP(p1,p2)=(n—2)! ;1 Gi(p1.P2) where the differential BE weighte")(p) and w{?(p;,p,)
are expressed through the differential cumul&fﬁ@(p) and
X Gn-i(P2,P1)/[P(p1)P(p2)], K(®)(p;,p,) [15]:
K{P(p)=(n—1)!G(p,p)/P(p),
" " w(n”(p)zf d*p’ wP(p.p")P(p")
Kh=(n=1)!g,. (25) ho1
It can be shown that the BE weight of an event witfden- = 240 KD y(Pon-1-j,
tical spin-zero bosons is determined through the cumulants .
K; by the recurrence relatigri8] n—2

(2) — Cn—z .
=Cl 'Kywp_1+C] *Kowy o+ -+ +C1- 1K wg of(prp2) =2 C 2o

(26) i
with wo=w;=1; C"1=(n—1)1/[i!/(n—1—i)!] are the X .—20 CIKM(pDK D)L 4(p2)
usual combinatorial numbers. For example=1+K, and N
w3=1+3K,+Kj3. One can check that,=n! provided that

all the elementary one-particle sources are situated at one Hz(pl,pz)} (32
and the same space-time point so that all the single-boson

states are identical aﬂﬁHl—J' In the other extreme case
of a large phase space volume arfdK,<1, we can neglect
the contribution of the higher order cumulants except for th
first power ofK, and write

The differential weightw{?)(p;,p,) can be considered as
A two- particle correlation function measuring the BE effect
on the initial uncorrelated two-particle spectrum
N (py,p,)=n(n—1)P(p;) P(p,), with the normalization
wn=1+CIK,. 27
3. 3. (2 _
Given the initial multiplicity distributionw(n), the BE j @01 %z (P12 P(PUP(P2) =wn-  (33)

affected one is easily calculated using the BE weighjs . o . ]
Usually the correlation function is normalized to unity at a

_ _ large|q|. Such a normalization is approximately satisfied for
W(n)=wnW(n)/ 20 wjW(j). (28)  the correlation function defined as
]:

. . A . . . . =N®@ N(2) =2
Particularly, assuming the initial Poissonian distribution with Rn(P1,P2) =Ny~ (P1,P2)/N5(P1,P2) = 0™ (P1,P2)/ @y -
s (34)
the mean multiplicityn: w(n)=e~ 75"/n!, we get
N 0 j In practice, the two-particle correlation function is defined
W(”):wnz—./ E wj;?—,- (29 through the observable spectra as

Rn(P1.P2) =CaNP(p1,p2) /[N (p)NP(p,)]. (35

“This situation is similarflat correlation functionthough differ- Similarly, the (semjinclusive correlation function is defined

ent from the case of the emission of so called coherent bosons for
which there is no enhancement factor. In fact, when the one-particle
sources become closer and closer, so that their distances are less
than the wavelength of the emitted bosons, they can no more be
considered as independent ones and a multiparticle source of notl.
interfering bosons has to be introdudgtl]. To quantify the tran-
sition to the noninterfering bosons a concept of the coherence N(l)(p):Z W(n)Ngl)(p),
length can be usel®2]. n

R(p1,P2) = CN(Z)(pl ) p2)/[N(1)(p1)N(l)(p2)], (36)

here
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Egs. (32)]. We should, however, perform integration over

N@(py,p,) = ; w(nmN?(p;,p,) (37 momenta of one or more particles to determine the integrated
cumulantsk 2 (py,p,), KM(p), andK,.
are the correspondingsemiinclusive single- and two- The numerical averaging of the cumulants of all orders is

particle spectraw(n) is the normalized multiplicity distribu- @ difficult task. In the case of large multiplicities of identical
tion accounting for the BE effect according to EBg). Later ~ bosons (>20) this is practically possible in the models
on, using an analytical Gaussian model for the emissiofVith & symmetric emission functiofallowing to use a spe-
function, we show that the normalization constepican be ~ cial Monte Carlo technique[3] or with a simple analytical

expressed through the BE We|ghts as parametrization of this fUnCtiOEB,G]. For example, in Ref.
[6] the corrections to multiplicity distributions, single-
cnznwﬁ_ll[(n—l)wnwn_z] (38) particle spectra and two-particle correlation functions were

calculated using the relativistic Bjorken mod@i3] for the
and thatc=1 for the inclusive correlation function provided emission function. To compute cumulants up to tenth order,
a Poissonian multiplicity distribution of the initially uncorre- the integration was performed analytically over the space-
lated bosons. time coordinates and numerically over the momenta.

As one can see from formuld80)—(32), the multiboson Generally, for realistic models used to predict particle
correlations lead to distortions of the initial single- and two-production in ultrarelativistic heavy-ion collisions, the nu-
particle distributions. Such distortions are small in the casenerical limitations allow to determine only a few lowest
of interference of only two or three identical particles. How- order cumulantgup to about the fourth ordef18]. Fortu-
ever, they can become essential for the events with a largeately, since the interferometry measurements point out to a
number of identical bosons due to factorially increasingmoderate pion freeze-out phase space density 0f1, the
number of the correction tern{8] (see also Refd.l] and lowest order cumulant approximation appears to be reason-
[5]). For the processes characterized by a higi® (1) phase able for typical events in present and likely also in future
space density of the identical bosons at the freeze-out timkeavy-ion experimenté&ee Sec. Y. At the same time, even
the multiboson effects can no more be considered as a coin the absence of strong multiboson effects, their account can
rection[3]. still be important for realistic simulations of heavy ion col-

To account for the multiboson symmetrization effect inlisions[18].
the event simulators, a phase space weighting procedure was
used with weights in the form of a normalized square of the
sum ofn! plane waveg3,4]. This procedure, however, does IV. ANALYTICAL MODEL

not appear practical for a largedue to the factorially large  To study the multiboson effects in a dense pion gas, we
number of the terms to be computed to calculate the weighfise a simple model assuming independent particle emission

and, due to large weight fluctuations. These fluctuations cafsee Eq.(8)] with the Gaussian ansatz for the single-boson
be substantially reduced by weighting only in the momentunpmission functiord (p,x) [5]:

space. The corresponding BE weights are given in (Bg.
They are expressed through the universal functi@)
which is simply related with the functio®,:

1
D(p,x)= — ex;{ T —2> o(t). (42
Fij=Ga(pi,p)/[P(p)P(p)]*2 (39) (271 oA) 247 2rg

On the condition of sufficient smoothness of the single- Note that this ansatz corresponds to the independent one-
particle spectra, we can put particle sources of Kopylov and Podgoretsky, all of the same
type, characterized by a universal size~of2A) "2, with the
centers distributed according to a Gaussian of a dispersion

F--ifd"'xD ix)ex i-»x/fd“xD i), -
N (Pij - x)exptia;;x) (Pij - X) r2=r2—(2A)~2 [see Eq.(20)]. Then, in the low density

(40 limit but regardless of the validity of themoothnessondi-
where p;;=3(pi+p;) and g;;=p;—p;. This function can tion r0>_(2A)*1 [see, however, the footr_10te after E(Qﬁ)
then be calculated as suggested in R&8]: concerning the independence assumgfiadhe correlation

function of two noninteracting identical particles measures
Fij=(exp(idjXid)p, (41)  the dispersion of the relative four-coordinate®f the cen-

ters of the one-particle sources as the inverse width squared
where the averaging is done over all simulated phase spaes the correlation effect seen in the relative momemptap,
points {p,,X¢} such thatp, is close to a given three- —p, [1]. For spin-0 bosons
momentunmp;; . However, there is still the problem with fac-
torially large number of the terms required to calculate the

Weight according to qu) R( p1|p2)= 1+<C01q’;()>= 1+6X[X _}‘ng) (43)
Fortunately, when calculating only single- or two-particle
distributions according to Eq$30) or (31), this number is In this model the initial boson phase space dengifyt

strongly reducedleaten by the combinatorial numbeﬁ$1 in affected by the BE effettis given by

034901-6



MULTIBOSON EFFECTS IN MULTIPARTICLE PRODUCTION

o

The mean densities at a fixed boson momenguand aver-
aged over all phase space are
_»
2A2

ey [ a2 sy _ N
<fn)p—fd x(f,) /fd xf, —(\/ErOA)3eX[{
(45)

and

Ta(pX)= (44)

(l’oA)3

<~fn>zf d3xd3p("f‘n)2/ fd3xd3p"fn=n/(2roA)3,
(46)

respectively. Similarly, the initial inclusive densitié&p,x),
(), and(f) are given by Eqs(44)—(46) with the multi-
plicity n substituted by the initial mean multiplicity.

It is worth noting an approximate equalifgee also a
model independent prove in Ref7]) between the mean
phase space density in the low density limit

77_3/2

=—-N(p)
re

() =Lexp< - p—2> 7
P (J2ryn)3 2A2

and the mean number of pions building the BE enhancement

in the two-pion correlation function

fd3q[R(p1.pz)—1]N(p1)N(pz)/N(p)

32

=?N(p)%<'f>p,
o

(48)

P1,=pP*0q/2. This equality is valid up to relative corrections

O[(roA) 2] and O((?)p), the latter representing an impact

of the BE correlations on the single-boson spectr(see
Sec. VB.

It is important that the Gaussian ansatz in &) allows
us to express the functior,(p;,p,) and the integralg,
[see Eqs(23)] in simple analytical form$15]

Gn(p1,p2) = (27A%A,) "3 2exd — by (p1+p2)?
_b;(pl_pz)z]y

gn=(8A2Aby) %2 (49

whereA,, b, andb,, are given by the recurrence relations

An=2A%A, 1(by_y+Db,y_y+by +by),
by =1ib; 1 +by)+1lb, 1+by),

by =by by /b; (50

PHYSICAL REVIEW ®1 034901

with A;=1, by =1/(8A2) andb; =r3/2. The recurrence re-
lations of this type allow for the analytical soluti¢@7]. In
our case it reads

by =bie (1=pM/(1+p"),
(51)
An=pB""e(1-p"), gp=B""(1-p" "3,
wheree 1=2r A, p=(1—¢€)/(1+€) and the parameter

B=(roA+1/2)3 (52
can be considered as a characteristic phase space volume.

For example, fon=2 and 3, we havé\,=(1+ ¢ 2)/2,
A;=(1+3€2)%/16, by=2b;/(1+€?), bs=3bj(1
+ €23)/(1+3€?), g,=€°, g3=[4€%/(3+ €?)]°. Recall that
the cumulants related tg, and g; are[see Eq.(25)] K,
=g, andK3;=2gs.

It follows from the recurrence relation80) or their ana-
lytical solutions(51) that the slope parametebs andb,
approach each other with increasing In the largen (n
>roA) limit we then haveg15]

by —b, —ro/(44), Ay—B2"3(2rpA), g,—B "
(53
and
. rO 3/2 rO ) )
Gn(p1,p2)—B A & —H(4P+Q)
(54)

In very largen (n>eg) limit, using the largea behavior
of the parameterg,,, we can get from the recurrence rela-
tion (26) the following behavior of the BE weightl5]:

w,—c(B)n!/ 8", (55
where ¢(B) is a function factorially increasing withg,
c(1)=1°

It is worth noting that the large-limits become equalities
at =1 (roA=1/2) wheng,=A,=1, K,=(nh—1)!, w,
=n!, andb, =b. =r,/(4A). Recall that3=1 corresponds
to the minimal possible phase space volume when all the
particle emitters are situated at one and the same space-time
point so that the size (®) ! of the elementary source de-
termines not only the width of the single-particle spectrum
but also the characteristic distance between the production
points [see, however, the footnote after E@6) and also
Ref. [18] for a more detailed discussiprin such a case,
=0 and the correlation function equals 2 for any valuejof

In the lown (n<rgA) limit, i.e., in the case of a large
phase space volume, it follows from Eq80) or (51) that
the slope parametds, increases linearly witm up to the
correctionsO[ (2r,A) ~2] and that, ah>2ryA, this increase

A good approximation isc(B)=84P, d(B)=a;+a,B%, a,
=0.617,a,=0.621, anda;=0.788.
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saturates atq/(4A). Similar behavior shows the parameter

A,/B?"3. Thus, atn<2r,A, we have
by =biby /by =nby,  Az=n(red)X Y,
(56)
gn=n"3(roA) 301,

Comparing the lown approximationg56) for the parameters
b, , A,, andg, with the largen ones in Egs(53), we can
see that they tail each other at=2ryA, roA/2, andryA,
respectively. Correspondingly, the lawapproximation for
the G,, function

Gn(P1,P2)=T1o3(roA) ~3"(27rn) ~32

X exp( — p?n/2A%—ory?/2n) (57)
tails with the largen one in Eq. (54) at n=n;, 1/2
<n /(roA)<2.

Consider now the correlation functidR, defined in Eq.
(35). To determine the normalization constant, it is con-

venient to rewrite the single- and two-boson spectra at a n j=0

fixed multiplicity n as
n-1

NO(p)=>

i=0

(n— - )~
ZO J j+l(p P)

w1/ (n=1-))!
wp/n!

GJ +1(p1p)

n—-2

wn_p_il(N=2—))!
N%Z)(phpz):jgo daiad

wp/n!

j
Z [Gi+1(P1,P1)Gj-1+1(P2,P2)

+Gy41(P1,P2)Gj -1+ 1(P2,P1) ]

w(n—2-j) ¢

“ W(n) IZ é|+1(I31al31)

N

Xéj—ul(pzapz)
+Gi11(p1,P2)Gj1+1(p2,p0)],  (58)

wherew(n), defined in Eq(29), coincides with the BE af-

fected multiplicity distribution arising from the Poissonian

one characterized by the initial mean multiplicity and

Gi(p1,p2) = 7'Gi(p1,p,). Noting further thab, approaches
the limiting valuery/(4A) from below, whileb, does it
from above, we can see from E@9) that, at largeq, all
terms in Eqs.(58) for N{M(p;,) and NP (py,p.) (p12=p

+q/2) can be neglected except for those containing the low-

est slope by . For the normalization constantc,
=limg_..[N{P(p1) NS (p2)/N$P (1 ,p2) ] in Eq. (35) for the
correlation function we thus g¢L5]

PHYSICAL REVIEW C61 034901

=[w(n=1)J*/[w(nw(n—2)]

=nw?_,/[(n—1)w,0,_5]. (59
Note thatc,=2/w, e (1,2); with the increasing multiplic-
ity ¢, decreases and, according to E§5), c,=1 for n
>ep. For large phase space volumegenw,=1 at small
n), the normalizatiorc,=n/(n—1), and the exclusive cor-
relation functionR,, normalized to 1 at larglg|, becomes
close to the usual definition as a ratio of the two-particle
spectrum to the product of the single-particle ones, both
spectra normalized to 1. Generally, the latter definition is,
however, not reliable since it leads to the plateau height of
wnwn_p/w?_;>1 which, in case of a small phase space
volume B and a smali, can be substantially larger than 1.
For example, fom=2 this height isw, and can reach a
value of 2 if B—1.
Regarding the(semjinclusive single- and two-boson
spectra, they can be written in a form similar to E¢s8)
only in the initially Poissonian case

n—-1

NO(p)=2 > win—1-))G;;1(p, p)/E w(n),

N@(py,pz)=2 2 w(n—2-j)

j
XEO [(~3|+1(p11p1)éj—|+1(P2aP2)

+é|+1(p1apz)éj—|+1(p2,p1)]/ ; w(n).

(60)

The normalization constant in E¢B6) for the (semiinclu-
sive correlation function is thefil5]

2
/[; w(n); w(n—z)} (61)

Clearly, in the completely inclusive casehen the sums
include alln from 0 too and 2, w(n—j)=1), we havec
=1 and

> w(n—1)

n

c=

<n>=E aj+lE§1
j=0
N‘”(p)=j§o G +1(p.P)=G(p,p),

©
(2)(p1,p2)=j20 ;0 [(~3|+1(p1,p1)éj_|+1(p2,p2)

+él+1(plip2)éj—l+l(p2vpl)]

Eé(plapl)é(p27p2)+é(p1,pz)é(Pzapl),
(62)
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whereg,,= 5"g,,. For the inclusive correlation functioige) ~ of », A, andr,. Note that§=0.95 and 0.72 for Figs. (&)

we have[15] and Xb), corresponding teo=0.02 and 0.27, respectiveTy.
It should be noted that the experimental data point to a

G(p1,p2)G(P2,p1) moderate value of the density paramefeihus, taking 0.2

R(p1,p2) =1+ = = - (63)  as an estimate of the inclusive phase space densipy=#

G(p1,p1)G(P2.P2) from AGS and SPS experiments and using &f), we get

ee the last sectiprF~0.4—0.5.

Using Eq.(62) for (n) and tailing the large- and smail-
approximations of the integraty, atn;=ryA [see Eqs(593)
and(56)], we can approximate the mean multiplicity as

Thus, in the considered case of the initially Poissonian mul-(s
tiplicity distribution, the interceptR(p,p)=R(0)=2 in
agreement with the result generally valid for thermalized
systemg8]. Note that Eq(63) coincides with similar expres-
sions in Refs.[16,17 up to a normalization factor . ~oa ~n 1/ 3 N
(n)2/(n(n—1)). With the increasing density, the latter de- (M=[1+&2°+ - +&"7/nZ]n+Mw=(n)g+(n)c,
creases from 1 to 1/2 and, for dense systems, forces the cor- (66)
responding correlation function to 1. Such a behavior was ~ ~
incorrectly interpreted16,17] as a coherent effedsee also Where&=7/(roA)%>§; the density parametegsand ¢ co-

the discussion in Sec. Y incide atroA>1. At large phase space volumesg4)3
>1, the two terms in Eq(66) can be considered as contri-
V. RESULTS butions of the BE gas and BE condepsate, respecti_vely. It
can be seen that the condensate dominates on condlitjon
A. Multiplicity distributions >p.
We will consider here the multiplicity distributiof29) Note that in the rare gas limi§<1, we have(ny=[1

resulting due to the BE effect on the initially Poissonian one+¢/23] = »+K,%? i.e., the increase of the mean multi-
with the mean multiplicity». In accordance with the large-  piicity is dominated by the contribution of the second order
behavior of the BE weights in E¢55), it takes on the fol-  cumulant K,=(2r,A) 3. The corresponding multiplicity

lowing limiting form atn>ep [15]: distribution then becomes somewhat wider than the
Poissonian one[see Eqgs. (27),(29]: w(n)=const(1
n —
w(n)—const&" &= qlB. (64) +CIK,) 7Nl

In Fig. 2(c) we demonstrate the approach of the mean
multiplicity (n) to the limiting scaling valuev=§¢/(1—¢),
though only for¢ very close to the explosion poir=1

Wge(n)= v (1+ )", p=¢/(1-¢), (65  (£>0.99). Instead, in the region of<0.9 indicated by

present experiments, we can see, in agreement wittieby.

with the mean multiplicity».® This is demonstrated in Figs. 1 an approximate scaling of the ratiqn)/ » [Fig. 2(b)].
and 2. Thus, ary,=2.1 fm andA=0.25 GeVt, the BE Since, in the realistic event generators, the multiboson
effect transforms the initial Poissonian multiplicity distribu- effects can be accounted for only in the lowest order cumu-
tion with =30 [dotted curve in Fig. (8] to the one with lant approximatior{ 18], it is instructive to study the satura-
much higher mean and dispersion val{sslid curve in Fig.  tion of these effects with the increasing numbgy,, of the
1(a)]. The exponential tail expected for the BE distribution is contributing cumulants. In Fig. 3 we show thg,, depen-
clearly seen in Fig. (b) where the results are presented in dence of the ratign)/ » of the BE affected mean multiplicity
logarithmic scale forp=10, A=0.25 GeVt, andr,=1.5 to the initial one for different values of the density parameter
fm. One may see that Ed64) (dashed ling becomes an ¢. For example, a€=0.8 this ratio saturates &gy~ 10
excellent approximation fan>30, which is close to the con- (~40% increase ofn)). At N.,=4, representing a practi-
dition n>eB=37.6 for the present choice of parameters.cal limit due to the numerical problenid8], the effect is
The slope parameteb in the exponential fit w(n) underestimated by-25% ((n)/n~1.3 instead of 1.4 The
= const exp{-bn) of this tail at largen should be, according situation is more optimistic for lower densities. Thus &t
to Eq. (64), only a function of the variablg: b= —In(é). =0.5 the effect - 15% increase ofn)) practically saturates
Such a scaling is demonstrated in Figa)Xor various values atN¢ym=4.

Up to now, we have considered the symmetrization effect
on the production of only one type of identical bosons. For a

The largen behavior of the multiplicity distribution in
Eq. (64) indicates that it approaches the BE one:

5This is in accordance with the appearance of the Bose-condensate
in a dense ideal Bose g#24]. The fluctuations of the number of
particles in the condensate are very large—they are described by the/At the explosion poing=1 the tail of the multiplicity distribu-
well-known Einstein formula for identical bosons in the same quan-tion becomes a constanb£0) so that the mean multiplicityn)
tum state. The corresponding BE multiplicity distribution in Eqg. would go to infinity provided that there are no energy-momentum
(65) turns to the Reley one for very large mean multiplicities. This constraints. Note that the corresponding critical initial mean multi-
type of BE condensate should not be mixed up with the multibosorplicity 7., = 8=(r,A+1/2)% is close but different than that given
coherent(lase) state in which the BE correlations are absent andin Eq. (9) of Ref. [5]. For the origin of this difference see the
the multiplicity distribution corresponds to the Poisson law. discussion in Sec. VI.
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FIG. 1. The multiplicity distribution of neutral pions fdg) A
=0.25 GeVk, rg=2.1 fm, =30 and(b) A=0.25 GeVk, ry
=1.5 fm, =10, wherey is the mean multiplicity of the initial
Poissonian distributiongdotted curves The dashed line corre-
sponds to Eq(64).
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n =10 40
(=] A

<n>/n slope parameter, b

<n>

£/(1—-8)

FIG. 2. The slope parameteb of the exponential tail
¢ exp(—bn) of the multiplicity distribution(a), the ratio of the mean
multiplicity to the initial Poissonian onéb), and the mean multi-
plicity (c) as functions of the density parametefs /8 and
&(1-¢); A=0.25 GeVE. The curve in(@): b= —In & the curves
in (b),(c) are calculated according to the tailing approximation in

system of charged and neutral pions, the total symmetrizaEd- (66), the line in(c): (n)=¢&/(1-§)=v.

tion weight in the model coincides with a product of the

separate BE weights,u, w, andwno provided the pions

no restrictions due to energy-momentum and isospin con-

are emitted in unpolarized and uncorrelated isospin statesfraints. The latter assumption may be reasonable at high
the effect of their FSI is negligible and there are practicallyenergies when the subsystem of interfering pions represents a

<n>/n

£=0.9

; L i L

10°

Ncum

-
-
[«]

FIG. 3. The ratio of the mean multiplicity to the initial Poisso-

small part of the produced multiparticle system. The initial
distribution of pion species is then a trinomial one,
strongly peaked atn,=n_=ny=n/3: w(h,,n_,ng)
=n!/(3"n,.!'n_Iny!). After the symmetrization in the large-

n condensate Iimit@niﬁni!/ﬁ“i), it becomes independent
of n; and yields a substantial probabilif2(n—ng+1)/[(n
+1)(n+2)]} of any value ofn, at a fixed total pion multi-
plicity n. Particularly, the production of so-called Centauro
(anti-Centaurp events containing mainly chargddeutra)
pions then becomes possible. The probability of the extreme
charge configurations can be enhanced even stronger in case
of isospin constraints, for example, if pions were produced in
isosinglet pair$5,6,25. The latter mechanism can be of par-
ticular importance in the near-threshold multipion
production® due to the limited total isospin and charge. Un-
fortunately, then! enhancement of the near-threshold con-
densate production will be more than compensated by the

phase space suppression factor @, [(A)3"~ (n!) 372
wherep,=[2m(y/s—=;m;)/n]*? is the mean pion momen-
tum near threshold.

8A proposal of an experimental study of the near-threshold mul-

nian one as a function of the number of the contributing cumulantdipion system at Serpukhov accelerator was recently discussed by

for different values of the density parameter

Nikitin. A similar idea was also communicated to us by Nemenov.
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B. Single-particle spectra

N(p)

E n= 45, ro= 3.5 fm, A= 0.18 GeV/c

The influence of the BE effect on the single-boson spec- £=0.89

trum for a given boson multiplicity, can be seen from Egs. 105 -
(25-(30), (32, and (49). At sufficiently large momenta, 3
when the local densityf,,), remains small even at large 02
this spectrum is dominated by the contributiBpP(p), B, c
=Nw,_,/w,, of the initial spectrum. In such a rare gas 0
limit, &,,=&,exp(-p*/2A%)<1, we can write[see Egs. i

(25), (32), and(27)] ) SE—

n=12,r,=2fm, A= 0.18 GeV/c

. Wp-1 Wn-2 f_
Nn(p)=n Gi(p,p)+n(n—1) Ga(p.p) w0tk
Wp Wn E
=n[1—(n—1)K;]G1(p,p)+n(n—1)G(p,p)
=nP(p)+n(n—1)K,[2%?P(2"%p) — P(p)]. o b
(67) L
Otherwise, at large local densitied,(p) is determined by ,0-15 T R S S S BRI B
the asymptotic large-density spectriifi5] ° o o2 o o o p'f'GG oV /2"

FIG. 4. The inclusive single-particle spectra corresponding to
=nP.p), (68) the density parameteta) £=0.89 and(b) £=0.95, 0.99, and 0.998
(the radiusr slightly varies near 2 fip the corresponding mean
rqéultiplicities are(a) 64.3 and(b) 33.5, 113.7, and 433.8. The his-
tograms represent the exact result, the full curves are calculated

ro 3/2 ro )
Nn(p)—n| —¢| expg — 3P
associated with the BE condensate and corresponding to t

asymptotic(largen) valuer,/(4A) of the slope parameters according to the tailing approximatigiil), the dotted ones repre-

by . Note thatP(p) is normalized to unity and that, # sent the contributions of the tW@E gas and BE condensaterms

=1, it coincides with the initial distributiof®(p). in Eq. (71) and the dashed curves correspond to the rare gas limit
It is clear from Eqs.54), (55), and (58) that for small 7P(p).

momenta, p<A(ro,A—1/2)"*2 the condensate regime in
Eq. (68) settles on conditiog,>e. For larger momenta, we ra L% 32 ~ -1, 3 n

must take into account that the condensate contribution van-N(P) =L+ /275 - 4 &7 7n, 1P (p) + £"rPe(p)
ishes much faster than that of BE gas, thus leading to much =Ny(p) +N(p), (7
stronger condition of the condensate dominance:

an - where &,=(2m)%?3P(p)/ro>=E exp(— p?/24?). Clearly,
En>(2rpA) " “exrd (2rpA —1)p/2A7]. (69 for large phase space volumesgf)3s>1, the two terms in
o . L . . . Eq. (71) can be interpreted as contributions of the BE gas
Similar to the fixed multiplicity case, the inclusive single- ;4 gg condensate, respectively. As in the fixed multiplicity
boson spectrum at small local densities tends7#(p)  case, the condensate dominates on condité® with the
=G,(p,p) and, at large ones, it approaches the asymptotigubstitutionn—(n) (&,—(n)/B).

high-density spectrurfsee Eq(68)]: In Fig. 4 we compare the inclusive single-boson spectra
with the approximate formuld71). A good agreement is
N(p)—(n)P(p). (70)  obtained despite the calculations were done for not very

large phase space volumes. Some underestimatibif at

The transfer of the initial spectrum to the high-density one iSntermediate local densitiegp [Fig. 4@)] and the corre-
demonstrated for the inclusive distribution in Fidajand, sponding underestimation @) at moderate densitieg
mor% clearly, for¢ closer to the explosion poidt=1, in Fig. [Fig. 2(b)] become weaker for larger systefilarger multi-
4(b). . ) plicities in Fig. 2b)] due to increasing number,~ry A of
Tailing the large- and smafl- behavior of the the terms in Eqs(66),(71) and thus—decreasing relative
Gp-functions atn,~roA [see Egs(54) and (57)], we can  contribution of the tailing region. We may conclude that the
approximate the inclusive single-boson spectrum inB8  accuracy of Eqs(66) and (71) is reasonable for the systems
as produced in heavy ion collisions at SPS and that it will be
even better for larger systems at RHIC and LHC. Experi-
mentally the effect of BE “condensate” was searched for at
*These results agree with those obtained in R (see also SPS CERN as a low; enhancement, however, with rather
Refs.[8,18], and references thergiexcept for an incorrect conclu- uncertain resultgsee, e.g.[26]).
sion[5] that the width of the narrow peak due to the BE “conden- It follows from Eq. (71) that for sufficiently large i,
sate” is of 1f,,. =roA>1) and not very dense¢&1) systems, similarly to
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the ¢ scaling of (n)/n [see Fig. 2)], the ratio C. Correlation functions
N(p)/[ nP(p)] scales with the local density paramefgt It .
appears that analogical scaling takes place also at fixed mul- !t follows from Egs.(35) and (49)—(59) that, for a given
tiplicity n.*° In Fig. 5 we show the ratio of the single-particle multiplicity n, the correlation function intercep®,(p,p)
spectrum at fixech to the dominant large- contribution ~ =Rn(0) decreases and the correlation function width in-
BnP(p) of the initial spectrum calculated pt=0 as a func-  creases with the increasing or decreasing momenturp,
tion of &, for various multiplicitiesn. An approximate¢, both corresponding to the increasing local density parameter
scaling is seen up t§, of the order of unity. At largeg, this ~ &np-
ratio approaches the condensate limit {&)%2¢,, which no In fact, for large local densitieksee Eq.(69)], the con-
more scales withé, [see the corresponding curves in Fig. densate behavior is achieviske the curves in Fig(B)] and
5(b)]. What scales at largé,, is not the ratio of the two the correlation function tends to unity not only at large but
contributions but the ratio of their integrals/g,, the lim-  also at smalb?. Indeed, in this limit the normalization con-
iting value of which is just equal t§,,=n/B since, according stantc,—1 [see Eqs(38) and(55)] and the nominator and
to Eq.(55), Bp=nw,_1/w,— B for n>ep. denominator of the correlation functi@B5) consist of about
Note that, in the absence of simple analytical approximathe same number~n? of the condensate terms
tions for the fixedn spectra, the approximatg or &, , scal-  (ro/mA)*exd —(4p?+q?)ro/2A] [see Egs.(54),(55), and
ing can be used to overcome technical problems with facto¢58)].1* The well-known[3-5] lowering and widening of the
rially large numbers at high multiplicities. For example, correlation function with the increasing multiplicity is dem-
N,(0) at a given density,<1 can be obtained by calculat- onstrated, in the considered model, in Fig. 6.

ing N,/(0) at a smaller multiplicityn’<n keeping the Note, however, that in the rare gas limg, <1, the
same density &,=¢, and then rescaling to change of the form of the correlation function with the in-
N,(0)=(8,/B1 )N, (0), whereB,/B, =1 for n' >ep. creasing density is rather weak. Thus, writing in this limit
|
wn_

N®(py,pz)=n(n—1)

(O]

n2[Gl(plapl)Gl(pzvp2)+Gl(p1:p2)Gl(p21pl)]

Wn—

S[Gl(pl,pl)Gz(pz,p2)+G1(p1,p2)Gz(p2,pl)
n

+n(n—1)(n—2)

w
+G2(P1,P1)G1(P2,P2) + G2(P1,P2)G1(p2.P1)]
=n(n—1)[1—(2n—3)K,]P(p1) P(p2)[1+exp—T(?q?)]

3 pq
_ T 2q2y T
1+exp< 4r0q+2A2)

+n(n—1)(n— 2)23’2K2[ P(p1)P(2"%p,)

+P(p2)P(2Y%y)

3 pg
_F oy
1+exp< 4r0q 2A2> ] (72

It should be noted that the correlation functiBp(q) be-
comes less than unity at intermediatevalues and ap-
proaches the limiting value of 1 from below. This behavior
and also the related suppression of the intercept value is

To2=ro’[1—(2roA) 2], we get for the correlation function
intercept ann-independent value close to R,(0)=2(1
—€1). Here we have introduced the density parameter

€= 2K exp( —p22a?)=2"1%, . (73

H0f course, the absence of the correlation in the condensate limit
at fixed multiplicity has nothing to do with the coherence effect
19n this case, due to the explicit dependence of the particle speawhich is absent in the considered model. See the footnote after Eq.
tra on the complicated BE weights,,, there is no analytical ap- (26) and the discussion of the inclusive correlation function which
proximation similar to Eq(71). appears to be different from 1 at whatever high densities.
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FIG. 6. The two-pion correlation functions for the multiplicities

FIG. 5. The ratios of the BE affected single-particle spectrum tojncreasing fromn=2 to 362 with a step of 60the corresponding
the dominant largg- contribution 8,N1(p), Bn=Nw,_1/wy, cal-  density paramete,, ranging from 0.04 to 7.2 with a step of 1.2
culated ap=0 as functions of the density parameég=n/B. The  The higher the multiplicity the lower the intercept of the correlation
curves represent the lardg- limit: (2roA)%%,=[2(/&)™  function and the larger its width.
- 1]3/2§n .

~ 3.

caused by the BE correlation effect on the single-particleRS(p1,p2)=1+exp(—ro°g?) + €, o 1+ ex;{ - Zrozqzﬂ
spectra entering the denominator of the correlation function.
Sometimes this distortion is corrected for by a special itera- (76)

tive procedure. Its result can be described by a simpled®w- and can be represented in the usual single-Gaussiart¥orm
correction factor

RE(p1.P2) =1+ N, exp(—ra2g%),
R:°'(p1,P2) = (Aq—Brd?)Ra(P1.P2). (74)

- 5
A=142¢€, 5, r2=r2(1——e_>. 7
In the low density limit of our model, we have " nmeroin o 402 77

We see that with the increasimghe effective interferometry
parameters\, andr,, respectively, increase and decrease

slightly, starting from the zero density values of 1 apd

A,=1+€, 1, B,=¢€,_1[1—(p/A)?cog y]/8A%, (75

therew is the angle bet\(veen the_ vectgraandg. At §ma|| In the low-density limit, simple Eq<76),(77) or directly
Q“ the correctgd F:orrelanon functigproperly normalized to Egs.(67) and(72) allow one to determine the radius param-
unity at largeq?) is then eterr, by fitting the correlation function®™ or R,. At

higher densities, however, there is no simple analytical ex-
pression for the correlation functidr, and the eventual fit
12The iterative correction procedure is usually used for small-would require the use of rather complicated equati@8s.

acceptance detectors triggered by the requirement of at least twAnother possibility is still a simple single-Gaussian fit at
identical pions in the detector. The mixed reference sample thesufficiently smallg, giving the effective interferometry pa-
differs from the product of the single-particle spectra, being muchrameters)\ﬁﬁ<1 and rﬁﬁ<r0, both vanishing with the in-
more influenced by the_z residual BE cor.relations..The residua} corgreasing local density. The low-density radiug and the
relations can substantially affect also single-particle spectra in th?iensity can then be determined compar)rfﬁ andrﬁff with

case of a small effective emission volume, e.g.e_Tre collisions. the model predictions as functions igf and A.
There are also other reasons for the Iq%veorrectlon factor, such

as energy-momentum constraints or presence of dynamical correla-

tions (e.g., in jety which are destroyed in the mixed reference

sample. For this reason the correction factor similar to that in Eq. **Note that in Ref[17] a similar parametrization was used for the
(74) is often introduced as a pure phenomenological one #jth  uncorrected correlation function. This led to different estimates of
=1 andB,, treated as a free parameter. the interferometry parameteks, andr,, in the considered model.
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FIG. 7. The intercept of the two-pion correlation functions as a
function of the multiplicity n and the density parametg, , for
several valuep=0, 0.1, 0.2, and 0.4 Ge¥/of the mean momen-
tum of the two pions. The arrows on the interpolating curves indi-
cate the intercept values correspondingfe-3¢=1.5 (n~3(n)).

FIG. 8. The inclusive two-pion correlation functions demon-
strating the increase of the correlation width with the increasing
density paramete¢. The different¢ values are achieved by slight
variations of the radiusy around 2 fm.

condensate terms, their numbers being afogh— 1)) and

In Fig. 7 we show the intercept as a function of the mul-(n)?, respectively. The difference between the inclusive and
tiplicity n and the local density parametéy , for several fixed multiplicity correlation functionsR—2 andR,—1, is
values of the mean momentunp=0, 0.1, 0.2, and due to the fact that at high densities the initially Poissonian
0.4 GeVck. As expected, the intercept is practically constantmultiplicity distribution approaches a much wider BE one,
at low local densitiegsmall n or high p). As condensate for which (n(n—1))=2(n)?.
develops, the intercept sharply falls down. The sharpness of Tailing the approximate equatiori§4) and (57) for the
this drop is, however, less pronounced at higher moment&,, functions atn,~r,A, we can analytically follow the be-

even if plotted as a function of the local density parametehayior of the functionG(p;,p,) [determining, according to

énp- Clearly, this lack of density scaling is related to agq, (62), the inclusive two-boson spectruN(p; ,p,)] simi-
strong decrease of the condensate contribution with the Nar to Eq. (71), modifying it by the substitutionsEg‘l

creasing momentum. In fact, for the momermz A(rpA ~n—1 5 2 )
—1/2)~ 2 the low-density paramete, , strongly overesti- —&p ~exp(-q7re/2n) and Pc(p)HPS(p)exp(—q ro/44).
mates the local density in the region of the condensate domParticularly, for large systenig2r,A)°>1], we have af
nance[see EQq.(69)]. To demonstrate the possibility of the -0,
observation of the condensate effect for a speckle of a large. N _ > 2
number of soft pions not following the ordinary proportion-  G(P1,P2)=Ng(p)exp(—q°r¢/2) + N(p)exp —q°r72),
ality rule between the freeze-out phase space volume and (78)
pion multiplicity, in Fig. 7 we indicate by the arrows the wherer 2=r,/(2A) and
intercept values corresponding §g=3&£=1.5 (n~3(n)).
In the inclusive case corresponding to the initial Poisso- N N
nian multiplicity distribution, the correlation function inter- r=ro?>, &%/ > Em 32 (79
cept is equal to 2 for any local densititsee Eq.(63)]. At n=1 n=1
very large local densities the two-boson spectrum approaches o~ , )
twice the product of the single-boson oriese Eqs(54) and Note that at low IPcaI densities(<1) the effective radius
(62)] so that the inclusive correlation function tends to thery coincides withro=r, . With the increasing local phase
limiting value of 2 even at rather large relative momenta.space density it slightly decreases. The maximal reduction
The corresponding increase of the width of the correlatiorfactor of 1A/2 is achieved for largergA>1) and dense{
function with the increasing density paramegeis demon- —1, p—0) systems. Considering the limif—0 andryA
strated in Fig. 8. >1, we can neglect thg dependence of the condensate term
Note that at high local densities both the nominator andr.<ry) and of the product of the single-particle spectra in
denominator of the correlation function at smgdlare domi-  the denominator of the correlation function and, using Egs.
nated, as in the case of a fixed multiplicity, by the universal(63) and (78), write
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Ng(p) G
- _ 9 2.2 ~— SN
R(P1p)=1% ex;{ Ng(p)+Nc(p) rgq). (80 o k n= 12, o= 2 fm, A= 0.18 GeV/c
It follows from Eg. (80) that the condensate contribution 18 | §=0.95, <n>=33.5

leads to an additional reduction of the interferometry radius r
squared(defined as a lovg? slope of the correlation func-
tion) as compared with the case of a pure BE gas. In case o
a dominant BE condensate the interferometry radius tends tc L
zero whatever large is the geometric size of the system. -
Note, however, that due to the non-Gaussian character o -
the correlation functions at large phase space densities, thei
real width is determined by the largg- behavior which
reads L

Nc(p)
Ny(p)

RequiringR(ges) =1+ 1/e, we get for the corresponding ef-
fective radius squared P N R R BN

[¢] 0.1 0.2 0.3 0.4 ‘ O!S — 0.6
re?=0er =1 {1+ 2INN(P)/Ng(P)]}.  (82) ‘
FIG. 9. The semi-inclusive correlation functions including the

g, GeV/

Thus, compared with the vanishing of the Imﬁslgpe ofthe  pion multiplicities from 0 ton,,, for different values of.,. The
correlation functiorfas (1~ £)], the effective radius squared gotted curve is the inclusivenf,,—) correlation function. The
vanishes at Iarge_ phase space densities much sléar conditions are the same as in Fig. 8 for the density paranieter
1/In(1—-9)]) (see Fig. & =0.95.

It should be noted that Eq&2) and(63) assume that the
initial Poissonian mUltlpllClty distribution extends to any ar- number of produced pions M’naXN<n> and’ as a resu|t, to
bitrarily large number of bosons. In reality, however, thisthe suppression of the measured inclusive correlation func-

number is limited due to the finite available enerdgr a  tion. Clearly, such an eventual suppression has nothing in
study of the energy constraint effect on pion multiplicity seecommon with the coherence effect.

second paper in Refl16]). It is therefore interesting to see
how fast the semi-inclusive spectra approach the inclusive . 2
limit with the increasing numben,,, of the included pions. % i
In Fig. 9 we demonstrate the,,,, dependence of the semi- i
inclusive correlation functions for a fixed value of the den- 4
sity parameteg=0.95 and, in Fig. 10, tha,,,, dependence
of the correlation function intercepts for differeéitvalues. I
We can see that the width of the semi-inclusive correlation g
function increases with the increasing,,,, while its inter-
cept decreases at small,,,, reaching a minimum a4
~(n), and then approaches the limiting value of 2 roughly as
lognmax- The inclusive behavior is practically saturated at a
moderate number of the included piomg,,=k(n), wherek
increases with the density parametefrom about 3 até¢
=0.89 to about 5 at=0.991* Thus the neglect of the
energy-momentum constraints in Eq462) and (63) can be
justified provided(n)< Js/m, e.g., in the usual case of a

p= 0.2 GeV/c

R(p1,p2) =1+

2
) exp(—r2q?). (81) i

p=0.2GeV/c

logarithmic increase of the mean multiplicity with the c.m.s. ~ "® [ 7 =12 fo= 2fm. 4= 0.18 GeV/c '
energyy/s. The situation can change in the case of very large

and dense systems dominated by a soft condensate. Then tt L L L
regime (n)~s can settle, the energy-momentum con- B 10 10 10°
straints leading to the reduction of the maximal effective Mimax

FIG. 10. The intercepts of the semi-inclusive correlation func-
tion including the pion multiplicities from 0 ta,,, as functions of
¥The increase of the saturation pomy,,/(n) with the density is  n,,. for different values of the density parameig+0.89, 0.95,
related with the increasing condensate contribution which, for thé.99, and 0.998; the arrows indicate the corresponding mean mul-
ideal BE gas, is characterized by very large multiplicity fluctua- tiplicities (n)=22.3, 33.5, 113.7, and 433.8. The conditions are the
tions. same as in Fig. 8.
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VI. DISCUSSION AND CONCLUSION ume of the emitting system. At the same time, the growing

We have illustrated an approximate scaling of muItibosor‘Phase space volume will lead to suppression of the average

. . ; condensate contribution, determined by the faéter.
gﬁsgés ;V Itlrt] tmhngnesnfrlgtpt?gjgﬁtfﬁnﬁﬁ;ﬁe(r?s;’ ree.gultzlgvs-ere Considering the multiboson effects in the IdBE gas
obtained for typical AGS or SPS multiplicities of the order and the largelBE condensagedensity limits, we have ob-

of tens or hundreds of pions, they are approximately Valicltained simple analytical formulas accounting for the finite
also for higher multiplicities expected at RHIC or LHC en- size of the phase space volume and allowing to follow the

ergies dependence of the mean multiplicities, single-boson spectra,
The value of the density parametércan be estimated and two-boson correlation functions on the phase space den-

. . .. sity parameters. In principle, these formulas provide a possi-
with the help o_f Eq.({lS) reIat!ng the phase space densny n bility to identify multiboson effects among others. Particu-
the rare gas limit with the integrated correlation function.

Thus using the usual Gaussian parametrization for the correl?rly’ the width of the lowp, enhancement due to the BE

lation function in the longitudinally comoving system condeljsatlon d_ecreases with the S|ze_of the systerg b .
(LCMS): and this narrowing makes the observation of the effect easier.

The results of the considered simple model should not be
R(P1.0,) =14\ expl —r202—r2¢2—r2q2), 83 taken, however, too literally because of the following.
(P1.P2) =G ryay—reaz). (83 (a) Due to its static character, the model does not explic-

wherex, y (y]|zx p) andz denote the outward, sideward, and itly account for the experimental indications on a constant

longitudinal directions, respectively, and parametrizing thd"€€Ze-out phase space density and the related expansion of
single-particle spectra as the emission volume. The qualitative application of our

model to heavy ion collisions is, however, possible in the
dn exd —(m,—m)/T] limited phase space regions. For example, the pions with a
= d_y 2 T(T+m)m; coshy’ (84 rgp|d|ty d|ffer¢n_ce greater thqn about unity have to be con-
t sidered as originating from different static sources; As dis-

cussed in Sec. Il B, the residual slow relative motion, if de-
coupled from other source characteristics, merely leads to a

N(p)

we arrive at the mean pion phase-space density

w32 N exif — (m,—m)/T] dn wider rT?orr;entuzrn dgpendence of the emission function in
<f>p: v N(p)coshy:)\7 V(T d_' Eq. (42): A=—A +A0.
(T+m)m; %85) (b) Due to a mixture of different production processes

(e.g., due to contribution of different impact parametettse

real multiplicity distribution and particle spectra will be
rather weighted sums of those in Eq29)—(31) calculated
with different sets of the parameterg,r,,A'. As a result,
Jear the condensate limit, the multiplicity distribution can be
wider than the BE one and the intercepts of the inclusive and

. . s L 3 L
limit ()p—0~ ”/(\/ErOA) [see Eq._(47)] and get{~0.4 fixedn correlation functions can differ from the respective
—0.5. For such values of the density parameter our CaICU|as'ingIe-process values of 2 and 1.

tions point to rather small multiboson effects in the ordinary (c) When estimating the freeze-out phase space density
events. These effects can show up, however, in the evenis, ) ihe experimental data, the multiboson system is consid-
containing sufficiently high density fluctuations. Particularly, o aq as a homogeneous medium. However, there can be large
the condensate effects could be seen in certain high multiycq| gensity fluctuations, speckles, which can give rise to

plicity events(see, e.g., F|g.3)7|n which the phase space yticeaple multiboson effects even at a moderate value of the
volume or subvolume-(roA)* does not follow the increas- | aan phase space density.

ing multiplicity (as it presumably does in the ordinary (d) On the other hand, the multiboson effects can be
events and remains sufficiently small to guarantee a nonvaygmewhat suppressed due to a possible violation of the fac-
nishing factor¢"** determining the condensate s[zee Eqs. (orization assumption in Eq8) or due to the lack of the

(66) _and(71)]. i ) reflection symmetry of the emission volume. In the latter
Since at present energies the LCMS interference volume,qe the function§,(p;,p,) are no more real.

V seems to scale witln/dy, the freeze-out of the pions (g) For dentical charged pions, the BE effects are also

occurs on average at approximately constant phase spagfinressed due to the Coulomb repulsion. Since this repul-

density[see Eq.(85)]. In the rare gas regime, based on thegjqn s important only in a weakly populated region of very

density scaling one can then expect about the same relatig, || relative momenta determined by the pair Bohr radius

size of the multiboson effects also at RHIC and LHC ener-,_ 3g7 fm, the suppression of the global BE weights is

gies, up to a slight increase fidue to the vanishing of the  aiher small. For example, fow, this suppression, being
finite-size corrections with the increasing phase space voly, ¢ @roA?) 1, is usually less than one per mill. The Cou-

lomb distortion of the global multiboson effects is therefore

negligible in the rare gas limit. Nevertheless, since the Cou-
15A better estimate may require the substitui@hx —\"2in Eq.  lomb repulsion destroys the formation of the condensates
(85). made up from positive and negative pions in the disjoint

where V=r,r,r, is the LCMS interference volum@. For
soft pions p,~0 andy~0) at SPS energies this quantity is
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phase space regions, it can lead to noticeable differenceakree or more pions. It was shown that, in the inclusive case,

between charged and neutral pions in dense systems. Partidhe old formalism, not accounting for the multiboson effects,

larly, we can expect a decrease of the charge-to-neutral mugan be recovered by a redefinition of the Wigner-like density

tiplicity ratio with the increasing phase space density. which then becomes more narrow both in momentum and

Because of large numbers of positive and negative piongonfiguration space.

produced in heavy ion collisions, one could also raise a ques- Regarding the choice of the Wigner-like densyp,x),

tion about importance of the Coulomb screening effects viojn the original paper$5,6] and in Ref.[16], it was slightly

:atin% sta_r][dalrd 'ttW?I:PE)Ody treatrr;nent of the correlattionf] in thejitferent from that in Eq(42), corresponding to the substi-

ow density limit. There are, however, arguments showing,, .: ( 2[ON2 _ — A2 ;

that the sc)r/eening will be of minor importagnce even at LHCgtuthn gxp_( d /2A_)—>exp( _po_/T), vyhereT—A /m.' Thls-
choice is, in fact, in contradiction with the uncertainty prin-

[15] (see also Ref[27]). No_te that in the sce_nario with a ciple, the latter requiring an energy independent density in

constant phase-space density the corresponding Debye rad&%% considered case of a fixed emission titwed [see Eq.
ro=[4m(p.+p_)eT] Y2 (86)  (20)]. (For the same reason, the freedom in the choice of the

parametersy,A is limited by the inequality pA=1/2, the

wheree?=1/137 andp, + p_ is the total density of charged equality corresponding to the zero distance between the

pions in the configuration space, will be also constant, up t@mitter center$. The incorrect choice of the Wigner-like

a weak energy dependence due to the temperatukssum-  density in Refs[5,6,16 can be cured by the substitutiog

ing that pions with a rapidity difference greater than unity _.r2—(2A)~2. To recover the recurrence relations in Egs.

come from spatially disjoint regions of phase space, we cags(), in addition to this substitution, one has to take into

put [15] account that the width and the slope parameters used, e.g., in
N\ Pdniidy 2 ; Ref. [16] are related to ours aR3=2r3,p3=A2%a,=b,
py= 2m)? v :\/XWZT (foly 80 +b,,g,=2(b;—b,) and that a factor oR? is missing in

and obtainrp~15 fm at(f,),~0.1 andT~200 MeV/c The analytical solution for thes,, functions has been
rable or larger than the screening radigsleading to a sup- ©tersR&g=rg and o7=2A% However, since the analytical
their Coulomb field only after some time when the density—(24) 2. Particularly, after this substitution, E¢00) in
between the pion emission points increase$ 15} misprints [17]] then reduces to the simple resit5] 7,
parameters 3=R?/2+ (2p,) ~2, A2=p3.1® Requiring a ma-
wave function, we can see, however, that the suppression Qfition was obtained using the technique of the density matrix
due to QS and FSI are already negligiligee, e.g., Refs. tion factors AY/[1—(1—\g)"] and (2773%)71/2 by their
the context of other papers and, for the reader’s convenience:8b, . R3=2b,, w¥=(1-\o)"=p",  L(p1.P2)
34,36—39 which appeared either after the present work was As for the analytical approximations of the mean multi-
model discussed in Sec. IV was introduced. A simple algo=——
18Equations(2.14h and(2.140 have to be corrected for the mis-
prints by the substitutions 1#4(1+c/2)/4 and (+c)—(1+c/2),
boson spectra were not given in Ref5,6]. They can be Gaussian factorizable model, it does not reduce to the general so-

Eq. (66) for g,,..1 in Ref.[16].
(ro~1/T). Thus at LHC energies we can expect the characfognd in_Refs.[l?_,SO,S]]_. In Ref.[17] the same form of the
teristic distances between the pion production points compal/igner-like density as in Eq42) was used with the param-
pression of the usual two-particle Coulomb effects. In factSolution was derived based on the recurrence _relatic;ns of
two charged pions produced at a distante-rp, start to feel  Ref.[16], it has also to be cured by the substitutic-r§
decreases to a value corresponding to Debye radius largée preprint version of Re{17] for the critical multiplicity
thanr*. During this time the vector of the relative distance 7. [coinciding with Eq.(9) in Ref. [5] corrected for the
K+ .\ 203 = B. In Ref.[30], the analytical solution given in Eq&2.14
Ar* ~ VY r -1 (89 corresponds to the emission function in E42) with the
(mT)l/Z () '

o ) trix algebra, this solution is, however, less transparent com-
Substitutingr* by r* +Ar* in the argument of the Coulomb  pared with that in Ref[17]. In Ref.[31], the analytical so-
the Coulomb effect can be subsl'ggntial only in the region ofn the one-dimensional momentum space. Generalizing this
large relative moment&™* >(mT)~“ where the correlations solution to three dimension@y substituting the normaliza-
[19,28). - - .cubed and relating the notation of Ref31] to ours: A ?

Finally, to make easier the understanding of our results i g “n
we compare our result§ncluding those in Ref[15]) with =G, (p;,p,), one can see that it then coincides with the
the results of Refs[5,6,16,17 and the recent papef29—  solution in Eqs(51).
basically completed or during the process of its evaluation. plicity, single- and two-boson inclusive spectra, similar re-
In the pioneering papersb,6], the analytically solvable
rithm was given allowing to calculate BE modified multiplic-
ity distribution, single- and two-boson spectra in terms of the
qu_antitiesCEra“:gn/_n, Gﬁratzpbpz):_Gn(pl,pz)- The de-  respectively. Note that the other solution given in Hds3),(4.4) of
tails of the calculation of th&,, functions and of the two- Ref. [30] presumably contains an error since, corresponding to a
found in Refs[15-1§ (see also Ref429,30). In Ref.[29] lution in Egs.(49—(51) (particularly, it shows no condensate be-
this technigue was extended to the spectra and correlations bévior at high densitigs
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sults as in Ref[15] have been obtained in RfL7] in both The influence of the multiboson effects on boson multi-
the low and high density regimes. The behavior of the singleplicities, single-boson spectra, and two-boson correlations,
boson spectrum in the low density limit was also studiedincluding an approximate scaling behavior of some of their
numerically in Ref.[32]—a linear increase of the relative characteristics with the phase space derisitg.,(n)/ 7 vs ¢
correction with the phase space density was fdumégree- or N,(0)/8, vs &,], has been demonstrated using the ana-

ment with Eq.(71) at small€,]. The condensate behavior at lytically solvable Gaussian model. . .
very high densities was also obtained in R&1]. A com- The approximate analytical formulas are given allowing
ment requires the effective radius squared, estimat¢8gs to follow the dependence of these quantities on the phase
r2«=(2(q?)) "1, where the averaging over the correlation SPace density parameters thus providing a possibility for the
term is assumed. With the increasing mean multipliaify, ~ identification of the multiboson effects among others.
decreases fromé to rS/(ZrOA). Note, however, that at high The meaning and the applicability conditions of the model

densities,rgff has little to do with the interferometry radius factorization assumption are clarified using the physically

squared. The latter accounts also for the change of the Singltr_ansparent Kopylov-Podgoretsky ansatz of classical one-

boson spectrum and. with the increasing density. decreas article sources. For heavy ion collisions, the factorizatiom
2 P 5 ' 9 Y %sumption is expected to be valid in case of an impact pa-
fromrg—(2A) " “to O.

rameter selection.

lA.spefmaI c.omm$_rk1]t requires the norrlnalléa]t(!o.n. of thefcar- The lowest order cumulant approximation, suggested for a
relation functions. There are two popular definitions of t epractical account of multiboson effects in realistic transport

two-particle _correlatlon function, both representing a ratio Ofcode simulationg18], has been shown to be reasonable at
the two-particle spectrum to the product of the single-particl

e . P e €moderate densities indicated by the experimental data.
ones, but d|ffe_r|ng in the n_ormahzauon. In cadethe spec- At high densities, the spectra are mainly determined by
tra are normalized to 1 while in cagi) they are normalized

i (1)
to the numbers of single- and two-particle counts. Theséhe universal - condensate temPc(p) [e.g., Ny“(p)

(2) _

definitions correspond to Eq€35) or (36) with (I) ¢, HnF.)C(p) and Ny (pl,pz)an(n .1)P9(p1)'Pc(.|02)]. and
—n/(n—1) orc=(n)2/(n(n—1)) and(ll) c,=c=1. In the the initially narrow Poisson mu|t|p|ICIt2y distribution ap-
inclusive case, based on the thermal-type modieée the proaches a wide BE or(m(n—l))—>2(n> ) AS. a result,. the
comment after Eq(63)], the second choice was advocated'mercepts of thellncluswe and fixedcorrelation functions
[33,34]. Recall that the first choic@) would be preferable in (proper[y r|10rma(lj|zEd. t? 12atllarg|sq|) aglproachﬁ a'nr:j_l,
case of a fixed pion multiplicity provided a large phase spaccSGSpe_Ct'Ve y, an i their low” s Opes rapidly vanis with in-
volume[see discussion after EG9)]. Generally, however, creasing density; the corresponding increase of the apparent

there is no well-defined normalization and, for a reliableIcorre.k’;‘]t'o.n _furr:cugn W'dth is, however, rather slow-
comparison with the experimental correlation functions, aogar_|t mic in the density. . .
It is found that, even near the condensate regime, the in-

free normalization parameter, depending on the production

mechanisninot necessarily a single thermal omed experi- clusive characteristics saturate at rather moderate multiplici-
mental conditions, has to be introdudgd] ties of some multiples ofn) thus justifying the neglect of

The role of the normalization was misunderstood in€N€rgy-momentum constraints in the considered analytical

[16,17), where the decrease of the intercept of the inclusivémdel' The Iat.ter are, hovyevgr, impqrtant near a multipion
correlation function(l) with the increasing phase space den_threshold, particularly making impossible the production of a

sity, obtained in the factorizable Gaussian model, was incor\—’e'¥hC°|thE conder;sate. i . hardlv to b
rectly interpreted as a coherent laser behavior. Recall that | nough spectacular muitiboson eftects are hardly to be

pions in a coherent state would have a narrow Poisson mugxpected in typicall events of heavy ion collisions in present
tiplicity distribution, while the BE condensate is character—and perhaps also in future heavy ion experiments, they can

ized by very wide multiplicity fluctuations. Clearly, the co- c!early S.hOW up ‘U certain c_Iasses of events containing suffi-
herent pion production requires a special mechanjgot €Nty high density fluctuations.

present in the modglsimilar to that leading to possible for-
mation of the disoriented chiral condensd@®CC) (for a
review, see Ref[35]). Possibilities of experimental investi- This work was supported in part by GA Czech Republic,
gations of BE condensate and DCC phenomena have be&rant No. 202/98/1283, by Russian Foundation of Funda-
recently discussed in Ref36]. A discussion of statistical mental Investigations, Grant No. 97-02-16699, by Ukrainian
physics aspects of the multiboson effects can be found istate Fund for the Fundemental Research, Contract No.
Refs.[5,17,30,34,37—39 In conclusion we summarize the 2.5.1/057 and by Ukrainian-Hungarian Grant No. 2M/125-
results. 199.
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