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Calculations for populations of selected isotopes in intermediate energy heavy ion collisions
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~Received 26 July 1999; published 10 February 2000!

We compute the populations of isotopes of boron, carbon, and nitrogen measured experimentally in inter-
mediate energy heavy ion collisions. A two-component soluble statistical model is used to find the initial
populations of different nuclei at a finite temperature. These initial populations are both in particle stable and
particle unstable states. The particle unstable states then decay. The final populations after these decays are
computed and compared with experimental data.

PACS number~s!: 25.70.Pq, 24.10.Pa, 64.60.My
o
e

a
cu
es
s.
d

cu
b

fte
n
a
a
e
th
k
e

th
n

ce
ta

s
f

th
t
ca
. V
c
or

ils
e

av
t

er

uta-

ple,

s

We
al

ta.

bu-

ven

r-
I. INTRODUCTION

In this work we attempt to calculate the populations
various isotopes of boron, carbon, and nitrogen that w
measured in a number of experiments@1,2#. The calculation
proceeds in two stages. In the first, primary populations
calculated in a two-component statistical model. The cal
lations in the first part are exact although numerical. Th
populations are both in particle stable and unstable state
the second stage the particle unstable states are allowe
decay. This is done in a Weisskopf formalism. Exact cal
lations are very long and some approximations had to
introduced. These approximations will be discussed. A
the decays, the populations are compared with experime

One motivation for this calculation was that it serves as
application of the two-component statistical model where
exact calculation can be done. This, therefore, could serv
a benchmark of how far one can trust the predictions of
model. Unfortunately, the particular predictions we are loo
ing for are also affected by the subsequent decays. This
fect is not small. Hence, the predictions are the result of
combination of two models which had to be applied in ta
dem before experimental data could be compared. A re
application of the two-component model was the compu
tion of the caloric curve@3# in nuclei.

The sections are organized as follows. Section II give
brief description of the two-component statistical model. A
ter presenting, in Sec. III, in words and simple formulas,
overview of the secondary decay calculation, we presen
Sec. IV the formalism that we use to model secondary de
In Sec. V we present some calculational details and Sec
presents the results of the calculation. Summary and con
sion are presented in Sec. VII. A short appendix of the m
complicated formula is also presented.

II. THE TWO-COMPONENT SOLUBLE
STATISTICAL MODEL

For completeness, we present here the essential deta
the two-component statistical model. The one-compon
model was described elsewhere@4,5#. The formalism of the
two-component model can also be found in@3#.

Assume that the system which breaks up after two he
ions hit each other can be desribed as a hot, equilibra
nuclear system characterized by a temperatureT and a
freeze-out volumeV within which there areA nucleons (A
0556-2813/2000/61~3!/034603~11!/$15.00 61 0346
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5Z1N). The partition function of the system is given by

QZ,N5( P i , j

v i , j
ni , j

ni , j !
. ~2.1!

Hereni , j is the number of composites with proton numb
i and neutron numberj, andv i , j is the partition function of a
single composite with proton, neutron numbersi , j , respec-
tively. There are two constraints:( i , j in i , j5Z and ( i , j jn i , j
5N. These constraints would appear to make the comp
tion of QZ,N prohibitively difficult, but a recursion relation
exists @3,4# which allows numerical computation ofQZ,N
quite easy even for largeZ andN. Three equivalent recursion
relations exist, any one of which could be used. For exam
one such relation is

Qz,n5
1

z (
i , j

iv i , jQz2 i ,n2 j . ~2.2!

All nuclear properties are contained inv i , j . It is given by

v i , j5
Vf

\3 S mT

2p D 3/2

~ i 1 j !3/23qi , j , int . ~2.3!

Here Vf is the free volume within which the particle
move; Vf is related toV throughVf5V2Vex whereVex is
the excluded volume due to finite sizes of composites.
takeVf to be a variable of the calculation, it is set to be equ
to f V0 whereV0 is the normal volume for (Z1N) nucleons,
f is then varied to obtain the best fit with experimental da
The quantityqi , j , int is the internal partition function of the
composite:

qi , j , int5 (
k

Emax

~2Jk11!e(2Ek /T)1qi , j ,cont, ~2.4!

where the summation on the right-hand side is the contri
tion from the discrete spectrum~the cutoffEmax is simply the
highest energy level that has been resolved for the gi
nucleus and is available from data tables@6#!; andqi , j ,cont is
the contribution from the continuum. Without loss of gene
ality we can write

qA, int5E rA~E!e2bEdE, ~2.5!
©2000 The American Physical Society03-1
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where we have used the abbreviationA5 i 1 j , to stand for
both i and j ; rA(E) is usually partly discrete and partl
continuous.

We will need bothqA, int andrA(E). Volumes of work are
available onrA(E). This is dealt with in detail in Appendix
2B of @7#. The saddle-point approximation for the density
states assuming a Fermi-gas model is@see Eq.~2B-14! in @7#!

rA~E!5rA
0~E!3exp~ ln zgr2a0A1b0E!. ~2.6!

For explanations of howa0 andb0 are to be chosen se
@7# . In the Fermi-gas model the quantity which is expone
tiated is simply the total entropyS5As. Thus the density of
states is given by a familiar expressionrA(E)
5rA

0(E)exp(S) whererA
0(E) is the prefactor. Approximate

values ofrA
0(E) are known provided one does not have to

concerned with a very low value ofE ~which we do need!.
At the temperatures with which we will be concerned, expS)
in the Fermi-gas model is given quite accurately
exp@p(AE/eF)1/2#.

In the bulk of this paper we adopt this prescription. For
to 20F we write the density of states asrA(E)5rA

03exp(S),
where the low-temperature Fermi-gas expression forS as
written above is used. The energy-independent value of
prefactor is fixed from experimentally known levels:

(
k50

Emax

~2JK11!e2Ek /T5rA
0E

0

Emax
e(S(E)2bE)dE. ~2.7!

While objections can be raised against this procedure
achieves three objectives which we wanted to have:~a! we
did not want to lose all information of the experimenta
measured discrete excited states;~b! we did want to take into
account the contribution from the continuum; and~c! with
this procedure calculations are fairly simple. Although w
will not report on all other formulas for density of states th
we also used, our final results for the isotope populations
quite stable within the reasonable variations that were tr

We estimate the continuum contribution as a similar in
gral from Emax to infinity:

qi , j ,cont5E
Emax

`

rA
0rA~E!e2bEdE. ~2.8!

This process is continued up to20F wherein we can read
off energy levels from data tables. For elements above20F, a
parametrized version was used, which is given as

qi , j , int5expF S W0~ i 1 j !2s~ i 1 j !2/32k
i 2

~ i 1 j !1/3

2s
~ j 2 i !2

j 1 i
1T2~ i 1 j !/eD Y TG , ~2.9!

where W0515.8 MeV, s518.0 MeV, k50.72 MeV, s
523.5 MeV, ande516.0 MeV. The first four terms in the
right-hand side of Eq.~2.9! arise from a parametrized versio
of the binding energy of the ground state. The last te
03460
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arises from an approximation to the Fermi-gas formula
level density. This was also used in@8#. For protons and
neutronsq is 1.

The average number of particles of a composite is giv
by

^ni , j&5v i , j

QZ2 i ,N2 j

QZ,N
. ~2.10!

However, this population is partly over particle stab
states and partly over particle unstable states which will
cay into other nuclei before reaching the detectors.

III. SECONDARY DECAY

In keeping with the way experimental data are presen
we will compute ratios of yields of different isotopes of b
ron, carbon, and nitrogen. To lowest order one can cons
the ^ni , j& obtained from Eq.~2.10! above, remove the par
ticle unstable fractions, and compare them directly with e
periment. This is shown in the figures as the dotted line w
a filled triangle plotting symbol. These populations conta
only particle stable states.

Next we consider decay of the particle unstable states.
restrict the secondary decay to be due to emission of
species: neutron, proton, deuteron,3He, triton, anda par-
ticles. Any given nucleus (i , j ) from a particle unstable stat
can, in principle, go to at most six other nuclei. As the pop
lations are canonically distributed among the various ene
levels, we can calculate the fraction that are in particle sta
or unstable states. If the fraction of nuclei (i , j ) at the first
stage in unstable states isf i , j

0 , then the number of nucle
( i , j ) left in particle stable states at the stage we call ‘‘up
single decay’’ is given by

^ni , j&
15~12 f i , j

0 !^ni , j&

1(
a,b

~12 f i , j
1 !

Ga,b

GT
f i 1a, j 1b

0 ^ni 1a, j 1b&, ~3.1!

where f i , j
1 is the fraction of the once decayed nuclei in u

stable states. We will indicate how to calculatef i , j
1 in the

next section.Ga,b is the width for emission by (a,b) from
( i 1a, j 1b) andGT is the total width.

We can then take these revised populations^ni , j&
1 and

again compute the ratios. We label these ‘‘up to single
cay.’’ These are reported in the plots as the small dashed
with the diamond plotting symbol. Note: this is just th
stable fraction of the population after one stage of decay,
actual population is possibly greater.

After the first decay there may be some fraction in parti
unstable states. These can decay, thereby changing the p
lation of (i , j ) to ^ni , j&

2. If we take the ratios now we ge
what we call ‘‘up to double decay,’’ this is denoted by th
dot-dashed line and the square plotting symbol. Again at
stage thêni , j&

2 represent only the sum of the stable fractio
of the populations obtained from the initial distributio
single, and double decays.
3-2
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CALCULATIONS FOR POPULATIONS OF SELECTED . . . PHYSICAL REVIEW C61 034603
It is clear the procedure can be continued. The fract
remaining in particle unstable states will continue to d
crease. We found no significant difference between the u
triple decay and the up to quadruple decay calculation. T
we do not continue beyond. Once again it should be no
that all the plotted populations,^ni , j&, ^ni , j&

1, ^ni , j&
2, ^ni , j&

3

etc., quote only the stable fractions at freeze-out, after sin
double, and triple decay, respectively.

The formalism for the decay calculation is given in t
next section, there the quantitiesf i , j , Ga,b will be calculated
in somewhat greater detail. The reader who is only interes
in the final results could jump to Secs. VI and VII.

IV. THE DECAY FORMALISM

As the heated clusters stream out from the hot sou
many of them will be in particle unstable states, these w
decay by particle emission, for example, by emitting a n
tron, proton,a particle, etc. They will then leave a residu
nucleus which may be particle stable or unstable; if it
unstable then it will decay further into another isotope a
this process will continue till the residue is produced in
particle stable state.

The primary calculation assumes that thermal equilibri
is achieved at freeze-out; if this is true then the number
composites withi protons andj neutrons with an energy in
the intervalE andE1dE is given by the canonical factor

dnA~E!5Ci , jrA~E!e2bEdE, ~4.1!

where we have abbreviatedA to mean (i , j ), and rA(E),
from Sec. II is given asrA(E)5rA

0exp(S). The multiplicative
constantrA

0 will, henceforth, be absorbed into the overa
normalization constantCi , j . Thus from now on the density
function is given simply as

rA~E!5expFpS ~ i 1 j !E

eF
D 1/2G . ~4.2!

Ci , j is a normalization constant such that

E
0

`

Ci , jrA~E!e2bEdE5^ni , j&. ~4.3!

Now of the various levels in a particular nucleus, som
will be at a very low energy and as a result will be stable
any form of particle decay. Those that lie above an ener

Ex,y5~Mx,y1Mi 2x, j 2y2Mi , j !1Vx,y ~4.4!

will, in general, be unstable to decay via emission of a p
ticle (x,y) ~i.e., a particle with neutron numbery and proton
numberx) , whereMx,y is the mass of the particle,Mi , j is
the mass of the decaying nucleus (i , j ), Mi 2x, j 2y is the mass
of the residue left over after decay andVx,y is the Coulomb
barrier for that particle. Note that (x,y) could represent a
variety of particles; in this note we will consider ‘‘six’’ suc
particles, as mentioned in the Introduction.

As is evident from Eq.~4.4!, different particle decays
have different energy thresholds. Consider an isotope (i , j ),
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as an example let us take12C (i 56,j 56). As we start from
the ground-state level and move upwards, we will encoun
different thresholds. The lowest will be the4He decay
threshold at an energyL15E2,2 ~in 12C it is at 9.6 MeV
approximately!, the next higher threshold is for proton deca
at L25E1,0 ~in 12C it is at 18.14 MeV approximately!, and so
on; we will get different thresholds one after the other~note:
the order of different thresholds is different for different is
topes!.

All nuclei of type (i , j ) which are formed between th
ground state and the lowest thresholdL1, will remain as
isotopes (i , j ), this number is given by

ni , j~0↔L1!5E
0

L1
Ci , jr~E!e2bEdE. ~4.5!

Those that are formed betweenL1 and the next threshold
L2, will all completely decay by4He emission, and thes
nuclei will then appear as nuclei of type (i 22,j 22) and
must be added on to the population of isotopes (i 22,j 22).

Then, those nuclei of type (i , j ) which are formed be-
tweenL2 and the next thresholdL3, will decay both by4He
emission and by proton emission. In the next zone there
be three kinds of decay, and so on. We now ask, how m
of the initial nuclei formed in a particular zone will decay b
each of the channels that are available, and how many of
residues formed will be stable or unstable?

To answer the above questions: we start by writing do
the number of particles of type (x,y) with energy between
(«,«1d«) that are emitted, in a time interval betweent and
t1dt, by nuclei of type (i , j ), lying between an energy
(E,E1dE), leaving behind a residue nucleus (i 2x, j 2y)
@we may alternatively refer to (x,y), (i , j ), and (i 2x, j 2y)
by simply their mass numbersa, A, andB wherea5x1y,
A5 i 1 j , andB5 i 2x1 j 2y#

d3Na5W~E,«!d«dtdN~E,t !, ~4.6!

wheredN(E,t) is the number of nuclei of type (i , j ) initially
formed at an energy (E,E1dE) which are still left unde-
cayed after a timet, given by

dN~E,t !5Ci , je
2GT(E)trA~E!e2bEdE ~4.7!

and W(E,«)d« is the Weisskopf decay probability per un
time @9# given by the expression

W~E,«!d«5gaga«s [a1B→A]

rB~E2Ba2«!rB
0

rA~E!rA
0

.

~4.8!

In Eq. ~4.7!, GT(E) is the the total decay probability per un
time from an energy levelE of the isotopeA. In Eq. ~4.8!, ga
is the spin degeneracy factor of the emitted particle,ga is a
constant of a particular decay@9,10#, given by

ga5
mp

p2\3
3

a~A2a!

A
, ~4.9!
3-3
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where mp is the mass of a nucleon. In Eq.~4.8!, Ba
5Mi 2x, j 2y1Mx,y2Mi , j , is the separation energy of the d
cay;s [a1B→A] is the cross section for the reverse reaction
occur, ~i.e., a1B→A). It is given semiclassically for un
charged particles as

s [a1B→A]5pRa
2 ~4.10!

and for charged particles as

s [a1B→A]5pRa
2 «2V

«
u~«2V!, ~4.11!

whereRa is the radius associated with the geometrical cr
section of the formation of A from B anda. Following the
prescription of Friedmann and Lynch@10#, Ra is given by

Ra5H @~A2a!1/31~a!1/3#r 0 , for a>2,

r 0~A21!1/3, for a51,

wherer 051.2 fm. In Eq.~4.11!, V is the Coulomb barrier for
the formation of A from B anda. Again following @10#, this
is written in the touching sphere approximation as

Va55
x~ i 2x!e2

~~A2a!1/31~a!1/3!r c

, for a>2,

~ i 21!e2

r c~A!1/3
, for protons,

where r c51.44 fm. Also in Eq. ~4.8!, rA(E), rB(E2Ba
2«) are the respective density of states of the two nuc
They have the same form as in Eq.~4.2!. Also rA

0 andrB
0 are

the respective multiplicative constants for the density
states, as mentioned in Sec. II.

We note thatd3Na in Eq. ~4.6! is also equal to the numbe
of nuclei that were initially formed as nuclei of typeA at an
energy betweenE andE1dE, and then decayed into nucle
B with an excitation energy ofE2Ba2«. To get the total
number of states that decayed from a levelE by emission of
a particle of any allowed energy, we integrate over« from its
minimum valueVa to its maximum valueE2Ba , and get

d2N5Ga~E!Ci , je
2GT(E)trA~E!e2bEdEdt, ~4.12!

where

Ga~E!5E
Va

E2Ba
W~E,«!d«, ~4.13!

which on integration gives
03460
o

s

i.

f

Ga~E!5
2ga8rB

0

rA~E!rA
0 F ~E2Ba2Va!S eCB

C
~B21/C!

2
eCA

C
~A21/C! D2

eCB

C S B32
3B2

C
1

6B
C2

2
6

C3D
1

eCA

C S A 32
3A2

C
1

6A
C2

2
6

C3D G ~4.14!

~the derivation of the above equation is given in the Appe
dix!, where C5p@( i 1 j 2x2y)/eF#1/2, B5AE2Ba2Va,
A50. In the above equationga @Eq. ~4.8!#, and some of the
factors ofs @Eq. ~4.11!# have been absorbed intoga8 thus

ga85gagapRa
2 . ~4.15!

We may now integrate out the time to get

dNa5
Ga~E!

GT~E!
Ci , jrA~E!e2bEdE. ~4.16!

To get the total number of states that have decayed f
nuclei of typeA by channela we must integrate overE from
L1 to `,

Na5E
L1

` Ga~E!

GT~E!
Ci , jrA~E!e2bEdE. ~4.17!

This integration is quite involved for as we crossover fro
one zone of decay (L1 ,L2) to another zone (L2 ,L3), GT(E)
changes discontinously as a new channel of decay beco
accessible to the nuclei. Thus we break up the integra
into six zones, corresponding to the six real decay zones,
integrate within each zone independently. Note that the
zone extends fromL6 to L75`, and is thus considerably
larger than the other zones. However, at the low tempe
tures that will be encountered, this zone will be spars
populated. Thus the following approximation is valid. With
each zone, with an energy fromLk to Lk11, the integral can
be replaced by a mean value expression

Na~Lk ,Lk11!5
Lk

^Ga&Lk11

Lk
^GT&Lk11

Dni , j~Lk ,Lk11!, ~4.18!

whereNa(Lk ,Lk11) is the mean number of nuclei of typ
( i , j ) ~or A) that were initially formed at an energy betwee
Lk andLk11, and decayed by the (x,y) ~or a) channel. In the
above equation

Lk
^Ga&Lk11

5E
Lk

Lk11
Ga~E!Ci , jrA~E!e2bEdE. ~4.19!

Of course, the left-hand side is zero if channela is not open
in the regionLk to Lk11. The mean decay rate over all cha
nels is

Lk
^GT&Lk11

5E
Lk

Lk11
GT~E!Ci , jrA~E!e2bEdE ~4.20!
3-4
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and

Dni , j~Lk ,Lk11!5E
Lk

Lk11
Ci , jrA~E!e2bEdE. ~4.21!

Thus by summing up all the contributions from the six d
ferent zones, we get the total number of nuclei that h
decayed from isotopeA by thea channel as

Na5 (
k51

6

Na~Lk ,Lk11!. ~4.22!

To find out how many of these have decayed to sta
isotopes, we must first calculate from Eq.~4.6! the stable
decay rateGa

s(E). Two cases emerge in this calculation.
E2Ba2Va>EA2a

s , Ga
s(E) is obtained by integrating ove

«, from (E2Ba2EA2a
s ) to its maximum value (E2Ba),

whereEA2a
s is the stable level or the lowest thresholdL1 of

the residue nucleusB above whichB is unstable. The expres
sion for Ga

s(E) is obtained from that ofGa(E) in Eq. ~4.14!
by replacing B5AEA2a

s . If E2Ba2Va,EA2a
s , then

Ga
s(E)5Ga(E). Then, following a similar procedure a

above forGa , we get the total number of nucleiA @or (i , j )#
lying in an energy range between (Lk ,Lk11), that decay by
the a channel to a stable state as

Na
s~Lk ,Lk11!5

Lk
^Ga

s&Lk11

Lk
^GT&Lk11

Dni , j~Lk ,Lk11!. ~4.23!

The unstable decay rate from a particular level or zon
the probability of a decay per unit time fromA to an unstable
level or levels ofB from which further decay can take plac
It is easy to see that they are given simply as the differe
of the total decay rate and the stable decay rate, i.e.,

Ga
u5Ga2Ga

s . ~4.24!

The derivations and expressions for the full decay rates
given in the Appendix.

After a decay has taken place (A→B1a), we ask what is
the population distribution of the residue as a function of
energy (x5E2Ba2«). This can, in principle, be calculate
from Eq. ~4.6! by integrating overE and «, such that (x
5E2Ba2«), the energy of the residue, is a constant. F
we make a change of variables from (E,«) to (E,x) and then
integrate overE only. We get

dNa~x!

5S E
Ba1Va1x

`

dEga8
E2Ba2Va2x

GT~E!
rB~x!

rB
0

rA
0

Ci , je
2bED

3dx. ~4.25!

This integration is quite involved. We assume that the re
due population is canonically distributed, but with a ne
temperature 1/b8, i.e.,

dNa~x!5Di , j→k,lrB~x!e2b8x. ~4.26!
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There are two unknowns in this formula, the new tempe
ture 1/b8 and the overall normalization constantDi , j→k,l . To
find these two constants we will impose that the total po
lation of this interim stage~i.e., Ni , j→k,l!, and the mean en
ergy of the distribution̂ x&, be reproduced by this new tem
perature.

We can obtain formal expressions for the total populat
of the residueB as contributed by the decay ofA, as well as
its mean energŷx&, from Eq. ~4.26! as

Na~b8,D,C!5E
0

`

dNa~x!

5
Di , j→k,l

b8
F11CA p

4b8
eC2/4b8

3X12erfS C

2Ab8
D CG , ~4.27!

^x~b8,C!&5
1

Na~b8,D,C!
E

0

`

xdNa~x!

5Di , j→k,lF 1

b82
1

3ApC

b85/2 H 11erfS C

2Ab8
D J eC2/4b8

1
C2

4b83
1

C3Ap

8b87/2H 11erfS C

2Ab8
D J eC2/4b8G ,

~4.28!

where the formal expression forNa(b8,D,C) is used in Eq.
~4.28!. The numerical value ofNa is taken from Eq.~4.22!.
The numerical value of̂x& is found by explicit use of Eq.
~4.25!. From these two equations we obtain the two consta
Di , j→k,l andb8.

The numerical value of̂x& is derived from Eq.~4.25! as
follows:

^x&5
1

Na
E

0

`

dxxS E
Ba1Va1x

Emax
dEga8

E2Ba2Va2x

GT~E!

3rB~x!
rB

0

rA
0

Ci , je
2bED . ~4.29!

In the above equation, the numerical value ofNa is taken
from Eq. ~4.22!. We may now change the order of integr
tion to get

^x&5
1

Na
E

Ba1Va

`

dEE
0

E2Ba2Va
dxxga8

E2Ba2Va2x

GT~E!

3rB~x!
rB

0

rA
0

Ci , je
2bE. ~4.30!

The x integration is now done simply to obtain
3-5
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^x&5
1

Na
E

Ba1Va

`

dEga8
I ~E!

GT~E!
Ci , jrA~E!e2bE, ~4.31!

whereI (E) is given by

I ~E!5
1

rA~E!

rB
0

rA
0 F4~E2Ba2Va!2eCAE2Ba2Va

C2

2
28~E2Ba2Va!3/2eCAE2Ba2Va

C3

1
108~E2Ba2Va!eCAE2Ba2Va

C4

2
240~E2Ba2Va!1/2eCAE2Ba2Va

C5

1
240eCAE2Ba2Va

C6
1

12~E2Ba2Va!

C4
2

240

C6 G .

~4.32!

In the ensuing integration overE, we, once again, replac
the integral with its mean value expression:

^x&5
1

Na
E

Ba1Va

`

dEga8
Ba1Va

^I ~E!&`

Ba1Va
^GT~E!&`

Ci , jrA~E!e2bE,

~4.33!

where

Ba1Va
^GT~E!&`5 (

Ek.Ba1Va
Lk

^GT~E!&Lk11
~4.34!

and

Ba1Va
^I ~E!&`5E

Ba1Va

`

dEI~E!Ci , jrA~E!e2bE

5Ci , je
2bGa

rB
0

rA
0 F 1

b4
1

3CAp

4b9/2

3H 11erfS C

2Ab
D J eC2/4b

1
C2

4b5
1

C3Ap

8b11/2

3H 11erfS C

2Ab
D J eC2/4bG . ~4.35!

Thus the formal expressions forNa(b8,D,C) @Eq.
~4.27!#, and ^x(b8,C)& @Eq. ~4.28!#, are compared to the
actual values obtained forNa @Eq. ~4.22!#, and ^x& @Eq.
~4.33!#, and the two unknowns of Eq.~4.26! are evaluated.
We can now proceed with further decays following the sa
03460
e

procedure as before with decay occurring from a canonic
distributed population at a temperature 1/b8.

We can thus model ann-step decay process by assumi
that at each intermediate stage the population is canonic
distributed with a new temperature and overall normalizat
constant. The decay rates to the next stage are calcu
with the new temperature. Following this, the fraction of t
population that decays through a particular channel, and
mean energy of the resultant residue nucleus, are calcula
These are then used to secure the temperature and no
ization constant of the next stage of decay. This process
continue till the fraction of decay to particle unstable sta
becomes negligible.

V. THE CALCULATION

From the primary calculation we obtain that^ni , j& nuclei
of type (i , j ) ~or A) are formed from the initial multifrag-
mentation. The population̂ni , j& is distributed canonically
among the various energy levels as demonstrated by
~4.1!. If a particular nucleus is at a sufficiently excited sta
then it will emit a particle (x,y) ~or a) and leave a residue
( i 2x5k, j 2y5 l ) ~or B), which may again decay by emit
ting a particle (u,v) ~or b) leaving a nucleus (k2u5m,l
2v5n) ~or D), and so on until it finally reaches a nucleu
(p,q) ~or Z) in a stable state. We ask the question tha
^ni , j& nuclei of typeA were intially formed, then how many
of these will finally end up as stable nuclei of typeA, B,
D . . . Z. The contribution of̂ ni , j& to the final stable popula
tion of A is given simply by Eq.~4.5! as

nA
f 5E

0

L1
Ci , jrA~E!e2bEdE5Dni , j~0,L1!. ~5.1!

The number of nuclei initially formed as (i , j ) which decay
to (i 2x, j 2y)5(k,l ) is given as

nA→B5 (
k51

6
Lk

^Ga&Lk11

Lk
^GT&Lk11

Dni , j~Lk ,Lk11!. ~5.2!

The mean energy of the newly formed residue nucleus
given by

^x&5
1

nA→B
ga8

Ba1Va
^I ~E!&`

Ba1Va
^GT~E!&`

Dni , j~Ba1Va ,`!.

~5.3!

We assume that this population is canonically distribu
from an excitation energy ofE050 to ` with a new tem-
perature 1/b8 @Eq. 4.26#. Extraction of the new temperatur
1/b8 and the overall normalization constantDi , j→k,l is done
as detailed in Sec. IV. In most cases, where this proced
was implemented, we obtained a new temperature 1b8
which was lower than the initial temperature 1/b; however,
in about 3% of the cases 1/b8 turned out to be higher than
1/b; this occurs when the residue of the decay process is
from the valley of stability. We can then calculate the nu
ber of nuclei that initially started out asA’s and finally ended
up as ‘‘stable’’B’s as
3-6
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CALCULATIONS FOR POPULATIONS OF SELECTED . . . PHYSICAL REVIEW C61 034603
nA→B
f 5E

0

L1Di , j→k,lrB~x!e2b8xdx. ~5.4!

Note that in the above equationrB(x) andL1 are the density
of states and lowest decay threshold for the nucleus of t
( i 2x5k, j 2y5 l ). This number can also be calculated d
rectly by using the stable decay rates@Eq. ~4.23!#:

nA→B
f 5 (

k51

6
Lk

^Ga
s&Lk11

Lk
^GT&Lk11

Dni , j~Lk ,Lk11!. ~5.5!

The second equation is more correct as it does not depen
the assumption that the residue is canonically distributed
comparison of thenA→B

f obtained from the above two equa
tions gives an estimate of the error involved in the assum
tion of a canonically distributed residue population. Now w
ask, what is the number of nuclei of theB’s just formed
which will decay by emitting a particleb to a nucleus of type
D; this is calculated simply as

nA→B→D5 (
k51

L6 Lk
^Gb&Lk11

Lk
^GT&Lk11

DnA→B~Lk ,Lk11!. ~5.6!

The decay rates in the above equation are calculated with
temperature 1/b8. We then calculate the mean energy^y& of
the new distribution as

^y&5
1

nA→B→D
gb8

Bb1Vb
^I ~x!&`

Bb1Vb
^GT~x!&`

DnA→B~Bb1Vb ,`!.

~5.7!

Using these, we continue the process, by again calcula
the temperature and norm of a canonical distribution, wh
when summed from excitation energy 0 tò is equal to
nA→B→D , and whose mean energy is equal to^y&. We can
then proceed to find how many of these will be in sta
states, how many will decay on further, etc. We continue t
process till the contribution from this decay chain,A→B
→D→ . . . , will give numbers of nuclei negligible com
pared to the already present number in stable states.

VI. RESULTS OF THE CALCULATION

Our objective is to calculate the yields of the boron, c
bon, and nitrogen isotopes measured in the S1 Ag heavy-
ion collision at an energy of 22.3A MeV @1#. In Figs. 1 to 5
the data are shown as empty squares. The method of c
lation is simple, first we calculate the primary populations
the isotopes using Eq.~2.10!. We then remove the unstab
fraction of the population, and quote only the stable p
This is denoted by the dotted line and triangle plotting sy
bol. We then incorporate secondary decay by adding on
the populations of nuclei that can reach a stable level of
isotopes by emitting only one of the six particles consider
We call these the up to single decay populations and de
them by the small dashed line and diamond plotting symb
We then add on all those unstable nuclei which can reac
stable level of the given isotopes by sequentially emitt
03460
e

on
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any two particles of the six considered. We call these the
to double decay populations and denote them by the
dashed line and square plotting symbol. We then add on
those that can reach the isotopes by three particle emiss
called the up to triple decay population and denoted by
large dashed line and star plotting symbol. And finally w
add on the up to quadruple decay population denoted by
solid line and circle plotting symbol. As there is negligib
difference between up to triple decay and up to quadru
decay we stop after quadruple decay.

To fit with experimental data, we have four parameters
tune, the obvious ones being the initial temperatureb or T,
the free volumeVf of the primary calculation, the ratioA/Z
~as one does not know how much loss due to pre-equilibr
emission has taken place!, and an overall multiplicative con
stantH ~as we do not know how many nuclei collided in th
experiment!. The plots are noted to be most sensitive tob
andA/Z. Thus in fitting the data we first set particular valu
of b andA/Z, and calculate the multiplicities at all stages
decay (Vf is varied to get the best possible fit at this tem

FIG. 1. Neutron number~N!, proton number~Z! vs countsfor
the three cases of boron, carbon, and nitrogen. The experime
data are from@1# S1Ag at 22.3A MeV. The fits show varying
stages of decay for a totalZT550, AT5110, T53.0 MeV,
Vf r /V053.0, and log10H56.82. The empty squares are the expe
mental data. The dotted line with the triangle plotting symbol is
primary calculation. The small dashed line with diamond plotti
symbol is the up to single decay calculation. The dot-dashed
with square plotting symbol is the up to double decay calculati
The dashed line with the star plotting symbol is the up to trip
decay calculation. The solid line with circle plotting symbol is th
up to quadruple decay calculation.
3-7
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A. MAJUMDER AND S. DAS GUPTA PHYSICAL REVIEW C61 034603
perature andA/Z). We then multiply all the multiplicities by
an appropriateH and take the logarithm. These are th
plotted and compared with thecountsobtained from the ex-
periment. We then varyb, A/Z, and repeat the above proc
dure till a good fit is obtained. We present fits for thr
different temperatures, and differentA/Z for each tempera-
ture. Vf and H are set to obtain the best fit possible for
given b andA/Z.

We note that the S1Ag system is one withA5139 and
Z563 thus A/Z52.2. The authors of@1# state that some
pre-equilibrium emission may have taken place. As we
not know what proportion of neutrons and protons are los
such a process, we start the calculation with the sameA/Z as
the S1Ag system. We start with aZ550 andA/Z52.2, i.e.,
A5110. We start the calculation with a low temperature o
MeV in Fig. 1 (Vf andH are varied to get the best fit!. We
note that overall there is a slight excess of the heavier ni
gen isotopes as compared to data and a deficit of the lig
boron isotopes, this implies that the temperature is too
and enough of the light isotopes are not being formed.
proceed by raising the temperature to 5 MeV, maintain
the sameA/Z. By now varyingVf andH we find an excel-
lent fit with the data~Fig. 2!.

One may ask, at this point, if there are more than one
of parameters which fit the data well. To answer this qu
tion we increase, first, the temperature to 7 MeV, maint
the sameA/Z and redo the calculation. We get a bad fit~Fig.
3!. There is an overall deficit in the nitrogen population a
an excess in the boron population. Also we note that with

FIG. 2. Same as Fig. 1 but withZT550, AT5110, T
55.0 MeV, Vf r /V055.5, and log10H56.34. The best fit with the
data has been obtained with these parameters.
03460
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FIG. 3. Same as Fig. 1 but withZT550, AT5110, T
57.0 MeV, Vf r /V053.0, and log10H56.82.

FIG. 4. Same as Fig. 1 but withZT550, AT5115, T
57.0 MeV, Vf r /V053.0, and log10H56.82.
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CALCULATIONS FOR POPULATIONS OF SELECTED . . . PHYSICAL REVIEW C61 034603
particularZ there is a deficit in the neutron-rich isotopes. W
try to remedy this situation by increasing theA/Z ratio. The
best fit at this temperature is obtained at anA/Z52.3 ~Fig.
4!, but we still obtain an overal deficit in the nitrogen pop
lation; the carbon fit is good, but there still remains an exc
in the boron isotopes especially in the neutron-rich isotop

On inspection of the fits~Figs. 1–4!, we note that the bes
fit is obtained at Fig. 2. In this fitT55.0 MeV, A/Z52.2,
Vf r /V055.5, and log10(H)56.34. In this figure we note
that, for the boron populations we get an excellent agreem
with the data. In this case there seems to be little change
single decay. For the carbon isotopes the agreement is g
For nitrogen, we have a good fit except for the case of13N.

Another property of the fits noticed is that they do n
seem to depend onA andZ independently but rather on th
ratio A/Z. As a demonstration of this, we plot in Fig. 5 a fit
for A5140 andZ563 ~i.e.,A/Z52.22). We note that we ar
able to obtain a fit very similar to Fig. 2, with the sam
temperature andVf r /V0 as in Fig. 2, but with a slightly
lower H. This is very much expected, as in this case e
source has a larger number of nucleons than before.

VII. DISCUSSONS AND CONCLUSION

In this paper we have presented a secondary decay
malism and performed calculations to fit the populations
various isotopes measured in@1#. We obtain very good fits
~Fig. 2! with experiment for the boron and carbon isotop
In the nitrogen isotopes, we obtain a good fit except for

FIG. 5. Same as Fig. 2 but withZT563, AT5140, T
55.0 MeV, Vf r /V055.5, and log10H56.30.
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case of13N. No particular reason could be found for this, b
let us go over several approximations~introduced to keep the
calculation at a resonably simple level! which may have con-
tributed.

Actual energy levels from data tables were used only
to A520 @Eq. ~2.4!# for the primary populations. For highe
masses, the emperical mass formula@Eq. ~2.9!# was used.
The secondary decay is very approximate, instead of ca
lating decay level to level, we have blurred out such deta
by using a smoothed level density.

For the capture cross section@Eq. ~4.11!#, we have used a
simple semiclassical formula, assuming that all nuclei
spherically symmetric which is definitely not true. A mo
precise calculation involving level to level decay would use
more accurate expression for the cross sections, e.g.,
Hauser-Feshbach formalism@11,12#.

Still another problem lies in the assumption made in c
culating the effects of higher-order decay, that the inter
populations can be taken to be canonically distributed. T
is true only in first-order decay, thus making the higher-ord
contributions subject to some error.

There is also an experimental problem according to
authors of@1#, the angular distributions were forward peake
indicating significant emission prior to attainment of therm
dynamic equilibrium. Such an emission could affect t
populations of the various isotopes.

No doubt, incorporating changes to correct the abo
mentioned problems will improove the accuracy of the c
culation. However, such changes may make the express
analytically intractible and one would have to resort to n
merical means. This may slow down the calculation cons
erably. The calculations presented in this note take minim
computer time. Inspite of the shortcomings of the calculat
presented above, this still remains a good test of the t
component statistical model, and shows that such a mo
can definintely be used to explain certain experimental d
quite accurately.
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du Québec.

APPENDIX

1. Derivation of Eq. „4.14…

The full decay rate from a particular energy levelE of a
nucleusA @or (i , j )#, which is decaying by emitting a particl
a @or (x,y)#, is given as@Eq. ~4.13!#

Ga5E
Va

E2Ba
W~E,«!d«, ~A1!

whereW(E,«) is the Weisskopf decay probability per un
time given by Eq.~4.8!. On writing down the full expression
for W we get
3-9
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Ga5E
Va

E2Ba ga8rB
0

rA~E!rA
0 ~«2Va!

3expF p

AeF

$A~ i 1 j 2x2y!~E2Ba2«!%Gd«.

~A2!

Now we substitutez5(AE2Ba2«) and integrate overz and
let C5(p/AeFAi 1 j 2x2y), then

Ga~E!5E
0

AE2Ba2Va ga8rB
0

rA~E!rA
0
2z~E2Ba2Va2z2!

3exp~Cz!dz. ~A3!

On carrying out this simple integration we get

Ga~E!5
2ga8rB

0

rA~E!rA
0 F ~E2Ba2Va!S eCB

C
~B21/C!

2
eCA

C
~A21/C! D2

eCB

C S B32
3B2

C
1

6B
C2

2
6

C3D
1

eCA

C S A 32
3A2

C
1

6A
C2

2
6

C3D G ~A4!

with B5AE2Ba2Va, A50. The stable decay rate, i.e., th
decay rate from an energy levelE of the nucleusA to any of
the allowed stable levels ofB is given simply from the above
expression by replacing the upper limit toB5AEB

s whereEB
s

is the stable threshold of the residue nucleusB. However, in
the event thatE2Ba2Va<EB

s then the above mentione
replacement should not be made. In this case the total d
rate is the same as the stable decay rate.

2. Derivation of the generic expression forL k
ŠGa‹L k¿1

From Eq.~4.19! we obtain the definition ofLk
^Ga&Lk11

as

Lk
^Ga&Lk11

5E
Lk

Lk11
Ga~E!Ci , jr~E!e2bEdE. ~A5!

Now taking the expression ofGa(E) from Eq.~A4! and sub-
stituting z5B5(AE2Ba2Va) we get

Lk
^Ga&Lk11

5E
ALk2Ba2Va

ALk112Ba2Va
4ga8Ci , j

3
rB

0

rA
0 F H 2z3

C2
2

6z2

C3
1

6z

C4J eCz

1
z3

C2
2

6z

C4Ge2b(z21Ba1Va)dz. ~A6!

Now we may separate the integration into three parts
03460
ay

Lk
^Ga&Lk11

5~ I Lk ,Lk11

1 1I Lk ,Lk11

2 1I Lk ,Lk11

3 !
rB

0

rA
0

, ~A7!

where

I Lk ,Lk11

1 5E
ALk2Ba2Va

ALk112Ba2Va
2Ci , j24ga8

z

C4

3e2b(z21Ba1Va)dz, ~A8!

I Lk ,Lk11

2 5E
ALk2Ba2Va

ALk112Ba2Va
Ci , j4ga8

z3

C4

3e2b(z21Ba1Va)dz, ~A9!

I Lk ,Lk11

3 5E
ALk2Ba2Va

ALk112Ba2Va
2ga8Ci , j

3H 4z3

C2
2

12z2

C3
1

12z

C4 J eCz2b(z21Ba1Va)dz.

~A10!

The three integrals can be done simply to give

I Lk ,Lk11

1 5
212ga8Ci , j

C4b
@e2bLk2e2bLk11#, ~A11!

I Lk ,Lk11

2 5
2ga8Ci , j

C2b
@Lke

2bLk2Lk11e2bLk11

1$1/b2Ba2Va%~e2bLk2e2bLk11!#,

~A12!

I Lk ,Lk11

3 5
4ga8Ci , j

C2b
e2b(Ba1Va)eC2/4b2FMk

2e2bMk
2

2Mk11
2 e2bMk11

2
1e2bMk

2
2e2bMk11

2

1S 3C2

2b
2

3

CD $Mke
2bMk

2
2Mk11e2bMk11

2
%

1S 3C2

4b2
2

3

b
1

3

C2D $e2bMk
2
2e2bMk11

2
%

1
C3Ap

8b2
$erf~AbMk11!2erf~AbMk!%G ,

~A13!

where Mk5ALk2Ba2Va2C/(2b) and Mk11

5ALk112Ba2Va2C/(2b) and C is the same as in Eq
~A4!.

The calculation of the stable decay rate is a bit more
volved in the limits of integration and three cases emerge
Lk2Ba2Va,EB

s , andLk112Ba2Va<EB
s , then
3-10
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Lk
^Ga

s&Lk11
5Lk

^Ga&Lk11
. ~A14!

If Lk2Ba2Va,EB
s , but Lk112Ba2Va.EB

s , then the cal-
culation of Lk

^Ga
s&Lk11

has to be done in two parts

Lk
^Ga

s&Lk11
5~ I 1

s1I 2
s!

rB
0

rA
0

, ~A15!

where

I 1
s5E

Lk

EB
s

1Ba1VaGa~E!Ci , jr~E!e2bEdE. ~A16!
e

n,

03460
The expression for this is the same as Eq.~A6! with the
appropriate change of limits:

I 2
s5E

EB
s

1Ba1Va

Lk11
Ga

s~E!Ci , jr~E!e2bEdE. ~A17!

If, however, Lk2Ba2Va>EB
s , and Lk112Ba2Va.EB

s ,
then

Lk
^Ga

s&Lk11
5E

Lk

Lk11
Ga

s~E!Ci , jr~E!e2bEdE. ~A18!

The above two integrals are rather trivial and thus deta
expressions are not presented.
d
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