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Calculations for populations of selected isotopes in intermediate energy heavy ion collisions
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We compute the populations of isotopes of boron, carbon, and nitrogen measured experimentally in inter-
mediate energy heavy ion collisions. A two-component soluble statistical model is used to find the initial
populations of different nuclei at a finite temperature. These initial populations are both in particle stable and
particle unstable states. The particle unstable states then decay. The final populations after these decays are
computed and compared with experimental data.

PACS numbd(s): 25.70.Pq, 24.10.Pa, 64.60.My

[. INTRODUCTION =Z+N). The partition function of the system is given by
In this work we attempt to calculate the populations of winij'j
various isotopes of boron, carbon, and nitrogen that were Qzn=2 I (2.1
measured in a number of experimepts2]. The calculation b
proceeds in two stages. In the first, primary populations are Heren, ; is the number of composites with proton number
calculated in a two-component statistical model. The calcu;i gnd neutron numbgr andw; ; is the partition function of a
lations in the first part are exact although numerical. Thesgjngle composite with proton, neutron numbeyjs respec-
populations are both in particle stable and unstable states. Wely. There are two constraint&, jin;=Z and 3 jn; ;
the second stage the particle unstable states are allowed 10N These constraints would appear to make the computa-
decay. This is done in a Weisskopf formalism. Exact calcution of Q,  prohibitively difficult, but a recursion relation
lations are very long and some approximations had to b@yists [3,4] which allows numerical computation @,
introduced. These approximations will be discussed. Aftefyite easy even for larggandN. Three equivalent recursion

the decays, the populations are compared with experiment$g|ations exist, any one of which could be used. For example,
One motivation for this calculation was that it serves as arye sych relation is

application of the two-component statistical model where an
exact calculation can be done. This, therefore, could serve as 1
a benchmark of how far one can trust the predictions of the Qzn=~ > i Quin- 2.2
model. Unfortunately, the particular predictions we are look- h

ing for are also affected by the subsequent decays. This ef-

. o All nuclear properties are containeddn ; . It is given b
fect is not small. Hence, the predictions are the result of the prop M g y

combination of two models which had to be applied in tan- V. [ mT\ 3?2
dem before experimental data could be compared. A recent wi,j:_;(_ (i +j)3/2><qi,j,int- 2.3
application of the two-component model was the computa- el 2m

tion of the caloric curvg3] in nuclei. ) o ) )
The sections are organized as follows. Section Il gives a Here Vi is the free volume within which the particles

brief description of the two-component statistical model. Af-move; Vy is related toV throughVi=V—Ve, whereVe, is

ter presenting, in Sec. IlI, in words and simple formulas, thethe excluded volume due to finite sizes of composites. We

overview of the secondary decay calculation, we present ifgkeVy to be a variable of the calculation, it is set to be equal

Sec. IV the formalism that we use to model secondary decay© fVo WhereV, is the normal volume forZ+N) nucleons,

In Sec. V we present some calculational details and Sec. \ﬁc| is then varied to obtain the best fit with experimental data.

presents the results of the calculation. Summary and concluthe quantityq; j ir is the internal partition function of the

sion are presented in Sec. VII. A short appendix of the moré0mposite:

complicated formula is also presented.

Emax
Qi j,int= > (24 + 1)eC"E/D4q; 5 cons (2.4
II. THE TWO-COMPONENT SOLUBLE K

STATISTICAL MODEL . . S .
where the summation on the right-hand side is the contribu-

For completeness, we present here the essential details tén from the discrete spectrufthe cutoffE,,,is simply the
the two-component statistical model. The one-componenhighest energy level that has been resolved for the given
model was described elsewhdr5]. The formalism of the nucleus and is available from data tabl€$); andq; j contiS
two-component model can also be found &. the contribution from the continuum. Without loss of gener-
Assume that the system which breaks up after two heavylity we can write
ions hit each other can be desribed as a hot, equilibrated
nuclear system characterized by a temperafirand a B _sE
freeze-out volumé/ within which there areA nucleons A QA,int_f pa(E)e”PEdE, (2.9
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where we have used the abbreviatiari +j, to stand for  arises from an approximation to the Fermi-gas formula for
bothi and j; pA(E) is usually partly discrete and partly level density. This was also used [8]. For protons and
continuous. neutronsq is 1.

We will need bothga i andpa(E). Volumes of work are The average number of particles of a composite is given
available onp(E). This is dealt with in detail in Appendix by
2B of [7]. The saddle-point approximation for the density of
states assuming a Fermi-gas modé¢bkie Eq(2B-14) in [7]) Qz-in-j

(ni'j>=wi,jQ—'. (21@

pa(E)=pa(E) X exp(inzy — agA+ BoE). (2.6 2N

However, this population is partly over particle stable

For explanations of howt, and 8, are to be chosen see . X .
[7] . In the Fermi-gas model the quantity which is exponen_states and partly over particle unstable states which will de-

tiated is simply the total entropg=As. Thus the density of cay into other nuclei before reaching the detectors.
states is given by a familiar expressiom(E)
=p3(E)exp© where p(E) is the prefactor. Approximate Ill. SECONDARY DECAY
values ofp3(E) are known provided one does not have to be
concerned with a very low value & (which we do need
At the temperatures with which we will be concerned, &p(
in the Fermi-gas model is given quite accurately by
exd m(AE ) Y?].

In the bulk of this paper we adopt this prescription. For up

In keeping with the way experimental data are presented,
we will compute ratios of yields of different isotopes of bo-
ron, carbon, and nitrogen. To lowest order one can consider
the (n; ;) obtained from Eq(2.10 above, remove the par-
ticle unstable fractions, and compare them directly with ex-
20 _ _ 0 periment. This is shown in the figures as the dotted line with
to “F we write the density of states pa(E) =paXexP&), 4 filled triangle plotting symbol. These populations contain
where the low-temperature Fermi-gas expression Sas only particle stable states.
written above is used. The energy-independent value of the Neyt we consider decay of the particle unstable states. We
prefactor is fixed from experimentally known levels: restrict the secondary decay to be due to emission of six

Enmax . gpecies: negtron, proton_, pleutero%—,le, tr.iton, anda par-

2 (2JK+1)efEk/T=p2\J T (S(B)-BE) 4 E. (2.7) tlcles_. Any given nucleusi(j) from a particle unstable state

k=0 0 can, in principle, go to at most six other nuclei. As the popu-
lations are canonically distributed among the various energy

While objections can be raised against this procedure, ifevels, we can calculate the fraction that are in particle stable
achieves three objectives which we wanted to h&sewe  or unstable states. If the fraction of nucléij( at the first
did not want to lose all information of the experimentally stage in unstable states igj! then the number of nuclei

measured discrete excited statés;we did want to take into  (j j) left in particle stable states at the stage we call “up to
account the contribution from the continuum; af with  gsingle decay” is given by

this procedure calculations are fairly simple. Although we
will not report on all other formulas for density of states that (i Y= (1= 12 )(n; )
we also used, our final results for the isotope populations are b LA
quite stable within the reasonable variations that were tried. 1 Tab o
We estimate the continuum contribution as a similar inte- +2> (1_fi,j)r—'fi+a,j+b<ni+a,j+b>, (3.0
gral from E, o to infinity: ab T

= e wherefﬁj is the fraction of the once decayed nuclei in un-
0i.j,cont™ fE papa(E)e"PEdE. (2.8 stable states. We will indicate how to calculdtg in the
max next sectionI', ;, is the width for emission byg,b) from
This process is continued up f8F wherein we can read (i+a]+b) andI'y is the total width.

off energy levels from data tables. For elements abFe a We can then take these revised populatiéns;)* and
parametrized version was used, which is given as again compute the ratios. We label these “up to single de-
cay.” These are reported in the plots as the small dashed line
02 with the diamond plotting symbol. Note: this is just the
i j.int= exp{ ( Wo(i+)—o(i+]) 23— k— 7 stable fraction of the population after one stage of decay, the
(i+]) actual population is possibly greater.

After the first decay there may be some fraction in particle

/ T (2.9 unstable states. These can decay, thereby changing the popu-
lation of (i,j) to (ni,j>2. If we take the ratios now we get
what we call “up to double decay,” this is denoted by the

where W,=15.8 MeV, ¢=18.0 MeV, x=0.72 MeV, s dot-dashed line and the square plotting symbol. Again at this

=23.5 MeV, ande=16.0 MeV. The first four terms in the stage thdni,j>2 represent only the sum of the stable fractions

right-hand side of Eq(2.9) arise from a parametrized version of the populations obtained from the initial distribution,

of the binding energy of the ground state. The last ternsingle, and double decays.

(-2 .
-s T +T4(i+])le
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It is clear the procedure can be continued. The fractioras an example let us takéC (i=6,j=6). As we start from
remaining in particle unstable states will continue to de-the ground-state level and move upwards, we will encounter
crease. We found no significant difference between the up tgifferent thresholds. The lowest will be th&He decay
triple decay and the up to quadruple decay calculation. Thughreshold at an energy,=E,, (in *C it is at 9.6 MeV
we do not continue beyond. Once agair; it shozuld be 3Iﬂote@kpproximately, the next higher threshold is for proton decay
that all the plotted populationgn; ;). (ni ;)™ (i ;)% (N j)°  atL,=E,,(in **Citis at 18.14 MeV approximatelyand so
etc., quote only the stable fractions at freeze-out, after singleyn; we will get different thresholds one after the otfeote:
double, and triple decay, respectively. the order of different thresholds is different for different iso-

The formalism for the decay calculation is given in the topes.
next section, there the quantitiés;, I', , will be calculated All nuclei of type (i,j) which are formed between the

in somewnhat greater detail. The reader who is only interesteground state and the lowest threshdlg, will remain as
in the final results could jump to Secs. VI and VII. isotopes {,j), this number is given by

Lq .
”i,j(0<—"—1)=J0 Cijp(E)e PEdE. (4.5)

IV. THE DECAY FORMALISM

As the heated clusters stream out from the hot source,

many of them will be in particle unstable states, these will
decay by particle emission, for example, by emitting a neu- Those that are formed between and the next threshold

tron, proton,« particle, etc. They will then leave a residue Lz, will all completely decay by‘He emission, and these

nucleus which may be particle stable or unstable; if it isnucleibwilld?eg appear: as nulcle_i of ;y_pé—(z_,j—z_) a2nd
unstable then it will decay further into another isotope and™uSt e added on to the population of isotopesZ,j —2).

this process will continue till the residue is produced in a Then, those nuclei of typei () WhiCh are forme";{ be-
particle stable state. tweenL, and the next threshold,, will decay both by*He

The primary calculation assumes that thermal equilibriu emission gnd by proton emission. In the next zone there will
is achieved at freeze-out; if this is true then the number of® three kinds of decay, and so on. We now ask, how many

composites with protons and neutrons with an energy in of the initial nuclei formed in a particular zone will decay by
the intervalE andE+dE is given by the canonical factor each of the channels that are available, and how many of the

residues formed will be stable or unstable?
dnA(E)=Ci’ij(E)e*ﬂEd E, 4.2 To answer the above questions: we start by writing down

the number of particles of typex(y) with energy between
where we have abbreviatel to mean (,j), and pa(E), (e,e +dg) that are emitted, in a time interval betwetand
from Sec. Il is given a;aA(E):pgexp@. The multiplicative  t+dt, by nuclei of type (,j), lying between an energy
constantp? will, henceforth, be absorbed into the overall (E,E+dE), leaving behind a residue nucleus—(x,j—y)
normalization constan€; ;. Thus from now on the density [we may alternatively refer tox(y), (i.j), and (—x,j—Y)
function is given simply as by simply their mass numbeis A, andB wherea=x+Yy,
A=i+j,andB=i—x+j—vy]

(|+])E 1/2
pa(B)=exg m| — - (4.2) d3N,=W(E,&)dedtdN(E, 1), (4.6
Ci ; is a normalization constant such that wheredN(E,t) is the number of nuclei of typd (j) initially
formed at an energyE,E+dE) which are still left unde-
* _ cayed after a timé, given b
fo Ci’ij(E)e ﬁEdE:<ni’j>. (43) y 9 y
dN(E,t)=C; ;e "1E)lp,(E)e  PEdE 4.7

Now of the various levels in a particular nucleus, some . ) . )
will be at a very low energy and as a result will be stable to2"dW(E,#)de is the Weisskopf decay probability per unit

any form of particle decay. Those that lie above an energy!ime [9] given by the expression

Exy=(Myy+Mi_ i y—M;)+V 4.4 E—Ba.—¢)p3
X,y ( X,y i—x,j-y |,]) X,y (4.9 W(E,s)d8=gayaso[a+3_>A] pa( a . )P
will, in general, be unstable to decay via emission of a par- PA(E) P
ticle (x,y) (i.e., a particle with neutron numbgrand proton
numberx) , whereM, , is the mass of the particléy; ; is
the mass of the decaying nucleusj{, M; _, ;, is the mass
of the residue left over after decay aNg  is the Coulomb
barrier for that particle. Note thatx(y) could represent a
variety of particles; in this note we will consider “six” such
particles, as mentioned in the Introduction.
As is evident from Eq.(4.4), different particle decays Vo= '
have different energy thresholds. Consider an isotop@,( 3 A

4.9

In Eq. (4.7), I't(E) is the the total decay probability per unit
time from an energy levelt of the isotopéA. In Eq.(4.8), g,

is the spin degeneracy factor of the emitted partiglgjs a
constant of a particular dec9,10], given by

m, a(A-a)

4.9
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where m,, is the mass of a nucleon. In Ed4.9), B, CcB

0
27:;PB

=M;_j-ytMyy—M;;, is the separation energy of the de- T',(E)= 5 (E—Ba—Va)<?(B— 1/C)
cay; o[a+ 4] IS the cross section for the reverse reaction to pa(E)pa
occur, (i.e., a+B—A). It is given semiclassically for un- cA cB 2
charged particles as —— (A-1C) |- — Bs_ﬁ +%_ E
C C C ¢z ¢c3
Olars—a = TRG (4.10 eCA 342 64 6
Z g3 =
+ C C 2 3 (4.19

and for charged particles as

(the derivation of the above equation is given in the Appen-
e—V dix), where C=a[(i+j—x—y)/e:]*% B=JE—B,—V,,
Ola+B—A]= 7TR§—0(8—V), (4.11 A=0. In the above equatiog, [Eg. (4.8)], and some of the
& factors ofo [Eq. (4.11)] have been absorbed intg, thus

whereR, is the radius associated with the geometrical cross Ya= YaOa™ Rg- (4.19
section of the formation of A from B and. Following the ) he fi
prescription of Friedmann and Lyn¢to0], R, is given by We may now integrate out the time to get
dN —@c E)e PEdE 4.1
[(A-a)3+(a)Y3r,, for a=2, a“T(E) ijpa(E)e . (4.19

a~ _1\13 _
ro(A=1)7,  for a=1, To get the total number of states that have decayed from

nuclei of typeA by channel we must integrate ovef from
wherery=1.2 fm. In Eq.(4.11), V is the Coulomb barrier for L to oo,
the formation of A from B andh. Again following[10], this
is written in the touching sphere approximation as _ f“ I'a(E)

. mci,ij(E)e’ﬂEdE. (4.17)

X(i—x)e This integration is quite involved for as we crossover from

((A—a)1’3+(a)1’3)rc' for a=2, one zone of decayl(;,L,) to another zonel(,,L3), I't(E)
=9y 5 changes discontinously as a new channel of decay becomes
(i—le accessible to the nuclei. Thus we break up the integration

for protons, : . . .
P into six zones, corresponding to the six real decay zones, and

integrate within each zone independently. Note that the last

zone extends fronbg to L;=o, and is thus considerably
where r.=1.44 fm. Also in Eq.(4.8), pa(E), ps(E—Ba larger than the other zones. However, at the low tempera-
—e¢) are the respective density of states of the two nucleityres that will be encountered, this zone will be sparsely
They have the same form as in H¢.2). Also p{ andp? are populated. Thus the following approximation is valid. Within
the respective multiplicative constants for the density ofeach zone, with an energy from to L, ;, the integral can

rc(A)1/3 !

states, as mentioned in Sec. Il. be replaced by a mean value expression
We note thati®>N, in Eq. (4.6) is also equal to the number
of nuclei that were initially formed as nuclei of tygeat an LlTae, .,
energy betweeft andE+dE, and then decayed into nuclei Na(Lk,Lk+1)= WAni,j(Lk Lks1), (418
k k+1

B with an excitation energy oE—B,—¢. To get the total
number of states that decayed from a lelzddy emission of
a particle of any allowed energy, we integrate owdrom its
minimum valueV, to its maximum valuee—B,, and get

where Na(Ly,Ly+ 1) is the mean number of nuclei of type
(i,]) (or A) that were initially formed at an energy between
L, andL,, 1, and decayed by the(y) (or a) channel. In the
above equation

d?N=T,(E)C; e "B (E)e  PEdEdt  (4.12

L+ _pE
U ) I'a(E)Ci jpa(E)e” P=dE. (4.19
where “

Of course, the left-hand side is zero if chanae$ not open
E-B, in theT regionL, to Ly, ;. The mean decay rate over all chan-
ra(E):fV W(E,e)de, (4.13 nelsis

k+1

L
. . o Lk<FT>LkH:f I'+(E)C; jpa(E)e” PFdE (4.20
which on integration gives Lk
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and There are two unknowns in this formula, the new tempera-
ture 18" and the overall normalization constait; ., ;. To

Lkt _pE
Anj j(Li,Liy1)= ) Cijpa(E)e"PEdE. (4.2))
k

find these two constants we will impose that the total popu-
lation of this interim stagéi.e., N; j_ ), and the mean en-

ergy of the distributionx), be reproduced by this new tem-
Thus by summing up all the contributions from the six dif- perature.

ferent zones, we get the total number of nuclei that have we can obtain formal expressions for the total population

decayed from isotop@ by thea channel as

of the residueB as contributed by the decay &f as well as

6 its mean energyx), from Eqg.(4.26) as

Na= 2, Na(Lic,Licrp)- (4.22
To find out how many of these have decayed to stable

isotopes, we must first calculate from E@.6) the stable

decay ratel'3(E). Two cases emerge in this calculation. If

E-B.—V,=E,_,, I's(E) is obtained by integrating over

e, from (E-B,—Ej;_,) to its maximum value E—B,),

whereEj _, is the stable level or the lowest threshald of

the residue nucleuB above whichB is unstable. The expres-

sion forT'$(E) is obtained from that of ,(E) in Eq. (4.14

by replacing B=\Ei:_,. If E—B,—V,<Ea_,, then

I'5(E)=T,(E). Then, following a similar procedure as (x(B

above forl",, we get the total number of nucléi{or (i,j)]
lying in an energy range betweeh(,L,. ), that decay by
the a channel to a stable state as

LT

N3(Ly,L =
a( k k+1) Lk<FT>Lk+l

Anij(Ly,Lgsrp). (423

The unstable decay rate from a particular level or zone is
the probability of a decay per unit time frofto an unstable
level or levels ofB from which further decay can take place.
It is easy to see that they are given simply as the differenc
of the total decay rate and the stable decay rate, i.e.,

rY=r,-Ts. (4.24

N4(B',D,C)= fomdNam

14 C ) —eC7H48’
ap’

bl oo

_ Dij ki

!

! C))—;J’mde (X)
NGB, D,C) e T

— Hij—kl ﬁ'z 1502 B e
c? cd C ,
+ +—\/; 1+ erf eC4p" |
4B/3 8B’7/2 2 /IB/
(4.29

here the formal expression fot,(8’,D,C) is used in Eq.
4.28. The numerical value o, is taken from Eq(4.22).
The numerical value ofx) is found by explicit use of Eq.
(4.25. From these two equations we obtain the two constants

D;j k) andp’.
The derivations and expressions for the full decay rates are The numerical value ofx) is derived from Eq(4.25 as

given in the Appendix.

After a decay has taken placa{B+a), we ask what is
the population distribution of the residue as a function of its
energy k=E—B,—¢). This can, in principle, be calculated
from Eq. (4.6) by integrating overE and &, such that
=E—-B,—¢), the energy of the residue, is a constant. First
we make a change of variables frois,¢) to (E,x) and then
integrate ovelE only. We get

dNa(X)
- E-B.-Va-X  pp
= dEy,—— 2 " pu(x)—C; e FE
(fBa+Va+x Ya I'+(E) ol )pg "
X dx. (4.25

This integration is quite involved. We assume that the resi-
due population is canonically distributed, but with a new
temperature ', i.e.,

dNa(X):Di,jﬂk,lpB(X)eif}’X- (4.26

034603-5

= ¢
X)=— XX
NaJo

1 (~ E-Ba—Va
(x)= —f dEf dxxy,
NaJe,+v, Jo

follows:

Emax E— Ba_Va_ X
I
I'+(E)

Bat+VatX

0
P _
XpB(X)—sci'je BE). (4.29

Pa

In the above equation, the numerical valueNf is taken
from Eq. (4.22. We may now change the order of integra-
tion to get

E-B,—V,—X
I'+(E)
0

PB _
X pg(x)— Ci ;& %,
Pa

(4.30

The x integration is now done simply to obtain
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<x>=i T g 'ﬂc-- (E)e PE, (4.3)
NaJoyiv,  l7(E) PA L

wherel (E) is given by
4(E_ Ba—Va)zerE‘Ba‘Va
C2
28(E— Ba_va)3/2eCVEfBafva

C3

w
pa(E) pg

I(E)=

108 E—B,—V,)eVEBaVa
C4

24q E— Ba_ Va) 1/2e(:\,EfBafVa
_ C5

240e“VE"Ba"Va 12AE-B,—V, 240

+ + -
ok c* cé|

(4.32

In the ensuing integration ové:, we, once again, replace

the integral with its mean value expression:

1= £y Ba+va<|(E)>oc c -
<X>_Na BV, yaBa+Va<FT(E)>m i,ij( )e )
(4.33
where
B, v (TT(E))e=_ 2 | (TH(E)y,,, (434
Ek>Ba+ a
and

B,V (E))ee= f:Jrv dEI(E)C; jpa(E)e”#F

pg| 1 +3<:JF

paLB®  4p*

L c2/4
x{1+erf(2\/ﬁ) ]e

c?z c3=w
+ 4_,35 + 812

L) ] eC?14p
2B

Thus the formal expressions foN,(B',D,C) [Eq.

:Ci'jefﬁGa

. (439

x[1+eﬁ

(4.27], and (x(B’,C)) [Eq. (4.28], are compared to the

actual values obtained foN, [Eq. (4.22], and (x) [Eq.
(4.33], and the two unknowns of Eq4.26) are evaluated.
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procedure as before with decay occurring from a canonically
distributed population at a temperaturgd’l/

We can thus model an-step decay process by assuming
that at each intermediate stage the population is canonically
distributed with a new temperature and overall normalization
constant. The decay rates to the next stage are calculated
with the new temperature. Following this, the fraction of the
population that decays through a particular channel, and the
mean energy of the resultant residue nucleus, are calculated.
These are then used to secure the temperature and normal-
ization constant of the next stage of decay. This process will
continue till the fraction of decay to particle unstable states
becomes negligible.

V. THE CALCULATION

From the primary calculation we obtain that; ;) nuclei
of type (i,j) (or A) are formed from the initial multifrag-
mentation. The population; ;) is distributed canonically
among the various energy levels as demonstrated by Eq.
(4.1). If a particular nucleus is at a sufficiently excited state
then it will emit a particle k,y) (or a) and leave a residue
(i—x=k,j—y=1) (or B), which may again decay by emit-
ting a particle (1,v) (or b) leaving a nucleusk—u=m,l
—v=n) (or D), and so on until it finally reaches a nucleus
(p,q) (or Z) in a stable state. We ask the question that if
(n; j) nuclei of typeA were intially formed, then how many
of these will finally end up as stable nuclei of type B,
D ...Z The contribution ofn; ;) to the final stable popula-
tion of A is given simply by Eq(4.5) as

Ly
nh= fo Cijpa(E)e PEdE=An;;(OLy). (5.0

The number of nuclei initially formed as,{) which decay
to (i—x,j—y)=(k,l) is given as

° Lk<1—‘a>Lk+1

nA—»BZZ

5.2
& T, 2

Ani (L, Lys1)-
The mean energy of the newly formed residue nucleus is
given by

_ 1 , Ba+Va<I(E)>oc A
b= Na-g YaBa+Va<FT(E)>W

ni’j(Ba-l—Va,OO).
(5.3

We assume that this population is canonically distributed
from an excitation energy dEy=0 to « with a new tem-
perature 18’ [Eq. 4.26. Extraction of the new temperature
1/’ and the overall normalization constaRf;_ is done
as detailed in Sec. IV. In most cases, where this procedure
was implemented, we obtained a new temperature’ 1/
which was lower than the initial temperaturg3ihowever,
in about 3% of the casesA/ turned out to be higher than
1/B; this occurs when the residue of the decay process is far
from the valley of stability. We can then calculate the num-
ber of nuclei that initially started out a@ss and finally ended

We can now proceed with further decays following the sameup as “stable”B’s as
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L i -
nLHE,: fo 1Di'jHkaB(x)e‘ﬁ/de. (5.4 10° 5 Nitrogen Z = 7
Note that in the above equati@g(x) andL, are the density 10° = -
of states and lowest decay threshold for the nucleus of type 3 g
(i—=x=k,j—y=1). This number can also be calculated di- e B
rectly by using the stable decay raféx. (4.23]: 03 3
7] I I C
6 L <FZ>L 6 _| L
Mhop= > AN (LuLy). (55 o) © 3
c1 oy, = ] C
< 0° -
The second equation is more correct as it does not depend ¢— E 3
the assumption that the residue is canonically distributed. A ] C
comparison of thenLﬁB obtained from the above two equa- 10 = =
tions gives an estimate of the error involved in the assump- f I I f
tion of a canonically distributed residue population. Now we 10° Boron Z =5 [
ask, what is the number of nuclei of th#s just formed 3 3
which will decay by emitting a particlb to a nucleus of type ] C
D; this is calculated simply as 10° o =
Lo | (Tp)L . i
NaB.0= 2 —o—Ana g(Ly,Lyip). (5.6 103 E
& o, i | | | | | I
, ) , -2 -1 0 1 2 3 4
The decay rates in the above equation are calculated with th N—7
temperature J3'. We then calculate the mean enexgy of
the new distribution as FIG. 1. Neutron numbefN), proton numbexZ) vs countsfor
the three cases of boron, carbon, and nitrogen. The experimental
1 . Bb+vb<|(x)>oo data are from[1] S+Ag at 22.3A MeV. The fits show varying
(y)= NABb YbBbWb(FT(X))mAnAHB(Bkﬁ'Vb*°°)- stages of decay for a totaf+=50, Ar=110, T=3.0 MeV,

V¢, IV(=3.0, and logyH=6.82. The empty squares are the experi-

mental data. The dotted line with the triangle plotting symbol is the
rimary calculation. The small dashed line with diamond plotting
ymbol is the up to single decay calculation. The dot-dashed line

with square plotting symbol is the up to double decay calculation.

n and whose mean energy is equak{o. We can The dashed line with the star plotting symbol is the up to triple
A—B—D» X 9y quakio. VVe decay calculation. The solid line with circle plotting symbol is the
then proceed to find how many of these will be in stableUID to quadruple decay calculation

states, how many will decay on further, etc. We continue this

process till the contribution from this decay chai,—B i ) )
—D— ..., will give numbers of nuclei negligible com- any two particles of the six considered. We call these the up

pared to the already present number in stable states. to double decay populations and denote them by the dot-
dashed line and square plotting symbol. We then add on all
those that can reach the isotopes by three particle emissions,
called the up to triple decay population and denoted by the
Our objective is to calculate the yields of the boron, car-large dashed line and star plotting symbol. And finally we
bon, and nitrogen isotopes measured in the g heavy- add on the up to quadruple decay population denoted by the
ion collision at an energy of 2248MeV [1]. In Figs. 1to 5  solid line and circle plotting symbol. As there is negligible
the data are shown as empty squares. The method of calcdifference between up to triple decay and up to quadruple
lation is simple, first we calculate the primary populations ofdecay we stop after quadruple decay.
the isotopes using Eq2.10. We then remove the unstable  To fit with experimental data, we have four parameters to
fraction of the population, and quote only the stable parttune, the obvious ones being the initial temperat@rer T,
This is denoted by the dotted line and triangle plotting sym-the free volumeV; of the primary calculation, the rati&/Z
bol. We then incorporate secondary decay by adding on allas one does not know how much loss due to pre-equilibrium
the populations of nuclei that can reach a stable level of themission has taken plageand an overall multiplicative con-
isotopes by emitting only one of the six particles consideredstant’ (as we do not know how many nuclei collided in the
We call these the up to single decay populations and denotexperiment The plots are noted to be most sensitivesto
them by the small dashed line and diamond plotting symbolandA/Z. Thus in fitting the data we first set particular values
We then add on all those unstable nuclei which can reach af 8 andA/Z, and calculate the multiplicities at all stages of
stable level of the given isotopes by sequentially emittingdecay ¥; is varied to get the best possible fit at this tem-

(5.7

Using these, we continue the process, by again calculatin
the temperature and norm of a canonical distribution, whic
when summed from excitation energy 0 4o is equal to

VI. RESULTS OF THE CALCULATION
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FIG. 3. Same as Fig. 1 but witlZ{=50, A;=110, T

=5.0 MeV, V4, /Vy=5.5, and logyH=6.34. The best fit with the =7.0 MeV, Vi, /V,=3.0, and log,H=6.82.

data has been obtained with these parameters.

perature and\/Z). We then multiply all the multiplicities by
an appropriate{ and take the logarithm. These are then
plotted and compared with treuntsobtained from the ex-
periment. We then varg, A/Z, and repeat the above proce-
dure till a good fit is obtained. We present fits for three
different temperatures, and differeAlZ for each tempera-
ture. V; and H are set to obtain the best fit possible for a
given 8 andA/Z.
We note that the $Ag system is one withA=139 and

Z=63 thusA/Z=2.2. The authors ofl] state that some

pre-equilibrium emission may have taken place. As we do()
not know what proportion of neutrons and protons are lost in'i
such a process, we start the calculation with the sAfZeas )
the S+Ag system. We start with Z=50 andA/Z=2.2,i.e., O
A=110. We start the calculation with a low temperature of 3O

MeV in Fig. 1 (V; andH are varied to get the best)fitwe
note that overall there is a slight excess of the heavier nitro-
gen isotopes as compared to data and a deficit of the lighte
boron isotopes, this implies that the temperature is too low
and enough of the light isotopes are not being formed. We
proceed by raising the temperature to 5 MeV, maintaining
the sameA/Z. By now varyingV; andH we find an excel-
lent fit with the data(Fig. 2).

One may ask, at this point, if there are more than one se
of parameters which fit the data well. To answer this ques-
tion we increase, first, the temperature to 7 MeV, maintain
the sameé\/Z and redo the calculation. We get a bad Fiig.

10°

Nitrogen Z = 7

IIIIIIII| IIIIIIII| | .IHIHl IIIIHII|

N
«
a~

3). There is an overall deficit in the nitrogen population and FIG. 4. Same as Fig. 1 but witlZ;=50, A;=115, T
an excess in the boron population. Also we note that within a=7.0 MeV, V;, /Vy= 3.0, and log,H=6.82.
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case of'*N. No particular reason could be found for this, but
let us go over several approximatiofstroduced to keep the
calculation at a resonably simple leyalhich may have con-
tributed.

Actual energy levels from data tables were used only up
to A=20[Eq. (2.4)] for the primary populations. For higher
masses, the emperical mass form[iay. (2.9)] was used.
The secondary decay is very approximate, instead of calcu-
lating decay level to level, we have blurred out such details
by using a smoothed level density.

For the capture cross sectipg. (4.11)], we have used a
simple semiclassical formula, assuming that all nuclei are
spherically symmetric which is definitely not true. A more
precise calculation involving level to level decay would use a
more accurate expression for the cross sections, e.g., the
Hauser-Feshbach formalisfhl,12.

Still another problem lies in the assumption made in cal-
culating the effects of higher-order decay, that the interim
populations can be taken to be canonically distributed. This
is true only in first-order decay, thus making the higher-order
contributions subject to some error.

There is also an experimental problem according to the
authors of 1], the angular distributions were forward peaked,
indicating significant emission prior to attainment of thermo-

N—7 dynamic equilibrium. Such an emission could affect the
populations of the various isotopes.

FIG. 5. Same as Fig. 2 but witiZ;=63, A;=140, T No doubt, incorporating changes to correct the above-
=5.0 MeV, V;,/Vy=5.5, and log,H=6.30. mentioned problems will improove the accuracy of the cal-
culation. However, such changes may make the expressions
analytically intractible and one would have to resort to nu-
merical means. This may slow down the calculation consid-
erably. The calculations presented in this note take minimal
4), but we still obtain an overal deficit in the nitrogen popu- computer time. Inspit_e of .the shortcomings of the calculation

E)resented above, this still remains a good test of the two-

lation; the carbon fit is good, but there still remains an exces -
) . . : S component statistical model, and shows that such a model
in the boron isotopes especially in the neutron-rich isotopes

On inspection of the fit€Figs. 1-4, we note that the best c'an definintelyI be used to explain certain experimental data
fit is obtained at Fig. 2. In this fiT=5.0 MeV, A/z=2.2, dlte accurately.
Vs IVo=5.5, and logy)=6.34. In this figure we note
that, for the boron populations we get an excellent agreement
with the data. In this case there seems to be little change after The authors wish to thank C. Gale, W. G. Lynch, M. B.
single decay. For the carbon isotopes the agreement is gooflsang, S. Pratt and N. de Takacsy for helpful discussions.
For nitrogen, we have a good fit except for the casédf. This work was supported in part by the Natural Sciences and

Another property of the fits noticed is that they do not Engineering Research Council of Canada andléyonds
seem to depend oA andZ independently but rather on the pour la Formation de Chercheurs et I'aidela Recherche
ratio A/Z. As a demonstration of this, we plot in Fi§ a fit  du Quéec
for A=140 andZ=63(i.e.,A/Z=2.22). We note that we are
able to obtain a fit very similar to Fig. 2, with the same APPENDIX
temperature and/s, /Vy as in Fig. 2, but with a slightly I
lower H. This is very much expected, as in this case each 1. Derivation of Eq. (4.19
source has a larger number of nucleons than before. The full decay rate from a particular energy le¥ebf a

nucleusA [or (i,j)], which is decaying by emitting a particle
alor (x,y)], is given adEq. (4.13)]

3

Nitrogen Z = 7

5]

-

S

3

IS}

COUNTS

3

3

Boron Z = 5

3

]
w

-

S

|
N

|
-
(@]
N
«
a~

particularZ there is a deficit in the neutron-rich isotopes. We
try to remedy this situation by increasing tA¢Z ratio. The
best fit at this temperature is obtained at/AiZz=2.3 (Fig.

ACKNOWLEDGMENTS

VIl. DISCUSSONS AND CONCLUSION

E—-B,
In this paper we have presented a secondary decay for- Ia= fv W(E,&)de, (A1)
malism and performed calculations to fit the populations of @
various isotopes measured [i]. We obtain very good fits whereW(E,¢) is the Weisskopf decay probability per unit
(Fig. 2) with experiment for the boron and carbon isotopes.time given by Eq(4.8). On writing down the full expression
In the nitrogen isotopes, we obtain a good fit except for thefor W we get
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_ E Ba YQPg _ 1 2 3 pB
I'a= fVa pA(T)pg(s_Va) Lk<Fa>Lk+1_(|Lkva+1+ILk'Lk+1 Lk'Lk+1)p_2’ (A7)
T — where
X ex \/—_{\/(|+J—x—y)(E—Ba—s)} de
€F LBV z
(A2) Lk Lir1 LBV, Ci'124yaa
Now we substitute= ({E—B,—¢) and integrate ovez and W @ B +Ba+Va) {7 (A8)
let C=(m/\Jer\i+]j—x—VY), then :
3
JL B, V z
E B V. ViPn 2 17 L f o Cii4va
a(E)_ ———52Z(E-B;—V,—29) N N A 177 ca
(BE)pa
75( JrBajLVa)
Xexp(Cz)dz (A3) xe dz, (A9)
On carrying out this simple integration we get 13 = J'V"kH‘Ba‘VaZy,C_ _
kebkr1 a=hl
VEk=Ba=Va
2vipg (eCB
[o(E)=———| (E-B,—V,)| —=(B-1/C 473 1272 12
a(E) pa(E)pd ( a=Va) C( ) [E_ = F}eCzB(z2+Ba+va)dZ_
CA CB 2
e 38 6B 6
i _ 2 | e 2 CE (A10)
C (A 1/C)> c B C +C2 o3
The three integrals can be done simply to give
+eCA< . 3A2+6A 6) a0
—_— ——t——— —12y.C; ;
C C ¢2 cd ﬁk‘LkH: Tﬂzl’][e*ﬁl—k_e*ﬁ'—wrl]’ (A11)

with B={E—B,—V,, A=0. The stable decay rate, i.e., the
decay rate from an energy leviglof the nucleusA to any of 2y,C;
the allowed stable levels & is given simply from the above It L.~

Lokt c2g
expression by replacing the upper limit/fo= \E§ whereEg
is the stable threshold of the residue nuclBusiowever, in +{1/B—B,— V) (e Px—e Plrin)],
the event thatt —B,—V,<E} then the above mentioned (A12)
replacement should not be made. In this case the total decay
rate is the same as the stable decay rate. ,
3 A7aCii  pe, i va) nc2ap? - M2
Lele— 2, © atVale Mie k
2. Derivation of the generic expression for_ (I'a) , « Cp
From Eq.(4.19 we obtain the definition o[k(Fa>Lk+1 as ~M2, e BME. 11 @~ BME_ o= BME .,
Lic+1 - 3c? 3 2 2
Lk<1—‘a>|‘k+1:f Fa(E)Clylp(E)e 'EEdE (AS) +(2__ 6>{MkeBMk—Mk+leBMk+l}
Now taking the expression df,(E) from Eq.(A4) and sub- 3C2 3 3 M2~ M
. —_— {e " PYk—e k+1}
stituting z= B=(JVE—B,—V,) we get 4,6’2 /8 C2
_ [ C3\m
ALY [ “ayic, + ——{erf(VBM.) —erf(\BM)} |,
22 672 62] c (A13)
L] b B S\ e%:
cz c® ct where  M,=VL,—B,—V,—C/(28) and M.,
3 =4Lgr1—Bz—V,—C/(2B) and C is the same as in Eq.
z 6z 2
2 CleA@+BatVaqz  (AB) (A4).
02 c* The calculation of the stable decay rate is a bit more in-
volved in the limits of integration and three cases emerge. If
Now we may separate the integration into three parts Ly—Ba—Va<Ej, andLy,,—B,—V,<Eg, then
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(TS), = (T) (A14)  The expression for this is the same as E46) with the
L\Mat, Tt a,, : >
appropriate change of limits:
If L,—B,—V,<Eg, butL,,,—B,—V,>Ejg, then the cal- Loy
) s . s_ s . - BE
culation of | (I'3), ., has to be done in two parts 15 fE§+Ba+vaFa(E)C"Jp(E)e dE.  (Al17)
0
Pe If, however, L,—B,—V,=Es, and L,,,—B,—V,>E3,
LK<F§>LK+1:(I§:+|§)_’ (A15)  then T : o
Pa
S birn o _pE
where Lk<ra>|—k+1= . I';(E)Ci jp(E)e” P=dE. (Al8)
S
5= fEB+Ba+Vﬂra(E)Ci,jp(E)e—ﬁEd E. (A16) The above two integrals are rather trivial and thus detailed
Lk expressions are not presented.
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