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Collective properties of nucleons in the abnormal-parity states
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In the first part of this work, we study the quadrupole collective properties ofNa52, 4, 6, and 8 nucleons
occupying the abnormal-parity intruder single-particle states with high angular momentaj a5

9
2 , 11

2 , 13
2 , and

15
2 . This study is essential for a detailed understanding of the contribution made by these nucleons to the

quadrupole collectivity of the yrast states of deformed nuclei. The properties studied include~i! the distribution
of the angular momentaJ contained in the intrinsic state ofNa particles in theu j aka& states,~ii ! the relationship
between the quadrupole momentQ0( j a ,Na) of such an intrinsic state and the maximum angular momentum
Jmax contained in it,~iii ! the complete set of reduced quadrupole matrix elements (J8uuQuuJ) for transitions
between all the statesuJ& and uJ8& projected from the intrinsic state,~iv! the B(E2:J→J22) values,~v! the
transition momentsQt(J), and~vi! the spectroscopic quadrupole momentQ(J). We compare these properties
with similar properties of an intrinsic state having SU~3! symmetry which contains the same set of angular
momenta as contained in the intrinsic state of a particular number of nucleons in a specificj a configuration. In
the second part, we use the input from the first part to study the collective properties of the coupled system of
protons and neutrons in abnormal-parity states. We show that the SU~3!-like features observed for the indi-
vidual groups of abnormal-parity nucleons become stronger for the coupled system. Finally, in the third part,
we consider the yrast bands of well-deformed nuclei projected from their Nilsson intrinsic states of valence
nucleons in a major shell. We specify the structure of the wave function of each projected yrast stateuJ& in
terms of the nucleons in both normal- and abnormal-parity states. These wave functions can be used to
determine the individual contributions of the nucleons in normal- and abnormal-parity states to any specific
property of the yrast state. In particular, we calculate the transition momentsQt(J) of the entire yrast band of
even-even1602166Yb, 156,158Dy, 232Th, 234U, and 236U projected from their respective Nilsson intrinsic states.

PACS number~s!: 21.60.Fw, 21.60.Cs, 27.70.1q, 27.90.1b
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I. INTRODUCTION

In a shell-model description of heavy, deformed nuc
the configuration space for the valence protons and neut
consists of the single-particle states~with angular momentum
j ) in major shells appropriate to the proton and neutron nu
bers. These states in the 28–50, 50–82, 82–126, and 1
184 major shells are listed in Table I. Each shell contain
number of statesu j n& with the same parity—the so-calle
normal-parity ~n! states—and an intruder stateu j a& with a
parity opposite to that of then states. This intruder state i
called the abnormal-parity~a! state. Thea states in the four
major shells listed in Table I havej a5 9

2 , 11
2 , 13

2 , and 15
2 .

In Refs. @1# and @2#, we showed that the trend of th
experimentalB(E2:01

1→21
1) values for even-even nucle

can be quantitatively understood by assuming that the co
sponding intrinsic state~abbreviated asIS) of the valence
particles has a mass quadrupole moment close to the m
mum value that it can have in a major shell. In Ref.@3#, we
asked the following question: What is the contribution of t
nucleons in thea states~loosely referred to asa nucleons! to
the total quadrupole moment of theIS of a deformed
nucleus? We showed that if the asymptotically deform
NilssonIS within the configuration space of a major shell
assumed to be a good approximation to theIS of a well-
0556-2813/2000/61~3!/034317~41!/$15.00 61 0343
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deformed nucleus~in the rare-earth or actinide regions!, thea
nucleons contribute about 25% to the total intrinsic quadru-
pole moment.

In Ref. @4#, we posed the next questions: How much do
the a nucleons contribute to the total angular momentumJ
~the unit is\, which is usually omitted! of an yrast state of a
deformed nucleus, and what are the relative contributions of
the a and n nucleons? To answer these questions, we as-
sumed that the structure of the yrast band is well approxi-
mated by the states of definiteJ projected from the asymp-
totically deformed NilssonIS. We then showed that
although thea nucleons contribute only;25% to the intrin-

TABLE I. List of single-particle states in four major shells.
Pairs of states within brackets are nearly degenerate. They form
pseudo-spin-orbit doublets. In each major shell, the state with the
highestj value is the abnormal-parity~a! state.
©2000 The American Physical Society17-1



o

at
d

i-

t

t b

n-
t

c-
c

e
n
a

e
s

p-
low

y.
he
i-

xi

ct
is

in

ec

u
s

a

o

in

m
e
tur-
r

p-

of

ma-
ck.

ling

the
s-

to

d

f

e

se
ela-
del

te

the
be-

the
ates

-

c.
ame
s of
ruc-
e

s

K. H. BHATT, S. KAHANE, AND S. RAMAN PHYSICAL REVIEW C 61 034317
sic quadrupole moment, their contribution to the angular m
mentum of an yrast state is as large as that of then nucleons.

Starting with Elliott@5,6#, several authors have shown th
the SU~3! symmetry is, in one form or another, ideally suite
for describing quadrupole collectivity. In theIS of a nucleus,
the n nucleons are known to possess good pseudo-SU~3!
symmetry@7#. On the other hand, the numberNa of a nucle-
ons in the sameIS are in a j a

Na configuration, which lacks
SU~3! symmetry. In fact, if the pairing interaction is dom
nant, the symmetry appropriate for thej a

Na configuration is
the symplectic Sp(2j a11) symmetry@8,9#, which gives rise
to bands of states that can be labeled by angular momenJ
and seniorityy. The properties of thej a

Na states with definite
seniority have been well studied in Refs.@8,9#. The symplec-
tic symmetry is, however, broken to a considerable exten
the strong deformation of the mean field of the nucleus.

Within the framework of the deformed configuratio
mixed shell model@10,11#, the dynamic structure of the yras
band should be determined largely by the statesuproj;Jn& and
uproj;Ja& of then anda nucleons projected from their respe
tive IS’s. The statesuproj;Jn& projected from the asymptoti
Nilsson IS’s also have pseudo-SU~3! symmetry, and their
collective properties have been studied well@12#. By con-
trast, despite their obvious importance, the collective prop
ties of the statesuproj;Ja& have received only scant attentio
until now primarily because these states do not possess
symmetry. In this work, we have systematically examin
~in a numerical fashion! the quadrupole collective propertie
of the statesuproj;Ja& of the j a

Na configurations projected
from the corresponding prolateIS designated asFK( j a ,Na).
We have considered thea states 0g9/2, 0h11/2, 0i 13/2, and
0 j 15/2 andNa52, 4, 6, and 8 particles. The collective pro
erties of these states are compared with those of the
lying states belonging to the appropriate SU~3!, SO~6!, and
Sp(2j a11) symmetries to look for some similarities, if an

In Sec. II, we consider the quadrupole collectivity of t
IS FK( j a ,Na). One aspect of this collectivity is the distr
bution of angular momenta contained in thisIS. In Sec. II A,
we summarize how this distribution is calculated for an a
ally symmetricIS FK( j a ,Na) and for anIS FK@l,0# be-
longing to an SU~3! representation@l,0#. In Sec. II B, the
prolateIS’s of Na particles in differenta orbits are explicitly
specified, and the distributions of angular momenta are a
ally calculated. We show in Secs. II C and II D that the d
tributions of angular momenta in theIS’s of just thea par-
ticles are similar to the distribution of angular momenta
the IS’s belonging to appropriate SU~3! representations. A
quantitative measure of this similarity is obtained in S
II E. Another aspect of the collectivity of theIS is the rela-
tionship between its quadrupole moment and the maxim
angular momentumJmax contained in it. This connection i
examined in Sec. II F.

In Sec. III, we use the results of Sec. II to obtain a me
sure of the quadrupole collectivity of theIS of N particles in
a large single-j shell. We had used suchIS’s in our previous
works @1,13# to reproduce the trend of the quadrupole m
ments ofN particles in a major shell.

In Sec. IV, we examine quantitatively the changes
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some properties of theIS FK( j a ,Na) when it is subjected to
perturbations resulting from the pairing interaction and fro
the so-called 0\v mixing caused by the deformation of th
mean field. These two are the most important of the per
bations of thisIS in the configuration space of one majo
shell.

In Sec. V, we move on to determine the collective pro
erties of the yrast band projected from theIS FK( j a ,Na).
We first calculate, with high accuracy, the complete set
reduced quadrupole matrix elements (Jf iQiJi) for all pos-
sible transitions between the statesuJa& of the projected
band. The numerical accuracy of the calculated reduced
trix elements is tested in Sec. V C by a consistency che
This check is then used as a tool for comparing the sca
behavior of the quadrupole collectivity of differentIS’s. In
Sec. V D, we consider the relationship between theB(E2:2
→0) value ~calculated for the projectedJa52 and Ja50
states! and the square of the total quadrupole moment of
IS. This consideration is followed in Sec. V E by a discu
sion of the trend of theB(E2:J→J22) values for the entire
band projected from each of theIS’s. We present compari-

sons of these trends for the bands projected from the (13
2 )6

and (15
2 )8 IS’s with trends obtained for bands belonging

SU~3! representations.
In cranking models@14#, it is a common practice to regar

the variation withJ of the so-called transition momentQt(J)
derived from theB(E2:J→J22) values as an indicator o
the changein the deformation of the crankedIS with rota-
tional frequency. On the other hand, theQt(J) values calcu-
lated here for the statesuJ& projected from thesameIS also
vary with J. This variation is displayed in Sec. V F. Th
variation of the spectroscopic quadrupole momentQ(J) with
J of the projected states is illustrated in Sec. V G. The
comparisons should prove helpful in understanding the r
tionships between the cranking model and projection mo
predictions of various physical properties.

In some algebraic models@15–17#, rotationlike quadru-
pole collectivity is obtained not only with SU~3! symmetry
but also with SO~6! symmetry. In Sec. V H, we demonstra
that the trend of the projectedB(E2:J→J22) values is
more collective than the corresponding trend obtained for
yrast band containing the same set of angular momenta
longing to a representation of SO~6! symmetry. In the last
part of Sec. V, we compare the collective properties of
band of projected states with properties of the band of st
of the j a

Na configuration belonging to the Sp(2j a11) sym-
metry with senioritiesy50, 2, and 4.

After studying the collective properties of the bandsuJa&
projected from the individualIS’s, we next consider the si
multaneousIS of both protons (p) and neutrons (n) in the
j ap
Nap and j an

Nan configurations, respectively. We show in Se
VI how the requirement that these nucleons share the s
mean field induces a coupling between the projected state
protons and neutrons—a coupling that determines the st
ture of the yrast band of thepn system. As an example, w
consider the yrast band resulting from protons in the 0h11/2
state and neutrons in the 0i 13/2 state. Such configuration
7-2
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COLLECTIVE PROPERTIES OF NUCLEONS IN THE . . . PHYSICAL REVIEW C 61 034317
occur in the rare-earth nuclei. We calculate theB(E2:J→J
22), Qt(J), andQ(J) values for the coupled projected ban
and compare them with the rotor and SU~3! model values.
This exercise explores the enhancement of quadrupole
lectivity in the coupledpn system ofa nucleons.

In Sec. VII, we bring then and a nucleons together to
share the common mean field. We determine the structur
the yrast band of the nucleus in terms of the statesuJn& and
uJa& of n and a nucleons projected from their respectiv
IS’s. We then calculate the relative contributions ofn anda
nucleons to the totalJ of an yrast state and to theB(E2:J
→J22) values. The procedure is illustrated by consider
the nuclei 1602166Yb, 156,158Dy, 232Th, 234U, and 236U. A
final discussion of the main results follows in Sec. VIII.
preliminary account of this work was presented@18# at the
international conference held to commemorate the 40th
niversary of the introduction of SU~3! symmetry to describe
collective nuclear phenomena.

II. COLLECTIVITY OF THE INTRINSIC STATE
OF ABNORMAL-PARITY NUCLEONS

A. Distribution of angular momenta

The IS FK of N valence particles, generated by a d
formed axially symmetric mean-field potential, is a Sla
determinant of the deformed single-particle states

fk
a5(

j
cj ,k

a ck
j ~1!

occupied by the particles. Here,k5^ j z8& is the projection of
the single-particle angular momentum along the symme
axis, andK5( iki is the projection of the total angular mo
s
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mentum along the same axis with the sum running over
individual ki of different occupied orbits labeled byi. The
labela distinguishes different statesfk

a with the same value
of k. The statesck

j with angular momentaj are the spherica
states belonging to the major shell. The expansion coe
cientscj ,k

a depend, in general, on the deformation of the p
tential representing the mean field of the nucleus.

In an axially symmetric potential, the statesfk
a andf2k

a

have the same energy. In the lowest-energyIS’s ~considered
in this paper! of an even number of valence particles, if
state fk

a is occupied,f2k
a will also be occupied. Conse

quently,K50 for suchIS’s.
TheIS FK is deformed and can be expanded in states

definite angular momentaCK
J contained in it as

FK5(
J

CJKCK
J . ~2!

The probabilityP1(J) that FK contains an angular momen
tum J ~in units of \) is given byuCJKu2. The calculation of
this quantity for a givenIS is described in Sec. II B of Ref
@4# ~see also Ref.@19#!. The probability distributionP1(J) is
a measure of the quadrupole collectivity; that is, a more c
lective IS will give rise to a broader distribution within the
same range ofJ values.

An axially symmetricIS of an even-even nucleus wit
symmetry about the midplane contains only states with e
values of angular momenta@20# up to the maximum angula
momentum possible within the model valence space. If
IS belongs to an SU~3! representation@l,0#, it has K50,
and it contains states withJ50,2,4, . . . ,Jmax, whereJmax
5l. The probabilityP1(@l,0#;J) that the SU~3! IS contains
an angular momentumJ is given by@21#
P1~@l,0#;J![uCJK~l,0!u25H 1

l11
for J50,

~2J11!
l~l21!~l22! . . . ~l2J11!

~l2J11!~l2J13! . . . ~l1J21!~l1J11!
for J>1.

~3!
nly

ate
l.

t

The distributionP1(@l,0#;J) will be referred to as the SU~3!
distribution.

The calculation ofP1(@l,m#;J& for the more general tri-
axial IS’s of SU~3! representations@l,m# is described in
Sec. III of Ref. @4#. The K50 band contains states withJ
50,2,4, . . . ,(l1m). We found in Ref.@4# thatP1(@l,m#;J)
normalized to unity for theK50 band is nearly indistin-
guishable fromP1(@l8,0#;J) for the axially symmetric rep-
resentation@l8,0#, wherel85l1m andl@m. For this rea-
son, we use in this paper the simpler SU~3! distributions
P1(@l,0#;J) for comparison with the distribution
P1@( j a ,Na);J#, which are discussed in the next section.
B. Determinantal intrinsic states

Let cka

j a with angular momentaj a be the so-called

abnormal-parity intruder states in a major shell. There is o
one statecka

j a of a givenka in a major shell, and the axially

symmetric quadrupole deformation cannot mix that st
with other statesckn

j n of normal parity in the same shel

Hence, the deformed statesfk
a of abnormal parity are jus

the statesfka

a 5cka

j a.

In anIS of N valence particles in a major shell, letNa be
the number of particles which occupy the statesfka

a 5ck
j a
a

7-3
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FIG. 1. The dots and connect
ing solid line show the probability
distribution P15uCJKu2 @see Eq.
~4!# that theIS FK( j a ,Na52) of
two particles contains a state wit
definite angular momentumJ. The
two particles are in the single
particle abnormal-parity state
0g9/2, 0h11/2, 0i 13/2, and 0j 15/2.
The smooth curve represents wh
is actually a distribution restricted
to even values ofJ ~see Fig. 1 of
Ref. @4#!. The dotted and dashe
curves show the probability distri
butions obtained for the SU~3!
IS’s FK@leq,0# and FK@lave,0#,
respectively, which are defined in
Secs. II C and II D.
he
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with different ka values. We are interested in examining t
collective properties of theIS FKa

( j a ,Na) of just the Na

particles in the stateu j a& embedded within the totalIS of N
particles. TheIS FKa

( j a ,Na) are deformed and can be e

panded in terms of the statesu( j a ,Na);JaKa& as

FKa
~ j a ,Na!5(

Ja

CJaKa
~ j a ,Na!u~ j a ,Na!;JaKa&. ~4!

~Hereafter, we drop the subscripta in Ja andKa if there is no
confusion.! The statesu( j a ,Na);JK& can be projected from
FK( j a ,Na) using the standard projection operatorPMK

J @14#
and can be written as

u~ j a ,Na!;J,K&5
PKK

J FK~ j a ,Na!

CJK~ j a ,Na!
. ~5!

The distribution ofJ in FK( j a ,Na) is then given by the prob
abilities

P1@~ j a ,Na!;J#5uCJK~ j a ,Na!u2, ~6!

where

(
J

P1@~ j a ,Na!;J#51. ~7!

For Na particles in the stateu j a&, Jmax is given by

Jmax5~Na/2!@~2 j a11!2Na#; Na50,2, . . . ,2j a11.
~8!

In this work, we consider only the prolateIS’s of a nucleons
because most nuclei are prolate. In a prolate mean-field
tential, the orbits6cka

j a are degenerate, and their energ

increase withka .
03431
o-
s

Consider only two particles in thea state. In the prolate
IS, these two particles will occupy the statescka

j a with ka5

6 1
2 . TheIS is a Slater determinant with the structure

FK~ j a,2!5
1

A2
Uc1/2

j a ~1! c
21/2
j a ~1!

c1/2
j a ~2! c

21/2
j a ~2!

U . ~9!

The stateFK( j a,2) can be expanded in states of definiteJ of
the two nucleons as

FK~ j a,2!5(
J

A2S j j
1

2
2

1

2 UJ0D u~ j a,2!;J&

5(
J

CJK~ j a,2!u~ j a,2!;J&. ~10!

The probabilities P1@( j a,2);J#[uCJK( j a,2)u2

52u( j j 1
2 2 1

2 uJ0)u2 are plotted as solid lines in Fig. 1 for th
0g9/2, 0h11/2, 0i 13/2, and 0j 15/2 states. For two particles in
thesea states,Jmax58, 10, 12, and 14, respectively.

If there are four particles in the high-j a state, the prolate
IS has the structure

FK~ j a,4!

5A 1

4!Uc1/2
j a ~1! c

21/2
j a ~1! c3/2

j a ~1! c
23/2
j a ~1!

c1/2
j a ~2! . . . . . . c

23/2
j a ~2!

c1/2
j a ~3! . . . . . . c

23/2
j a ~3!

c1/2
j a ~4! c

21/2
j a ~4! c3/2

j a ~4! c
23/2
j a ~4!

U .

~11!
7-4
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FIG. 2. See caption for Fig. 1
Considered here are the intrins
states for four particles.
b-
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c-
The (9
2 )4, ( 11

2 )4, ( 13
2 )4, and (15

2 )4 IS’s contain evenJ val-
ues up toJmax512, 16, 20, and 24, respectively. The pro
abilities P1@( j a,4);J#5uCJK( j a,4)u2 for the above fourIS’s
are shown in Fig. 2.

For six a particles, theIS is a Slater determinant of par
ticles occupying the statescka

j a with ka56 1
2 , 6 3

2 , and6 5
2 .

For the 0g9/2, 0h11/2, 0i 13/2, and 0j 15/2 states,Jmax512, 18,
24, and 30, respectively. Finally, theIS of eighta particles is
a Slater determinant with the particles occupying the sta
ck

j a with ka56 1
2 , 6 3

2 , 6 5
2 , and6 7

2 . The maximum angular

a

03431
s

momenta contained in theseIS’s are Jmax58, 16, 24, and
32, respectively, for thej a5 9

2 , 11
2 , 13

2 , and 15
2 a particles.

The probabilitiesP1@( j a,6);J# andP1@( j a,8);J# for the six-
and eight-particleIS’s are shown in Figs. 3 and 4, respe
tively. Theexactvalues ofP1@( j a ,Na);J# for j a5 9

2 , 11
2 , 13

2 ,
15
2 , andNa52, 4, 6, 8 are given in Table II.

C. Equivalent SU„3… representations

The IS FK( j a ,Na) has no SU~3! symmetry. Neverthe-
less, we define an SU~3! IS FK@leq,0# to be equivalentto
.
ic
FIG. 3. See caption for Fig. 1
Considered here are the intrins
states for six particles.
7-5
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FIG. 4. See caption for Fig. 1
Considered here are the intrins
states for eight particles.
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the IS FK( j a ,Na) if the former corresponds to an SU~3!
representation@leq,0#, which contains the same set of ang
lar momenta as contained in the latter. The stateFK@leq,0#
contains angular momentaJ850,2,4, . . . ,Jmax8 , whereJmax8
5leq. The stateFK( j a ,Na) contains angular momentaJ
50,2,4, . . . ,Jmax. These twoIS’s will be equivalent ifleq
5Jmax.

With this definition, theleq values are 8, 10, 12, and 14

respectively, for the (92 )2, ( 11
2 )2, ( 13

2 )2, and (15
2 )2 IS’s. The

P1(@leq,0#;J) distributions are calculated using Eq.~3! and
plotted as dashed lines in Fig. 1. As one might expect, th
is little resemblance between theP1(@leq,0#;J) and
P1@( j a,2);J# distributions.

For each of the four-particleIS’s, we show in Fig. 2 the
equivalent SU~3! probabilitiesP1(@leq,0#;J). For example,

theleq5Jmax values are 12 and 24, respectively, for the (9
2 )4

and (15
2 )4 IS’s. Compared to the case of two particles, the

is now considerable similarity between theP1@( j a,4);J# and
equivalent SU~3! distributions.

For six and eight particles~see Figs. 3 and 4!, the distri-
butionsP1@( j a ,Na);J# are similar to but narrower than th
equivalent SU~3! distributions P1(@leq,0#;J). In other
words, theFK( j a ,Na) IS’s have a smaller probability o
containing higher angular momentum states~that is, smaller
quadrupole collectivity! than the corresponding equivale
SU~3! IS’s.

D. Average SU„3… representations

In Ref. @4#, we considered theaverageSU~3! representa-
tion @lave,0# and determinedlave by requiring that the aver
age value ofĴ2,

^Ĵ2&5(
J

J~J11!uCJ0u2, ~12!
03431
re

obtained for the SU~3! representation@lave,0# is as close as
possible to the average value obtained forFK( j a ,Na). The
values oflave obtained in this way are compared in Table
with the equivalent valuesleq5Jmax. In Figs. 1–4, we com-
pare the distributionsP1(@lave,0#;J) with P1@( j a ,Na);J# for
the variousIS’s. For two particles, thelave values are sig-
nificantly larger than theleq values. Moreover, for these
cases, the resemblance~see Fig. 1! of the distributions
P1(@lave,0#;J) to the corresponding distribution
P1@( j a,2);J# is no better than that ofP1(@leq,0#;J). How-
ever, for all otherIS’s with Na.2 ~see Figs. 2–4!, there is a
remarkable similarity between theP1(@lave,0#;J) and
P1@( j a ,n);J# distributions, thus implying similarity in col-
lectivity also.

Referring to Table III, forNa54, thelavevalue is smaller

than theleq value in the case of the (9
2 )4 state, equal for the

( 11
2 )4 state, and larger for the (13

2 )4 and (15
2 )4 states. For

Na.4, the lave values are uniformly smaller than theleq
values. In other words, whenNa.4, the collectivity of the
FK( j a ,Na) IS ~as implied by thelave value! relative to that
of the equivalent SU~3! state decreases with increasingNa .

E. Overlaps of theFK„ j a ,Na… and SU„3… intrinsic states

Similar to Eq.~4!, the SU~3! IS may be expanded as

FK@l,0#5(
J

CJK@l,0#uJK&l . ~13!

Although there is no connection between the statesuJK&l

and uJK&a , for this current discussion, we define the ‘‘ove
lap’’ r of these two states as

r5^FK@l,0#uFK~ j a ,Na!&5(
J

CJK* ~ j a ,Na!CJK@l,0#. ~14!
7-6
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TABLE II. Probability P1@( j a ,Na);J#5uCJK( j a ,Na)u2 of finding J in FK( j a ,Na).
034317-7
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If this overlap is large, we may regard the angular mom
tum structure of theFK( j a ,Na) IS to be similar to that of
the SU~3! IS. The numerical values of these overlaps a
listed in Table IV. The total numberNJ of differentJ values
~the number of components! contained inFK( j a ,Na) is also
listed in the table. For a givenFK( j a ,Na) IS, the overlap
with the average SU~3! IS is larger than with the equivalen
one. Except for theIS’s of two particles, therave values are
.0.98.

Finally, we obtain an objective measure of how ‘‘good
these overlaps are. Such a measure is given by the prob
ity P(N,r) of randomly finding anN componentIS having
an overlap withFK( j a ,Na) greater thanr. This probability
has been derived as@11#

P~N,r!'A N

2pEr

1

e2(1/2)Nx2
dx. ~15!

In Table IV, these probabilities are listed in columns labe
by Peq and Pave for the overlaps obtained with the SU~3!
IS’s of representations@leq,0# and @lave,0#, respectively.
The probabilities are appreciably smaller for the represe
tion @lave,0#. This result means that the distributions ofJ in

TABLE III. Equivalent and average SU~3! representations
@leq,0# and @lave,0# associated with theIS’s of 2, 4, 6, and 8
particles in thea states. The quantitiesleq andlave are defined in

Secs. II C and II D, respectively. The symbols^Ĵ2&N and^Ĵ2&S refer
to the average values@see Eq.~12!# calculated for theFK( j a ,Na)
and SU~3! @lave,0#IS’s, respectively.
03431
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the FK( j a ,Na) and SU~3! FK@lave,0# are very similar. It is
this surprising similarity which was noted in an earlier pap
@4#.

We recall that for two particles the SU~3! distributions
P1(@leq,0#;J) andP1(@lave,0#;J) looked very different from
the distributionsP1@( j a,2);J# ~see Fig. 1!. On the other
hand, the corresponding probabilitiesPeq and Pave are
;1023 ~see Table IV!. Therefore, we have arbitrarily de
fined the overlapsr as poor if P;1023 and asgood if P
!1023. According to this criterion, the overlaps of th
FK( j a ,Na) IS’s for 4, 6, and 8 particles in the11

2 , 13
2 , and

15
2 a states with the appropriate SU~3! IS’s are very good
indeed~see Table IV!.

F. Quadrupole moments of the intrinsic states

The mass quadrupole momentQ0 provides another mea
sure of the collectivity of anIS—a larger value ofQ0 im-
plies more collectivity. In a particular model, the quadrupo
moment is usually made up of two parts:~i! a calculated
quantity, which depends on the specific structure of
modelIS and~ii ! its unit, which is determined by the size o
the wave functions used in the calculations. In this secti
we want to compare theQ0( j a ,Na) value of the
IS FK( j a ,Na) with the Q0@leq,0# value of the equivalent
SU~3! IS FK@leq,0#.

The maximumJ contained in anIS is also an indicator of
its collectivity. There should therefore be a relation betwe
Q0 and Jmax. If the IS belongs to a harmonic-oscillato
SU~3! representation@l,0#, Q0 is given byQ052l in units
of the harmonic oscillator size parameter, which we labe
a2(l). The value ofJmax contained in the representatio
@l,0# is Jmax5l. Hence, in this case,Q0@l,0#52Jmax in
units of a2(l). The factor 2Jmax is characteristic of the
SU~3! structure of theIS, and the unita2(l) reflects the
geometric size of the underlying single-particle oscilla
wave functions.~We will establish this unit later.! We pose
the following question: Is there a simple relationship b
tweenQ0( j a ,Na) andJmax in theIS FK( j a ,Na) case also?

1. Comparison of Q0(ja ,Na) and Q0[leq,0] values

The Q0( j a ,Na) value of anIS,

Q0~ j a ,Na!5(
ki

qkai
~ j a!, ~16!

is the sum of the single-particle mass quadrupole mome

qkai
~ j a![^ j akaiuA~16p/5!r 2Y0

2u j akai& ~17!

of the Na states u j akai&( i 51,2, . . . ,Na) occupied in
FK( j a ,Na). For any stateu j aka&, Eq. ~17! can be rewritten
using Eq.~1A-60! of Ref. @20# as

qka
~ j a!5A~16p/5!~ j a2ka0u j aka!^ j air 2i j a&

^ j aiY2i j a&

A2 j a11
.

~18!
7-8
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TABLE IV. Overlap r @see Eq.~14!# of the FK( j a ,Na) and SU~3! IS’s and the probabilityP @see Eq.
~15!# of randomly finding an SU~3! IS having an overlap greater thanr with FK( j a ,Na).
es

s
n

r
tie

r-

c-
an
ers.

is
The a states withj a5 9
2 , 11

2 , 13
2 , and 15

2 belong to theN54,
5, 6, and 7 harmonic oscillator shells, respectively. For th
states,j a5N1 1

2 . The reduced matrix elements^ j air 2i j a&
@in units of the oscillator size parametera2( j a)] and
^ j aiY2i j a& are given by@22,23#

^ j air 2i j a&5N1
3

2
5 j a11 ~19!

and

^ j aiY2i j a&5F5~2 j a11!

4p G1/2S j a2
1

2
0U j a

1

2D . ~20!

With these reduced matrix elements, the resulting value
qk( j a) are listed in Table V. To calculate the total mome
Q0( j a ,Na) of a prolateIS FK( j a ,Na), we recall that theNa
particles occupy sequentially the intruder orbitsu j aka& with
ka56 1

2 ,6 3
2 , . . . ,6 j a . The Q0( j a ,Na) values obtained by

adding the individualqk values are listed in Table VI fo
Na52, 4, 6, and 8 particles. Once again, the listed quanti
depend on the specific structure ofFK( j a ,Na) and the units
a2( j a) on the sizes of the oscillator wave functions.

We also list, in Table VI, theQ0@leq,0# values for the
equivalent SU~3! IS FK@leq,0#. Recall that thisIS was de-
fined to have the same set ofJ values as theISFK( j a ,Na).
Hence, bothIS’s have the sameJmax. We now wish to com-
03431
e

of
t

s

pare theirQ0 values. A quantitative measure of the diffe
ence in the quadrupole collectivity ofFK( j a ,Na) and
FK@leq,0#, arising from the essential difference in the stru
tures of theseIS’s independent of their geometric sizes, c
be obtained by equating the two oscillator size paramet
With a2( j a)5a2(leq), the Q0 values listed in columns 3
and 4 of Table VI can now be directly compared. From th
comparison, we conclude that theIS FK( j a ,Na) is less col-
lective than the equivalent SU~3! IS FK@leq,0# by a factor
of 2 to 3 ~see last column of Table VI!. This result gives a

TABLE V. Single-particle mass quadrupole momentsqka
( j a)

@see Eq.~18!# of the statesu j aka& in units of a2( j a)5\/Mv
50.0101A1/3 b.
7-9
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quantitative measure to the qualitative conclusion arrived
in Sec. II D from a comparison of theP1 distributions.

2. Variation of Q0(ja ,Na) with Jmax

For Na particles in the stateu j a&, the maximumJ con-
tained in theIS FK( j a ,Na) is given by Eq.~8!. The same
Jmax is obtained for Na particles and forNa holes @or
(2 j a112Na) particles#. For prolateIS’s, the variation of
Q0( j a ,Na) with Jmax is shown in Fig. 5~a! for j a5 9

2 , 11
2 , 13

2 ,
and 15

2 . While Q0( j a ,Na) does increase withJmax, the rela-
tion between the two quantities is not strictly linear as it
for the corresponding quantities in the equivalent SU~3!
model. Instead, we have four nested loops in
IS FK( j a ,Na) case.@The loop becomes a straight line in th

TABLE VI. Total mass quadrupole momentsQ0 ~see Sec. II F
1! of the prolateIS’s of the numberNa of particles in thea states
with the listed j a values. The ratios of the quadrupole momen
given in the last column are in units ofa2(l)/a2( j a).
03431
at

e

FIG. 5. Mass quadrupole momentsQ0 ~in appropriatea2 units!
as a function ofJmax for different IS’s. See related discussion i
Secs. II F and III.~a! The four loops correspond toFK( j a ,Na) for
four different values ofj a and the dashed curve to the SU~3! IS
~see Sec. II F 2!. ~b! The three loops correspond toFK( j ,N) for
three different values ofj ~see Sec. III!. ~c! The Q0 values at
midshell for the 50–82, 82–126, and 126–184 major shells~MS!
are compared with theQ0 values at midshell for thej
5

31
2 , 43

2 , 57
2 ~single-j ) shells~see Sec. III!.
7-10
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TABLE VII. Single-j simulation of the intrinsic mass quadrupole moment in three major shells.
listed quantities are explained in Sec. III.
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SU~3! case becauseJmax(5l) has the same value forIS’s
with a particular number of particles and the same numbe
holes andQ052l52Jmax.]

In the FK( j a ,Na) case, for a givenJmax, there are two
values ofQ0. The smaller valueQ0 particle

Na corresponds toNa

particles, and the larger valueQ0 hole
Na corresponds toNa

holes. We find that for eachj a , the average of these tw
values

^Q0 ph
Na &5

Q0 particle
Na 1Q0 hole

Na

2
~21!

varies linearly withJmax. We can write

^Q0 ph
Na &5b~ j a!Jmax. ~22!

The coefficientb( j a) is independent ofNa , and its value can
be determined easily from the value of^Q0 ph

Na & for Na52
particles. In a two-particle prolateIS, the particles occupy
the k56 1

2 orbits with a total quadrupole momentQ0 particle
Na52

52q1/2( j a). In a two-holeIS, the holes occupy thek5 j a

orbits with a total momentQ0 hole
Na52

522qj a
( j a). The average

of these two moments is then given by

^Q0ph
Na52

&5q1/2~ j a!2qj a
~ j a!. ~23!

Using Eqs.~18!–~20!, we obtain

q1/2~ j a!52S j a2
1

2
0U j a

1

2D 2

~ j a11! ~24!

and

qj a
~ j a!52S j a2

1

2D . ~25!

The algebraic expression for the Clebsch-Gordan coeffici

( j a2 1
2 0u j a

1
2 ) given in Table 3 of Ref.@24# can be used to

write
03431
of

ts

q1/2~ j a!5

2F3

4
2 j a~ j a11!G2

j a~2 j a13!~2 j a21!
. ~26!

For two particles, the slopeb( j a) is obtained fromb( j a)
5^Q0 ph

Na52
&/Jmax, whereJmax52 j a21. It follows that

b~ j a!5
@4 j a~ j a11!23#2

8 j a~2 j a13!~2 j a21!2
1

1

2
. ~27!

The functionb( j a) varies slowly withj a , and the numerical
values ofb( j a) range from 1 forj a5 3

2 to 0.75 for j a→`.
For the 0g9/2, 0h11/2, 0i 13/2, and 0j 15/2 states, Eq.~27! gives
b( j a)5 5

6 , 9
11 , 21

26 , and 4
5 , respectively. These values a

all close to 0.8. Consequently, we find that the^Q0 ph& val-
ues for theFK( j a ,Na) IS’s of the above fouru j a& states are
related to a very good approximation to theJmax values by

^Q0 ph&'baveJmax. Here,bave5 1
16 @3b( 9

2 )14b( 11
2 )14b( 13

2 )

15b( 15
2 )# is the average of theb( j a) values weighted by the

number of different even values ofNa for each j a . For ex-
ample, for the 0h11/2 state, there are four values ofNa(Na
50, 2, 4, and 6!. Therefore, while calculatingbave, the value

of b( 11
2 ) is weighted by a factor of 4. Similarly the weight

for the 0g9/2, 0i 13/2, and 0j 15/2 states are 3, 4, and 5, respe
tively. With these weights and the numerical values
b( j a), we findbave5 3719

457650.813 as the average slope of th
^Q0ph& values vsJmax for the j a5 9

2 , 11
2 , 13

2 , and 15
2 states.

This line is also shown in Fig. 5~a!. By comparing this line
with the Q0@l,0#52Jmax line, we conclude that for a given
value of Jmax ~of the IS), the mass quadrupole mome
Q0( j a ,Na) is smaller than the equivalent SU~3! value by a
factor of about 2.5. Conversely, for a given value
Q0( j a ,Na), the IS of N particles in stateu j a& has aJmax
value, which is about 2.5 times larger than that of a simila
deformed SU~3! IS.

III. SINGLE- j SIMULATION OF MAJOR SHELLS

Different aspects of the quadrupole collectivity of hea
nuclei have been studied by Otsuka, Arima, and Iachello@25#
7-11
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K. H. BHATT, S. KAHANE, AND S. RAMAN PHYSICAL REVIEW C 61 034317
and by Bohr and Mottelson@26# in terms of collective states
of nucleons inj N configurations with largej values~Otsuka
et al. used j 5 23

2 and 29
2 ). In a similar spirit, we wish to

simulate the quadrupole momentsQ0(MS,N) of N identical
valence particles in theIS’s of the 50–82, 82–126, an
126–184 major shells~MS’s! by the quadrupole moment
Q0( j ,N) of the same number of particles in theIS’s of
single-j shells with j 5 31

2 , 43
2 , and 57

2 , respectively, having
degeneracies equal to those of the corresponding m
shells. Our aim here is to compare the quadrupole collec
ties for correspondingIS’s given by these two models.

One aspect of the quadrupole collectivity of anIS can be
quantitatively specified by the ratioQ0(model)/Jmax. We
wish to emphasize again that the quadrupole momentQ0 is
made up of two parts: a quantity that depends on the st
ture of theIS and a unit that depends on the size of the wa
functions used in the calculations. If a harmonic oscillato
used to generate the wave functions, the unit is the oscill
size parametera defined bya25\/Mv, where v is the
oscillator frequency.

As an illustration of the single-j simulation, we consid-
ered theIS’s for the half-filled major shells. TheQ0(MS,N)
values close to the midshell were obtained as follows:
used Table VIII of Ref.@3# to obtain the numbersNn andNa
of particles occupying then and a states whenN516, 22,
and 30 particles are in the 50–82, 82–126, and 126–
shells, respectively. For theseN values and shells, the sam
table lists the appropriate SU~3! representations@l,m# which
yield the Jn max (5l1m) and Q0n values. We then used
Eq. ~8! and Table VI of this paper to obtain theJa max and
Q0a values forNa particles in the stateu j a& appropriate for
each major shell. With this information, we obtainedJmax
5Jn max1Ja max and Q05Q0n1Q0a . TheseQ0 and Jmax
values are given in Table VII. For the 50–82 major shell,
quantityQ0(MS,N) is 39, and the unit isa2(MS). The har-
monic oscillator frequencyv is customarily adjusted to re
produce the observed nuclear mean-square radius; tha
\v'40A21/3 MeV. Using Mc25939 MeV, we obtain
a2(MS)50.0101A1/3 b. The average midshell value o
Q0(MS)/Jmax for the three major shells considered here
1.35.

We now return to the simulation of the quadrupole m
ments in the 50–82, 82–126, and 126–184 major shells
those in thej 5 31

2 , 43
2 , and 57

2 shells, respectively. We con
sider these threej shells to be the highestj subshells in the
harmonic oscillator shells with principle quantum numbe
N515, 21, and 28, respectively, and withj 5N1 1

2 . We can
therefore use Eqs.~16!–~18! to obtain theQ0( j ,N) values
for the different prolateIS’s of the j N configurations. These
values are calculated in units of oscillator size parame
labeled asa2( j ) to distinguish this parameter froma2( j a)
anda2(leq), used in Sec. II F, and froma2(MS), used in the
previous paragraph. For thej 5 31

2 shell, the modelQ0 value
is 102a2( j ) ~see Table VII! for N516. For eachIS, theJmax
value is given by Eq.~8!. In Fig. 5~b!, we have plotted the
nested loops ofQ0( j ,N) vs Jmax for the threej cases. The
particle-hole averaged values of these quadrupole mom
fall on a straight line given bŷQ0 ph

j ,N &50.765Jmax. In Table
03431
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VII we have listed theQ0( j ,N) andJmax values forN516,
22, and 30 particles in thej 5 31

2 , 43
2 , and 57

2 shells, respec-
tively.

A successful simulation requires that the quadrupole m
ments given by the two models~single-j and MS! are similar
for all numbersN of valence particles. To achieve this sim
larity, we know from previous work@1# that it is sufficient to
normalize the quadrupole moments for anN value close to
midshell. The remainingQ0 values will then track well.
Therefore, we want to setQ0( j ,N) equal toQ0(MS,N) for
N516, 22, and 30. Referring to Table VII,Q0( j 5 31

2 ,N
516)5102a2( j ), and Q0(MS,N516)539a2(MS). The
former value can be made equal to the latter by choos
a2( j )5 39

102a2(MS). In other words, the size of the harmon
oscillator wave functions used in the single-j simulation
needs to be adjusted accordingly. The normalization fac
are slightly different for the three different single-j shells
considered here; the average normalization isa2( j )
'0.35a2(MS). The normalizedQ0(norm) values are given
in column 6 of Table VII. This normalization, however, wi
in no way affect either the numerical quantities inQ0 or the
Jmax values for differentj shells.

We madeQ0 of FK( j ,N) equal to Q0 of FK(MS,N).
However, theJmax in FK( j ,N) is different from theJmax in
FK(MS,N). Hence, the collectivities ofFK( j ,N) and
FK(MS,N) will also be different. This situation should b
contrasted with Sec. II F, in which we compared the colle
tivities of FK( j a ,Na) and FK@leq,0#. In that case, theJmax
values for bothIS’s were equal, but theQ0 values were
different.

The values ofQ0(norm)/Jmax for the j N and major-shell
IS’s are given in the last column of Table VII. The latte
ratio is, on average, five times larger than the former. T
result implies that in thej N simulation, the quadrupole col
lectivity of the simulated major shell is underestimated by
factor of ;5. These differences in the collectivities of th
two IS’s are illustrated by theQ0(norm) vs Jmax trends,
which are shown in Fig. 5~c!.

IV. PERTURBATIONS OF THE INTRINSIC STATE

The study of the properties of theIS FK( j a ,Na) and of
the states with definite angular momenta projected from
would be useful only if the perturbations of thisIS by the
pairing interaction and by the 0\v-mixing component of the
mean field are not very large. In this section, we examine
effects of these perturbations.

A. Effect of the pairing interaction

The pairing interaction within a major shell can modi
FK( j a ,Na) @see Eqs.~9!–~11!# by scattering a pair of par
ticles from an occupied single-particlea stateu j a ,6ka& to
other unoccupieda statesu j a ,6ka8& or n statesu j n ,6kn8&. We
consider here scattering only among thea states. The modi-
fication ofFK( j a ,Na) produced by the pairing interaction o
strengthG in a mean field of deformationb gives rise to the
7-12
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correlatedIS F K
c ( j a ,Na ;b,G). In the following, we shall

also refer to the uncorrelated and correlatedIS’s asFK and
F K

c , respectively.
We calculate three quantities to illustrate the effect

pairing onFK .
~i! The first quantity is

P~DF!512u^F K
c ~ j a ,Na ;b,G!uFK~ j a ,Na!&u2, ~28!

whereP(DF) is the probability ofchangein theFK induced
by the pairing interaction. If the effect of pairing is large,F K

c

will be very different fromFK , andP(DF) will be large.
~ii ! In the absence of deformation (b50), the lowest-

energy state of thej a
Na configuration generated by the pairin

interaction is the completely correlated stateu j a
Na ;y50& with

seniority y50 ~and, hence,J50) for any nonzero value o
the pairing strengthG. In the absence of pairing (G50), the
uncorrelatedIS FK has some probability

P~y50!5u^ j a
Na ;y50uFK~ j a ,Na!&u2 ~29!

of containing the stateu j a
Na ;y50&. When pairing is presen

(G.0), the correlatedIS F K
c has the probability

Pc~y50!5u^ j a
Na ;y50uF K

c ~ j a ,Na ;b,G!&u2 ~30!

of containing they50 state. One expectsPc(y50) to be
greater thanP(y50). As a second measure of the influen
of the pairing interaction onFK , we calculate the increase

DP~y50!5Pc~y50!2P~y50! ~31!

in the probability of they50 state inF K
c compared with that

in FK . The DP(y50) value will depend on the values o
both b andG.

~iii ! In view of the tendency of the pairing interaction
make the nucleus spherical, the quadrupole moment ofF K

c ,

Qc5^F K
c ~ j a ,Na ;b,G!uQ0

2uF K
c ~ j a ,Na ;b,G!&, ~32!

is expected to be smaller than the quadrupole momen
FK ,

Q5^FK~ j a ,Na!uQ0
2uFK~ j a ,Na!&. ~33!

The difference

DQ5Qc2Q ~34!

is taken as the third measure of the influence of pairing
FK . Note thatQc tends to zero forb.0 if G becomes large
andQc50 at b50 for anyG.0.

We now describe how the quantitiesP(DF), DP(y50),
and DQ are calculated for the stateFK with two values of

j a ( 11
2 and 13

2 ) and three values ofNa ~2, 4, and 6 particles!.
The Hamiltonian forNa particles in a mean field with defor
mationb can be written as

H~b,G!5h~b!1Hpair~G!. ~35!
03431
f

of

n

Here,

h~b!5(
i 51

Na

hi~b! ~36!

is the one-body Hamiltonian characterizing the mean fie
The intruder single-particle statesu j a ,k& are the eigenstate
of h(b) in the space ofone major shell, with eigenvalues
e( j a ,k;b). Thus

h~b!u j a ,k&5e~ j a ,k;b!u j a ,k&. ~37!

We calculated the eigenvalues for theu 11
2 ,k& and u 13

2 ,k&
states at bothb50.21 and 0.32, withh(b) taken to be the
Nilsson Hamiltonian. The Hamiltonian parameters@27# are
\v057.55 MeV, k50.05, and m50.63, respectively,
which are all appropriate for the rare-earth region. T
single-particle eigenvaluese( j a ,k;b) are listed in Table
VIII. The prolateIS FK is obtained by sequentially occupy
ing the statesu j a ,6k& with k5 1

2 , 3
2 , 5

2 , etc.
The pairing HamiltonianHpair(G) of Eq. ~35! is specified

by the two-body matrix elements

^ j ak8; j a2k8uHpairu j ak; j a2k&52G. ~38!

The usual value of the pairing strengthG is 0.12 MeV for
rare-earth nuclei@14#.

The threeIS’s ~a! FK( j a ,Na), ~b! u j a
Na ;y50&, and ~c!

F K
c ( j a ,Na ;b,G) are, respectively, the lowest-energy eige

states ofH(b,G) with the presence of~a! no pairing~that is,
G50), ~b! no deformation (b50), and~c! both pairing and
deformation (GÞ0,bÞ0).

The stateF K
c is obtained by diagonalizingH(b,G) in the

space of the basis states consisting of a complete set o
terminantal eigenstatesFa( j a ,Na) of h(b) with eigenvalues
E(a,b; j a ,Na). These states can be coupled by the pair
interaction. The structure of the basis statesFa( j a ,Na) is
described below.

~i! For Na52 particles, the basis states are

Fa~ j a ,Na52!5u j a ;ka ,2kau ~39!

TABLE VIII. Single-particle eigenvaluese( j a ,ka ;b) ~in MeV
relative to the energy of theka5

1
2 state! obtained from the Nilsson-

model calculations@see Eq.~37!#.
7-13
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TABLE IX. Expansion coefficientsAa(b,G) andBa @see Eqs.~49! and~50!# for the statesF K
c ( j a ,Na), F K

c ( j a ,Na), andF K
cc( j a ,Na)

for Na52 and j a5
11
2 and 13

2 . For bÞ0, G50.12 MeV and forb50, the coefficientsBa are independent of the values ofG.
e

ss

to
to

are
s

ng
with unperturbed eigenvalues

E~a,b; j a ,Na52!52e~ j a ,ka ;b!. ~40!

The indexa50,1,2, . . . j a2 1
2 and ka5a1 1

2 . The number
of such basis states areN a56 and 7 for the (0h11/2)

2 and
(0i 13/2)

2 states, respectively.
~ii ! For Na54 particles, we need two labelsa1 anda2 to

specify the four-particle determinants

Fa~ j a ,Na54![Fa1 ,a2
~ j a ,Na54!

5u j a ;ka1
,2ka1

;ka2
,2ka2

u, ~41!

where ki5a i1
1
2 , a i50,1,2, . . . ,j a2 1

2 , and a2.a1. The
unperturbed eigenvalues are

E~a1 ,a2 ,b; j a ,Na54!52@e~ j a ,ka1
;b!1e~ j a ,ka2

;b!#.
~42!

The number of such basis states areN a515 and 21 for the
(0h11/2)

4 and (0i 13/2)
4 states, respectively.

~iii ! For Na56 particles, three labelsa1 , a2, anda3 are
required to specify the basis states

Fa~ j a ,Na56![Fa1 ,a2 ,a3
~ j a ,Na56!

5u j a ;ka1
,2ka1

;ka2
,2ka2

;ka3
,2ka3

u. ~43!

In this case,a i50,1,2, . . . , j a2 1
2 for i 51,2,3 anda3.a2

.a1. The unperturbed eigenvalues are

E~a1 ,a2 ,a3 ,b; j a ,Na56!

52@e~ j a ,ka1
;b!1e~ j a ,ka2

;b!1e~ j a ,ka3
;b!#.

~44!

For the (0h11/2)
6 and (0i 13/2)

6 states,N a520 and 25, re-
spectively.
03431
For all the basis statesFa( j a ,Na), the lowest state
Fa50( j a ,Na) is the stateFK . With these basis states, th
Hamiltonian matrices

Ha8,a~b,G!5^Fa8~ j a ,Na!uH~b,G!uFa~ j a ,Na!&
~45!

are given by
~i! For Na52 particles,

Ha8,a~b,G!5E~a,b; j a ,Na52!da8a2G. ~46!

~ii ! For Na54 particles,

Ha8,a~b,G!5E~a1 ,a2 ,b; j a ,Na54!da
18a1

da
28a2

2@da
18a1

1da
28a2

#G. ~47!

~iii ! For Na56 particles,

Ha8,a~b,G!5E~a1 ,a2 ,a3 ,b; j a ,Na56!

3da
18a1

da
28a2

da
38a3

1^Fa
18 ,a

28 ,a
38
uHpairuFa1 ,a2 ,a3

&. ~48!

In the Na56 case, the pairing matrix element is zero unle
at least two of thea8 labels are equal to two of thea labels.
The nonzero, off-diagonal matrix elements are all equal
2G, and the diagonal pairing matrix elements are equal
23G.

We diagonalized the matricesHa8,a(b,G) of Eqs.~46!–
~48! and determined the lowest-energy eigenstates, which
the statesF K

c ( j a ,Na ;b,G) obtained as linear combination
of the basis statesFa . Thus

F K
c ~ j a ,Na ;b,G!5(

a
Aa~b,G!Fa~ j a ,Na!. ~49!

To illustrate the calculation, we consider the effect of pairi
on theIS FK of two particles withj a5 11

2 and 13
2 . The ex-
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TABLE X. Calculated values of three quantities,P(DF) @Eq. ~51!#, DP(y50) @Eq. ~54!#, and DQ
5Qc2Q @Eqs.~55! and ~56c!# that illustrate the effect of pairing on theIS FK .
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pansion coefficients forFK are listed in columns 3 and 7 o
Table IX. These coefficients are independent ofb. The co-
efficientsAa(b,G) for the correlatedIS F K

c , obtained with
the normal value ofG50.12 MeV for the pairing strength

are listed in columns 4 and 5 of Table IX for the (11
2 )2 state

and in columns 8 and 9 for the (13
2 )2 state#. For both cases

the coefficientsA0 are greater than 0.95, implying that the
correlated statesF K

c are very similar to the uncorrelate
statesFK . The change inFK produced by the pairing inter
action of normal strength is small.

We now define the completely correlatedIS F K
cc to be

the state produced by the Hamiltonian when the pairing
teraction dominates the effect of deformation as would h
pen under two circumstances:~i! b50, anyG.0, and~ii !
b.0, G→`. Under these conditions, the stateF K

cc is just
the seniorityy50 state of thej a

Na configuration. The struc-
ture of F K

cc is given by

F K
cc~ j a ,Na![u j a

Na ;y50&5(
a

BaFa~ j a ,Na!, ~50!

where the coefficients are all equal and given byBa

51/ANa. The values ofBa for the (11
2 )2 and (13

2 )2 states are
given in columns 6 and 10, respectively, of Table IX. No
that for a normal pairing strength,F K

cc is significantly differ-
ent fromF K

c even atb50.21.
With the aid of Eqs.~49! and ~50!, we can calculate the

probabilities P(DF), Pc(y50), and P(y50). They are
given by

P~DF!512uAa~b,G!u2, ~51!

Pc~y50!5U(
a

Aa~b,G!BaU2

5
1

Na U(a Aa~b,G!U2

,

~52!

and

P~y50!5uBau251/Na. ~53!

The increaseDP @see Eq.~31!# is given by

DP~y50!5
1

Na FU(
a

Aa~b,G!U2

21G . ~54!
03431
-
-

The numerical values@using the values ofAa(b,G) andBa
coefficients listed in Table IX# are given in Table X. The
results show the following:~i! Pairing interaction@see the
P(DF) column# changes theIS of a nucleons by less than
7% in well-deformed nuclei.~ii ! While the increase in the
y50 component@see theDP(y50) column# of theIS pro-
duced by the pairing interaction is about 15% atb50.21 for

the (11
2 )2 state, it reduces to only 3% for the (13

2 )6 state. The
smallness of these changes casts doubt on the validity o
simplifying assumption made in the pseudo-SU~3!
@12,28,29# and fermion dynamic symmetry@17# models that
the pairing interaction causes thea nucleons in spherical a
well as deformed nuclei to couple to a seniority-zero sta
Our calculations indicate that a pairing strength that is
least ten times stronger than the normalG50.12 MeV is
required to change theIS at b.0.2 sufficiently such that its
overlap with they50 state is.0.95.

Finally, the quadrupole momentsQc andQ are given by

Qc52(
a

uAa~b,G!u2qka
~55!

and

Q52qk51/2 for Na52, ~56a!

Q52~qk51/21qk53/2! for Na54, ~56b!

Q52~qk51/21qk53/21qk55/2! for Na56. ~56c!

The values of the single-particle quadrupole momentsqk for
the 0h11/2 and 0i 13/2 states are listed in Table V. The value
of Q, Qc , andDQ5Qc2Q are listed in the last three col
umns of Table X. The change in the quadrupole momen
FK induced by the pairing interaction of normal strength
also negligibly small.

B. Effect of 0\v mixing

The quadrupole collective states of heavy nuclei are w
described in terms of shell models in which the nucleons
confined to single-particle statesc jk in a major shell~MS!.
The deformation of the nucleus mixes then spherical states
c j nkn

to produce the deformed single-particle statesfkn

an,

where an labels differentn states with the same value o
kn5^ j nz8 &. Thea orbitalsc j aka

are not mixed by the quadru
pole deformation with then orbitals of a given major shel
because they have opposite parities. Hence, in this des
7-15
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TABLE XI. The probabilitiesPk
a(d) @see Eq.~61!# that a major shell abnormal-parity deformed orbitfk

a(MS,d) is not modified by 0\v
mixing caused by deformation. Only probabilities less than 0.90 are listed. The Nilsson Hamiltonian parameters used in these ca
arem50.630 for the 50–82 major shell andm50.448 for the 82–126 major shell. The parameterx is kept at a value of 0.05 throughou
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tion of the deformed nucleus, the deformeda statesfka

aa are

the unmixed statesfka

aa[c j aka
.

The quadrupole deformation can, to a first approximati
affect the structure of the deformed orbitals of a major sh
in the following two ways by a process known as 0\v mix-
ing. ~i! It can modify then orbitals by mixing them with the
a state belonging to the lower major shell. Such ana state
belongs to the same harmonic oscillator shell~OS! as then
states of the major shell under consideration.~ii ! It can also
modify thea orbitals of a major shell by mixing them with
then orbitals belonging to the next higher major shell. In th
section, we make a quantitative estimate of the modifica
of the a orbits within a major shell produced by the latt
mixing. This estimate is obtained by comparing the orbit
fk

a(MS,d) at a deformationd obtained within a single majo
shell space with the corresponding orbitalsfk

a(OS,d) ob-
tained within the space of a single harmonic-oscillator sh
N. The latter orbitals contain the modification to th
fk

a(MS) orbitals resulting from the 0\v mixing induced by
the deformation.

The orbitalsfk
a(MS,d) are obtained by diagonalizing th

Nilsson Hamiltonian

HNilsson5\v0F1

2
~2¹21r2!2

4

3
Ap

5
dr2Y20~u,f!

22k l̄ • s̄2mk l̄ • l̄ G ~57!

in the space of the single-particle states of a major shell
different values of the deformation parameterd. The
strengthsk and m for the spin-orbit andl 2 interactions are
taken from Ref. @27# for different shells. The orbitals
fk

a(MS,d) for the a states in the 50–82 major shell are ju
the statesc j a511/2,k belonging to the 0h11/2 intruder level,
03431
,
ll

n

s

ll

r

independent of the deformation. The orbitalsfk
a(OS,d) in

the N55 oscillator shell can be expressed as

fk
a~OS,d!5(

j
cjk~d!c jk , ~58!

where the sum is over all thej 50h11/2, 0h9/2, 1f 7/2, 1f 5/2,
2p3/2, and 2p1/2 states of theN55 shell allowed by the
value of k. The lowest-energy orbitalfk

a51(OS,d) of the
N55 shell is the intruder orbitc j a511/2,k of the 50–82 shell

as modified by the 0\v mixing. For example, the lowestk
5 1

2 orbital of theN55 shell obtained by diagonalizing Eq
~57! at a deformation ofd50.30 (b50.32) is

UOS:a51,k5
1

2
;d50.30L

50.874U0h11/2

1

2L 20.06U0h9/2

1

2L 20.445U1 f 7/2

1

2L
10.061U1 f 5/2

1

2L 10.165U2p3/2

1

2L 20.05U2p1/2

1

2L .

~59!

The square of the overlap of this state with t
u0h11/2,k5 1

2 & state of the major shell is obtained as

K 0h11/2,k5
1

2 UOS:a51,k5
1

2
;d50.30L 2

50.76. ~60!

This value gives the probability that theu0h11/2,k5 1
2 & in-

truder level of the major shell remains unmodified by 0\v
mixing. In Table XI, we have listed the probabilities

Pk
a~d!5u^ j akuOS:a51,k,d&u2 ~61!
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TABLE XII. Changes in the quadrupole momentsqk
a(MS) @see Eq.~62!# of the deformed abnormal-parity orbitsfk

a(MS) as a result of
0\v mixing. Theqk

a values are in units ofa2. The Nilsson Hamiltonian parameters used in these calculations arem50.630 for the 50–82
major shell andm50.448 for the 82–126 major shell. The parameterx is kept at a value of 0.05 throughout.
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that the intruder statesu j ak& of protons and neutrons with
j a5 11

2 and 13
2 remain unchanged by 0\v mixing. The re-

sults show that the modification of the intruder orbits d
creases with increasingk and increases with deformation. A
b50.32, thek5 1

2 proton intruder orbits change by abo
25%, while the neutronk5 1

2 orbits change by 35%.
We next consider the change in the value of the quad

pole momentqk(MS)5^ j akuq0
2u j ak& of an intruder orbit

caused by 0\v mixing. The modified quadrupole moment
given by

qk
a~OS,d!5^fk

a51~OS,d!uq0
2ufk

a51~OS,d!&,

5(
j 8 j

cj 8k
a51

~d!cjk
a51~d!^ j 8kuq0

2u jk&,

~62!

where q0
25A(16p/5)r 2Y0

2. The values of qk(MS) and
qk(OS) and the changeDqk5qk(OS)2qk(MS) resulting
from 0\v mixing are listed in Table XII. These results sho
that this mixing almost doubles the quadrupole moments
the orbitsu j ak& with k5 1

2 , 3
2 , and 5

2 . This conclusion is con-
sistent with the suggestion made by Ahalpara, Abzouzi,
Bhatt @30# ~in a projected Hartree-Fock study of deform
nuclei in the Ge-Sr region within the space of t
f 5/2p1/2p3/2;g9/2 single-particle states! that the quadrupole
momentsqk of the k5 1

2 , 3
2 , and 5

2 orbits of the 0g9/2 state
should be renormalized to twice their single-shell values a
result of 0\v mixing.

Compared to this large increase in the quadrupole m
ments of the occupieda orbits, the quadrupole moments o
03431
-

-

f

d

a

-

the occupiedn orbits of a major shell are reduced as a res
of 0\v mixing with the a orbits of the lower major shell.
This reduction is by a smaller amount, but the number
valence particles in then orbits is larger than the number i
the a orbits. The net result is that the total quadrupole m
ment of the valence nucleons in a major shell does
change very much as a result of this 0\v mixing process.

In this work, we will ignore the influences of pairing an
0\v mixing and assume that the collectivity of a particul
nucleus is described to a good approximation by the asy
totically deformedIS of its valence particles in a majo
shell.

V. COLLECTIVITY OF THE PROJECTED STATES
OF ABNORMAL-PARITY NUCLEONS

Our main interest in this section is to examine the qu
rupole collective properties of the band of stat
uproj:( j a ,Na);J& projected from theIS’s FK( j a ,Na). We
compare the collectivity of such a band with~i! the collec-
tivity of the band of statesurot;J& belonging to a rigid rotor
with an intrinsic quadrupole moment equal to the intrins
quadrupole momentQ0( j a ,Na) of FK( j a ,Na) and ~ii ! the
collectivity of the band of statesuSU3@leq,0#;J& belonging
to the equivalent SU~3! representation@leq,0#. We also com-
pare the collectivity of the projected states with that of t
yrast band of the same size having SO~6! symmetry. This
symmetry arises in the interacting boson@15,16# and fermion
dynamic symmetry@17# models.

The natural symmetry of identical nucleons in the co
figuration j a

Na is the symplectic Sp(2j a11) symmetry. The
7-17
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bandsu j a
Na ;J,y& of states with this symmetry are labeled b

the seniority numbery. In the pseudo-SU~3! @12,28,29# and
fermion dynamic symmetry@17# models, this symmetry is
imposed on thea nucleons. Therefore, we wish to compa
the quadrupole collectivity of the banduproj:( j a ,Na);J&
with those of the low-lying states of the sameJ value be-
longing to the seniority bandu j a

Na ;J,y&.

A. Measures of collectivity

Because they can be measured, three quantities,~i! re-
duced quadrupole transition probabilityB(E2:a iJi→a fJf),
~ii ! transition momentQt(J) of the stateuJ&, and~iii ! spec-
troscopic quadrupole momentQ(J) of the stateuJ&, are gen-
erally used to describe the quadrupole collectivity of a ro
tional band of statesuaJ&, where the labela denotes
properties of the band other thanJ. These quantities are als
related to the reduced matrix elements (a fJf iQia iJi) as fol-
lows:

B~E2:a iJi→a fJf !5
5

16p

~a fJf iQia iJi !
2

2Ji11
, ~63!

Qt~J!5F16p

5

B~E2:J→J22!

~J200uJ22 0!2 G 1/2

, ~64a!

5
1

~J200uJ22 0!

~J22uuQuuJ!

A2J11
~64b!

and

Q~J!5
~J2J0uJJ!

A2J11
~aJiQiaJ!. ~65!

In the rigid-rotor model, the reduced matrix elements@see
Eq. ~4-68a! of Ref. @20## are

~rot;J8uuQuurot;J!5A2J11~J200uJ80!Q̃0 , ~66!

where Q̃0 is the quadrupole moment of the rigidIS. ~The
value of Q̃0 is arbitrary.! When these reduced matrix ele
ments are substituted into Eqs.~63!, ~64!, and~65!, one has
@20#

B~E2:rot;Ji→Jf !5
5

16p
~Ji200uJf0!2Q̃0

2 , ~67!

Qt~rot;J!5Q̃0 , ~68!

and

Q~rot;J!52
J

2J13
Q̃0 . ~69!

In the SU~3! model, the reduced matrix elements can
evaluated by noting that the single-particle statesuNl & with
oscillator quantum numberN and angular momental
03431
-

e

5N,N22,N24, . . . ,1 or 0belong to an SU~3! represen-
tation @l5N,0#. With Ji5 l i andJf5 l f , the reduced matrix
elements are given by

^@l,0#;Jf iQi@l,0#;Ji&

5^l5Nl f iQil5Nl i&

5A~16p/5!^Nl f ir 2iNl i&^ l f iY2i l i&. ~70!

The formulas for evaluating the reduced matrix elements
r 2 and Y2 are listed in Ref.@31#. Once they are calculated
the quantitiesB(E2:SU3@l,0#;Ji→Jf), Qt(SU3@l,0#;J),
and Q(SU3@l,0#;J) can be obtained for the SU~3! band
u@l,0#;J& using Eqs.~63!, ~64!, and ~65!. It can be further
shown@9,32# that

B~E2:SU3@l,0#;J→J22!

B~E2:SU3@l,0#;2→0!

5
335

4l~l13!

2J~J21!~l2J12!~l1J11!

~2J21!~2J11!

~71!

and

Q~SU3@l,0#;J!

Q~SU3@l;0#,2!
52

7

2

J

2J13
5

Q~rot;J!

Q~rot;2!
~J<l!.

~72!

The remainder of this section is organized as follows.
Sec. V B, we summarize the calculation of the projected
duced matrix elements. In Sec. V C, we describe a con
tency check which tests the accuracy of these matrix
ments. This check also provides a criterion for comparing
quadrupole collectivity of the stateFK( j a ,Na) with that of
the equivalent SU~3! IS FK@leq,0#. In Sec. V D, we exam-
ine the variation of theB(E2:2→0) values with the intrinsic
quadrupole momentsQ0( j a ,Na). The trend of theB(E2:J
→J22)/B(E2:2→0) values as a function ofJ obtained for
the projected band is compared in Sec. V E with the cor
sponding trends for a rigid-rotor band and for bands belo
ing to selected SU~3! representations. In Secs. V F and V G
we display the variations of the transitions momentsQt(J)
and the spectroscopic quadrupole momentsQ(J), respec-
tively, with J for the projected states. In Sec. V H, we com
pare the projectedB(E2:J→J22) trend with the corre-
sponding trend obtained for an yrast band having SO~6!
symmetry. Finally, in Sec. V I, we present a comparison
the projectedB(E2) values with those obtained for the low
lying states with definite seniority.

B. Projected reduced matrix elements

In Sec. II B, the stateFK( j a ,Na) was expanded in term
of the projected statesu( j a ,Na);JK& @see Eq.~5!#. We want
to next calculate the reducedE2 matrix elements
@( j a ,Na);J8KiQi( j a ,Na);JK# between the projected state
J and J8. The reduced matrix elements are defined by
Wigner-Eckhart theorem in the form@20#
7-18



n

ts
th
by

th
W

nd
r

le
-

e

te
e

he
w

ole

are

XIII

cy
lcu-

COLLECTIVE PROPERTIES OF NUCLEONS IN THE . . . PHYSICAL REVIEW C 61 034317
~a8J8M 8uTm
l uaJM!5~JlMmuJ8M 8!

~a8J8iTliaJ!

A2J811
.

~73!

With this definition,

~a8J8iTliaJ!5~aJiTlia8J8!. ~74!

The procedure for calculating the reduced matrix eleme
for an arbitrary one-body operatorTm

l between statesuJ8K8&
anduJK& projected from general determinantalIS’s FK8 and
FK has been discussed by Gunye and Warke@33# and by
Hara and Sun@34#. ~In our case,FK85FK). We adopt their
general procedure to express the reduced matrix elemen
a sum of contributions from each of the nucleons in
IS FK( j a ,Na). The reduced matrix element is then given

@~ j a ,Na!;J8,KiQi~ j a ,Na!;JK#

5A~2J811!~2J11!

CJ8KCJK

3(
i 51

Na

(
m51

Na

(
I

~21! i 1m1 j i1J81I 12

3cj mVm
~K !cj iV i

~K !pK2Vm ,K2V i

I ~Na21!

3~ I , j m ;K2Vm ,VmuJ8K !~ I , j i ;K2V i ,V i uJK!

3H J j i I

j m J8 2J ~nml mj miqini l i j i !. ~75!

This equation is a modified version of Eq.~5! in Ref. @33#.
There are two modifications. The first is the factorA2J811,
which arises because of the difference in the definition of
reduced matrix elements in the Wigner-Eckart theorem.
use the definition given in Eq.~73!. The definition used by
Warke and Gunye@33# does not have this factor. The seco
modification is the factor 1/ACJ8KCJK which does not appea
in Eq. ~5! of Ref. @33#, but should be there.

In Eq. ~75!, the sums overi andm run over the nucleons
in the initial and finalIS’s. The indexI is the angular mo-
mentum of theNa21 spectator nucleons in theIS when one
of the nucleons is contributing to the reduced matrix e
ment. The quantitycj iV i

(K) is the amplitude that the contrib

uting nucleon in the initial state has an angular momentumj i
and projectionV i . Similarly, cj mVm

(K) is the corresponding

amplitude for the nucleon in the finalIS. The quantity
pK2Vm ,K2V i

I (Na21) is the probability amplitude that th

Na21 spectator nucleons in the initial and finalIS’s are
coupled to a total angular momentumI. The Clebsch-Gordan
coefficient on the right in Eq.~75! gives the amplitude~in the
initial state! that the spectator nucleons in the sta
uI ,K2V i& are coupled to the contributing nucleon in th
state u j iV i& resulting in a total initial angular momentum
stateuJK&. The Clebsh-Gordan coefficient on the left is t
corresponding amplitude for the final state. The last t
03431
ts

as
e

e
e

-

o

terms in the sum are, respectively, the 6j symbol and the
reduced matrix elements of the single-particle quadrup
operatorqm5A(16p/5)r 2Ym

2 .
In our calculations,K50 and j i5 j m5 j a . The coeffi-

cients arecj i ,uV i u
51 andcj i2uV i u

5(21) j i2uV i ucj i uV i u
. The ra-

dial quantum numbers and the orbital angular momenta
given by ni5nm50 and l i5 l m5 j a2 1

2 , respectively. The
probability amplitudepI is given by

pK2Vm ,K2V i

I ~Na21!

5^FK2Vm
~ j a ,Na21!uPK2Vm ,K2V i

I

3~Na21!uFK2V i
~ j a ,Na21!&. ~76!

The reduced matrix elements@( j a ,Na);J8KiQi( j a ,Na);JK#
between the various projected states are listed in Table
for J5J8 andJ5J812. Because the values ofCJK and pI

become very small for large values ofJ and I, considerable
care is required in the calculation of (J8iQiJ), especially for
higher values ofJ. Fortunately, we can derive a consisten
check that can monitor the numerical accuracy of the ca
lated reduced matrix elements.

C. Consistency check

The quadrupole momentQ0( j a ,Na) of anIS FK( j a ,Na)
is given by

Q0~ j a ,Na!5^FK~ j a ,Na!uQ0uFK~ j a ,Na!&,

5(
i 51

Na

qki
~ j a!, ~77!

where the sum is over all the occupieda orbits andqki
are

the quadrupole moments of the occupied orbits~see Table
V!. The values ofQ0( j a ,Na) are listed in Table VI.

We now obtain an alternative expression forQ0( j a ,Na).
The statesFK( j a ,Na) can be expanded as

uFK50~ j a ,Na!&5(
J

CJK50~ j a ,Na!uproj:~ j a ,Na!;JK&.

~78!

Substituting into Eq.~77!, we get the sum rule

Q0~ j a ,Na!5(
J8

(
J

CJ8K50~ j a ,Na!CJK50

3@~ j a ,Na!;J8KuQ0u~ j a ,Na!;JK#

~79!

or
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TABLE XIII. Reduced matrix elements@( j a,Na);J8,JiQi( j a,Na);JK#@see Eq.~75!# for J5J8 and J
5J812. The reduced matrix elements (JiQiJ8) are not listed because (JiQiJ8)5(J8iQiJ) for each
( j a,Na). The units area2.
034317-20



ity
-

-

st

an
n

e

he

n
r
-

.

-

COLLECTIVE PROPERTIES OF NUCLEONS IN THE . . . PHYSICAL REVIEW C 61 034317
(
i

qki
~ j a ,Na!5(

J8
(

J
CJ8K50CJK50

~J200uJ80!

A2J11

3@~ j a ,Na!;J8KiQi~ j a ,Na!;JK#.
~80!

Here, the sums run over all the statesuJ& contained in the
IS FK( j a ,Na). We verified that Eq.~80! is satisfied by the
calculated reduced matrix elements.

We now use this sum rule for comparing the collectiv
of theIS FK( j a ,Na) with that of the corresponding equiva
lent SU~3! IS FK@leq,0#. Let Q(J1) be the value of the sum
on the right-hand side of Eq.~80! obtained up to the contri
bution from the states withJ85J5J1 contained in theIS.
The quantity

f ~J1!5
Q~J1!

Q0~ j a ,Na!
~81!

represents the fraction of the quadrupole moment exhau
up to the projected stateuJ1&. The variation off (J1) with J1
is characteristic of the collectivity of the yrast band. As
illustration, we show, by a solid line in Fig. 6, the variatio
of f (J1) with J1 calculated for theIS of Na56 particles in
the state withj a5 13

2 . For comparison, we also show th
similar variation for the equivalent SU~3! IS FK@leq
524,0#. From this comparison, we conclude that t
FK( j a ,Na) and the equivalent SU~3! IS’s have similar col-
lectivities. For both of theseIS’s, 90% of the quadrupole
moment sum is exhausted within the first 40% of the ba
which extends up toJ524. Similar results were obtained fo
a few otherIS’s FK( j a ,Na), and the conclusions are ex
pected to be valid for all theIS’s considered here.

D. B„E2;2\0… values

In the rotor model, theB(E2:rot;2→0) values are related
to the quadrupole momentQ0 of the IS by

B~E2:rot;2→0!5
1

16p
~Q0!2'0.0199~Q0!2. ~82!

FIG. 6. Variation of f (J1) with J1 @see Eq. ~81!# for the
FK( j a5

13
2 ,Na56) and SU~3! FK@leq524,0# IS’s. See also Sec

V C.
03431
ed

d

The values of the quadrupole momentsQ0( j a ,Na) of the
IS Fk( j a ,Na) are listed in Table VI. TheB(E2:proj;
2→0) values calculated for theJ52 andJ50 states pro-
jected from theIS are plotted in Fig. 7~a! as a function of
@Q0( j a ,Na)#2. The overall trend of theseB(E2) values is
described by

B~E2:proj;2→0!'c~Na!1m~Na!@Q0~ j a ,Na!#2.
~83!

FIG. 7. Variation ofB(E2:2→0) with (Q0)2 for theuJ52& and
uJ50& states projected from differentIS’s ~see Sec. V D!. ~a! The
four straight lines correspond toFK( j a ,Na) for four different val-
ues ofNa . ~b! Simultaneous fit to theNa54, 6, and 8 trends~solid
line! and forced fit~dashed line! to the same data with the rotor
model slope.~c! The straight line corresponds to the SU~3! FK@l
5Q0/2,0#.
7-21



r-

a
nd
x-

el

e

o

e
i-
he

ti

e

.
n
is

he
tly
he

d

rob-

-
We

n

bu-

e

-
a

K. H. BHATT, S. KAHANE, AND S. RAMAN PHYSICAL REVIEW C 61 034317
The B(E2) trend for the two-particle case@see Fig. 7~a!# is
markedly different from those for four, six, and eight pa
ticles. The latter have similar slopes, and theseB(E2) values
can be fitted by a single line, as shown in Fig. 7~b!. This line
has a slopem50.0210 and an interceptc50.86. If we fix the
slope as m5m(rot)50.0199, the best fit to the
B(E2:proj;2→0) values forNa54, 6, and 8 particles is
obtained with an intercept of 1.25. This fit, shown by
dashed line in Fig. 7~b!, demonstrates that the projected a
rotor-model values are very similar. This similarity is e
pected because for a well-deformedIS, the projection for-
mula for theB(E2:2→0) values reduces to the rotor-mod
formula to a good approximation for small values ofJ
@14,35#.

The B(E2:SU3@l,0#;2→0) values also depend on th
quadrupole momentQ0(l)52l of the IS of representation
@l,0# in the same way; namely,

B~E2:SU3@l,0#,2→0!'c~l!1m~l!@Q0~l!#2. ~84!

The B(E2:SU3@l,0#;2→0) values for 8<l<34, plotted
against@Q0(l)#254l2 @see Fig. 7~c!#, can be described by

B~E2:SU3@l,0#;2→0!'2.1110.0214@Q0~l!#2.
~85!

The rotor-model, projected, and SU~3! B(E2:model;
2→0) values have almost identical dependence
@Q0(model)#2. Both the projected and the SU~3! B(E2:
2→0) trends have a small, constant intercept value indep
dent ofQ0. WhenQ0 is sufficiently large, the constant add
tion to theB(E2) value becomes negligible compared to t
direct contribution fromQ0, which is in agreement with the
rotor-model result.

E. B„E2:J\JÀ2… values

We adopt a criterion that the closer the trend of the ra
B(E2:J→J22)/B(E2:2→0) for a model yrast band is to
the rotor trend, the greater is the collectivity of the mod
band. The rotorB(E2) values are given by

B~E2:rot;J→J22!5
5

16p
@J200u~J22!0#2~Q̃0!2.

~86!

In the next step, we calculated theB(E2:proj;J→J22) val-
ues for theIS’s FK( j a ,Na) of Na52, 4, 6, and 8 particles
in the j a5 9

2 , 11
2 , 13

2 , and 15
2 single-particle orbits using Eq

~63! and the appropriate projected reduced matrix eleme
from Table XIII. @The care taken in these calculations
illustrated in Table XIV by reproducing theexactcalculated
values for the (j a5 13

2 ,Na58) case.# The calculatedB(E2)
values are plotted as a function ofJ in Fig. 8. ForNa.2,
there is a double-humped structure in theB(E2:proj;
J→J22) vsJ trend. This feature is most pronounced for t
j a
4 configurations. The second maximum is significan

smaller for thej a
6 configuration and almost disappears for t

j a
8 configuration. Selection rules governing theE2 transition

probabilities betweenu( j a ,Na);J& projected states impose
03431
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by the residual seniority properties of these states are p
ably responsible for the double-humped structure.

In Fig. 9, we show the rotor-modelB(E2:rot;J→J22)
values normalized to the projectedB(E2:proj;2→0) value

for the (11
2 )6, ( 13

2 )6, and (15
2 )8 states. As expected, the pro

jected bands are less collective than the rigid-rotor band.
next compare theB(E2:proj;J→J22) values with the
B(E2:SU3@leq,0#;J→J22) values obtained for the SU~3!
band belonging to the equivalent representations@18,0#,

@24,0#, and @32,0# appropriate for the threeIS’s FK( 11
2 ,6),

FK( 13
2 ,6), andFK( 15

2 ,8), respectively. They are also show
in Fig. 9. It is clear from this figure that the projectedB(E2)
trends are slightly more collective than the equivalent SU~3!
B(E2) trends. This result is suprising because the distri
tion of angular momenta in theIS FK( j a ,Na) was found~in
Sec. II C! to be less collective than the distribution in th
equivalent SU~3! IS belonging to the representation@leq,0#.

We also determined the SU~3! representation@lB(E2),0#
such that theB(E2:@lB(E2),0#;J→J22) values normalized
to the projectedB(E2:proj;2→0) value agree with the simi
larly normalizedB(E2:proj;J→J22) values over as large

range ofJ as possible. The results for the (11
2 )6, ( 13

2 )6, and

TABLE XIV. CalculatedB(E2:proj;J→J22) values~in units
of a4) for statesuJ& projected fromFK( j a ,Na). See Sec. V E.
7-22
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FIG. 8. B(E2:J→J22) values for the statesuproj:( j a ,Na);J& projected from each of theIS’s FK( j a ,Na) ~see Sec. V E!. The calculated
values are connected by smooth lines for easy visualization.
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( 15
2 )8 IS’s are shown in Fig. 9@see the curves labeled b

lB(E2)]. The lB(E2) values are larger than theleq values by
2–4 units.

F. Transition moments Qt„J…

The transition probabilitiesB(E2:J→J22) are often ex-
pressed in terms of the transition momentsQt(J) of a state
@see Eq.~64!#. We calculated theQt(proj;J) values for the
band of statesuproj:( j a ,Na);J& using Eq. ~64! and the
B(E2:proj;J→J22) values obtained in Sec. V E. The r
sulting Qt(proj;J) values plotted in Fig. 10 show a signifi
cant variation withJ. For the bands withNa56 and 8 par-
ticles, these values decrease withJ @see Figs. 10~b! and
10~c!#, while for Na54 particles, they have a second max
mum @see Fig. 10~a!# at J510, 12, 14, and 16, respectively
for j a5 9

2 , 11
2 , 13

2 , and15
2 . Also plotted in Fig. 10 by means o

horizontal lines are the quadrupole momentsQ0( j a ,Na) for
each of theIS’s FK( j a ,Na). These lines represent the rig
rotor values; that is,Qt(rot;J)5Q̃05Q0( j a ,Na). The pro-
jected values are slightly larger~smaller! than the rotor values
for small~large! J values.

The variation ofQt(proj;J) with J is interesting from the
point of view of the cranking model in which the yrast ba
is obtained while theIS rotates with different angular mo
menta. The structure of theIS changes in response to th
increase in the angular momentumJ, and the transition mo-
03431
mentQt(crank;J) is expected to be the quadrupole mome
of theIS when it is rotating with angular momentumJ along
an axis perpendicular to the symmetry axis. Hence, in
cranking model, the variation ofQt(J) with J gives a mea-
sure of the change in the deformation of theIS as a function
of its rotational frequency.

In our calculations, all the statesuproj:( j a ,Na);J& are pro-
jected from the sameIS. In other words, the structure of th
IS does not change with theJ of the projected state. Hence
the variation ofQt(proj;J) with J cannot be considered as
measure of the change of the deformation of theIS. The
exact relationship betweenQt(J) vs J in the cranking model
and in the projection approach~in the j a

Na configuration
space! needs to be explored further, possibly along the lin
followed by Hara, Hayashi, and Ring@36#.

G. Spectroscopic quadrupole momentsQ„J…

We calculated the values of the spectroscopic quadrup
momentsQ(proj;J) of the statesuproj:( j a ,Na);J& using Eq.
~65! and the reduced matrix elements given in Table XI
The variations ofQ(proj;J) vs J are shown in Fig. 11 for the
projected bands ofNa54, 6, and 8 particles. We note th
general absence of particle-hole symmetry in theQ(proj;J)

values. For example, the values for the (11
2 )4 band are not

equal in magnitude to those for the (11
2 )8 band, nor are the
7-23
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values for the (13
2 )6 band equal in magnitude to those for th

( 13
2 )8 band. However, for the projected states withJ

5Jmax, the Q(proj;J) values do exhibit particle-hole sym
metry; that is,Q@( 9

2 )4,12#52Q@( 9
2 )6,12#, Q@( 11

2 )4,16#5

2Q@( 11
2 )8,16#, andQ@( 13

2 )6,24#52Q@( 13
2 )8,24#. The rea-

son for this behavior is that there is only one state of thej a
Na

configuration withJ5Jmax, and this state has a definite s
niority y5ymax5Na . Another consequence of the particl
hole symmetry is thatQ@( 11

2 )6,18#5Q@( 15
2 )8,32#50.

The Q(rot;J) values for the statesurot,J& of an axially
symmetric rigid rotor~with an IS having K50 and an in-

FIG. 9. Comparison of theB(E2:J→J22) values for the states
projected from theIS’s FK( j a ,Na) and SU~3! FK@l,0#. The
B(E2:rot;J→J22) values from the rotor model are normalized
the B(E2:proj;2→0) values. See also Sec. V E.
03431
trinsic quadrupole momentQ̃0) are given by Eq.~69!. For a
prolateIS, Q̃0.0, andQ(rot;J),0 for all J values. The
rotor Q(rot;J) values decrease smoothly from2 2

7 Q̃0 to
2 1

2 Q̃0 asJ increases fromJ52 to J5`. If Q̃0 is chosen to
be equal toQ0( j a ,Na), the rotor-model spectroscopic qua
rupole momentQ(rot;2) for theJ52 state is quite close to
the projected valueQ(proj;2) for the j a

Na band. Because the
IS’s FK( j a ,Na) are far from being rigid, the overall trend o
the correspondingQ(proj;J) values is significantly different

FIG. 10. Transition momentsQt(J) for the yrast band of state
uproj:( j a ,Na);J& projected from theIS’s FK( j a ,Na). For each
band, the constant rotor-modelQt(rot;J) value, chosen to be equa
to the corresponding intrinsic quadrupole momentQ0( j a ,Na), is
shown as a horizontal line. See related discussion in Sec. V F.
7-24
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COLLECTIVE PROPERTIES OF NUCLEONS IN THE . . . PHYSICAL REVIEW C 61 034317
from the trend of theQ(rot;J) values. We illustrate this dif-
ference in Fig. 11~b!, where we have plotted theQ(rot;J)

values such thatQ(rot;2)5Q(proj;2) for the (15
2 )6 configu-

ration. The projectedQ(proj;J) values resemble the roto
values only for the first fewJ states.

H. Comparison with B„E2… values in the SO„6… scheme

In the interacting boson model@15,16#, rotation-like quad-
rupole collectivity is described in terms of the SO~6! sym-

FIG. 11. Spectroscopic quadrupole momentsQ(J) for the yrast
band of states uproj:( j a ,Na);J& projected from the IS’s

FK( j a ,Na). For the (15
2 )6 band, we show in~b! the rotor-model

Q(J) values normalized to theQ(J52) value. See related discus
sion in Sec. V G.
03431
metry in addition to the SU~3! symmetry. For the SO~6!
symmetry, the trend of theB(E2:J→J22) values for the
yrast states ofNb bosons coupled strongly byE2 transitions
are given by@9#

RSO(6)
Nb ~J!5

B~E2:SO6;J→J22!

B~E2:SO6;2→0!

5
5

2~2Nb!~2Nb14!

J

J13

3~2Nb122J!~2Nb162J!. ~87!

The highest angular momentumJmax for Nb bosons isJmax
52Nb . We also define

Rproj~J!5
B~E2:proj;J→J22!

B~E2:proj;2→0!
. ~88!

In Fig. 12, we compare theRSO(6)
Nb (J) values~for different

Nb) with theRproj(J) values, the latter projected from theIS
of six particles in thei 13/2 state. In the interacting boso
model, the boson numberNb is three for a six-particle state
and the maximum angular momentum of the yrast band
Jmax52Nb56. TheRSO(6)

Nb (J) values forNbIBA53, shown in
Fig. 12, are significantly smaller than the projected valu
We next consider an SO~6! band with an equivalent boso
number Nbeq512 for which Jmax524. This Jmax value is

equal to theJmax for the (13
2 )6 configuration. TheRSO(6)

Nb (J)
values forNbeq512 are still less collective than the projecte
values. The boson number for which the SO~6! B(E2) trend
best fits the trend of the projected values isNbB(E2)532.

I. Comparison with B„E2… values in the seniority scheme

In the seniority scheme, the statesu j a
Na ;Jy,a& of the j a

Na

configuration may be classified in terms of ‘‘bands’’ of di
ferent angular momentaJ having the same seniority quantu
number y. The label a distinguishes between orthogon

FIG. 12. Trends of theRmodel(J) values@see Eqs.~87! and~88!#.
The Rproj(J) trend is more collective than theRSO(6)

Nb (J) trend for
the equivalent SO~6! band withNb eq512. See related discussion i
Sec. V H.
7-25
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TABLE XV. Comparison betweenR1(Na)proj @see Eq.~92!# andR1(Na)sen@see Eq.~90!# values forNa54, 6, and 8 particles in differen
j a orbits. TheB(E2) values are in units ofa4.
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states with the same values ofJ and y. When the pairing
interaction is dominant, the ground state hasJ50 and y
50. The first excited ‘‘band’’ of states hasy52 and J
52,4,6, . . . ,2j a21. The states withy54,6,8, . . . ,n lie at
higher energies.

The states u( j a ,Na);JK& projected from the
IS F K

a ( j a ,Na) do not, in general, have a definite senior
for Na.2 and j a. 7

2 ~see p. 324 of Ref.@8#!. The projected
state for eachJ can, in principle, be expressed as a line
combination of different seniority states. Thus

uproj:~ j a ,Na!;JK&5(
ay

A~Jy,a!uusen:j a
Na ;Jy,a&.

~89!

We do not attempt such an explicit expansion of the p
jected states here.

The projected states are likely to be the low-lying states
the a nucleons embedded in the mean field of deformed
clei in which the quadrupole-quadrupole interaction dom
nates. Because the seniority states and projected state
generally likely to be important in very different physic
situations, there is ordinarily no need to compare their qu
rupole collectivities. However, both the pseudo-SU~3! model
~with its symplectic extension! @12,28,29# and the fermion
dynamic symmetry model@17# successfully describe de
formed nuclei, assuming that for thej a

Na configuration the
pairing interaction is dominant even in deformed nuclei.
view of this success, a comparison of th
B@E2:proj (j a ,Na);J→J22# and B(E2:sen j a

Na ;J
→J22) values for transitions between the low-lying pr
jected and seniority states, respectively, is of interest. Su
comparison will display the influence of the deformatio
induced seniority mixing on theB(E2) values as one goe
from the j a

Na states of definite seniority to the states projec
from a deformedIS.

1. B(E2:2\0) values

We want to compare the variation of theB(E2:2→0)
values as a function of the number of particles for the p
jected states with the corresponding variation for the sen
ity states. In the seniority scheme, the lowestJ52 state has
y52, and the ground state hasy50. In this scheme, the
03431
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a
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B(E2:sen j a
Na ;J52,y52→J50,y50) value for Na par-

ticles in u j a& is related to theB(E2:sen j a
2 ;J52,y52

→J50,y50) value for two particles. The ratio

R1~Na!sen5
B~E2:sen j a

Na ;J52,y52→J50,y50!

B~E2:sen j a
2 ;J52,y52→J50,y50!

~90!

is given by@8#

R1~Na!sen5
Na~2 j a112Na!

2~2 j a21!
. ~91!

We have also calculated the corresponding ratios

R1~Na!proj5
B@E2:proj ~ j a ,Na!;2→0#

B@E2:proj ~ j a,2!;2→0#
~92!

for the J52 and J50 states projected from th
IS F( j a ,Na). While theB(E2:J→J22) values for thej a

Na

configuration withNa.2 and j a. 7
2 are different in the se-

niority and projection models, these values are the same
the j a

2 configuration because there is only one state of eacJ
in the latter configuration.@In particular, theB(E2:2→0)
values are the same in both models.# In Table XV, we have
compared theR1(Na)proj andR1(Na)senvalues forNa54, 6,
and 8 particles in thej a5 9

2 , 11
2 , 13

2 , and 15
2 orbits. From this

comparison we conclude that the projected states are~i! sig-
nificantly less collective than the seniorityj a

4 states,~ii !
slightly less collective than the seniorityj a

6 states, and~iii !
slightly more collective than the seniorityj a

8 states.

2. B(E2:J\JÀ2) values for 4ÏJÏ2jaÀ1

In the seniority scheme, the lowest states with 4<J
<2 j a21 havey52. The B(E2) values for theJ→J22
7-26



n

ta-

ns
t

l-
ele-
mid-

is

COLLECTIVE PROPERTIES OF NUCLEONS IN THE . . . PHYSICAL REVIEW C 61 034317
transitions between they52 states of thej a
Na configuration

are related to theB(E2) values for the transitions betwee
the corresponding states of thej a

2 configuration. The ratio of
these two values

R2~Na!sen5
B~E2:sen j a

Na ;J52,y52→J22,y52!

B~E2:sen j a
2 ;J52,y52→J22,y52!

~93!

is independent ofJ and is given by@8#

R2~Na!sen5F2 j a1122Na

2 j a1122y G2

. ~94!

In Tables XVI, XVII, and XVIII, we list the ratiosR2(Na)sen
and compare them with the ratios

R2~Na!proj5
B~E2:proj ~ j a ,Na!;J→J22!

B~E2:proj ~ j a,2!;J→J22!
~95!

calculated for the projected states~with 4<J<2 j a21). We
also include in these tables the corresponding ratios

TABLE XVI. Comparison ofR2(Na)proj @see Eq.~95!# values
with R2(Na)sen @see Eq.~93!# andR2(Na)SU3 @see Eq.~96!# values
for Na54 particles in differentj a orbits. TheB(E2) values are in
units of a4.
03431
R2~Na!SU(3)5
B~E2:SU3@leq

Na,0#;J→J22!

B~E2:SU3@leq
2 ,0#;J→J22!

~96!

for the SU~3! states belonging to the equivalent represen
tion @leq,0#. The values ofleq for the (j a ,Na)IS’s are listed
in Table IV. TheR2(Na) values show that theB(E2) values
for the transitions between the (j a ,Na) projected states are
similar in collectivity to those between the SU~3! states and
are significantly more collective than those for the transitio
within the y52 bands of thej a

Na configurations. Note tha

R2(Na)sen50 for the (11
2 )6 and (15

2 )8 states. These zero va
ues reflect the seniority selection rule that even tensor
ments between the states of the same seniority vanish at
shell.

3. B(E2:JiÄ2ja¿1\JfÄ2jaÀ1) values

The R2(Na)sen values listed in Tables XVI, XVII, and
XVIII are !1 which implies that theE2 transitions within
the y52 band are weak. This band terminates atJ
52 j a21. The lowest state withJ52 j a11 hasy54. We
are interested in theB(E2) values for transitions across th
seniority gap. A general expression for the reducedE2 ma-

TABLE XVII. Comparison ofR2(Na)proj @see Eq.~95!# values
with R2(Na)sen @see Eq.~93!# andR2(Na)SU3 @see Eq.~96!# values
for Na56 particles in differentj a orbits. TheB(E2) values are in
units of a4.
7-27
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trix element for such transitions across ay→y22 seniority
gap has been derived by Talmi@37# as

~ j a
Na ,v5Na ,Ji uuT(2)uu j a

Na ,v5Na22,Jf5Ji22!2

5~ j auuT(2)uu j a!2
4

5

~Na22!~2 j a132Na!15

2 j a1522Na

3@122~Na22!F j a
~Na!#, ~97!

where

Ji5~Na22! j a2
1

2
~Na22!~Na23!12 ~98!

and the factorF j a
(Na) is given by
s
.
g

te

s
co

e
e

b
r

gl

iv-

03431
F j a
~Na!5

536

~2 j a21!~2 j a!~2 j a11!~2 j a12!~2 j a13!

3H 4 j a~2 j a21!1~Na23!F6 j a
227 j a11

1
1

6
~4 j a

2214j a15!~2Na25!2~ j a21!

3~Na22!~Na23!1
1

30
@6~Na23!3

19~Na23!21Na24#G J . ~99!

For the caseNa54 particles, we consider the ratio
R3~Na54!sen5
B~E2:sen j a

4 ;v i54,Ji52 j a11→v f52,Jf52 j a21!

B~E2:sen j a
2 ;v i52,Ji52→v f50,Jf50!

. ~100!
mo-

ity
From Talmi’s general formula and the definition ofB(E2)
value, we obtain

R3~Na54!sen5
2 j a11

2 j a13
@122F j a

~4!#. ~101!

The factorsF j (4) for the j 5 9
2 , 11

2 , 13
2 , and 15

2 states are
0.076, 0.047, 0.032, and 0.022, respectively. The value
R3(Na54)sen, for the j a

4 configurations, obtained from Eq
~100!, are compared in Table XIX with the correspondin
ratio

R3~Na54!proj5
B@E2:proj ~ j a,4!;Ji52 j 11→Jf52 j 21#

B@E2:proj ~ j a,2!;Ji52→Jf50#

~102!

of theB(E2) values for the transitions between the projec
states of the sameJ values considered inR3(Na54)sen. On
the average, the transitions between the projected state
stronger by about 80% than the transitions between the
responding seniority states.

In Fig. 13, we summarize the qualitative differences b
tween the quadrupole properties@spectroscopic quadrupol
momentsQ(J) and B(E2:J→J22) values# for the low-
lying projected and seniority states. Both sets of states
long to thej a

Na configuration, and this particular figure is fo

the (13
2 )6 configuration. The projected states form a stron

coupled chain of quadrupole collectivity, whereas they52
part of the seniority band is totally devoid of such collect
of

d

are
r-

-

e-

y

FIG. 13. Comparison between the spectroscopic quadrupole
mentsQ(J) and theB(E2:J→J22) values for the low-lying pro-

jected and seniority states of the (13
2 )6 configuration. TheQ(J)

values are in units ofa2 and theB(E2:J→J22) values~associ-

ated with the downward arrows! in units of B@E2:( 13
2 )2;2→0#.

The latterB(E2) value is the same for the projected and senior
states. See related discussion in Sec. V I.
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ity. It seems unlikely that such a seniority band can play a
significant role in the structure of the yrast band of a d
formed nucleus.

VI. YRAST BAND OF A SYSTEM OF
ABNORMAL-PARITY NUCLEONS

A nucleus contains both protons and neutrons
abnormal-parity states. In this section, we calculate the
lective properties of the yrast band projected from theIS of
such protons and neutrons. We consider as an examp
system ofnp54 protons in thej p50h11/2 state andnn54
neutrons in thej n50i 13/2 state in the mean field of a de
formed nucleus. According to Table XX, such a configu
tion of the abnormal-parity nucleons should occur in
nucleus with at leastNp510 protons in the 50–82 shell an
Nn510 neutrons in the 82–126 shell. Such a nucleus

60
152Nd92. The totalISFpn(np54,nn54) of thea nucleons is
the product of theIS’s of the protons and neutrons:

Fpn~np54,nn54!5FpS j p5
11

2
,np54D

^ FnS j n5
13

2
,nn54D , ~103!

TABLE XVIII. Comparison of R2(Na)proj
@see Eq.~95!# values

with R2(Na)sen @see Eq.~93!# andR2(Na)SU3 @see Eq.~96!# values
for Na58 particles in differentj a orbits. TheB(E2) values are in
units of a4.
03431
y
-

n
l-

a

-

is

where Fp and Fn are four-particle Slater determinants
which the orbitskp,n56 1

2 and6 3
2 are occupied. The state

Fp andFn can be expanded as

FpS j p5
11

2
,np54D5(

Jp

CJpKpUS 11

2 D 4

;JpL ~104!

and

FnS j n5
13

2
,nn54D5(

Jn

CJpKn
US 13

2 D 4

;JnL . ~105!

We have calculated the values ofuCJp
u2 anduCJn

u2 for these

IS’s and listed them in Table II. The totalIS Fpn can be
expanded in terms of the statesu@Jp ^ Jn#J& of total angular
momentumJ as

Fpn~np54,nn54!

5(
J

(
Jp

(
Jn

CJp
CJn

~JpJn00uJ0!u@Jp ^ Jn#J&.

~106!

The state of angular momentumJ projected fromFpn has the
structure

uJ&5NJ(
Jp

(
Jn

CJp
CJn

~JpJn00uJ0!u@Jp ^ Jn#J&,

~107!

whereNJ is a normalization constant given by

NJ5F(
Jp

(
Jn

uCJp
CJn

~JpJn00uJ0!2G21/2

. ~108!

We write the stateuJ& as

uJ&5(
Jp

(
Jn

A@J:Jp ,Jn#u@Jp ^ Jn#J&, ~109!

where

A@J:Jp ,Jn#5NJCJp
CJn

~JpJn00uJ0!. ~110!

A. Distribution of angular momenta in Fpn

The stateFpn @see Eq.~106!# can be expanded in terms o
the statesuJ& @see Eq.~109!# as

TABLE XIX. Comparison ofR3(Na)proj values@see Eq.~102!#
with R3(Na)senvalues@see Eq.~101!# values forNa54 particles in
different j a orbits.
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TABLE XX. Partition of N valence nucleons intoNn nucleons in the normal-parity andNa nucleons in the abnormal-parity states a
their average SU~3! representations for the yrast bands. See Sec. VII.
th

in
g

n
u-

u

-

Fpn5(
J

CJuJ&, ~111!

where uCJu25(1/NJ)
2 is the probability thatFpn contains

angular momentumJ. The normalization constantNJ is
given by Eq.~108!. The distribution ofuCJu2 vs J is shown in

Fig. 14 for the coupledp( 11
2 )4

^ n( 13
2 )4 system.

We recall that the distribution of the angular momentaJp

and Jn in Fp and Fn @see Eqs.~104! and ~105!# are well
reproduced by the distributions of angular momenta in
SU~3! representationslp5(lp)eq5(lp)ave516 and ln

5(ln)ave522 @see Figs. 2~b! and 2~c!#. @Note that the
equivalent SU~3! representation for the neutrons is (ln)eq
520.# We find that the distribution of angular momenta
Fpn to be nearly indistinguishable from that in the avera
representation@lpn ave,0# with lpn ave5lp ave1ln ave538.

The equivalent representation for thep( 11
2 )4

^ n( 13
2 )4 system

is @leq,0#5@36,0#. The distribution of angular momenta i
the @36,0# representation is shown in Fig. 14. The distrib
tion of angular momenta in the coupledpn system ofa
nucleons follows to a good approximation the rules of co
pling of SU~3! representations, namely

@lp,0# ^ @ln,0#→@lpn5lp1ln ,0#. ~112!
03431
e

e

-

B. Quadrupole properties of thepn band

The electric quadrupole operator of thepn system can be
written as

Qe5epQp1enQn , ~113!

FIG. 14. Probability distributionP1(J) of angular momenta for

the Fpn@p( 11
2 )4

^ n( 13
2 )4# IS compared to the corresponding dis

tribution for the SU~3! FK@leq536,0# IS. See related discussion
in Sec. VI A.
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whereep(n) are the effective charges for protons~neutrons!.
We want to evaluate the reduced matrix elements

~Jf iQeiJi !5ep~Jf iQpiJi !1en~Jf iQniJi ! ~114!

of Qe between the projected statesuJ& of Eq. ~109!. Using
this equation and Eq.~1A-72a! of Ref. @20#, we obtain

~Jf iQpiJi !5A~2Jf11!~2Ji11!

3(
Jp8

(
Jn8

(
Jp

(
Jn

A@Jf :Jp8 ,Jn8#A@Ji :Jp ,Jn#

3F ~21!Jp8 1Jn81Ji12H Jp Jn Ji

Jf 2 Jp8
J

3~Jp8 iQpiJp!dJ
n8JnG ~115!

and

~Jf iQniJi !5A~2Jf11!~2Ji11!

3(
Jp8

(
Jn8

(
Jp

(
Jn

A@Jf :Jp8 ,Jn8#A@Ji :Jp ,Jn#

3F ~21!Jp1Jn1Jf12H Jp Jn Ji

2 Jf Jn8
J

3~Jn8iQniJn!dJ
p8 JpG . ~116!

For the system under consideration, (Jp8 iQpiJp) and
(Jn8iQnuJp) are just the reduced matrix elemen

@( 11
2 ,4);J8iQi( 11

2 ,4);J# and @( 13
2 ,4);J8iQi( 13

2 ,4);J#, re-
spectively, given in Table XIII. We use these values to c
culate the matrix elements (Jf iQpiJi) and (Jf iQniJi).

The B(E2:J→J22) values with effective chargesep

5en51e are plotted in Fig. 15~a! for J50 to J5Jmax
5Jp max1Jn max536. The values obtained with the effe
tive chargesep51.5e,en50.5e were quite similar and are
not shown.

We recall that theB(E2:J→J22) values for the pro-

jectedp( 11
2 )4 andn( 13

2 )4 states show two maxima@see Fig.

8~b!#. They are smoothed out for the coupledp( 11
2 )4

^ n( 13
2 )4 system, as shown in Fig. 15~a!. The equivalent

SU~3! representation@leq,0# for this system~see Table III! is
given by leq5lp eq1ln eq516120536. The
B(E2:SU3@leq,0#;J→J22) values normalized to the

B@E2:proj(11
2 ,4)^ ( 13

2 ,4);2→0# value are also shown in
Fig. 15~a!. The trend of the SU~3! @leq536,0# values is sig-
nificantly less collective than that for the projected stat
The SU~3! representation @lB(E2),0# for which the
B(E2:SU3@lB(E2),0#;J→J22) trend best agrees with th
B(E2:proj;J→J22) trend is found to havelB(E2)554,
which is appreciably larger thanleq536.
03431
-

.

A reason for this large value oflB(E2) may be the pro-
nounced second hump in theB(E2:proj;J→J22) vsJ trend
for the j a

4 configurations@see Fig. 8~b!#. This feature tends to
increase theB(E2:proj;J→J22) values for the coupledpn
system at higher values ofJ and makes theB(E2) vsJ trend
decrease more slowly. Hence thelB(E2) value for which the
B(E2:SU3;J→J22) trend agrees with theB(E2:proj;
J→J22) trend for thepn system is larger than theleq
value. To verify this conjecture we carried out a calculati
of the B(E2:proj;J→J22) values for the yrast band pro
jected from theIS

Fpn a~Npa56,Nna56!5FpaS 11

2
,6D ^ FnaS 13

2
,6D .

~117!

As can be seen in Fig. 8~c!, the projectedB(E2) trends for

the (11
2 )6 and (13

2 )6 bands do not have the pronounced se

ond maxima noted for the (11
2 )4 and (13

2 )4 bands. In addition,
as shown in Figs. 9~a! and 9~b!, these projected trends for th

( 11
2 )6 and (13

2 )6 bands are in good agreement with the SU
trends withlp B(E2)520 andln B(E2)528, respectively. On
the basis of these observations, one expects that the proje

B(E2) trend for the coupledp( 11
2 )6

^ n( 13
2 )6 band might

FIG. 15. B(E2:J→J22) values for the yrast band projecte
from the coupledpn intrinsic states~see Sec. VI B!. The SU~3! and
rotor B(E2:J→J22) values are normalized to theB(E2:proj;2
→0) values.
7-31



e

al

l
e
rs
g.

he

d
e

e-
e

-

ted

rties

e-
gle

f.
ll

he

r

r

le

d

e

K. H. BHATT, S. KAHANE, AND S. RAMAN PHYSICAL REVIEW C 61 034317
resemble the SU3B(E2) trend withlpn B(E2)548. This is
indeed the case, as is shown in Fig. 15~b!. Also shown in
Fig. 15~b! is the SU3B(E2) trend corresponding to th
equivalentlpn eq5lp eq1ln eq542 ~see Table III!. For the
coupled system, the equivalent SU~3! trend is significantly
less collective than the projected trend.

The transition momentsQt(J) deduced from the
B(E2:J22→J) values for the projectedpn band are com-
pared with the rotor-model values in Fig. 16~a!. The Qt(J)
values for the rotor model are constant and was set equ
the total intrinsic quadrupole moment:Q0(pnrot)

5Q0@p,( 11
2 )4#1Q0@n,( 13

2 )4#525.49a2 ~see Table V!. The
trend of the projectedQt values is close to the rotor-mode
trend for the states up toJ524. A smooth but rapid decreas
in the projectedQt values relative to the rotor values occu
for states withJ.24. For comparison, we also show in Fi
16~a! theQtp andQtn values as a function ofJp andJn . The
bumps in theseQt values have been smoothed out in t
Qt(J) values for the coupledpn yrast band.

The spectroscopic quadrupole momentsQ(J) of the states
J of the projectedpn band are compared with the rotor-ban
values in Fig. 16~b!. The latter values are normalized to th
projectedQ(J52) value. The trend of the projectedQ(J)
values differs significantly from the rotor-model trend b
yond J58. The results of this section show that for th

FIG. 16. ~a! Transition momentsQt(J) and ~b! spectroscopic
quadrupole momentsQ(J) for the yrast band projected from th

Fpn@p( 11
2 )4

^ n( 13
2

4# IS. See related discussion in Sec. VI B.
03431
to

coupled pn system, both the distribution of angular mo
menta and theB(E2:J→J22) vs J trends show approxi-
mate SU3-like ‘‘additive’’ property, namely,lpn5lp

1ln .

VII. CONTRIBUTIONS OF NUCLEONS IN THE NORMAL-
AND ABNORMAL-PARITY STATES

TO THE YRAST BAND

In this section, we use the properties of the projec
statesu( j a ,Naa);JaaKaa& (a5p or n) of a nucleons dis-
cussed in the previous sections together with the prope
of the statesu( j n ,Nan);JanKan& of n nucleons projected
from theirIS’s to estimate the relative contributions of thea
and n nucleons to~i! the total angular momentumJ of the
yrast band of a deformed nucleus and~ii ! the B(E2:J
→J22) value for an yrast-band transition.

In a simple description of an axially symmetrically d
formed nucleus within the configuration space of a sin
major shell, the NilssonIS of the nucleus consists ofNpn
valence protons andNnn valence neutrons in then states and
Npa valence protons andNna valence neutrons in thea
states. The total numbers of valence particles in then anda
states areNn5Npn1Nnn and Na5Npa1Nna . The total
NilssonIS is a product of the Nilsson states of then anda
nucleons.

For deformed nuclei, we have listed in Table VIII of Re
@3# the partition of theN valence nucleons in a major she
into Npn , Nnn , Npa , and Nna . In a portion of this table,
which is reproduced herein in Table XX, we have listed t
effective pseudo-SU~3! representations@ l̃eff

n ,0# appropriate
for the different number of nucleons occupying then orbit-
als. The distribution of angular momentauJn& contained in
the representation@ l̃eff

n ,0# can be determined using Eq.~3!.
The NilssonIS of a particles is specified in each majo

shell by the numberNa listed in Table XX. TheseIS’s are
exactly theIS’s FK( j a ,Na) described in Sec. II B. In Table
XX, we have also listed the average SU~3! representations
@la ave,0# ~taken from Table III! for which the distributions
of angular momenta are close to those for theIS’s
Fk( j a ,Na).

In Ref. @4#, we showed that the distribution of angula
momenta in the coupled proton-neutronIS Fpn

5F( j pa ,Npa)F( j na ,Nna) ~of 238U or 168Er) is almost iden-
tical to that in the SU~3! IS with @lpna5lpa1lna,0#. Such
a result is even more valid for the coupledpn IS’s of n
nucleons for which the pseudo-SU~3! symmetry exists. In the
following section we use the information contained in Tab
XX to calculate the contribution ofn anda nucleons to the
total angular momentumJ of the yrast band of a deforme
nucleus.

A. Contribution of a nucleons to the angular momentum
of an yrast state

The total NilssonIS of an even-even nucleus withN va-
lence nucleons can be written as

FK~N!5FKn
~Nn!FKa

~Na!, ~118!
7-32
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with Kn5Ka50 andK5Kn1Ka50. The statesF(Nn) and
F(Na) can be expanded asF(Nn)5(Jn

CJn
uJn& andF(Na)

5(Ja
CJa

uJa&. The totalIS FK can be expanded as

FK~N!5(
J

(
Jn

(
Ja

CJn
CJa

~JnJa00uJ0!u@Jn^ Ja#J&.

~119!

The yrast stateuJ& of the nucleus is the state with thisJ
projected fromFK(N) and can be expressed as

uJ&5NJ(
Jn

(
Ja

CJn
CJa

~JnJa00uJ0!u@Jn^ Ja#J&

~120a!

5(
Jn

(
Ja

A~J;Jn ,Ja!@Jn^ Ja#J&, ~120b!

where the normalization coefficientNJ is given by

NJ5F(
Jn

(
Ja

uCJn
CJa

~JnJa00uJ0!u2G21/2

~121!

and

A~J;Jn ,Ja!5NJCJn
CJa

~JnJa00uJ0!. ~122!

The probabilityP(J;JnJa) that the yrast stateuJ& contains
angular momentaJn and Ja is given by uA(J;JnJa)u2. The
probabilitiesP(J;Jn) and P(J;Ja) that then or a nucleons
contribute angular momentumJn or Ja to the yrast stateuJ&
are given by

P~J;Jn!5(
Ja

uA~J;Jn ,Ja!u2, ~123a!

P~J;Ja!5(
Jn

uA~J;Jn ,Ja!u2. ~123b!

To illustrate the usefulness of Table XX, we ask the qu
tion: What is the probability that the angular momentum
the J54 yrast state of 64

156Gd92 is contributed entirely by the
n or a nucleons? To answer this question, we no
that 64

156Gd92 hasNp514 valence protons in the 50–82 she
with Npn58 protons in then states andNpa56 protons in
the 1h11/2 a state. The pseudo-SU~3! representation of the
eight n protons is@lpñ510,mpñ54# and, hence, its effec
tive SU~3! representation for theKpn50 band is
@lpn eff,0#5@14,0#, which is listed in Table XX. The aver
age SU~3! representation for the sixa protons in theh11/2
state is@lpa ave,0#5@14,0# from Table III. For theNn510
valence neutrons in the 82–126 shell,Nnn56, andNna54.
The pseudo-SU~3! representation of 6 neutrons in thisn shell
is @18,0#; consequently, its effective SU~3! representation is
also @lnn eff,0#5@18,0#. The average SU~3! representation
of the four a neutrons in thei 13/2 state is @lna ave,0#
5@22,0#. Thus the total effective representations@ln,0# and
@la,0# are given byln5lpn eff1lnn eff and la5lpa ave
03431
-
f

e

1lna ave. These representations are@ln,0#5@32,0# and
@la,0#5@36,0#. The distributions of the total angular mo
mentaJ in the NilssonIS of 156Gd will be very similar to
the distribution of angular momenta in the SU~3! representa-
tion @l,0#5@ln1la,0#5@68,0#. The yrast stateuJ& of 156Gd
can be expressed in terms of the coupled statesu@Jn^ Ja#J&
of its n anda nucleons as@see Eq.~120b!#

uJ,yrast&5NJ(
Jn

(
Ja

CJn
@32,0#CJa

@36,0#~JnJa00uJ0!u

3@Jn^ Ja#J&. ~124!

The expansion coefficientsCJn
@32,0# are obtained for differ-

ent Jn values from Eq.~3! using l5ln532. Similarly, the
coefficientsCJa

@36,0# are calculated for differentJa values

using l5la536. Equations~121!–~124! can be used, for
example, to compare the probabilities thatn(a) nucleons
contribute angular momentumJn(a)54 to the yrast stateuJ
54& of 156Gd. If Jn54 in the yrast stateuJ54&, thea nucle-
ons can have angular momentaJa50, 2, 4, 6, and 8. Simi-
larly, if Ja54, the allowed angular momenta for then nucle-
ons are alsoJn50, 2, 4, 6, and 8 in theuJ54& state. Using
Eqs. ~121!–~124!, we obtain Pn(Jn54,J54)50.273 and
Pa(Ja54,J5x)50.269. Bothn and a nucleons contribute
almost equally to the low-lying yrast states.

We can pose a more detailed question such as, ‘‘Wha
the average angular momentum contributed by the fouri 13/2
neutrons to the yrast stateuJ& of 156Gd with J514?’’ To
answer this question, we express the yrast state as

uJ&5NJ(
Js

(
Jna

CJs
@l2lna,0#CJna

@lna,0#u@Jf ^ Jna#J&,

~125!

whereJs is the angular momentum of the spectator nucleo
s, which are the nucleons other than the neutrons in thei 13/2
orbit. The effective SU~3! representation of the spectators
given byls5l2lna568222546. The probability for the
a neutrons to have an angular momentumJna in the yrast
stateuJ& is given by@see Eq.~123!#

P~J;Jna!5(
Js

uA~J;Js ,Jnau2, ~126!

where

A~J;Js ,Jna!5NJCJs
@46,0#CJna

@22,0#~JsJna00uJ0!.
~127!

The average valueJnā(J) of the angular momentum contrib
uted by thea neutrons to the yrast stateuJ& is defined by
7-33
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Jnā~J!5@^Jna
2 &J#

1/2 ~128a!

5F(
Jna

P~J;Jna!Jna~Jna11!G1/2

. ~128b!

The value ofJnā(J) in the uJ514& yrast state of156Gd given

by Eq. ~128! is Jnā(J514)57.2. Similarly the sixa protons
in the i 13/2 orbit contribute an average angular momentu

Jpā(J514)55.6 to the yrast state withJ514. As far as the
n nucleons are concerned, we findJpn(J514)55.6 for the
six n protons andJnn(J514)56.4 for the sixn neutrons.
Thus each group of nucleons contributes approximately
equal amount of angular momentum~on an average! to the
J514 yrast state with the contribution of the neutrons in
82–126 shell being 20% larger than that of protons in
50–82 shell.

Table XX can be used similarly to determine, to a go
approximation, the relative contribution of then anda nucle-
ons to the angular momentum of an yrast state of any
formed nucleus projected from its NilssonIS within a major
shell. The SU~3!-like structure of the distributions of angula
momenta in theIS allows one to calculate, with relativ
ease, the separate contributions of the protons and neu
in a or n states to the total angular momentum of an yr
state.

B. Contribution of a nucleons to aB„E2:J\JÀ2… value

We next determine the relative contribution ofa and n
nucleons to aB(E2,J→J22) value for anE2 transition
between the statesuJi& and uJf& projected from the Nilsson
IS of a nucleus. TheB(E2,Ji→Jf) value is given by

B~E2,Ji→Jf !5
5

16p

~Jf iQeiJi !
2

2Ji11
, ~129!

which differs from Eq.~63! in the fact that the operatorQe
above is the electric quadrupole operator, whereas in
~63! we considered only the mass quadrupole operator.
operatorQe can be written as

Qe5epaQpa1enaQna1epnQpn1ennQnn . ~130!

Here, Qan(a) ~with a5p or n) are the mass quadrupo
operators for then(a) nucleons andean(a) their effective
charges. Because then nucleons in deformed nuclei ar
known to possess pseudo-SU~3! symmetry to a good ap
proximation, it is convenient to express the quadrupole

eratorsQpn and Qnn in terms of the pseudo operatorsQpñ

andQnñ with Qan51.2Qañ @28#. We rewrite Eq.~130! as

Qe5epaQpa1enaQna1epn1.2Qpñ1enn1.2Qnñ .
~131!

The reduced matrix element is written as
03431
n

e
e

e-
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e

-

~Jf iQeiJi !5epa~Jf iQpaiJi !1ena~Jf iQnaiJi !

11.2epn~Jf iQpñiJi !11.2enn~Jf iQnñiJi !.

~132!

The contribution of just the protons in thea state is contained
in (Jf iQpaiJi). Similar expressions give the contributions
other groups of nucleons to the total reduced matrix elem

1. Effective charges

Calculation of the reduced electric quadrupole matrix
ements requires values for the effective chargesepn , enn ,
epa , and ena , all of which may be considered to be fre
parameters. As a result of a previous study@3# of the
B(E2:01

1→21
1) systematics throughout the periodic tab

within the framework of the single-shell asymptotic Nilsso
model, we recommended that the chargesep5@1
1(Z/A)#e anden52.1(Z/A)e be used. We follow this rec-
ommendation and takeepn5epa5@11(Z/A)#e and enn
5ena52.1(Z/A)e.

2. Evaluation of the reduced matrix elements

We now discuss how the four terms contained in E
~132! are calculated. Consider first the evaluation of the m
trix element (Jf iQpaiJi). We begin by expressing the pro
jected yrast stateuJ& of the nucleus in terms of the angula
momentaJpa of the a protons andJs of spectator nucleons
We write

uJ&5(
Js

(
Jpa

A@J:JpaJs#u@Jpa^ Js#J&, ~133!

where

A@J:Jpa ,Js#5NJCJpa
~ j pa ,Npa!CJs

@ls5l2lpa,0#

3~Jpa Js 0 0uJ 0! ~134!

and

NJ5F(
Jpa

(
Js

uCJpa
~ j pa ,Npa!CJs

@ls5l2lpa,0#

3~JpaJs00uJ0!u2G21/2

. ~135!

The uCJpa
( j pa ,Npa)u2 values are listed in Table II, and th

uCJs
@ls,0#u2 values can be calculated using Eq.~3!. Using

Eq. ~133!, the desired reduced matrix element can be
pressed as

~Jf iQpaiJi !5(
Jpa8

(
Js8

(
Jpa

(
Js

A@Jf ,Jpa8 Js8#A@Ji ,JpaJs#

3^@Jpa8 ^ Js8#Jf iQpai@Jpa^ Js#Ji&. ~136!

The reduced matrix element on the right-hand side of the
~136! is given by
7-34
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^@Jpa8 ^ Js8#Jf iQpai@Jpa^ Js#Ji&

5@~2Jf11!~2Ji11!#1/2dJ
s8Js

3F ~2 !Jpa8 1Js81Ji12H Jpa Js Ji

Jf 2 Jpa8 J
3^Jpa8 iQpaiJpa&G . ~137!

The reduced matrix elements^Jpa8 iQpaiJpa& are tabulated in
Table XIII. All other quantities in Eqs.~136! and ~137! are
known; hence, one can calculate the matrix elem
(Jf iQpaiJi) and, therefore, the contribution ofa protons to
the total reducedE2 matrix element (Jf iQeiJi). The re-
duced matrix elements involving neutrons in thea state can
be obtained in a similar manner.

Just as for the a nucleons, the matrix element

(Jf iQañiJi) for then nucleons can be expressed in terms

(Jan8 iQañiJan). Because of pseudo-SU~3! symmetry, the lat-
ter matrix elements can be approximated by the matrix

ments between the statesu@lañ ,mañ#K50,Jan& belonging to
the K50 band of the pseudo-SU~3! representation

@lañ ,mañ# appropriate for the given number of valencen
nucleons. Hence, we may use

~Jan8 iQañiJan!

'~@lañ ,m̃an#K50,Jan8 iQañi@lañ ,mañ#K50,Jan!.

~138!

If an SU~3! representation@l,m# hasl@m, one expects tha

~@l,m#K50,J8iQi@l,m#K50,J!

'~@leff5l1m,0#J8iQi@leff5l1m,0#J!. ~139!

We have explicitly verified that this approximation holds f
the @l,2# representation. In view of this result, we write

~Jan8 iQañiJan!

'~@lan
eff̃ ,0#K50,Jan8 iQañi~@lan

eff̃ ,0]K50,Jan). ~140!

The values oflan
eff̃ 5lañ1mañ are listed in Table XX. For a

representation@l,0#, the values of the matrix elemen
(@l,0#K50,J8iQi@l,0#K50,J) are given by Eq.~70!. We

use the same expression to calculate (Jan8 iQañiJan) with

lan
eff̃ in the place ofl.

C. Qt„J… values for 70
160Yb90, 70

162Yb92, 70
164Yb94, and 70

166Yb96

We use the results obtained in Sec. VII B to calculate
contributions of protons and neutrons in bothn anda states
to theB(E2:J→J22) values for transitions within the yras
bands of the Yb isotopes~with A5160–166! projected from
their NilssonIS’s. For some of these nuclei, theB(E2) val-
03431
t
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ues or equivalently the transition momentsQt(J) have been
measured up toJ;36. We carry out the calculations in th
configuration space in which the valence protons and n
trons are confined to the 50–82 and 82–126 major she
respectively.

Consider the nucleus70
160Yb90 with Np520 valence pro-

tons andNn58 valence neutrons. From Table XX, we obta
Npn512, Npa58, Nnn56, andNna52 in the NilssonIS.
Note thatj pa50h11/2 and j na50i 13/2. The ranges of angula
momenta contained in thisIS are Jpn50,2,4, . . . ,12, Jpa

50,2,4, . . . ,16,Jnn50,2,4, . . . ,18, andJna50,2,4, . . . ,12.
The yrast band of160Yb projected from thisIS contains
even angular momenta up toJmax558. Thus the equivalen
total SU~3! representation for the NilssonIS of 160Yb is
@58,0#. If we assume that thea nucleons are coupled to ay
50 state, the yrast band will terminate at a smallerJmax

5Jn max5Jpn max1Jnn max512118530, and the equiva-
lent SU~3! representation for the yrast band will be@30,0#.

When thea protons are contributing to the matrix ele
ment, thea neutrons and all then nucleons are spectators
Their effectivels value isls5l2lpa . Using l558 and
lpa5lpa eq516 ~see theleq value in Table IV for eight
protons in the 0h11/2 orbit!, we getls542. With this infor-
mation, the reduced matrix elements (Jf iQpaiJi) can be cal-
culated for160Yb using Eqs.~136! and~137!. The remaining
reduced matrix elements (Jf iQnaiJi), (Jf iQpniJi), and
(Jf iQnniJi) can be similarly calculated by identifying in
each case the group of spectator nucleons. For exampl
the calculation of (Jf iQnaiJi), the protons in thea states and
both protons and neutrons in then states are spectator nucle
ons. The spectatorls value is, therefore,ls5ls2lna558
212546.

For the ground-state yrast band in160Yb, the calculated
values for each of the four terms contained in Eq.~132! are
listed in Table XXI. We note that the contribution of eac
group of nucleons to the reduced matrix element is appro
mately proportional to the intrinsic quadrupole moment
the group. For example,

~Jf iQpñiJi !

~Jf iQpãiJi !
'

Q0~Npn!

Q0~Npa!
'

2312

14.55
'1.65, ~141!

which is quite reasonable for nucleons sharing the sa
mean field.

In 160Yb, when thea nucleons are not forced to couple
a y50 state, botha andn nucleons contribute to the reduce
matrix elements over the entire projected band up toJ558,
with the dominant contribution coming from then nucleons.
When thea nucleons are forced to couple to ay50 state, not
only are the contributions from thea nucleons zero through
out but also those from then nucleons end abruptly atJ
530.

We calculated the reduced electric quadrupole matrix
ements (Jf uuQeuuJi) using the matrix elements (Jf uuQabuuJi)
and the standard effective charges discussed in Sec. VII
The transition moment is given by
7-35



ic
t

K. H. BHATT, S. KAHANE, AND S. RAMAN PHYSICAL REVIEW C 61 034317
TABLE XXI. Individual components~in units of a2) of the total reduced matrix element of the electr
quadrupole operator@see Eq.~134! with Jf replaced byJ andJi by J22]. The listed values are for the yras
band in 160Yb which extends up toJ558. The effective charges used in Eq.~134! to calculate theQt(J)
values~in units of e b) areepn5epa51.44e andenn5ena50.92e.
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Qt~J!5
1

~J200uJ22 0!

~J22uuQeuuJ!

A2J11
, ~142!

The Qt(J) values for 160Yb calculated using Eq.~142! are
listed in Table XXI. We have carried out similar calculatio
of theQt(J) values for the yrast bands in70

162Yb92, 70
164Yb94,

and 70
166Yb96 also. The results are summarized in Fig. 17. T

calculated values are shown as full curves and are then
malized~see the dashed curves! to the most accurately dete
minedQt(J) value for each isotope, which isQt(J52). The
normalization factor is 0.86 for160Yb. These factors are
much closer to unity for the other three Yb isotopes. T
calculatedQt(J) trends do not resemble the available expe
mental data@38–40# closely for 160Yb and 162Yb, but they
do so for 164Yb and 166Yb. The pseudo-SU~3! model values,
obtained by assuming thatypa5yna50, are also shown in
Fig. 17. As a function ofJ, they decrease much faster tha
the projected values.

TheQt(J) trend calculated for the projected band can a
be described equally well@see the solid and dashed lines
Fig. 18~a!# by the trend obtained for the band belonging
the SU~3! representation@l5Jmax,0#. For 160Yb, Jmax
558. That is one of the surprising results to emerge fr
this work.

The Qt(J) trend for 160Yb, calculated@40# using the
cranked Hartree-Fock-Bogoliubov~HFB! model, is shown in
Fig. 18~b!. There is a significant drop atJ522, whereas the
data seem to suggest an increase at thisJ value. Both the
projected and cranked HFB trends are smooth. On the o
hand, the trend predicted@41# by the fermion dynamic sym
metry model~with suitable extensions! has some structure
03431
e
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e
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as shown in Fig. 18~b!. A question for the experimentalists i
whether the overall trend of theQt(J) values is relatively
smooth as it is in the164Yb case or jagged as it is in th
160Yb case@see Figs. 17~c! and 17~a!#. If the trend is indeed
jagged, it would pose a serious problem to existing theor

The Qt(J) values calculated for the yrast band project
from a singleIS show a slowly decreasing trend withJ.
How would this trend be interpreted in the cranking model
which there is a differentIS for eachJ? In that model, the
Qt(J) values are given by

Qt~crank,J!5
6

A15p
Zer0

2A2/3b2~110.36b2!cos~30 °1g!,

~143!

where b2 and g are parameters of deformation. Consid
160Yb in which the measurements extend up toJ534. The
calculated projectedQt(J) values~see Table XXI! of Qt(J
52)55.2e b and Qt(J534)54.4e b would then corre-
spond tog(J52)53° and g(J534)516° if we takeb2
50.222 and use Eq.~143!. The g value at theJ558 termi-
nation point would be 44.6 °. In other words, for a fixe
value ofb2, the cranking model would interpret the decrea
of 0.8e b in theQt(J) value as a consequence of an increa
in g by 29 °. In our projection calculation, the intrinsic sta
does not undergo such a change of shape.

D. Qt(J) values for 66
156Dy90 and 66

158Dy92

The Qt(J) values calculated for the yrast states up toJ
540 projected from the single-shell asymptotic NilssonIS’s
7-36
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FIG. 17. Measured transition
moments Qt(J) for the yrast
bands in four ytterbium isotope
compared with calculated value
using the effective charges give
in Sec. VII B 1. The projected val-
ues~solid lines! are normalized to
the measuredQt(J52) in each
case and redrawn as dashed line
The pseudo-SU~3! model values
are normalized in a similar way
See related discussion in Se
VII C.
d

fo ea-
d

of 156Dy and 158Dy are shown in Fig. 19. The projecte
values are normalized to the measuredQt(J52) values. The
normalization factors are 0.937 and 0.986, respectively,
156Dy and 158Dy. For these isotopes, if thea nucleons are
assumed to be inert as a result of pairing, theQt(J) values
03431
r

for the yrast bands are given by the pseudo-SU~3! represen-
tations @leff,0#5@32,0# and @38,0#, respectively. TheQt(J)
trends for these representations, also normalized to the m
suredQt(J52) values, are shown in Fig. 19 by the dotte
lines. The existing data@42# for states with spins up toJ
7-37
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FIG. 18. ~a! Normalized tran-
sition momentsQt(J) for the pro-
jected yrast bands in160Yb com-
pared with the corresponding
values for the equivalent SU~3!
@leq558,0# band. ~b! Predictions
of the cranked HFB and fermion
dynamic symmetry models. The
latter values are normalized to th
measuredQt(J52). See related
discussion in Sec. VII C.
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524 in 156Dy and up toJ526 in 158Dy favor the pseudo-
SU~3! descriptions.

E. Transition matrix elements in 90
232Th142, 90

234U144,
and 90

236U146

Ower et al. @43# have deduced theE2 transition matrix
elements for the yrast band up toJ528 in 232Th. For this
nucleus, the number of valance nucleons and their distr
tion in the n and a states are@Np58, Npn54, and Npa
54 ~in the 0i 13/2 state!# and @Nn516, Nnn516, andNna
54 ~in the 0j 15/2 state!#. The appropriate SU~3! @l,0# values
for these particle numbers arelpn514, lnn524, lpa520,
andlna530. The yrast band projected from the Nilsson
trinsic state extends up toJmax588. We use the formulation
given in Sec. VII to calculate the total reduced matrix e
ment given by Eq.~132! for each combination ofJf andJi .
These calculated values are related to the matrix elem
(J12uuE2uuJ) deduced by Oweret al. @43# from their ex-
periment via

~J12uuQeuuJ!5A16p

5
~J12uuE2uuJ!. ~144!

The measured and calculated values, the latter normalize
03431
u-
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-

ts

to

the (2uuQeuu0) value, are shown in Fig. 20~a!. Also shown in
this figure are the rotor model and the pseudo-SU~3! model
values. Experimental data for theJ.24 states are needed t
distinguish between different model predictions.

Oweret al. @43# also give the reducedE2 matrix elements
for 234U and 236U from their measurements. The comparis
between theory and experiment for these two cases is sh
in Fig. 20~b! and Fig. 20~c!, respectively. In236U, the ex-
perimental values are larger than both the rotor model
projected model values forJ.18. Thus the behavior of236U
is apparently different from the behaviors of232Th and 234U.

VIII. SUMMARY AND CONCLUSIONS

We have examined, for the first time, in a systematic w
the quadrupole collectivity of nucleons in the abnorm
parity single-particle statesj a5 9

2 , 11
2 , 13

2 , and 15
2 in the Nils-

son intrinsic states of deformed nuclei. We have used so
well-known criteria to describe the collectivity ofa nucleons.
This property is not amenable to analytical study by gro
theory.

We have calculated the collective properties of the intr
sic states of these abnormal-parity nucleons and of the s
with angular momentaJ projected from each of these intrin
sic states. The properties studied include~i! the distribution
7-38



s
s
n

s.

.
c.

COLLECTIVE PROPERTIES OF NUCLEONS IN THE . . . PHYSICAL REVIEW C 61 034317
FIG. 19. Measured transition
moments Qt(J) for the yrast
bands in two dysprosium isotope
compared with calculated value
using the effective charges give
in Sec. VII B 1. The projected val-
ues~solid lines! are normalized to
the measuredQt(J52) in each
case and redrawn as dashed line
The pseudo-SU~3! model values
are normalized in a similar way
See related discussion in Se
VII D.
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of angular momenta contained in the prolate Nilsson intrin
state of different number ofa particles and~ii ! the relation-
ship between the quadrupole moment of the intrinsic s
and the maximum angular momentum contained in it. T
numerical description of the collectivity of the intrinsic stat
of a nucleons is put in some perspective by comparing
with the standard quadrupole collectivity of the intrins
states of nucleons having SU~3! symmetry. This comparison
is instructive because thej a

Na configuration space available t
the a nucleons cannot support any SU~3! symmetry at the
microscopic level and yet the distribution of angular m
menta in the intrinsic states ofa nucleons was found to b
very similar to the distribution of angular momenta in
intrinsic state with SU~3! symmetry.

An interesting feature of the quadrupole collectivity of t
intrinsic states ofa nucleons brought out by analogy wit
that of an SU~3! intrinsic state is the linear relation betwee
the particle-hole averaged quadrupole moment^Qph&ave and
the maximum angular momentumJmax contained in an axi-
ally symmetric j N intrinsic state. The result,^Q ph&
'0.8Jmax, appears to be a new relation not available in
literature. The relationship between the quadrupole mom
Q0 of an axially symmetric SU~3! intrinsic state and theJmax
contained in it isQ052Jmax. ~Both ^Qph& and Q0 are in
03431
c

te
s

it
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e
nt

units of the size parametera2 of the harmonic oscillator
wave functions used in their calculation.! An inference from
the above results is that thej a

Na intrinsic state is less collec
tive than an SU~3! intrinsic state with the sameJmax by a
factor of about 2.5.

In the next stage, we considered the quadrupole collec
ity of the states of definiteJ projected from the prolatej a

N

Nilsson intrinsic state. This collectivity is characterize
quatitatively by the complete set of the matrix eleme
(Jf uuQuuJi) between all the projected states. The calculat
of these matrix elements with high accuracy involved a m
jor computational effort. We have listed all these matrix
ements for the states projected from the variousj a

N intrinsic
states. Although the matrix elements (Jf uuQuuJi) contain all
the information about collectivity, a more familiar display o
this collectivity is also presented in the form of~i! the trend
of the B(E2,J→J22) vs J values for transitions within the
projected band and~ii ! the variation of the transition mo
ments Qt(J) and the spectroscopic quadrupole mome
Q(J) of the projected states. Once again the variations
these quantities for the projecteda states are compared wit
the variations of the same quantities for the states with SU~3!
and SO~6! symmetry. This comparison leads to a surprisi
7-39
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K. H. BHATT, S. KAHANE, AND S. RAMAN PHYSICAL REVIEW C 61 034317
FIG. 20. Measured reduced matrix elements (J12uuQeuuJ) for
232Th, 234U, and 236U compared with calculated values using t
effective charges given in Sec. VII B 1. In each case, the projec
rotor, and pseudo-SU~3! model values are normalized to the me
sured (2uuQeuu0) value for that particular isotope. The normaliz
tion factorsNnorm for the projected matrix elements are listed in~a!,
~b!, and~c!. See related discussion in Sec. VII E.
03431
result that the trend of theB(E2,J→J22) vs J values for
the projected states ismorecollective than that of the equiva
lent SU~3! or SO~6! representations. In addition, we find th
projected trend over about34 of the band can be well de
scribed by the trend obtained for a single SU~3! band of
representation@lBE2,0#.

Up to this point we described the collectivity of differen
numbers of particles occupying only the abnormal-parity
bits in the Nilsson intrinsic states. In the next step, we de
mined the specific coupling between the collective projec
proton and neutron states induced by the mean field to
duce the yrast band of the proton-neutron system ofa nucle-
ons, projected from their combined~product! intrinsic states.
The B(E2,J→J22) trend for thepn coupled band ofa
nucleons is more SU~3!-like than the trends for the indi
vidual groups ofa protons ora neutrons.

We finally considered thea nucleons sharing the mea
field with other valence nucleons in then single-particle
states. We obtained the wave functions of the yrast state
even-even deformed nuclei in terms of the quadrupole c
lective states of then and a nucleons. The transition mo
mentsQt for the members of the yrast band, calculated w
these projected wave functions, are in good agreement
the measured values. The cranking model achieves sim
results without using wave functions for the specific yra
states of the nucleus.

In a previous work@4#, we showed that the distribution o
the total angular momentum in the asymptotic single-sh
Nilsson IS of 238U is remarkably close, over 27 orders o
magnitude, to the corresponding one obtained for the SU~3!
representation@l5Jmax,0#, whereJmax is the maximum an-
gular momentum contained in the intrinsic state. In th
work, we showed that theB(E2,J→J22) trend for the pro-
jected yrast band of160Yb is also surprisingly SU~3!-like.
Thus, although the SU~3! symmetry is absent at the micro
scopic level, SU~3!-like features keep cropping up at th
macroscopic level. We can think of two reasons:~i! The
prolate intrinsic states ofa nucleons considered here and t
corresponding SU~3! intrinsic states both have the maximu
quadrupole moment within their respective configurati
spaces and~ii ! the same projection procedure is used to o
tain the states of definite angular momenta from both
these intrinsic states.
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