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In the first part of this work, we study the quadrupole collective propertiés,ef2, 4, 6, and 8 nucleons
occupying the abnormal-parity intruder single-particle states with high angular momen % % and
%. This study is essential for a detailed understanding of the contribution made by these nucleons to the
qguadrupole collectivity of the yrast states of deformed nuclei. The properties studied ifigltaedistribution
of the angular momentacontained in the intrinsic state df, particles in thdjk,) states(ii) the relationship
between the quadrupole mome®g(j,,N,) of such an intrinsic state and the maximum angular momentum
Jmax CONtained in it,(iii) the complete set of reduced quadrupole matrix elemeHt$||J) for transitions
between all the statgs) and|J’) projected from the intrinsic statély) the B(E2:J—J—2) values,(v) the
transition moment§),(J), and(vi) the spectroscopic quadrupole mom&it)). We compare these properties
with similar properties of an intrinsic state having @Usymmetry which contains the same set of angular
momenta as contained in the intrinsic state of a particular number of nucleons in a gpeaiiifiguration. In
the second part, we use the input from the first part to study the collective properties of the coupled system of
protons and neutrons in abnormal-parity states. We show that tl@)-8ké features observed for the indi-
vidual groups of abnormal-parity nucleons become stronger for the coupled system. Finally, in the third part,
we consider the yrast bands of well-deformed nuclei projected from their Nilsson intrinsic states of valence
nucleons in a major shell. We specify the structure of the wave function of each projected yrakl)state
terms of the nucleons in both normal- and abnormal-parity states. These wave functions can be used to
determine the individual contributions of the nucleons in normal- and abnormal-parity states to any specific
property of the yrast state. In particular, we calculate the transition mor@gad} of the entire yrast band of
even-even'®0-166yp 156158y 232TH 234 and 238U projected from their respective Nilsson intrinsic states.

PACS numbgs): 21.60.Fw, 21.60.Cs, 27.76q, 27.90+b

[. INTRODUCTION deformed nucleuén the rare-earth or actinide regionthea
nucleons contribute about 25% to the total intrinsic quadru-

In a shell-model description of heavy, deformed nuclei,pole moment.
the configuration space for the valence protons and neutrons In Ref. [4], we posed the next questions: How much do
consists of the single-particle stat@gth angular momentum the a nucleons contribute to the total angular momentlim
i) in major shells appropriate to the proton and neutron numé¢the unit is#, which is usually omittedof an yrast state of a
bers. These states in the 28—50, 50—-82, 82—-126, and 12&leformed nucleus, and what are the relative contributions of
184 major shells are listed in Table I. Each shell contains dhe a and n nucleons? To answer these questions, we as-
number of stategj,) with the same parity—the so-called sumed that the structure of the yrast band is well approxi-
normal-parity (n) states—and an intruder stafg,) with a  mated by the states of definifeprojected from the asymp-
parity opposite to that of tha states. This intruder state is totically deformed NilssonZS. We then showed that
called the abnormal-paritfa) state. Thea states in the four although thea nucleons contribute only-25% to the intrin-
major shells listed in Table | havg=2, ¥, 4, and 3.

In Refs.[1] and [2], we showed that the trend of the = TABLE I. List of single-particle states in four major shells.
experimentaIB(EZ:Of—>21+) values for even-even nuclei Pairs of states within brackets are nearly degenerate. They form
can be quantitatively understood by assuming that the correxseudo-spin-orbit doublets. In each major shell, the state with the
sponding intrinsic statéabbreviated agS) of the valence hiahesti value is the abnormal-paritia) state.
particles has a mass quadrupole moment close to the may Major

Single-particle states

mum value that it can have in a major shell. In R&f, we shell . states a state
asked the following question: What is the contribution of the

nucleons in the statesloosely referred to aa nucleon$ to 28-50 1p1/2,(1p3/2,0f5/2) 0g9/9
the total quadrupole moment of thES of a deformed  50-82 (2s1/2,1d3/2),(1d52,09+/2) 0hy1/2
nucleus? We showed that if the asymptotically deformec 82-126 2p1/2,(2p3/2,1f5/2),(1f7/2,0hg/9) 0iy3/9

NilssonZS within the configuration space of a major shell is 126-184 (3sy/3,2d3/2),(2d5/2,197/2),(199/2,0i11/2) Od1s/2
assumed to be a good approximation to #& of a well-

0556-2813/2000/68)/03431741)/$15.00 61034317-1 ©2000 The American Physical Society



K. H. BHATT, S. KAHANE, AND S. RAMAN PHYSICAL REVIEW C61 034317

sic quadrupole moment, their contribution to the angular mosome properties of thES F«(j,,N,) When it is subjected to

mentum of an yrast state is as large as that ofithecleons.  perturbations resulting from the pairing interaction and from
Starting with Elliott[5,6], several authors have shown that ihe so-called B mixing caused by the deformation of the

the SU3) symmetry is, in one form or another, ideally suited jean field. These two are the most important of the pertur-

for describing quadrupole collectivity. In theS of a nucleus, | 5tions of thisZS in the configuration space of one major
the n nucleons are known to possess good pseud®3SU shell.

symmetry{7]. On the other hand, the numbi, of a nucle- In Sec. V, we move on to determine the collective prop-

ons in the samé&s are in aj 2‘3 configuration, which lacks  giies of the yrast band projected from t88 Fi(j.,N.).
SU(3) symmetry. In fact, if the pairing interaction is domi- \ye first calculate, with high accuracy, the complete set of
nant, the symmetry appropriate for tﬂ@a configuration is  reduced quadrupole matrix elementk||Q||J;) for all pos-
the symplectic Sp(R,+1) symmetry{8,9], which gives rise  sible transitions between the statgk) of the projected
to bands of states that can be labeled by angular mondentapand. The numerical accuracy of the calculated reduced ma-
and seniorityv. The properties of thigaga states with definite trix elements is tested in Sec. VC by a consistency check.
seniority have been well studied in Reff8,9]. The symplec- This check is then used as a tool for comparing the scaling
tic symmetry is, however, broken to a considerable extent bypehavior of the quadrupole collectivity of differed§’s. In
the strong deformation of the mean field of the nucleus.  Sec. VD, we consider the relationship betweenBi{&2:2
Within the framework of the deformed configuration- —0) value (calculated for the projected,=2 andJ,=0
mixed shell modef10,11], the dynamic structure of the yrast state and the square of the total quadrupole moment of the
band should be determined largely by the stiesj;J,) and 7S, This consideration is followed in Sec. VE by a discus-
|proj;J,) of then anda nucleons projected from their respec- sion of the trend of th8(E2:J—J—2) values for the entire
tive ZS's. The state$proj;J,) projected from the asymptotic band projected from each of tH&S's. We present compari-
Nilsson ZS's also have pseudo-38) symmetry, and their  gons of these trends for the bands projected from #§(

collective properties have been studied wdl]. By con- 1508 e ) )
trast, despite their obvious importance, the collective proper2nd (z)” ZS's with trends obtained for bands belonging to

ties of the statefproj;J,) have received only scant attention SU(3) representations. _
until now primarily because these states do not possess any !N cranking model$14J, it is a common practice to regard
symmetry. In this work, we have systematically examinedthe variation withJ of the so-called transition mome@x(J)

(in a numerical fashionthe quadrupole collective properties derived from theB(E2:J—J—2) values as an indicator of
of the statesproj;d,) of the j:a configurations projected the changein the deformation of the crankefs with rota-

! . . tional frequency. On the other hand, tQgJ) values calcu-
from the corresponding prola&S designated a$y(j,,N,). .
We have considered the states @, 0Ny, Oiqarp, and lated here for the stated) projected from thesameZS also

0j 15 andN,=2, 4, 6, and 8 particles. The collective prop- vary with J. This variation is displayed in Sec. VF. The

. . variation of the spectroscopic quadrupole mont@td) with
erties of these states are compared with those of the IOV\ﬁ of the projected states is illustrated in Sec. VG. These

I%/m(% Sftle)ssba%]g;zgst?ot:;eosl?grrosgnrﬁées(isr%ﬂasrﬁg)s' ﬁngn comparisons should prove helpful in understanding the rela-
plnjgec I ywe consider the quadrupole collectivit’y of tz.e tionships between the cranking model and projection model
IS Fu(] . N, ). One aspect of?his coﬁectivit is the distri- predictions of various physical properties.
kUa.Na)- P Y In some algebraic modeld5-17, rotationlike quadru-

bution of an_gular mom_entg C‘?”‘?‘”ed in 61, In Sec. Il A, . pole collectivity is obtained not only with SB) symmetry
w”e summartlz_e;Sov;:thl_s d'llstrlbut(ljo? IS cazlgulfge(;l\ f(())r gn Xyt also with S@) symmetry. In Sec. V H, we demonstrate
ally symmetric k(Ja,Na) and for an k(0] be- that the trend of the projecteB(E2:J—J—2) values is

Ionglglr;gzts(? ar]l I\?L(B) rtgﬁres.ené{iftflorﬁ)\é)]. l:l)nt Sec. |l BI,' t_?le more collective than the corresponding trend obtained for the
prolate~5's of N, particles in diiferena oroits aré expliCitly v aqt nand containing the same set of angular momenta be-

specified, and the distributions of angular momenta are act onging to a representation of 6 symmetry. In the last

?”g (t:_alcula]Eed. Wle show in tSeps.ﬂg anfd_ I ?t:]hat the Olls'part of Sec. V, we compare the collective properties of the
ributions ot anguiar momenta in S otjustineapar — panq of projected states with properties of the band of states

ticles are similar to the distribution of angular momenta in N . . . .
the ZS's belonging to appropriate SB) representations. A °©! tN€J,* configuration belonging to the Sp(2+1) sym-

quantitative measure of this similarity is obtained in Sec.Metry with seniorites)=0, 2, and 4.
Il E. Another aspect of the collectivity of thES is the rela- After studying the collective properties of the bardg)
tionship between its quadrupole moment and the maximurkrojected from the individualS's, we next con5|der. the si-
angular momentund,,,,, contained in it. This connection is multaneomi‘sZS of both protons €) and neutrons ) in the
examined in Sec. Il F. oo™ andj, 2" configurations, respectively. We show in Sec.
In Sec. Ill, we use the results of Sec. Il to obtain a mea-Vl how the requirement that these nucleons share the same
sure of the quadrupole collectivity of tH&S of N particles in ~ mean field induces a coupling between the projected states of
a large singlg- shell. We had used sud@S's in our previous  protons and neutrons—a coupling that determines the struc-
works [1,13] to reproduce the trend of the quadrupole mo-ture of the yrast band of thev system. As an example, we
ments ofN particles in a major shell. consider the yrast band resulting from protons in tig,@
In Sec. IV, we examine quantitatively the changes instate and neutrons in thei @, state. Such configurations

034317-2



COLLECTIVE PROPERTIES OF NUCLEONS IN TH. .. PHYSICAL REVIEW C 61 034317

occur in the rare-earth nuclei. We calculate BE2:J—J mentum along the same axis with the sum running over the

—2), Q:(J), andQ(J) values for the coupled projected band individual k; of different occupied orbits labeled Gy The

and compare them with the rotor and @Umodel values. labela distinguishes different stateg, with the same value

This exercise explores the enhancement of quadrupole cobf k. The statesy| with angular momentaare the spherical

lectivity in the coupledrv system ofa nucleons. states belonging to the major shell. The expansion coeffi-
In Sec. VII, we bring then and a nucleons together t0 cientsc{’, depend, in general, on the deformation of the po-

share the common mean field. We determine the structure @fntjal répresenting the mean field of the nucleus.

the yrast band of the nucleus in terms of the stalgs and In an axially symmetric potential, the stateég and ¢*

[Ja) of n and a nucleons projected from their respective haye the same energy. In the lowest-enefgis (considered

IS's. We then calculate the relative contributionsddnda i this papey of an even number of valence particles, if a

nucleons to the tota) of an yrast state and to t&(E2:J  gate ¢ is occupied,¢®, will also be occupied. Conse-
—J—2) values. The procedure is illustrated by conS|der|ngquem|y K=0 for suchZSs.

the nuclei 150" 166yp 15615y = 232Th 234y and 23%U. A
final discussion of the main results follows in Sec. VIII. A
preliminary account of this work was presenfdd] at the
international conference held to commemorate the 40th an-

niversary of the introduction of S3) symmetry to describe _ ]

collective nuclear phenomena. }-K_; CokWPk- 2

TheZS Fy is deformed and can be expanded in states of
definite angular momentd;, contained in it as

The probabilityP,(J) that 7« contains an angular momen-

Il. COLLECTIVITY OF THE INTRINSIC STATE tum J (in units of 4) is given by|C,|%. The calculation of
OF ABNORMAL-PARITY NUCLEONS this quantity for a giverZS is described in Sec. Il B of Ref.
A. Distribution of angular momenta [4] (see also Ref.19]). The probability distributiorP,(J) is

a measure of the quadrupole collectivity; that is, a more col-

The ZS Tk of N valgnce partiples, generf'ﬂte?i by a de-|octive 7S will give rise to a broader distribution within the
formed axially symmetric mean-field potential, is a Slaterggme range of values.

determinant of the deformed single-particle states An axially symmetricZS of an even-even nucleus with

symmetry about the midplane contains only states with even
Q_E . 1 values of angular momen{&0] up to the maximum angular
b= J. Cjktbk 1) momentum possible within the model valence space. If an
7S belongs to an S(B) representation\,0], it hasK=0,
occupied by the particles. Here=(j,/) is the projection of and it contains states with=0,2,4 ... ,Jnax, WhereJn
the single-particle angular momentum along the symmetry=\. The probabilityP([\,0];J) that the SW3) ZS contains
axis, andk =3 k; is the projection of the total angular mo- an angular momenturis given by[21]

—1 f J=0
xt1 o T

S 2_
PL(IA01:9)=|Cax(1,0) D) (3t ) @
(23T 3D =3+3) .. . FI—D(nFa+ 1y or =L

The distributionP ([ \,0];J) will be referred to as the S@3) B. Determinantal intrinsic states
distribution.

. _ Let gz/f(a with angular momentaj, be the so-called
The calculation ofP,([\,x];J) for the more general tri- a . . .
axial ZS's of SU(3) representation§\, ] is described in abnormal-parity intruder states in a major shell. There is only

Sec. lll of Ref.[4]. The K=0 band contains states with "€ statap:(f; of a givenk, in a major shell, and the axially
=0,2,4...,(\+u). We found in Ref[4] thatP,([\,x];J)  symmetric quadrupole deformation cannot mix that state

normalized to unity for theK=0 band is nearly indistin- with other states://f(” of normal parity in the same shell.

guishable fromP4([",0];J) for the axially symmetric rep- Hence, the deformed statels, of abnormal parity are just
resentatiof \’,0], where\’ =\ + u andA> w. For this rea- ’ - o party M

a _ )
son, we use in this paper the simpler SUdistributions the states(,bka— ‘ﬂkZ'
P1([\,0];J) for comparison with the distributions In anZS of N valence particles in a major shell, i, be
P1l(ja,Ng);J], which are discussed in the next section.  the number of particles which occupy the Sta‘@é: ¢|l(a
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0.40 |- — @ 4
R i”’ _=812 17T FIG. 1. The dots and connect-
gz o%r “ 70 ing solid line show the probability
£ 020 1L distribution P,=|C|? [see Eq.
g L (4)] that theZS Fi(ja,Na=2) of
0.10 i 1 L two particles contains a state with
L ] L definite angular momentudh The
0.00L . 1L two particles are in the single-
' : : b particle abnormal-parity ~ states
T 1 T | T [ 09gi2, Ohyyjp, Oiggp, @and §yspp.
0.40 L —_— (%)2 1 L _The smooth curve represents what
S SR Ag=12 | L is actually a distribution restricted
o 0.30 - e he=24 | L to even values ofl (see Fig. 1 of
= -. 1L Ref. [4]). The dotted and dashed
2 oosol 0 h 1 L curves show the probability distri-
- Y 1L butions obtained for the SB)
0.10 | 4 k7 ISs F[heqOl and Fi[Nave0l,
L (ey4 L respectively, which are defined in
X T i hs LS . . Secs. [IC and II D.
0 4 8 12 16 20 24 0 4 § 12 16 20 24
Angular momentum J(%) Angular momentum J ()

with differentk, values. We are interested in examining the

collective properties of th€S }'Ka(ja,Na) of just theN,

particles in the statfj ,) embedded within the tot&lS of N
particles. TheZS fKa(ja,Na) are deformed and can be ex-

panded in terms of the statf§,,N,);J.Ka) as

FiejaNa) =2 Co(JaNall(a,Na)iJaKa)- - (4)

(Hereafter, we drop the subscreptn J, andK, if there is no
confusion) The stateg(j,,N,);JK) can be projected from
F«(ja.Na) using the standard projection operafy};, [14]
and can be written as

Pk Fk(ia:Na)
Cik(ja:Na)

The distribution ofd in F¢(j,,N,) is then given by the prob-
abilities

|(ja,Na);J,K) = ©)

Pl[(jaaNa);J]:|CJK(javNa)|21 (6)

where

; Pal(ja,Na);J]=1. (7)

For N, particles in the stat§,), JmaxiS given by

Imax= (Na/2)[(2]a+1)=Nal; Na=0.2,...,3,+1.

8

In this work, we consider only the prolaf&'s of a nucleons

because most nuclei are prolate. In a prolate mean-field po-
tential, the orbits+ 1//La are degenerate, and their energies
a

increase withk, .

Consider only two particles in tha state. In the prolate
7S, these two particles will occupy the statg§ with k,=

+3. TheZS s a Slater determinant with the structure

Yol ¢ (1)

Fljmd=—| |
<t Ja2) W 2)

V2

The stateFy(ja,2) can be expanded in states of definitef
the two nucleons as

. 9

11
Fliad=2 \5(115_5

‘]O)|(ja12);\]>

=§ Cok(ja2(ja2);d). (10

The probabilities Pl (ja2):31=|Csk(j22)|?
=2|(jj 3—3]J0)|? are plotted as solid lines in Fig. 1 for the
0dgs2s Ohyqqp0, Oiqgp, and G 45 States. For two particles in
thesea states Jm.,—= 8, 10, 12, and 14, respectively.

If there are four particles in the higha state, the prolate
7S has the structure

Fr(jard)
Yol YL i) 1)
) \F W2 (2) ¥2,42)
S VAl yazy L Pe3)
Paa) Y4 w4 ¥e(4)
(1D
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FIG. 2. See caption for Fig. 1.
L I Considered here are the intrinsic
.40 | — %) 4 Lk — % states for four particles.
R Ag=20 4 L e Ag=24

> 030} 7777 z’ave=22 - L ==e=- Z’ave"‘30 -
§ i i
2 o020} L
& B L

0.10 | B

0.00 | . L

0 4 8 12 16 20 24
Angular momentum J(#) Angular momenturn J(#)

The )%, (&M%, (¥)% and &)* ZS's contain even val-  momenta contained in theskS's are J,,,=8, 16, 24, and

ues up tody,.=12, 16, 20, and 24, respectively. The prob- 32, respectively, for th¢,=3, 5, 3}, and 3 a particles.

abilities P1[ (j 1,4);J1=|Cjk(j 2,4)|? for the above fouZS's  The probabilitiesP[(j,,6);J] andP1[(j4,8);J] for the six-

are shown in Fig. 2. and eight-particleZS's are shown in Figs. 3 and 4, respec-
For sixa particles, theZS is a Slater determinant of par- fively. Theexactvalues ofPs[ (ja,Na);J] for ja=3. %, %,

ticles occupying the stategl® with k,==3%, +3, and=$. 2 andN,=2, 4, 6, 8 are given in Table Il.

For the @y, Ohy1j, Oiyap, and Qs, StatesJma= 12, 18, _ .

24, and 30, respectively. Finally, tH& of eighta particles is C. Equivalent SU(3) representations

a Slater determinant with the particles occupying the states The 7S Fi(j.,N,) has no SB8) symmetry. Neverthe-

1//{3 with k,=*3, =3, =3, and= . The maximum angular less, we define an SB) IS Fy[\40] to be equivalentto
a

Probability

FIG. 3. See caption for Fig. 1.
u | ' ' = Considered here are the intrinsic
- states for six particles.

0.40 |

0.30 -

0.20 -

Probability

0 4 8 12 16 20 24 0 4 8 12 16 20 24
Angular momentum J(%) Angular momentum J(h)
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FIG. 4. See caption for Fig. 1.
Considered here are the intrinsic
states for eight particles.

0.80

0.50

0.40

0.30

Probability

0.20

(¢)

T 1 11T 1T 17T T 1T 7 1T 7
T vt 1T 1T T F §F T 11

| I R B M s . L L =
0 4 8 12 16 20 24 0 4 8 12 16 20 24

Angular momentum J(#) Angular momentum J(%)

the ZS F«(ja,N,) if the former corresponds to an &)  obtained for the S(B) representatiofil ,,,0] is as close as
representatiofi\ ., 0], which contains the same set of angu- possible to the average value obtained fqi(j,,Na). The
lar momenta as contained in the latter. The SIB{EN ¢q0] values of\ . Obtained in this way are compared in Table Il
contains angular moment{ =0,2,4 . . . J}.,, WhereJ/,, ~ With the equivalent valueSeq= Jmax. In Figs. 1-4, we com-
=\eq- The stateFy(j,N,) contains angular momenta  pare the distribution®; ([N ave0];J) with P1[(ja,Na);J] for
=0,2,4 ... Jpax. These twaZS's will be equivalent if\g, thg variousZS's. For two particles, the ., values are sig-
= Jmax- nificantly larger than the\., values. Moreover, for these
With this definition, thex, values are 8, 10, 12, and 14, cases, the resemblandsee Fig. 1 of the distributions
respectively, for the )2, ()2, (¥)2, and &)? 7S’s. The Pl([?\a\,e(?];‘]) to the corresponding gllstr|but|ons
P1([A\eq0];J) distributions are calculated using E@) and P1[(a2):d] Is no better than that oy ([Aeq0];J). How-

. B . for all otheZS's with N,>2 (see Figs. 2-} there is a
lotted as dashed lines in Fig. 1. As one might expect, ther§" " L a
!OS little resemblance betvgeen th@l([)\eio]x])p and remarkable similarity between thé>;([A4e60];J) and

) T P4[(ja,n);J] distributions, thus implying similarity in col-
P4[(ja,2);J] distributions. Ie%:[ti(\J/ﬁy zilsg Pying y
For each of the four-particl&S's, we show in Fig. 2 the L _ .
. - ) Referring to Table lll, foN,=4, the\ ;. value is smaller
equivalent SUB) probabilitiesP1([A¢,0];J). For example, han th e in th f thep Lfor th
the A gq= Jmax Values are 12 and 24, respectively, for te%( than thek¢q value in the case of the;}” state, equal for the

114 13\4 1514
and (3)* ZS's. Compared to the case of two particles, there( 7)* state, and larger for thel{)* and (3)" states. For

5 now consgeable Ay between ()] a0 g s VAUES ot Loy srate ben ey
equivalent S3) distributions. . ! a~ y

. . . . . Fk(ia,Ng) ZS (as implied by then 4, value relative to that
For six and eight particlegsee Figs. 3 and)4the distri- KMa»"%a/, ave T .
butionsP;[ (j.,N.):J] are similar to but narrower than the of the equivalent S(B) state decreases with increasiNg.

equivalent SWB) distributions P;([A¢g0];J). In other _ S
words, the Fx(j.,N,) ZS's have a smaller probability of E. Overlaps of the Fy(ja,Na) and SUQ) intrinsic states

containing higher angular momentum stattat is, smaller Similar to Eq.(4), the SU3) ZS may be expanded as
guadrupole collectivity than the corresponding equivalent
SU(3) ZS's.

¥ FIN01= 2 Co M 019K, (13

D. Average SUQJ) representations

In Ref.[4], we considered thaverageSU(3) representa-  Although there is no connection between the stafé¢),
tion [\ 4,60] and determined ., by requiring that the aver- and|JK),, for this current discussion, we define the “over-
age value of)? lap” p of these two states as

(9%)=2 I3+ 1)[Cyol?, (12 p=(FANOlFc(iaNa))= 2 ClicliaNa)Corl[N.0). (14
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TABLE II. Probability P;[(j,,N,);J]1=|Cjk(ja,N,)|? of finding Jin Fi(ja.N,).

: .9 11 . __ 13 . __ 15 . 9 . 11 . 13 . __ 15
J Ja=3 Je=7%  Ja=7F Ja=3 Ja=3 Ja=7 Ja =7 Jo=7
N, = 2 particles Ny = 4 particles
0 1 1 1 1 43 163 1413 69899
5 3 7 g Fvi) 7431 30353 1931540
2 8 175 16 21 287 80576 334575 305665
33 858 31 1% 8 73303 1729748 3001
4 162 28 2016 5103 1575 93248 36537561 20324313
715 113 7017 ki) 1867 KIKEVE] TI8778580 SEOIEEES
6 32 100 4000 375 1924 54592 1507 4190875
561 74871 10655  D45i%7 7208 30036013
8 98 1225 250 6125 392 111212 572875 3513375
85T 3631 337365 1634478 30498876
10 441 11664 35721 11907 205824 8608059 10124544
7109 65T 357160 1062347  E31173% 102144380 26877703
12 4356 5929 147 100976 11109725 3664739375
55003 50437 38577 B407100 347300807 57873033518
14 20449 9856 5654 2071498
797160 3454485 74145 i d
12036 6534000 3255520125
16 TFIG775780 783683720306
2475 21181875
18 7750041 T88377753
20 3267 457743
T6776TTS TIRYTIOT0
22 21023145
24 2474329
Ng = 6 particles N, = 8 particles
0 17 1789 25489 1742679863 1 205 10469 171766229
13 74877 20030 1BEI0724880 5 3004 177905 007569730
2 16 8451 142360 14044678615 6 115550 263087 379837096
39 29303 FT5030 BT5T7304784 I ITIITT 1067430 FT03781365
4 788 0327555 289904987 32745290633 162 212427 3384513 1614335628
73T J07ATTIE TO7RIRII0E 145867174640 71 346616 11537430 F6T3BAR605
6 1280 2346219 116726812 54525937499 3 277960 3005256439 87423542104
10655 11440660 514957667 340087713616 110 1716000 14075200100 IBITO055505
8 6 70431 5062487 10620510263 1 62455 420424983 1933622928649
VI 705340 35750533 §3407946608 ™ TIDIT 3875053300 TII07850676205
10 2352 16587423 20386716 3287391435161 12028 690006 104350327032
To62347 134113615 31610416980840 1448655 14063435 JTTRIRI040005
12 12 521841 44256300 34024771862675 100375 159651998 21963208768
TEET7 350130 TT007TETB0  €343157000004%0 117630786  TI004077480 E38163773413
14 1743 2262788 196400772139 154 7765043 1132250049944
7307900 B410675078640 TIEL485 7684134843 7136600130515
2673 245862683 58880649949693 55 43050711 2398302482433
16 TAIR4I614608  BR7ORBEG70311700 0072076 O3ILERSITTS B11R06U55001175
9 1500532 28663099333 23199 1027275591368
18 1964315 TO037815070448 30056650 B7I607138406375
53757 88704996061 9801 106432830244
20 TI51308745  T32475334004720 7307797490 TIBBI4% 43800635
22 319440 19659224172445 323433 565402571448
TITTIBIRY  TIAIIREI0360710000 TIG7REI503780  T3003627 01845805
24 3993 50232218179 1331 11497672043
TI7BI077715  T78B005504082060 TESI7I306580  T103056644043765
26 3008559125 68251043432
28 1096577625 2312491896
7347740073 10900
30 289496493 2126696
32 265837
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TABLE lIl. Equivalent and average 39B) representations the Fx(ia Ny and SU3) Fr[\ae0] are very similar. It is

[AeqO0] @nd[Aae0] associated with th&S's of 2, 4, 6, and 8  thjs surprising similarity which was noted in an earlier paper
particles in thea states. The quantities., and\ . are defined in 4).

Secs. IIC and II D, respectively. The symb¢lE) and(J?)s refer We recall that for two particles the $8) distributions
to the average valudsee Eq.(1‘2)] calculated for theFx(ja,Ng) P1([Neq0];J) andP;([ X 4,60];J) looked very different from
and SU3) [Aae0]ZS's, respectively. the distributionsP;[(j,,2);J] (see Fig. 1 On the other
i = = hand, the corresponding probabilitieB,, and P,,. are
Nao Ja Aeq = Jmax Aave <‘12>N vV <J2>s ~1072 (see Table IY. Therefore, we hf'fve arbit?aerily de-
fined the overlapp aspoor if P~10"2 and asgood if P
2 2 8 12 4.90 4.90 <1073, According to this criterion, the overlaps of the
u 10 18 590 6 .Z-;K(]a,Na) IS's for 4, 6, and 8 particles in thg*, 3, and
13 12 2 6.94 6.93 7 a states with the appropriate $8) ZS's are very good
Z indeed(see Table IV.
5 14 32 7.94 8
F. Quadrupole moments of the intrinsic states
4 3 12 10 4.58 4.47 _
1 The mass quadrupole momeQy provides another mea-
'12; 16 16 5.66 i 5.66 sure of the collectivity of artS—a larger value ofQ, im-
- 20 22 6.71 6.63 plies more collectivity. In a particular model, the quadrupole
-125-’ 24 30 7174 7.75 moment is usually made up of two pari$) a calculated
quantity, which depends on the specific structure of the
6 9 12 g 4 4 modelZS and(ii_) its unit, which is determ_ined by th_e size pf
171 the wave functions used in the calculations. In this section,
v 18 14 5.20 5.29 we want to compare theQq(j,,N,) value of the
-123 24 20 6.34 6.32 IS Fk(ja,Na) with the Qg[N\¢q0] value of the equivalent
L 30 28 7.41 7.48 SUB) IS Fi[hegOl. _ o
The maximumJ contained in al¥Sis also an indicator of
° its collectivity. There should therefore be a relation between
8 2 8 4 3 283 Qo and Jnax- If the ZS belongs to a harmonic-oscillator
4 16 10 447 447 SU(3) representation),0], Qg is given byQq=2\ in units
.123 24 16 5.74 5.66 ofzthe harmonic oscillator size parameter, which we label as
_12§ 32 24 6.92 6.93 a“(N). The value ofJ,, contained in the representation

[N,0] is Jna=A. Hence, in this caseQg[\,0]=2Ja IN

units of a®(\). The factor d,., iS characteristic of the

. . SU(3) structure of theZS, and the unita®(\) reflects the

If this overlap is large, we may regard th.e gngular momen'geometric size of the underlying single-particle oscillator

tum structure of thepK(Ja’_Na) ZS to be similar to that of wave functions(We will establish this unit later.We pose

Itir;?ec?%s')l'aisl.e T\r/]eTrr]lZT(?tg(l:arlllu\r/r?kleeﬁs ;‘fdti?fisrgn?j]/?/g?ﬁjsarethe following question: Is there a simple relationship be-
) 3 . X ! -

(the number of componentsontained inFy(j,,N,) is also tweenQo(a:Na) andJmaxin the S Fi(Ja,Na) case also:

listed in the table. For a giveftx(j,,Na) ZS, the overlap 1. Comparison of Q(a,N,) and QyAe,0] values

with the average S(3) ZS is larger than with the equivalent .

one. Except for th€S's of two particles, the, values are The Qo(ja:N,) value of ans,

>0.98.

Finally, we obtain an objective measure of how “good” ; _ ;

these overlaps are. Such a measure is given by the probabil- Qolja,Na) ;, A (o) (16)

ity P(N,p) of randomly finding arN componentZS having

an overlap withZ(j,,N,) greater tharp. This probability  is the sum of the single-particle mass quadrupole moments

has been derived 441]

Ok, (12) =i akail V(167/5)r2Y}j okai) (17)

[N (1 2
~n — (1/2)NX
P(N.p) 27TL € dx. (15 of the N, states |j.kai)(i=1,2,...N,) occupied in

Fx(ja,Np). For any statdjk,), EQ. (17) can be rewritten

In Table 1V, these probabilities are listed in columns Iabeledusmg Ea.(1A-60) of Ref. [20] as

by Peq and P, for the overlaps obtained with the $&)

: i | jall Y2lia)
IS's of representation$¢,0] and [A,,0], respectively. i Y= /(167/5)(i .2k.0li k)i -lIr2li (al a/
The probabilities are appreciably smaller for the representa- Ui {Ja) = (Ja2kaOljaka)(Jal i V2ja+1
tion [ A 460]. This result means that the distributionsJoiin (19

034317-8



COLLECTIVE PROPERTIES OF NUCLEONS IN TH. .. PHYSICAL REVIEW C 61 034317

TABLE IV. Overlap p [see Eq(14)] of the F«(j.,N,) and SU3) ZS's and the probabilityP [see Eq.
(15)] of randomly finding an S(B) ZS having an overlap greater thanwith F(j,N,).

Na Ja N; Aeq Aave Peq Pave Peq Pave
2 3 5 8 12 0.948 0966  43x1073 2.7x1073
4 6 10 18 0.929 0.963 43x1073 2.0x1073
4 7 12 24 0911 0.963 39x1073 1.3x10™3
B 8 14 30 0.893 0964  3.4x1073 09x1073
4 3 7 12 10 0.997 0.998 9.2x107° 7.7x1075
4 9 16 16 >0.999 >0999  52x1076 5.2x1076
8 1 20 2 0.998 >0.999 1.1x107° 1.7x1076
L 15 24 30 0.993 >0.999 1.5x107° 3.7x1077
6 3 7 12 8 0.979 0.999 7.2x10~* 1.1x1074
3 10 18 14 0.989 >0.999 9.5x107° 8.0x107¢
L 13 24 20 0.996 >0999  9.5x107° 53x1077
B 16 30 28 0.999 >0.999 53x1077 7.2x1078
8 3 8 4 0.957 0986  3.5x107° 22x1073
4 16 10 0972 >0999  4.2x107* 35x1075
B 13 24 16 0.982 >0999  43x107° 4.2x107¢
L 17 32 24 0.990 >0999  3.8x107° 1.2x1077

Thea states withj,=3, 4, 32, and3? belong to theN'=4,  pare theirQ, values. A quantitative measure of the differ-
5, 6, and 7 harmonic oscillator shells, respectively. For thesence in the quadrupole collectivity ofx(j,,N,) and
states,j,= AN+ 3. The reduced matrix element§,r?lj.)  Fil[\eqOl, arising from the essential difference in the struc-
[in units of the oscillator size parameter?(j,)] and tures of thes€S's independent of their geometric sizes, can
(jallY?|ja) are given by[22,23 be obtained by equating the two oscillator size parameters.
With a?(ja) = a®(Neg, the Qo values listed in columns 3
3 and 4 of Table VI can now be directly compared. From this
(alrdli=N+==ja+1 (19 comparison, we conclude that tAi8 F(j,,N,) is less col-
2 lective than the equivalent $8) 7S Fy[A¢,0] by a factor

q of 2 to 3(see last column of Table YIThis result gives a
an

1 TABLE V. Single-particle mass quadrupole momeq‘;\sa(ja)
Ja§ : (20 [see Eq.(18)] of the states|j.k,) in units of a?(j)=A/ Mo

, . [B2ja+ D]V
<Ja||Y2||Ja>:[4€;_} ja250

=0.010A b.

With these reduced matrix elements, the resulting values ¢ & g 11 . 13 15
au(jo) are listed in Table V. To calculate the total moment ¢ Je=3 Ja=7g  Je=g  Ja=7
Qo(ja:Ny) of a prolateZS Fy(ja,Na), we recall that théN, 1 24 35 8 63
particles occupy sequentially the intruder orbitsk,) with 2z T I 13 15
a=t3,+53 .., *ja. TheQq(ja,N,) values obtained by 3 B 2 4 5
adding the individualg, values are listed in Table VI for g g % %30 31'55’
N,=2, 4, 6, and 8 particles. Once again, the listed quantitie: 7 _12 _1 12 27
depend on the specific structure B§(j,,Nz) and the units 3 v {,{ E 25
a?(j,) on the sizes of the oscillator wave functions. l’f -4 Rt —E g
We also list, in Table VI, theQg[\¢,0] values for the T =5 -13 ]
equivalent SU3) IS Fi[\eq0]. Recall that thisZS was de- -123 —6 —-‘f%
fined to have the same set divalues as th&@SF(j4,N,). _125_ _7

Hence, botlZS's have the sam@, ... We now wish to com-
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TABLE VI. Total mass quadrupole momernf, (see Sec. Il F
1) of the prolateZS’s of the numbeN, of particles in thea states

with the listedj, values. The ratios of the quadrupole moments

given in the last column are in units a?(\)/a?(j,).

No Ja QO(ju»Na) QO[/\eq,O] QO[)\eq,O]
[e? (ja)) le*(M)] Q0(ja, Na)

2 3 533 16 3

11

4 6.36 20 3.14

13

L 7.38 24 3.25

15

- 8.40 28 3.33
4 3 9.33 24 2.57

11

4 11.64 32 2.75

13

L 13.85 40 2.89

15

L 16 48 3
6 3 10.67 24 225

11

4 14.73 36 2.44

13

u 18.46 48 2.60

15

L 22 60 2.73
8 3 8 16 2

11

4 14.55 32 2.20

13

B 2031 48 2.36

15

L 25.60 64 2.50
10 4 10 20 2

13

B 18.46 40 2.17

15

. 26.13 60 2.30
12 L 12 24 2

15

L 22.40 48 2.14
14 L 14 28 2

guantitative measure to the qualitative conclusion arrived at

in Sec. IID from a comparison of thié; distributions.

2. Variation of Qy(j,,Na) with J,ax

For N, particles in the statéj,), the maximumJ con-
tained in theZS Fx(j.,N,) is given by Eq.(8). The same
Jmax IS Obtained forN, particles and forN, holes [or
(2j,+1—N,) particleg. For prolateZS's, the variation of
Qo(ja,Ny) with J,. is shown in Fig. 8a) for j,=3,3,%,
and 3. While Qq(j,,N,) does increase wit ., the rela-
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FIG. 5. Mass quadrupole momer@@, (in appropriatea? units)
as a function of] . for different ZS's. See related discussion in
Secs. Il F and Ill(a) The four loops correspond tBx(j.,N,) for
four different values of, and the dashed curve to the 7S
(see Sec. IIFR (b) The three loops correspond t8¢(j,N) for

tion between the two quantities is not StriCtly linear as it iSthree different values of (see Sec. I). (c) The Q, values at
for the corresponding quantities in the equivalent(3U midshell for the 50—-82, 82126, and 126—184 major sh&lIS)

model. Instead, we have four nested

loops in theare compared with theQ, values at midshell for thej
7S Fx(ja,N,) case[The loop becomes a straight line inthe =3} 43,

2! (singlej) shells(see Sec. i\,
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TABLE VII. Single-j simulation of the intrinsic mass quadrupole moment in three major shells. The

listed quantities are explained in Sec. Il.

a
Shell N N. Na Model Qo Qo(morm)  Jmax [M]
Jmax
50-82 16 10 6 39 o (MS) 39 o?(MS) 32 1.22
j=3 16 10222 (4) 39 o?(MS) 128 0.30
82-126 2 14 8 66 a* (MS) 66 a(MS) 50 1.32
i=4% 22 19002 (5) 66 a>(MS) 242 0.27
126-184 30 20 10 10602(MS) 106 a*(MS) 70 1.51
j=5 30 33002 (j) 10602(MS) 420 0.25
®In units of o (MS) /A.
SU(3) case becausé,.(=\) has the same value faS's 3 2
with a particular number of particles and the same number of 2 2 —Jaljat1)
holes andQo= 2\ =2Jyax-] QuaAja)= (26)

In the F«(j1,Ny) case, for a giverd ., there are two
values ofQ,. The smaller valu@%apamclecorresponds tiN,
particles, and the larger valu®,?, . corresponds taN,

holes. We find that for each,, the average of these two
values

Na Na
QO particle+ QO hole

Na —
(Qopw = > (21)
varies linearly withd,.,. We can write
<anph> =b(ja)Imax- (22

The coefficienb(],) is independent o, and its value can
be determined easily from the value @g'aph) for N,=2
particles. In a two-particle prolatéS, the particles occupy
the k= + 3 orbits with a total quadrupole mome@gI barticle
=2q45(ja)- In a two- hoIeIS the holes occupy th&=j,
orbits with a total momen@O hole 2qJ (ja)- The average
of these two moments is then given by

(Qoin 2=l ia) — 0 (- (23
Using Eqgs.(18)—(20), we obtain
. 1] 1\2
ql/2(]a):2 Jazzo Jaz (Ja+1) (24
and
. o1
qja(la):_(la_ E)' (25

The algebraic expression for the Clebsch-Gordan coefficients

(ja230|ja3) given in Table 3 of Ref[24] can be used to
write

ja(zja+3)(2ja_1) .
For two particles, the slopb(j,) is obtained fromb(j,)
:<lea;h2>/.]max, whereJ,,=2j,—1. It follows that

[4ja(ja+ 1)_3]2 1

e g 2iat 321 2

(27)

The functionb(j,) varies slowly Withja, and the numerical
values ofb(j,) range from 1 forj,=2 to 0.75 forj,— .
For the ng,z, Ohll,z, 0iq30, and § 45, States, Eq(27) gives
b(jn)=2, ., 5, and £, respectively. These values are
all close to 0.8. Consequently, we find that (@, . val-
ues for theFx(j.,Na) ZS's of the above foutj,) states are
related to a very good approximation to thg,, values by

(Qo pn =b*Tpax Here,b®=15[3b(3) +4b(F) +4b(3F)
+5b(%)] is the average of thia(j,) values weighted by the
number of different even values of, for eachj,. For ex-

ample, for the @, state, there are four values Bf,(N,
=0, 2, 4, and & Therefore, while calculating®€, the value

of b(%) is weighted by a factor of 4. Similarly the weights
for the Oggy», Oiq3n, and § 15, States are 3, 4, and 5, respec-
tively. With these weights and the numerical values for
b(j.), we findb?®e=322=0.813 as the average slope of the
(Qopr Values vsJy for thej,=3, 5, ¥, and 3 states.
This line is also shown in Fig.(8). By comparing this line
with the Q[ A,0]=2J,,. line, we conclude that for a given
value of J,. (of the ZS), the mass quadrupole moment
Qo(ja,N,) is smaller than the equivalent §8) value by a
factor of about 2.5. Conversely, for a given value of
Qo(ja,Na), the ZS of N particles in statdj,) has aJnyax
value, which is about 2.5 times larger than that of a similarly
deformed S(B) ZS.

Ill. SINGLE- j SIMULATION OF MAJOR SHELLS

Different aspects of the quadrupole collectivity of heavy
nuclei have been studied by Otsuka, Arima, and lachH&fd
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and by Bohr and Mottelsof26] in terms of collective states
of nucleons injN configurations with largé values(Otsuka
etal. usedj=% and Z). In a similar spirit, we wish to
simulate the quadrupole momer@@g(MS,N) of N identical
valence particles in th€S's of the 50-82, 82-126, and
126-184 major shell§MS’s) by the quadrupole moments
Qo(j,N) of the same number of particles in tHeS's of

singlej shells withj=3%, 4%, and 3, respectively, having

PHYSICAL REVIEW C61 034317

VII we have listed theQq(j,N) andJ,,,, values forN=16,
22, and 30 particles in the=3%', 4, and shells, respec-
tively.

A successful simulation requires that the quadrupole mo-
ments given by the two mode(singlej and M9 are similar
for all numbersN of valence particles. To achieve this simi-
larity, we know from previous workl] that it is sufficient to
normalize the quadrupole moments for ldrvalue close to

degeneracies equal to those of the corresponding majQhidshell. The remainingQ, values will then track well.
shells. Our aim here is to compare the quadrupole collectiviTherefore, we want to s@o(j,N) equal toQo(MS,N) for

ties for correspondin@S’s given by these two models.
One aspect of the quadrupole collectivity of & can be

guantitatively specified by the ratiQq.(model)J .. We

wish to emphasize again that the quadrupole morgnis

N=16, 22, and 30. Referring to Table VIQy(j=3%,N
=16)=1022%(j), and Qu(MS,N=16)=392?(MS). The
former value can be made equal to the latter by choosing
a?(j) =25 a?(MS). In other words, the size of the harmonic

made up of two parts: a quantity that depends on the strumscillator wave functions used in the singlesimulation
ture of theZS and a unit that depends on the size of the waveneeds to be adjusted accordingly. The normalization factors
functions used in the calculations. If a harmonic oscillator isare slightly different for the three different singleshells
used to generate the wave functions, the unit is the oscillatotonsidered here; the average normalization ds(j)

size parameterr defined bya?=#%#/Mw, where w is the
oscillator frequency.

As an illustration of the singl¢-simulation, we consid-
ered theZS's for the half-filled major shells. Th@y(MS,N)

~0.35¢%(MS). The normalizedQo(norm) values are given
in column 6 of Table VII. This normalization, however, will
in no way affect either the numerical quantitiesQg or the
Jmax Values for differenj shells.

values close to the midshell were obtained as follows: We We madeQq of F«(j,N) equal toQq of F(MS,N).

used Table VIII of Ref[3] to obtain the numbens, andN,
of particles occupying th@ and a states wherN=16, 22,

However, thed . in Fx(j,N) is different from thed ., in
F«(MS,N). Hence, the collectivities ofF«(j,N) and

and 30 particles are in the 50-82, 82—-126, and 126-18&x(MS,N) will also be different. This situation should be
shells, respectively. For thedevalues and shells, the same contrasted with Sec. Il F, in which we compared the collec-

table lists the appropriate $8) representationjsh, w ] which
yield the J,, max (=N+u) and Qq, values. We then used
Eq. (8) and Table VI of this paper to obtain thg ., and
Qqa Vvalues forN, particles in the stat§j ) appropriate for
each major shell. With this information, we obtainégl.,
=J maxt Ja max and Qu=Qon+ Qpa. TheseQq and J .y

tivities of Fx(ja,Na) and Fy[Aeq0]. In that case, the .,
values for bothZS's were equal, but th&, values were
different.

The values ofQy(norm)/J,. for the jN and major-shell
IS's are given in the last column of Table VII. The latter
ratio is, on average, five times larger than the former. This

values are given in Table VII. For the 50—82 major shell, theresult implies that in thgN simulation, the quadrupole col-

quantityQo(MS,N) is 39, and the unit isr’(MS). The har-
monic oscillator frequencw is customarily adjusted to re-

lectivity of the simulated major shell is underestimated by a
factor of ~5. These differences in the collectivities of the

produce the observed nuclear mean-square radius; that i&yo ZS's are illustrated by theQy(norm) vs Jna, trends,

ho~40A" Y3 MeV. Using Mc?=939 MeV, we obtain

which are shown in Fig. ().

a?(MS)=0.010A'3 b. The average midshell value of
Qo(MS)/J .« for the three major shells considered here is
1.35.

We now return to the simulation of the quadrupole mo-

IV. PERTURBATIONS OF THE INTRINSIC STATE

ments in the 50-82, 82—-126, and 126—184 major shells b

those in thej=3t, 22, and%’ shells, respectively. We con-

sider these thregshells to be the highegtsubshells in the

The study of the properties of tHES F¢(j,,N,) and of
Yhe states with definite angular momenta projected from it
would be useful only if the perturbations of thi$s by the

harmonic oscillator shells with principle quantum numbersP@iring interaction and by thef»-mixing component of the

N=15, 21, and 28, respectively, and with- N+ 3. We can
therefore use Eq916)—(18) to obtain theQq(j,N) values
for the different prolateZS's of the jN configurations. These

values are calculated in units of oscillator size parameter

labeled asa?(j) to distinguish this parameter from?(j,)
anda?(\¢, used in Sec. Il F, and from?(MS), used in the
previous paragraph. For the=3 shell, the modeQ, value
is 102%(j) (see Table VIl for N=16. For eacllS, theJ,ax
value is given by Eq(8). In Fig. 5b), we have plotted the
nested loops ofy(j,N) vs Jna for the threej cases. The

mean field are not very large. In this section, we examine the
effects of these perturbations.

A. Effect of the pairing interaction

The pairing interaction within a major shell can modify
Fx(iasNy) [see Egs(9)—(11)] by scattering a pair of par-
ticles from an occupied single-partickestate|j,,*k,) to
other unoccupied statedj,,=k,) ornstategj,, =k/). We
consider here scattering only among thetates. The modi-

particle-hole averaged values of these quadrupole momenfigation of 7« (j,,N,) produced by the pairing interaction of

fall on a straight line given bf(Q{)'Nph)=O.765]max. In Table

strengthG in a mean field of deformatioB gives rise to the
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correlatedZs }—&(jarNa;BaG)- In the following, we shall TABLE VIII. Single-particle eigenvalueg(j, .k, ;B) (in MeV

also refer to the uncorrelated and correlaf&s as Fy and relative to the energy of the,= 3 staté obtained from the Nilsson-
&, respectively. model calculation$see Ea(371.

We calculate three quantities to illustrate the effect of

pairing onFy . |7a) = Ohyy/3 state |fa) = Oty state
(i) The first quantity is ke =021 =082  p=021 (=032
P(AR)=1-[(Fk(ia:NaiB.G)| F(ja:N)? (28§ 0 0 0 0
3
whereP (A F) is the probability ofchangein the F induced g 027 041 023 035
by the pairing interaction. If the effect of pairing is largg 3 0.82 1.24 0.70 1.05
will be very different fromF, , andP(AF) will be large. z 1.65 2.47 1.39 2.09
(ii) In the absence of deformation3&0), the lowest- g 2.75 4.12 2.37 3.49
energy state of thjaga configuration generated by the pairing _121 4.12 6.18 3.44 5.23
interaction is the completely correlated stbjtg:»’ ;v=0) with _123: 4.38 732
seniority v=0 (and, henceJ=0) for any nonzero value of
the pairing strengti®. In the absence of pairing3=0), the
uncorrelatedfS Fy has some probability Here,
P(v=0)=|(j;*;v=0lFic(ja.Na)I? (29 Na
h(p)= 2, hi(B) (36)

of containing the statj :a;uz 0). When pairing is present
(G>0), the correlatedS Fy has the probability is the one-body Hamiltonian characterizing the mean field.
N . The intruder single-particle statég, k) are the eigenstates
Pe(v=0)=[(j,*;v=0|F(ja,Na;B.G))* (30  of h(B) in the space obne major shellwith eigenvalues
€(ja,k;B). Thus
of containing thev=0 state. One expect8.(v=0) to be
greater tharP(v=0). As a second measure of the influence h(B)|ja Ky =€(ja,k;B)|ja k). (37)
of the pairing interaction ot , we calculate the increase
We calculated the eigenvalues for thg k) and |%,k)
AP(v=0)=P(v=0)—P(v=0) 3D states at botiB=0.21 and 0.32, with(B) taken to be the
Nilsson Hamiltonian. The Hamiltonian paramet¢2d] are
hwy=7.55 MeV, k=0.05, and u=0.63, respectively,
which are all appropriate for the rare-earth region. The
single-particle eigenvalueg(j,.k;8) are listed in Table
VIIl. The prolateZS Fx is obtained by sequentially occupy-
ing the stategj,,=k) with k=3, 3, 3, etc.
The pairing HamiltoniarH ,,;{ G) of Eq. (35) is specified
by the two-body matrix elements

in the probability of thev=0 state inF compared with that
in Fx. The AP(v=0) value will depend on the values of
both 8 andG.

(iii) In view of the tendency of the pairing interaction to
make the nucleus spherical, the quadrupole momeuf;of

Qc=(Fk(ja:Na;8,G)|Q5| Fk(ja.Na: 8,G)), (32

iK(?xpected to be smaller than the quadrupole moment of (JaK'sja K |Hpai jak;ja—K)=—G. (38)
Q=<fK(ja,Na)|Q§|fK(J'a,Na)>- 33 -rrat]ri-gzlrltil Xl?lclr;l%.the pairing strengBis 0.12 MeV for
The threeZS's (@) Fx(ja.Nga), (b |jga;v=0>, and (c)
k(ia,Na;B,G) are, respectively, the lowest-energy eigen-
AQ=Q.,—Q (39 states ofH(B3,G) with the presence dB) no pairing(that is,
G=0), (b) no deformation $=0), and(c) both pairing and
is taken as the third measure of the influence of pairing orjeformation G+0,8#0).
Fk - Note thatQ, tends to zero fog>0 if G becomes large The stateF, is obtained by diagonalizing((8,G) in the
andQ.=0 at=0 for anyG>0. space of the basis states consisting of a complete set of de-
We now describe how the quantiti®AF), AP(v=0),  terminantal eigenstatab,(j,,N,) of h(8) with eigenvalues
andAQ are calculated for the stat& with two values of g4, g;j,,N,). These states can be coupled by the pairing
ja (3 andi?) and three values dfl, (2, 4, and 6 particles  interaction. The structure of the basis states(j,,N,) is
The Hamiltonian folN, particles in a mean field with defor- described below.
mation 3 can be written as (i) For N,=2 particles, the basis states are

The difference

H(B.G)=h(B)+HpalG). (39 P 4(ja:Na=2)=|ja:Ke, =Ky (39
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TABLE IX. Expansion coefficientd\,(8,G) andB,, [see Eqs(49) and(50)] for the statesFg(ja,Na), Fr(jia,Na), andF(ja,Na)
for N,=2 andj,=% and 3. For 8#0, G=0.12 MeV and for3=0, the coefficients,, are independent of the values @f

Two particles in the Oh, /9 orbit

Two particles in the 0iy3 /9 orbit

Fi Fx Tk Fi Fk Fik Fx Fg
A A A B A A A B
G=0 G=0.12 G=0.12 B=0,G>0or G=0 G =0.12 G=0.12 B=0,G>0o0r
a  ka B>0 B=021 B=032 B#0,G—o00 B>0 pB=021 B=032 B#0,G—-
0 % 1 0.967 0.986 0.408 1 0.953 0.979 0.378
1 % 0 0.231 0.154 0.408 0 0.272 0.184 0.378
2 % 0 0.091 0.057 0.408 0 0.112 0.070 0.378
3 % 0 0.042 0.030 0.408 0 0.060 0.036 0.378
4 % 0 0.029 0.018 0.408 0 0.037 0.022 0.378
5 -121 0 0.020 0.012 0.408 0 0.025 0.015 0.378
6 -12?1 0 0.408 0 0.018 0.011 0.378
with unperturbed eigenvalues For all the basis state® ,(j,,N,), the lowest state
D ,-o(ja,Ny) is the stateFy . With these basis states, the
E(a,B8:ja,Na=2)=2¢€(ja,Ks: ). (40)  Hamiltonian matrices

The indexa=0,1,2 ...j,—3 andk,=a+ 3. The number
of such basis states ar¢“=6 and 7 for the (0,,,)? and
(0i ) ? states, respectively.

(ii) For N;=4 particles, we need two labels anda, to
specify the four-particle determinants

(I)a(ja:Na:4)5q)a1,a2(jaaNa:4)

=ljaKa, —Ka,iKaypy—K (41

@l
whereki=a;+3, @;=0,1,2...,j,—3, and a,>a,. The
unperturbed eigenvalues are

E(alva’Z:IB;ja:Na:4):2[€(ja1kal;ﬂ)+f(ja’kaz;,g)]-
(42

The number of such basis states Afé=15 and 21 for the
(Ohy10)% and (045" states, respectively.

(iii) For N;=16 particles, three labels;, «,, andas are
required to specify the basis states

q)a(jayNa=6)E(Dal,a2,a3(jayNa=6)
:|ja;kalv_kal;kazi_kaz;ka31_ka3|- (43)
In this case;=0,1,2 . ..,j,—3 fori=1,2,3 andaz>a,

> w@,. The unperturbed eigenvalues are

E(aliaZ!a/SuB;jarNaZG)
=2 €(ja KayiB)F €lja KeyiB)+ (i ket B)].
(44)

For the ((hy1,)® and (0,5, states,NV*=20 and 25, re-
spectively.

Ha’,a(B!G)=<CDa’(ja!Na)|H(BIG)|(Da(ja!Na)>
(45

are given by
(i) For N,=2 particles,

Ha’,a(ﬁle):E(a!ﬁ;jalNazz)ﬁa’a_G' (46)

(i) For N,=4 particles,
Ha’,a(BvG) = E(al y D 7BaJ a 1Na:4) 5aia16aéa2

~[Buay+ Busa ]G (47)

012012
(iii) For N,=6 particles,

Ha’,a(IBVG)zE(alva21a31ﬁ;jaiNa=6)
X6,y O 1)

+<(Dai,aé,aé|Hpail’lq)al,az,a3>' (48)
In the N,=6 case, the pairing matrix element is zero unless
at least two of thex' labels are equal to two of the labels.
The nonzero, off-diagonal matrix elements are all equal to
—G, and the diagonal pairing matrix elements are equal to
—-3G.

We diagonalized the matricés, ,(8,G) of Egs.(46)—

(48) and determined the lowest-energy eigenstates, which are

the statesF(j.,Na;B,G) obtained as linear combinations
of the basis state® ,. Thus

¢(iasNa; B,G)=2 ALB,G)P,(ja,Ny). (49

To illustrate the calculation, we consider the effect of pairing
on theZS F¢ of two particles withj,=3 and 3. The ex-
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TABLE X. Calculated values of three quantitieB(AF) [Eq. (51)], AP(v=0) [Eq. (54)], and AQ
=Q.—Q [Egs.(55) and(560)] that illustrate the effect of pairing on tHES Fy .

Ne ja B PAF) Pw=0) Pu=0) APv=0 Q Qe AQ
2 -12-1- 0.21 0.065 0.320 0.167 0.153 6.36 6.24 —-0.12
-121 0.32 0.028 0.263 0.167 0.096 6.36 6.32 —-0.04

6 -12‘3 0.21 0.023 0.061 0.029 0.032 18.46 18.34 -0.12
-12‘3 0.32 0.009 0.047 0.029 0.018 18.46 18.41 —0.05

pansion coefficients foFy are listed in columns 3 and 7 of The numerical valuefusing the values of,(3,G) andB,,
Table IX. These coefficients are independeniBofThe co-  coefficients listed in Table IXare given in Table X. The
efficientsA,(8,G) for the correlated'S F¢, obtained with ~ results show the following(i) Pairing interactionsee the
the normal value of5=0.12 MeV for the pairing strength, P(AF) column] changes th€S of a nucleons by less than

. . 2 7% in well-deformed nuclei(ii) While the increase in the
are listed in columns 4 and 5 of Table IX for th&}? state =0 componenfsee theA P(v=0) column of the ZS pro-

and in columns 8 and 9 for thez()? statd. For both cases, qyced by the pairing interaction is about 15%@at 0.21 for
the coefficientsdy are greater than 0.95, implying that thesethe (41)2 state, it reduces to only 3% for thé2)® state. The
c . ’ :
correlated statesry are very similar to- the ur)(?orr(_alated smallness of these changes casts doubt on the validity of the
sta_tes}"K. The change '”FK produced by the pairing inter- simplifying assumption made in the pseudo{3U
action of norma}l strength is small. e [12,28,29 and fermion dynamic symmetifyl 7] models that
We now define the completely correlaté® 7" t0 be  he nairing interaction causes thenucleons in spherical as

the state produced by the Hamiltonian when the pairing inye|| as deformed nuclei to couple to a seniority-zero state.
teraction dominates the effect of deformation as would hapgyy calculations indicate that a pairing strength that is at
pen under two circumstance8) 8=0, anyG>0, and(ii)  |east ten times stronger than the norn@=0.12 MeV is

B>0, G—o. Under these COSditiOﬂS, the stafg’ is just  required to change tHES at 8>0.2 sufficiently such that its
the seniorityv=0 state of thej | ® configuration. The struc- overlap with thev=0 state is>0.95.

ture of £ is given by Finally, the quadrupole momen@, andQ are given by
. . . = 2
FeaNg=li2:0=0)= 3 B,Dy(aNo), (50 Q=22 |Au(B.G)ay, (55
- , and

where the coefficients are all equal and given By,
=1/\N®. The values 0B, for the ()2 and (&) states are Q=20k-12 for N,=2, (563
given in columns 6 and 10, respectively, of Table IX. Note
that for a normal pairing strengttf 5 is significantly differ- Q=2(A=112t Ai=32) for Na=4, (56b)
ent from Fi even atg=0.21. _ -

With the aid of Eqs(49) and (50), we can calculate the Q=2(qk-12+ Gk-32F Ak=sr2) for Na=6. (560
probabilities P(AF), P;(v=0), and P(v=0). They are

The values of the single-particle quadrupole momeptkor

the Ohq1» and 0 (5, States are listed in Table V. The values
of Q, Q., andAQ=Q.—Q are listed in the last three col-
umns of Table X. The change in the quadrupole moment of
Fk induced by the pairing interaction of normal strength is
2 also negligibly small.

given by
P(AF)=1-|AL(B,G)|?, (51)

2

Pc<v=0>=‘2 A.(B,G)B,

1
= | > AdlB.C)
(52) B. Effect of 0w mixing

The quadrupole collective states of heavy nuclei are well
and described in terms of shell models in which the nucleons are
confined to single-particle statefg, in a major shell(MS).
P(v=0)=|B,|?=1/N®. (53)  The deformation of the nucleus mixes thespherical states

ik, 0 produce the deformed single-particle statﬁ%“,

The increasel P [see Eq(31)] is given by where «,, labels differentn states with the same value of

ko=(jnh,- Thea orbitals ik, are not mixed by the quadru-

2
— 1}_ (54)  pole deformation with the orbitals of a given major shell

AP(v=0) ! [
v: = —
because they have opposite parities. Hence, in this descrip-

Na/

g AL(B,G)
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TABLE XI. The probabilitiesP( ) [see Eq(61)] that a major shell abnormal-parity deformed off(MS, ) is not modified by @ w
mixing caused by deformation. Only probabilities less than 0.90 are listed. The Nilsson Hamiltonian parameters used in these calculations
are u=0.630 for the 50—82 major shell and=0.448 for the 82—126 major shell. The parametds kept at a value of 0.05 throughout.

Type of Probability P (6) Probability P (6)
orbit a k §=020 6§=0.30 §=035 §=020 §=030 §=0.35

(a) 50-82 major shell (protons) (a) 50-82 major shell (neutrons)
1} 0.89 0.76 0.70 0.82 0.65 0.57
13 0.83 0.79 0.87 0.67 0.72
13 0.90 0.38 0.87 0.85

(c) 82-126 major shell (protons) (c) 82-126 major shell (neutrons)
a 1 % 0.79 0.73 0.84 0.67 0.59
a 13 0.83 0.79 0.87 0.76 0.70
a 1 3 0.89 0.86 0.34 0.81
a 1t F 0.90

tion of the deformed nucleus, the deformedtatess,® are  independent of the deformation. The orbita§(0S,s) in
the unmixed stateg= Ui k. : the N=5 oscillator shell can be expressed as

The quadrupole deformation can, to a first approximation,
affect the structure of the deformed orbitals of a major shell ¢>§(OS,5)=Z Cik(0) ¥ » (58
in the following two ways by a process known a&® mix- ]
ing. (i) It can modify then orbitals by mixing them with the ) )
a state belonging to the lower major shell. Suchastate ~Where the sum is over all the=0hyy/5, Ohgp>, 1f7)5, 1fsp,
belongs to the same harmonic oscillator ski€l5) as then ~ 2Pa2, and 2y, states of the\’=5 shell allowed by the
states of the major shell under considerati6i. It can also ~ value of k. The lowest-energy orbitapy~*(0S,8) of the
modify thea orbitals of a major shell by mixing them with N=5 shell is the intruder orbi;__ 1y, of the 50-82 shell
then orbitals belonging to the next higher major shell. In thisas modified by the ®» mixing. For example, the lowest
section, we make a quantitative estimate of the modificatior=; orbital of theA’'=5 shell obtained by diagonalizing Eq.
of the a orbits within a major shell produced by the latter (57) at a deformation 06=0.30 (8=0.32) is
mixing. This estimate is obtained by comparing the orbitals
¢¢(MS,6) at a deformatior obtained within a single major 1
shell space with the corresponding orbita#§(0S,8) ob- OS:a=1,k=§;5=0.30>
tained within the space of a single harmonic-oscillator shell
N. The latter orbitals contain the modification to the 1 1 1
#¢(MS) orbitals resulting from the®w mixing induced by =0.87 0h11/2§ —0.0 0h9/2§ —0.44 1f7/2§
the deformation.

The orbitals¢,(MS, ) are obtained by diagonalizing the n 1 n 1 1
Nilsson Hamiltonian 0.06 1f5/22 0.16 2p3,22 0.0 291/22 :

(59

1 5. o 4 | )
Hnitsson= Tt g E(_v +p°)— 3 §5P Yool 6,¢) _ _
The square of the overlap of this state with the

L - |Ohy1/,,k=13) state of the major shell is obtained as
— 2kl -s— ukl ﬂ (57

1 1 2
Ohyyp k= 5| OSia=1k=5:6= o.3o> =0.76. (60)

in the space of the single-particle states of a major shell for

different values of the deformation parametér The  This value gives the probability that tHehyy,,k=3) in-
strengthsk and . for the spin-orbit and? interactions are truder level of the major shell remains unmodified by
taken from Ref.[27] for different shells. The orbitals Mixing. In Table XI, we have listed the probabilities
d(MS,6) for the a states in the 50—82 major shell are just " _ 5

the statesy; _11px belonging to the Byyp, intruder level, Pi(8)=[(jak|OS:a=1k,s)| (61)
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TABLE XIl. Changes in the quadrupole momemf¥MS) [see Eq(62)] of the deformed abnormal-parity orbigs (MS) as a result of
0% mixing. Theqy values are in units of?. The Nilsson Hamiltonian parameters used in these calculations-a@630 for the 50-82
major shell andu=0.448 for the 82—126 major shell. The parametéas kept at a value of 0.05 throughout.

Type of 50-82 shell with jo = hyy/9 82-126 shell with ja =1%y3/9

orbit a k 8 agMs)  ¢¢thos) Agf ggMS)  ¢2tl(0s) Agg
1 4 o2 3.18 5.57 +2.39 3.69 6.87 +3.18

1} 030 3.18 6.67 +3.49 3.69 8.31 +4.62

1 3 035 3.18 7.17 +3.99 3.69 8.94 +5.24

1§ 020 2.64 4.48 +1.84 3.23 5.81 +2.58

1 3 o030 2.64 5.15 +2.51 3.23 6.73 +3.50

1 3 035 2.64 5.42 +2.78 3.23 7.09 +3.86

1§ 020 1.55 2.69 +1.14 231 4.10 +1.79

1§ 030 1.55 3.03 +1.48 231 4.63 +2.32

1 5 035 1.55 3.16 +1.61 231 4.83 +2.52

a 1 % 020 -0.091 0.44 +0.53 0.92 1.97 +1.04
1§ 030 -0.091 0.58 +0.67 092 2.24 +1.32

1 % 035 -0.091 0.63 +0.72 0.92 234 +1.42

that the intruder state§ k) of protons and neutrons with the occupied orbits of a major shell are reduced as a result
ja=3% and % remain unchanged by#Q» mixing. The re- of 04w mixing with the a orbits of the lower major shell.
sults show that the modification of the intruder orbits de-This reduction is by a smaller amount, but the number of
creases with increasirigand increases with deformation. At valence particles in tha orbits is larger than the number in

B=0.32, thek=3 proton intruder orbits change by about the a orbits. The net result is that the total quadrupole mo-

25%, while the neutrok=3 orbits change by 35%. ment of the valence nucleons in a major shell does not
We next consider the change in the value of the quadruehange very much as a result of this ® mixing process.
pole momentqk(MS)=<jak|q§|jak> of an intruder orbit In this work, we will ignore the influences of pairing and
caused by B w mixing. The modified quadrupole moment is 07w mixing and assume that the collectivity of a particular
given by nucleus is described to a good approximation by the asymp-
totically deformedZS of its valence particles in a major
ar(0S,0)=( L~ 1(0S,0)|q5 4~ 1(0S,6)), shell.
= 2 Cie 1(5)Cﬁk:1(5)< j"klgdljk), V. COLLECTIVITY OF THE PROJECTED STATES
1]

62 OF ABNORMAL-PARITY NUCLEONS
Our main interest in this section is to examine the quad-

where g5=(167/5)r?Y3. The values ofq(MS) and rupole collective properties of the band of states
qx(0OS) and the chang&q,=q,(0S)—q(MS) resulting |proj:(ja,Ng);J) projected from theZS's Fx(ja,Na). We
from 0% w mixing are listed in Table XII. These results show compare the collectivity of such a band with the collec-
that this mixing almost doubles the quadrupole moments ofivity of the band of statefrot;J) belonging to a rigid rotor
the orbits|j k) with k=3, 3, and3. This conclusion is con- With an intrinsic quadrupole moment equal to the intrinsic
sistent with the suggestion made by Ahalpara, Abzouzi, an@iuadrupole momenQq(j,,Na) of Fx(ja,N,) and (i) the
Bhatt [30] (in a projected Hartree-Fock study of deformed collectivity of the band of stateSU3 \¢4,0];J) belonging
nuclei in the Ge-Sr region within the space of theto the equivalent S(B) representatiofir,0]. We also com-
fsP10P32; 092 Single-particle statgsthat the quadrupole pare the collectivity of the projected states with that of the
momentsq, of thek=3, 2, and$ orbits of the @, state  yrast band of the same size having (0symmetry. This
should be renormalized to twice their single-shell values as &ymmetry arises in the interacting bodd,16 and fermion
result of (h w mixing. dynamic symmetry17] models.

Compared to this large increase in the quadrupole mo- The natural symmetry of identical nucleons in the con-
ments of the occupied orbits, the quadrupole moments of figurationj:a is the symplectic Sp(,+1) symmetry. The
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bands|j}#;J,v) of states with this symmetry are labeled by =N.N—2A—4,...,1 or Obelong to an S(8) represen-

the seniority numbep. In the pseudo-S(3) [12,28,29 and

tation[ A =N,0]. With J;=I; andJ;=1;, the reduced matrix

fermion dynamic symmetry17] models, this symmetry is €lements are given by

imposed on the nucleons. Therefore, we wish to compare

the quadrupole collectivity of the banfbroj:(ja,Ng);J)
with those of the low-lying states of the samevalue be-

longing to the seniority bang g'a;.],u>.

A. Measures of collectivity

Because they can be measured, three quantitiese-
duced quadrupole transition probabilB(E2:«a;J;— «Js),
(i) transition momen®,(J) of the statgJ), and (iii) spec-
troscopic quadrupole mome@(J) of the statgJ), are gen-

=(N=MQx=M;)

= V(16m/5) (M ]| r 2| M)l Y1)

The formulas for evaluating the reduced matrix elements of
r2 andY? are listed in Ref[31]. Once they are calculated,
the quantitiesB(E2:SU3 \,0];J,—J¢), Q«(SUJ\,0];J),
and Q(SU3\,0];J) can be obtained for the $8) band
|[[\,01;J) using Egs.(63), (64), and(65). It can be further

(70

erally used to describe the quadrupole collectivity of a rotashown[9,32] that

tional band of statedaJ), where the labele denotes

properties of the band other thanThese quantities are also

related to the reduced matrix elements ;| Q| «;J;) as fol-
lows:

5 (aJdf|Qlle;di)?

B(E2:aiJi—>afJf)=E 23 +1 y (63)
- 167 B(E2:0—3-2) | 619

A=|5 (J2003—-202 |

- 1 (J-2/1Q[|9)
~(32003-20)  z3:1 (649

and

=299 silad) ©9

Q( - \/ZJ—+1 (a Q (&4 .

In the rigid-rotor model, the reduced matrix elemdrstse
Eq. (4-689 of Ref.[20]] are
(rot;d'[|Q|[rot;d) = V23 +1(J2003'0)Q,,  (66)

where Q, is the quadrupole moment of the rigiEs. (The

value of Q, is arbitrary) When these reduced matrix ele-

ments are substituted into Eq$3), (64), and(65), one has
[20]

5 ~
B(Ez:rot;JﬁJf)=167(JionJf0)2Qg, (67)
Qu(rot;3)=Qo, (68)
and
o
Q(rot;J)=— mQO (69

B(E2:SU3\,0];0—J—2)
B(E2:SU3X,0];2—0)

_3X5  2J(J-1)(A=J+2)(A+JI+1)
CAN(N+3) (2J—1)(23+1)
(71)
and
Q(SU3\0;J) 7 J  Q(rotd) _
O(SUIN.012 22343 O(otz) UM
(72)

The remainder of this section is organized as follows. In
Sec. VB, we summarize the calculation of the projected re-
duced matrix elements. In Sec. VC, we describe a consis-
tency check which tests the accuracy of these matrix ele-
ments. This check also provides a criterion for comparing the
quadrupole collectivity of the statéy(j,,N,) with that of
the equivalent SIB) IS Fy[A¢q0]. In Sec. VD, we exam-
ine the variation of thd&(E2:2—0) values with the intrinsic
quadrupole moment®q(j,,N,). The trend of theB(E2:J
—J—2)/B(E2:2—0) values as a function afobtained for
the projected band is compared in Sec. V E with the corre-
sponding trends for a rigid-rotor band and for bands belong-
ing to selected S(B) representations. In Secs. VF and VG,
we display the variations of the transitions mome@i$J)
and the spectroscopic quadrupole mome@ts)), respec-
tively, with J for the projected states. In Sec. VH, we com-
pare the projected3(E2:J—J—2) trend with the corre-
sponding trend obtained for an yrast band having(660
symmetry. Finally, in Sec. VI, we present a comparison of
the projectedB(E2) values with those obtained for the low-
lying states with definite seniority.

B. Projected reduced matrix elements

In Sec. Il B, the stateF«(j,,N,) was expanded in terms
of the projected statg$j,,N,);JK) [see Eq(5)]. We want
to next calculate the reducedE2 matrix elements

In the SU3) model, the reduced matrix elements can be[(j,,N,);J" K| Q| (ja,Na);JK] between the projected states

evaluated by noting that the single-particle statek) with
oscillator quantum numberV' and angular momentd

J andJ’. The reduced matrix elements are defined by the
Wigner-Eckhart theorem in the forfi20]
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N a' || TN ad) terms in the sum are, respectively, thg $ymbol and the
(a'I'M'[T)|aIM)=(IAM u|I'M )ﬁ' reduced matrix elements of the single-particle quadrupole

2\/2
(73) operatorq,, = \(16@/5)r<Y;,

In our calculations,K= 0 and ji=jn= ]a The coeffi-

With this definition, cients arec; o, =1 andc;, - jo, 1= (1) 1%lcy o . The ra-
dial quantum numbers and the orbital angular momenta are
(a' V| TMad)=(ad|TN|a'd"). (74)  given by nj=ny,=0 andl;=1,=]j,— 3, respectively. The

probability amplitudep' is given by
The procedure for calculating the reduced matrix elements

for an arbitrary one-body operatmz between statels)' K') p'K_Q k0. (Na—1)

and|JK) projected from general determinanf8's ®, and me

®, has been discussed by Gunye and Wdi¥& and by =<]—“K,Qm(ja,Na—l)|P'K,Q K—Q.

Hara and Su34]. (In our case®y,=®). We adopt their e
general procedure to express the reduced matrix elements as X (Na— 1)|5’-'K_Qi(ja1 Na—1)). (76)

a sum of contributions from each of the nucleons in the

7S Fk(ja,N,). The reduced matrix element is then given by . . .
The reduced matrix elemerit§ 5 ,N,); 3" K[|Qll(ja,Na); IK]

; S i . between the various projected states are listed in Table Xl
K K
[(a:Na)i9" K[[Ql(Ga,Na); IK] for J=J' andJ=J'+2. Because the values @f;x andp'
(23'+1)(23+1) become very small for large yalues dandl, consi_derable
= care is required in the calculation af'(|Q||J), especially for
CJ’KCJK higher values ofl. Fortunately, we can derive a consistency
check that can monitor the numerical accuracy of the calcu-
XE E E (— 1).+m+1,+J F1+2 lated reduced matrix elements.
=1 m=1
><cjmﬂm(K)cjiﬂi(K)p'KfﬂmﬁKfﬂi(Na— 1) C. Consistency check
. , . The quadrupole momeq(ja,Ng) of anZS Fy(ja,N
X(Iijm;K_Qm|Qm|J K)(I,J|,K_Q|,Q||JK) i givenqby p QO(J& a) K(Ja a)
J i | . . .
X{j \;I, 2](nm|mjm”qnni|iji)- (75 Qo(ja,Na)=(Fk(ja,Na)|Qol Fk(ja:Na)),
m

This equation is a modified version of Ec) in Ref.[33]. L

There are two modifications. The first is the fact@J’ +1, _Z‘l Ui (Ja): (77

which arises because of the difference in the definition of the

reduced matrix elements in the Wigner-Eckart theorem. We

use the definition given in Eq73). The definition used by Where the sum is over all the occupiadrbits andq, are

Warke and Guny€33] does not have this factor. The secondthe quadrupole moments of the occupied orlj#se Table

modification is the factor 3/C;,«C,x Which does not appear V). The values ofQy(j,,N,) are listed in Table VI.

in Eq. (5) of Ref.[33], but should be there. We now obtain an alternative expression @g(j,,Ng).
In Eq. (75), the sums oveir andm run over the nucleons The statesF(j,,N;) can be expanded as

in the initial and finalZS's. The index! is the angular mo-

mentum of theN,— 1 spectator nucleons in ti%s when one

of the nucleons is contributing to the reduced matrix ele- |F,_q(j,,Ny))= E Cik=0(ja,Na)|proj:(ja,Na);IK).

ment. The quanntxcJ 0, (K) is the amplitude that the contrib-

uting nucleon in the |n|t|al state has an angular momenitum (78

and projectior(); . SimiIarIy,cJ-QO(K) is the corresponding o

amplitude for the nucleon in the findS. The quantity Substituting into Eq(77), we get the sum rule

pL,Qm’K,Qi(Na—l) is the probability amplitude that the

N,—1 spectator nucleons in the initial and findb's are . .

coupled to a total angular momentumrhe Clebsch-Gordan QolJa:Na)= 2 ; Cyrk=0(la:Na)Cak=0

coefficient on the right in Eq.75) gives the amplitudén the

initial state that the spectator nucleons in the state X[(ja,Na);J' K|Qo|(jaNa);IK]

[I,K—Q;) are coupled to the contributing nucleon in the

state |j;Q};) resulting in a total initial angular momentum (79

state|JK). The Clebsh-Gordan coefficient on the left is the

corresponding amplitude for the final state. The last twoor
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TABLE XIIl. Reduced matrix elementg(j,,N,);J’,J|Ql(jaN,);IK][see Eq.(75)] for J=J" andJ
=J'+2. The reduced matrix elements||Q|J’) are not listed becausel|(Q|J')=(J'||Q|J) for each
(jaNg). The units arex?.

Ja = 99/2 Ja = h11/2 Ja =1t13/2 Jo = J15/2
J J—=J J+2-J J—=J J+2-J J—=J J+2-J J—=J J+2—-J

N, = 2 particles

0 0 10832 0 12.863 0 14.884 0 16900
2 11.155  15.578 —13.908 19.163 16.550 22.631 19.124  26.029
4 7.135  15.570 11.954 20.845 16230  25.735 20.182  30.398
6 —4.851 11.266 3.307 18.755 10075 25357 16008 31.452
8 —26.250 —13.188 12.758 —2.869 21.545 5803 29.361
10 —38.457 —23.346  14.095 —11.036 24052
12 —52.051 —35.085 15317
14 —66.900
N, = 4 particles
0 0 11.424 0 13.497 0 15524 0 17531
2 —10.378 17.241 -13.018 20975 —15.606 24.486 —18.157  27.883
4 —13.887 19.962 —16.596  25.294 —19.413  30.154 —22.321 34745
6 —18.100 21910 —-21.678 271712 —24.487  33.765 —27.359 39514
8 —6.735  25.779 —25.576  30.694 —30.418 36304 —33.569 42792
10 —6.761 22.532 —13.718 35891 —33.305 40377 —39.743  45.732
12 —15.135 —13.562 35112 —20.964 46.516 —41.240 50875
14 —21.302 28224 —20.741 47137 —28.514 57722
16 —36.774 —27.942 43169 —28.148 59335
18 —42.038 33.220 -34.953 57.017
20 —63.192 —48.362 50318
22 —67.992 37.582
24 —~94.318
N, = 6 particles
0 0 12.839 0 16472 0 19916 0 23249
2 —14.198 19.681 —19.053  25.990 —23.416 31.717 —-27.528 37.158
4 —16.088  23.203 —23.259 31.921 —29.221  39.505 —34.687 46.561
6 —12.705  24.595 —25.514  36.101 —33.665 45.423 —40.573  53.940
8 —8.077 22942 —24.229 38934 —36.192 50.186 —45.088  60.060
10 6.924  22.537 —22.294  39.886 —36.319 53.925 —47.924 65332
12 14.386 —17.785  39.842 —36.016 56279 —49.084 69.731
14 —5.181  40.990 —34.619 57676 —49.948 73.043
16 0 33998 —29.527  59.267 —50.255 75513
18 0 —19.473 60938 —48.555  77.829
20 —17.017  56.390 —43.074  80.581
22 —19.717  44.258 —35.748 82316
24 —27.478 —35.751 78913
26 —40.796  70.241
28 —50.715  53.535
30 —65.633
N, = 8 particles
0 0 10832 . 0 16.800 0 22188 0 27220
2 —11.155 15578 —19.403  26.296 —26.188  35.265 —32.341 43465
4 —7.135  15.570 —22.466 31.777 —32.283 43.773 —40.643  54.406
6 4.851 11.266 —21.995 34.833 —36.123  50.036 —47.011 62954
8 26.250 —18.145 35711 —37.505 54.624 —51.437  69.888
10 —9.654 34,752 —36.639 57.732 —54.061 75532
12 1.703  30.930 —33.288 59.527 —55.033  80.041
14 21299  28.251 —27.204  60.052 —54.310 83.534
16 36.607 —19.238 58953 —51.753  86.095
18 —7.836 57.056 —47.472 87671
20 8.545 55.208 —41.803 88.165
22 19.717 44258 —33.951 87.980
24 27.496 —22.950 87.572
26 —10.609  85.555
28 —3.504 76.857
30 0 59113
32 0

034317-20



COLLECTIVE PROPERTIES OF NUCLEONS IN TH. . . PHYSICAL REVIEW C 61 034317

— 1 T T T T 1 T T 6———F"7—T1T 17 +T1 71—
1.0 projected 5 o
| 13\6 wiah i L N,=8 .- ]
&) i _
0.8} '.,' - 121 L .
L N _ ] B e i
sl SU3[A,, =24,0] ] I e - ]
= ] sl SN k
04l - LN, =2 . N,=6 ]
A . [ r B ]
02 /S — 4L ".;\ .
v 7 [{¥ N =4 ]
0.0 —_ 1 1 1 1 | L | 1 | 1 -‘.' ¢ (a) h
() 4 8 12 16 20 24 0 i MU N U TR T TR S ]
Angular momentum J, (%) 0 200 400 600
16 L} I L) ' L} I T l L] l L} I T
FIG. 6. Variation of f(J;) with J, [see Eq.(81)] for the . [ "N,=4,6,and 8
Fu(ia=%.N,=6) and SU3) Fr[Neq=24,0] ZS's. See also Sec. 3 L slope = 0.0210 -
VC. 5 12 -
= B ]
(J200J'0) at - rotor model 1
(ja,Ng) = Cyk—oCikeo——e— & gL N
Ei Ok (Ja:Na) ? g IK=0MIK=0" BT = 8_ slope = 0.0199 ]
. , . Tt ]
X[(ja:Na);J'K[[Qll(ja,Na); IK]. ot ]
(80) g8 4 ]
Here, the sums run over all the statd$ contained in the | i (b) 1
7S Fk(ja,Ny). We verified that Eq(80) is satisfied by the ) N A A A T
calculated reduced matrix elements. 0 200 400 600
We now use this sum rule for comparing the collectivity 100 ——F——F——7——
of theZS Fy(ja,N,) with that of the corresponding equiva- - .
lent SU3) ZS Fi[Aeq0]. LetQ(J;) be the value of the sum 80 _
on the right-hand side of E¢80) obtained up to the contri- I SU3 |
bution from the states witld’=J=J; contained in theZS. slope = 0.0214
The quantity 60 - N
Q(Jy) 40
f(l)==——"— 81 ™ n
( l) QO(Ja:Na) ( ) - E
represents the fraction of the quadrupole moment exhausted 20 B
up to the projected statd,). The variation off (J,) with J; : (c) .
is characteristic of the collectivity of the yrast band. As an 0 P U PR B |
illustration, we show, by a solid line in Fig. 6, the variation 0 1000 2000 3000 4000
of f(J;) with J; calculated for theZS of N,=6 particles in (Q,)* (in units of a*)
the state withj,=%. For comparison, we also show the '
similar variation for the equivalent SB) ZS Fy[A¢q FIG. 7. Variation ofB(E2:2—0) with (Q,)? for the|J=2) and

=24,0l. From this comparison, we conclude that the|J=0) states projected from differedS's (see Sec. V2 (a) The
F«(ia,N,) and the equivalent S@3) ZS's have similar col-  four straight lines correspond 5 (ja,Na,) for four different val-
lectivities. For both of thes€S's, 90% of the quadrupole ues ofN,. (b) Simultaneous fit to thé&l,=4, 6, and 8 trendssolid
moment sum is exhausted within the first 40% of the bandine) and forced fit(dashed ling to the same data with the rotor-
which extends up td=24. Similar results were obtained for Model slope(c) The straight line corresponds to the @U [\

a few otherZS's Fi(j.,N,), and the conclusions are ex- ~Q0/2.0].
pected to be valid for all th&S's considered here. The values of the quadrupole mome@s(j..N.) of the
IS Fi(ja:Ny) are listed in Table VI. TheB(E2:proj;
D. B(E2;2—0) values 2—0) values calculated for thg=2 andJ=0 states pro-

jected from theZS are plotted in Fig. @) as a function of
[Qo(ja,N,) 1% The overall trend of thesB(E2) values is
described by

In the rotor model, th8(E2:rot;2—0) values are related
to the quadrupole momeRQ, of the ZS by

- 1 N B(E2:proj;2—0)~¢(Na) + M(Na)[Qo(ja,Na) 1.
B(E2:r0t;2-0) = 75— (Qq)*~0.0199Q0)%. (82 ° (83
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The B(E2) trend for the two-particle cagsee Fig. 7a)] is TABLE XIV. CalculatedB(E2:proj;J—J—2) values(in units
markedly different from those for four, six, and eight par- of ) for statesJ) projected fromFy(j.,N.). See Sec. VE.
ticles. The latter have similar slopes, and thB§E?2) values
can be fitted by a single line, as shown in Fi¢h)7 This line
has a slopen=0.0210 and an intercept= 0.86. If we fix the
slope as m=m(rot)=0.0199, the best fit to the
B(E2:proj;2—0) values forN,=4, 6, and 8 particles is 2

J B(E2: proj (jo = 3, No =8);J — J—2)

124371720 1

obtained with an intercept of 1.25. This fit, shown by a 4041973 =
dashed line in Fig. (), demonstrates that the projected and 4 710066872090650 1
rotor-model values are very similar. This similarity is ex- 16443768783169 =
pected because f.or a well-deform&8, the projection for- . 16548971043390192000 1
mula for theB(E2:2—0) val_ues reduces to the rotor-model 350288999835417587 7
formula to a good approximation for small values &f
[14,35. 3 157998970259336078901 l
The B(E2:SU3 \,0];2—0) values also depend on the 3433150035722452009 =
quadrupole momern®y(\) =2\ of the ZS of representation 10 14134586635496318750 1
[X\,0] in the same way; namely, 318340050610297261 =
48456692009845060887 1
B(E2:SU3J\,0],2—0)~c(\) +m(\ M2 (84 =
( In0),2=0)=c(h) (MIQo(MT". (84) 12 1163086609359337832 =
The B(E2:SU3\,0];2—0) values for 8\=<34, plotted 1 2963172000492259325 1
agains Qqo(\)]?=4\? [see Fig. T¢)], can be described by 77602156736697398 7
B(E2:SU3\,0];2—0)~2.11+0.0214Q,(\) 2. 1318090478208103125 1
( 0520 1Qu(A)] (85) 16 38597213645370952 =
. ) ] 18 3106532246177574 l
The rotor-model, projected, _and.SS)l B(E2:model; 105831145034069
2—0) values have almost identical dependence or 88000 1
[Qo(model)]?. Both the projected and the $8) B(E2: 20 5122788000 1
2—0) trends have a small, constant intercept value indeper 206459149
dent of Q,. WhenQy is sulfficiently large, the constant addi- 2 4152920 1
tion to theB(E2) value becomes negligible compared to the 196209
direct contribution fromQ, which is in agreement with the 99295 1
rotor-model result. 24 7943 7

E. B(E2:J—J—2) values

We adopt a criterion that the closer the trend of the ratiddy the residual seniority properties of these states are prob-
B(E2:J—J—2)/B(E2:2—0) for a model yrast band is to ably responsible for the double-humped structure.
the rotor trend, the greater is the collectivity of the model In Fig. 9, we show the rotor-mod@&(E2:rot;J—J—2)

band. The rotoB(E2) values are given by values normalized to the project&{E2:proj;2—0) value
for the (31)®, (1), and )8 states. As expected, the pro-
B(EZ:rot;‘]_>\]_2):i[\]20q(‘]_2)0]2(60)2_ jected bands are less collective than the rigid-rotor band. We
16 next compare theB(E2:proj;J—J—2) values with the

(86)  B(E2:SUJ\eq0];d—J—2) values obtained for the $B)
In the next step, we calculated tB¢E2:proj;J—J—2) val- band ‘belonging to the .equwalent repres?ntatnﬁﬁs,o],
ues for theZS's F(j.,N,) of N,=2, 4, 6, and 8 particles 240, and[32,0] appropriate for the thregS's 7«(%,6),
inthej,=2, &, L and® single-particle orbits using Eq. Fx(%,6), andF«(%,8), respectively. They are also shown
(63) and the appropriate projected reduced matrix elements Fig. 9. It is clear from this figure that the projectBdE2)
from Table XIIl. [The care taken in these calculations istrends are slightly more collective than the equivalent3U
illustrated in Table XIV by reproducing thexactcalculated B(E2) trends. This result is suprising because the distribu-
values for the [,=%,N,=8) case} The calculated3(E2) tion of angular momenta in tHES F¢(j,,N,) was found(in
values are plotted as a function &fin Fig. 8. ForN,>2,  Sec. IIQ to be less collective than the distribution in the
there is a double-humped structure in tB{E2:proj; equivalent SUB) 7S belonging to the representatipR0].
J—J—2) vsJtrend. This feature is most pronounced forthe ~We also determined the $8) representatioriAgg2),0]
jg configurations. The second maximum is significantlysuch that theB(E2:[Ag(g2),0];J—J—2) values normalized
smaller for thej S configuration and almost disappears for theto the projected(E2:proj;2—0) value agree with the simi-
j2 configuration. Selection rules governing t& transition  larly normalizedB(E2:proj.J—J—2) values over as large a
probabilities betweet(j,,N,);J) projected states imposed range ofJ as possible. The results for thgt}®, (3%)¢, and
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FIG. 8. B(E2:J—J—2) values for the stateproj:(j.,N,);J) projected from each of thES's F(j.,N,) (see Sec. V E The calculated

values are connected by smooth lines for easy visualization.

()8 7S's are shown in Fig. 9see the curves labeled by mentQ(crank;) is expected to be the quadrupole moment

NgE2)]- The Ag(e2) values are larger than the, values by
2—4 units.

F. Transition moments Q,(J)

The transition probabilitieB(E2:J—J—2) are often ex-
pressed in terms of the transition mome@gJ) of a state
[see Eq.64)]. We calculated th&,(proj;J) values for the
band of stategproj:(j,,N,);J) using Eq.(64) and the
B(E2:proj;J—J—2) values obtained in Sec. VE. The re
sulting Q;(proj;J) values plotted in Fig. 10 show a signifi
cant variation withJ. For the bands wittiN,=6 and 8 par-
ticles, these values decrease with[see Figs. 1() and

of theZS when it is rotating with angular momentuiralong

an axis perpendicular to the symmetry axis. Hence, in the
cranking model, the variation @d,(J) with J gives a mea-
sure of the change in the deformation of fff@as a function

of its rotational frequency.

In our calculations, all the statésroj: (j,,N,);J) are pro-
jected from the sam&S. In other words, the structure of the
7S does not change with theof the projected state. Hence,
the variation ofQ;(proj;J) with J cannot be considered as a

" measure of the change of the deformation of #& The
exact relationship betwedd,(J) vs Jin the cranking model

and in the projection approacfin the jga configuration

10(c)], while for N,=4 particles, they have a second maxi- SPace needs to be explored further, possibly along the lines
mum[see Fig. 108)] atJ=10, 12, 14, and 16, respectively, followed by Hara, Hayashi, and Rifg6].

forj,=2, %, %, andy. Also plotted in Fig. 10 by means of
horizontal lines are the quadrupole mome@ts(j,,N,) for

each of theZS's F¢(j.,N,). These lines represent the rigid

rotor values; that isQ,(rot;J)=Qy=Qo(j,N,). The pro-
jected values are slightly largemalle) than the rotor values
for smalllarge J values.

The variation ofQ,(proj;J) with Jis interesting from the
point of view of the cranking model in which the yrast ban
is obtained while theZS rotates with different angular mo-

menta. The structure of théS changes in response to the

increase in the angular momentulnand the transition mo-

G. Spectroscopic quadrupole moment)(J)

We calculated the values of the spectroscopic quadrupole
momentsQ(proj;J) of the statesproj:(j,,Na);J) using Eq.
(65 and the reduced matrix elements given in Table XIII.
The variations of)(proj;J) vsJ are shown in Fig. 11 for the
dprojected bands oN,=4, 6, and 8 particles. We note the
general absence of particle-hole symmetry in @groj;J)
values. For example, the values for thg)¢ band are not

equal in magnitude to those for thét§® band, nor are the

034317-23



K. H. BHATT, S. KAHANE, AND S. RAMAN PHYSICAL REVIEW C61 034317

12 — T T Angular momentum J(%)
[ @ W)° i 0 4 8 12 16 20 24 28 32
5 - T T T . 20T T 7T T T T T 1
— —-—
8 | 4 e e |
i | 15f ~==~__ ":_\ N\, i
L - — — ] .
L 4 L .. e \ . 4
4l —— projected N ERsam— N \
1 — — -rotor | 10 ¥.¢-Y NN 7]
N X . 4
- A, =18 AR I rarey (152 ]
L eeaa- A =20 J (11/2)
0 PR i S S TR 5 (or2)° .
0 4 8 12 16 20 | (a) .
16 —
s 4 0 PR I SR N TNS NG SO T BN IR T |
< [ ] 25T T T T T T T
S 12f - N; 5 — e — o
) L ] = 20 --eo_ —-e._ (1572
[ [ ] ) | —— N |
- < =] ~ e \ . N
~ — projected - g | ~‘~...__-£1 1/2)5 \\ \‘ i
& i — - rotor A\ ] g .. . .
&3] 4 - * \ - 10| 6 ° : —
= L e A, =24 SN ] g :(9/2) :
_ | eq . \\ ] g i |
| T °==- }‘B(EZ)_ZS i g s L i
0 i | 1 | 1 ! 1 | 1 | 1 I} 1 | [:‘. (b) |
0 4 8 12 16 20 24 28 i
32 11— ol v o0ty 11y
i 8 ) 30 ——F7——7T T 1T T T
n 1 4
L o® ]
241 - 7 251 T~ . (15/2) -
- ] 20} e e i
16 ] | ~L(13/2) ~ ]
- cted 1 15k el i Se A
B —s— projecte y | - (1172)° \ N
s [ — — -rotor ] 1ok \ i
L e Ay =32 ] I L ]
[ - Apcer =34 ] 5 - (972) -
ol 1 o 0 vy a1 | (c) i
0 4 8 12 16 20 24 28 32 36 0 YN Y (TN NTUUN N NN T R N
Angular momentum J (%) 0 4 8 12 16 20 24 28 32

Angular momentum J (%)
FIG. 9. Comparison of thB(E2:J—J—2) values for the states

projected from theZS's F«(j..N,) and SU3) F[\,0]. The FIG. 10. Transition momentQ,(J) for the yrast band of states
B(E2:rot;J—J—2) values from the rotor model are normalized to |proj:(j,,Na);J) projected from theZS's Fy(j,,N,). For each
the B(E2:proj;2—0) values. See also Sec. VE. band, the constant rotor-mod®l(rot;J) value, chosen to be equal

to the corresponding intrinsic quadrupole mome&(j,,N,), is
values for the £)° band equal in magnitude to those for the shown as a horizontal line. See related discussion in Sec. V F.
(2)® band. However, for the projected states with ~
=Jmax, the Q(proj;J) values do exhibit particle-hole sym- trinsic quadrupole momerd,) are given by Eq(69). For a

metry; that is,Q[(3)*12]=-Q[(2)%,12], Q[(%)* 16]=  prolateZS, Qu>0, andQ(rot;J)<0 for all J values. The
—Q[(%)8,16], and Q[ (¥)8,24]= — Q[(%2)8,24]. The rea- rotor Q(rot;J) values decrease smoothly fromZQ, to
son for this behavior is that there is only one state ofjﬂ"f’e —1Q, asJincreases frond=2 to J=. If Q, is chosen to

configuration with)=J,,.., and this state has a definite se- be equal tQQo(j,,N,), the rotor-model spectroscopic quad-
niority v=vy5=N,. Another consequence of the particle- rupole momentQ(rot;2) for theJ=2 state is quite close to

hole symmetry is tha®[ (1)®,18]=Q[(32)8,32]=0. the projected valu®(proj;2) for thejga band. Because the
The Q(rot;J) values for the statepot,J) of an axially ~ ZS's F¢(ja,N,) are far from being rigid, the overall trend of
symmetric rigid rotor(with an ZS havingK=0 and an in- the correspondin@(proj;J) values is significantly different
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FIG. 11. Spectroscopic quadrupole mome@(g) for the yrast
band of states|proj:(j,,Ng);J) projected from the ZS's

Fi(ia:Ny). For the &)® band, we show inb) the rotor-model
Q(J) values normalized to th@(J=2) value. See related discus-
sion in Sec. VG.

from the trend of the)(rot;J) values. We illustrate this dif-
ference in Fig. 1(b), where we have plotted th@(rot;J)
values such tha(rot;2)=Q(proj;2) for the ¢2)® configu-
ration. The projected(proj;J) values resemble the rotor
values only for the first few states.

H. Comparison with B(E2) values in the SG6) scheme

In the interacting boson modgl5,16], rotation-like quad-
rupole collectivity is described in terms of the @D sym-

PHYSICAL REVIEW C 61 034317
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FIG. 12. Trends of th&,qe(J) values[see Eqs(87) and(88)].
The Ry,(J) trend is more collective than thégg(e)(J) trend for
the equivalent S®) band withN,, .= 12. See related discussion in

Sec. VH.

metry in addition to the S(B) symmetry. For the S(@®)
symmetry, the trend of th8(E2:J—J—2) values for the
yrast states oN,, bosons coupled strongly 2 transitions
are given by[9]

N B(E2:S06—J—2)
Red6(d) = ; :
SO(6) B(E2:S06;2-0)

B 5 J
~ 2(2Np)(2Np+4) J+3

X(2Np+2-J)(2N,+6-J). (87

The highest angular momentudy,,, for N, bosons iSJax
=2N,. We also define

R J_B(EZ:proj;J—>J—2)
pol ) =B (E2:proj;2-0)

(88)

In Fig. 12, we compare thgg(G)(J) values(for different

Np) with the R,(J) values, the latter projected from ti&

of six particles in thei,3, state. In the interacting boson
model, the boson numbet, is three for a six-particle state,
and the maximum angular momentum of the yrast band is
Jmax=2Np,=6. TheRgg(G)(J) values forN,ga =3, shown in
Fig. 12, are significantly smaller than the projected values.
We next consider an S6) band with an equivalent boson
number Npeq=12 for which Jya=24. This Jya value is
equal to thel,,, for the (32)° configuration. TheRg'g(G)(J)
values forNy,,= 12 are still less collective than the projected
values. The boson number for which the (80B(E2) trend
best fits the trend of the projected valueNisgg2)= 32.

I. Comparison with B(E2) values in the seniority scheme

In the seniority scheme, the staﬂe}ga;Jv,a> of thejgla
configuration may be classified in terms of “bands” of dif-
ferent angular momenthhaving the same seniority quantum
number v. The label @ distinguishes between orthogonal
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TABLE XV. Comparison betweeR;(N,) ,; [s€€ Eq(92)] andR;(N,)<en[See Eq(90)] values forN,=4, 6, and 8 particles in different
ja Orbits. TheB(E2) values are in units of”.

B(E2) proj B(E2) proj B(E?2) proj B(E?2) proj

(jasNa=2) (ja,No=4) (Jas Na = 6) (ja,Na = 8)
Ja 2—-0 2—0 Ri(4)proj Ri(4)sen 20 R1(6)proj R1(6)sen 2—0 R1(8)proj R1(8)sen
g- 233 2.60 1.12 1.50 3.28 1.41 1.50 233 1 1
-121 3.29 3.62 1.10 1.60 5.40 1.64 1.80 5.62 1.71 1.60
-12‘3 4.41 4.79 1.09 1.67 7.89 1.79 2.00 9.79 2.22 2
—12§ 5.68 6.11 1.08 1.71 10.75 1.89 2.14 14.74 2.60 2.29

states with the same values dfand v. When the pairing B(g2:senj"2:J=2v=2—-J=0v=0) value for N, par-
interaction is dominant, the ground state hks0 and v A
=0. The first excited “band” of states has=2 andJ
=2,4,6...,2,—1. The states withv=4,6,8 ... n lie at
higher energies.

The states |(ja,Na);JK) projected from the
IS Fi(ja,N,) do not, in general, have a definite seniority B(E2:sen jga;Jzz,u:Z—d:O,u: 0)
for N,>2 andj,>7 (see p. 324 of Ref8]). The projected R1(Na)ser™ 2 sen 2] 20m2 1= 0ue
state for each) can, in principle, be expressed as a linear B(E2:sen j5;J=20=2-J=02=0) 90
combination of different seniority states. Thus (90

ticles in |j,) is related to theB(E2:senj2;J=2p=2
—J=0,0=0) value for two particles. The ratio

1proj:(ja Na);:JK) = A(Ju,a)||seni’e;3v,a). s given by(8]
(89)
Na(2ja+1—Np)

We do not attempt such an explicit expansion of the pro- Rl(Na)sen:W- (91)
jected states here. 2

The projected states are likely to be the low-lying states of
the a nucleons embedded in the mean field of deformed NUe have also calculated the Corresponding ratios
clei in which the quadrupole-quadrupole interaction domi-
nates. Because the seniority states and projected states are
generally likely to be important in very different physical o _
situations, there is ordinarily no need to compare their quad- Ry(N,) o= BLE2:proj (ja,Na);2—0]
rupole collectivities. However, both the pseudo{Sl.model Balerel T BIE2:proj (j,,2);2—0]
(with its symplectic extension[12,28,29 and the fermion
dynamic symmetry mode[17] successfully describe de- _
formed nuclei, assuming that for thé& configuration the for the J=2 and J=0 states projected from Nthe
pairing interaction is dominant even in deformed nuclei. InZS F(ja.Na). While theB(E2:J— J—2) values for thg
view of this success, a comparison of the configuration withN,>2 andja>% are different in the se-
B[E2:proj (j,No):J—J—2] and B(E2:sen j:a;J niority and projection models, these values are the same for

—.J—2) values for transitions between the low-lying pro- thejg configuration because there is only one state of dach

jected and seniority states, respectively, is of interest. Such i@ the latter configurationfin particular, theB(E2:2—0)
comparison will display the influence of the deformation- Values are the same in both modgls. Table XV, we have

induced seniority mixing on th&(E2) values as one goes compared th&;(Na)pro; aNdR;(Na)senvalues forN,=4, 6,

i inthe.=2 1 13 15 orbi i
from thejgla states of definite seniority to the states projecteoand 8 particles in thg,=3, 3, %', and3* orbits. From this
from a deformedZS.

(92

comparison we conclude that the projected statesi asig-
nificantly less collective than the senioritj;g states, (ii)
slightly less collective than the seniorijﬁ states, andiii)

1. B(E2:2-0) values . . L
slightly more collective than the senlorliﬁ states.

We want to compare the variation of ti&{E2:2—0)
values as a function of the number of particles for the pro-
jected states with the corresponding variation for the senior-
ity states. In the seniority scheme, the lowgst2 state has In the seniority scheme, the lowest states witke
v=2, and the ground state has=0. In this scheme, the =2j,—1 havev=2. The B(E2) values for theJ—J—2

2. B(E2:J—J—2) values for 4=J=<2j,—1
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TABLE XVI. Comparison ofRy(N,) o [s€€ EQ.(95)] values
with Ry(Ny)sen[Se€ Eq(93)] andR,(N,) sus [see Eq(96)] values
for N,=4 particles in differenf, orbits. TheB(E2) values are in
units of a*.

PHYSICAL REVIEW C 61 034317

TABLE XVII. Comparison ofR,(N,) o [S€€ Eq(95)] values
with Ry(Ny) sen[Se€ Eq(93)] and R,(N,) sus [see Eq(96)] values
for N,=6 particles in differenf, orbits. TheB(E2) values are in
units of a*.

B(E2 : proj (ja, Na);

B(E2 : proj (ja, Na);

J—=J-2) Ry(4) Ry(4) R2(4) J—=J-2) Ry(6) Ry(6) Ra(6)
Ja J Noe=2 Ne =4 proj sen SU@3) ja J Nge=2 No =6 proj sen SU@3)
%- 4 2.68 3.29 1.23 0.11 2.17 g- 4 2.68 3.28 1.22 0.11 217
6 1.86 3.05 1.64 0.11 2.53 6 1.86 428 2.30 0.11 2.53
8 0.74 2.81 3.78 0.11 3.67 8 0.74 4.12 5.56 0.11 3.67
11 4 4.06 4.86 120 025 245 1 4 4.06 7.47 1.83 0 1.90
6 333 4.90 1.47 0.25 2.70 6 333 7.80 234 0 ‘ 2.05
8 2.06 4.49 2.18 0.25 3.28 8 2.06 7.63 3.68 0 2.41
10 0.77 4.46 5.76 0.25 51 10 0.77 7.18 9.25 0 354
By 5.66 6.63 117 036 265 ¥ 4 5.66 11.12 196 004 265
6 5.07 6.96 1.37 0.36 2.85 6 5.07 11.94 235 0.04 2.85
8 3.76 6.67 1.77 0.36 3.22 8 3.76 12.07 3.20 0.04 3.22
10 2.20 6.24 2.85 0.36 4.04 10 2.20 11.93 5.38 0.04 4.04
12 0.79 6.49 8.23 0.36 6.55 12 0.79 11.57 14.34 0.04 6.55
Lo 7.49 8.59 115 044 280 B 4 7.49 15.26 205 011 376
6 7.07 9.24 1.31 0.44 295 6 7.07 16.59 235 0.11 4.00
8 5.79 9.14 1.58 0.44 323 8 579 17.02 294 0.11 4.43
10 4.08 8.67 2.12 0.44 3.73 10 4.08 17.09 4.13 0.11 5.20
12 230 8.32 3.63 0.44 4.79 12 2.30 16.97 731 0.11 6.83
14 0.81 8.88 11.10 0.44 8.11 14 0.81 16.68 20.14 0.11 11.92
transitions between the=2 states of thejga gc_mfiguration B(E2:SU3:)\N3,O];JHJ— 2)
are related to th&(E2) values for the transitions between Ra(Na)su(z)= ezq (96)
the corresponding states of theconfiguration. The ratio of B(E2:SU3 Ag0];d—J3—2)

these two values

B(E2:sen j.2;J=2,p=2—-J-2v=2)

R5>(N =
2(Na)sen B(E2:sen j2;J=2v=2—J—2v=2)
(93
is independent of and is given by 8]
BN — 2jat1—2N,|? 04
2(Na)ser™ 2. 120 | (94

In Tables XVI, XVII, and XVIII, we list the ratioR,>(N,) sen
and compare them with the ratios

(N _ B(E2:proj (ja,Na);J—J3-2)
2(Na)proj= B(E2:proj (j,2);d—J—2)

(99

calculated for the projected stat@gith 4<J<2j,—1). We
also include in these tables the corresponding ratios

for the SU3) states belonging to the equivalent representa-
tion [ ¢40]. The values oh ¢, for the (j,,N,)ZS's are listed

in Table IV. TheR,(N,) values show that thB(E2) values

for the transitions between thg,(,N,) projected states are
similar in collectivity to those between the 8) states and
are significantly more collective than those for the transitions

within the v=2 bands of thg gla configurations. Note that

Ro(N,)ser=0 for the &)8 and (£2)8 states. These zero val-
ues reflect the seniority selection rule that even tensor ele-
ments between the states of the same seniority vanish at mid-
shell.

3. B(E2:J=2j,+1—J;=2j,—1) values

The Ry(Ny)sen Values listed in Tables XVI, XVII, and
XVIII are <1 which implies that th€e2 transitions within
the v=2 band are weak. This band terminates At
=2j,— 1. The lowest state witd=2j,+1 hasv=4. We
are interested in thB(E2) values for transitions across this
seniority gap. A general expression for the reduE@dma-
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trix element for such transitions acrossa v—2 seniority 5X6
i Fi (Ny)=-—+ - - - -
gap has been derived by Talfi#7] as i.(Na) I 1(21 (2. 1)(2].5 2)(2].5 3)
iNa 2)1;Na . _ _ — 1 _9\2
(1a* 0 =Na JITO]j3" 0 =Na=23;=3;-2) x| 4]4(21a= 1)+ (Na—3)| 6]2- 7, +1
e )24_1(Na—2)(2ja+3—|\|a)+5 1
B R TR R TV + 5 (412 14a+5)(2N,=5) = (ja= 1)
X[1=2(Na=2)F; (Na)], (97) 1 .
X(Na=2)(Na=3)+ 35[6(Na—3)
where
1 +9(N,—3)2+N —4]”. (99
Ji=(Na=2)ja= 5(Na=2)(Na=3)+2  (98) ) )
and the factona(Na) is given by For the caséN,=4 particles, we consider the ratio

B(E2:senj%:v.=4J=2j,+1—v;=2J;=2j,— 1)
R3(Na24)sen: Ja |.2 i Ja f f Ja . (100)
B(E2:senj;;vi=2J3i=2—v¢=0,J;=0)

From Talmi's general formula and the definition B{E2) Projection Seniority
value, we obtain Q) J v Q)
-5.80 14 — 4
) 2.27 0.710
Ra(Ny=2) o2 211 _2F (4 10
3( a— )sen_zj-a—+3[ ja( )] ( 1) _6.38 12 > _185
o 11 13 15 2.60 0.007
The factorsF;(4) for thej=3, 3, %', and 3’ states are
0.076, 0.047, 0.032, and 0.022, respectively. The values of _gg7 10 — 2 -0.88
R3(Na=4)een for the ja configurations, obtained from Eq. 268 0.020
(100, are compared in Table XIX with the corresponding '
ratio -7.35 g — 2 -0.12
273 0.034
RN —4 _ B[E2:proj (j,,4);Ji=2j+1—J;=2j—1] —7.40 68— 2 +044
ANa= oo™ B[E2:proj (,,219,=2—-3;=0] 2.71 0.046
(102 -6.95 4 — 2 +077
of the B(E2) values for the transitions between the projected 0.051
states of the samé&values considered iR3(N;=4)¢en. ON
the average, the transitions between the projected states are —5.60 2 2 +079
stronger by about 80% than the transitions between the cor- 20
responding seniority states.
In Fig. 13, we summarize the qualitative differences be- 0 0 0 0

tween the quadrupole propertigspectroscopic quadrupole
momentsQ(J) and B(E2:J—J—2) valueg for the low-
lying projected and seniority states. Both sets of states b

long to thejga configuration, and this particular figure is for

FIG. 13. Comparison between the spectroscopic quadrupole mo-
é‘pentsQ(J) and theB(E2:J—J—2) values for the low-lying pro-
jected and seniority states of théf()e configuration. TheQ(J)

136 ] ) ) values are in units of? and theB(E2:J—J—2) values(associ-
the (5°)° configuration. The projected states form a stronglyated with the downward arrowsn units of B[E2:(1)2:2—0].

coupled chain of quadrupole collectivity, whereas the2  Tne |atterB(E2) value is the same for the projected and seniority
part of the seniority band is totally devoid of such collectiv- gtates. See related discussion in Sec. V1.
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TABLE XVIII. Comparison of RZ(Na)proj [see Eqg.(95)] values TABLE XIX. Comparison ofR3(N,)qro Values[see Eq(102)]
with Ry(Ny)cen[s€e EG(93)] andR,(N,)sys [see Eq(96)] values  With R3(N,)senValues[see Eq(101)] values forN,=4 particles in
for N,=8 particles in differenf, orbits. TheB(E2) values are in  differentj, orbits.

units of a*.
Ja R3(4)proj R3(4)sen
B(E2: proj (ja, Na);
3 1.21 0.71
J—-J-2) Ry(8) Ry(8) Ra(8) 2 ' '
ja J  Na=2 N.=8 proj  sen  SUQ3) T 1.41 0.78
5 3 1.55 0.82
3 4 2.68 2.68 1 1 1 &
L 1.61 0.85
6 1.86 1.86 1 1 1
8 0.74 0.74 1 1 1
where F, and F, are four-particle Slater determinants in
! 4.06 7.64 188 025 245 which the orbitsk,, ,= =3 and = 3 are occupied. The states
6 333 7.73 232 025 270 FrandF, can be expanded as
8 2.06 7.10 345 025 328 4
11 11
10 0.77 6.04 784 025 511 o Jr= =4 =JE Co ||| 9a) (104
B a 5.66 13.75 243 004 376 and
5.07 14.66 259 004  4.08
8 3.76 14.65 390 004 472 .13 13)*
Fli,=2n,=4|=> Cy |l =] :3,). (0
10 2.20 14.13 642 004 608 ”(J” 2 ) JE Ikl 2 (109
12 0.79 13.26 1678 004 1029
We have calculated the values|@; |* and|C; |? for these
L o4 7.49 20.88 279 0 4.87 ZS's and listed them in Table Il. The totdlS 7, can be
6 707 22.65 3.20 0 520 expanded in terms of the statgd,®J,]J) of total angular
8 5.79 23.19 4.01 0 5.80 momentum) as
10 4.08 23.14 5.67 0 6.88 F.(n.=4n,=4)
12 230 22.70 9.87 0 9.16
14 0.81 21.98 27.14 0 16.30

=> > > C, C,;(3,3,0030)[[I,23,]3).
J 3. J, v

106
ity. It seems unlikely that such a seniority band can play any (106

Significant role in the structure of the yrast band of a de-The state of angu|ar momentu_]‘rprojected from}"ﬂ_v has the

formed nucleus. structure
VI. YRAST BAND OF A SYSTEM OF _
ABNORMAL-PARITY NUCLEONS |‘]>_NJJEW JE €3,C,(323,0030)|[373,13),

A nucleus contains both protons and neutrons in (107
abnormal-parity states. In this section, we calculate the colpyhereN; is a normalization constant given by
lective properties of the yrast band projected from ZiSeof
such protons and neutrons. We consider as an example a ) -2
system ofn_ =4 protons in thg ,=0h,,,, state anch,=4 N,= JZ JE |C,_C,,(343,00[30) . (108

neutrons in thej,=0i 3, State in the mean field of a de-

formed nucleus. According to Table XX, such a configura-\ye write the statéJ) as

tion of the abnormal-parity nucleons should occur in a

nucleus with at leadN ;=10 protons in the 50-82 shell and 1y=2> > A[J:J,,3,11[3,23,13), (109

N,=10 neutrons in the 82-126 shell. Such a nucleus is Iz Jy

L5Ndg,. The totalZSF,,(n,=4n,=4) of theanucleons is

the product of theZS's of the protons and neutrons: where

AlJ:J,.Jd,]= NJCJwCJV(JWJyoolJO). (110

]—‘m,(nw=4,n,,=4)=}‘w(jw=171,n77=4)
A. Distribution of angular momenta in F,

13 i
,nvz4>, (103 The stateF ., [see Eq(106)] can be expanded in terms of

®f”(lvz7 the stategJ) [see Eq(109] as
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TABLE XX. Partition of N valence nucleons intdl,, nucleons in the normal-parity ard, nucleons in the abnormal-parity states and

their average S(B) representations for the yrast bands. See Sec. VII.

N Nn Na [z, ﬂ~n] [An,ff ) 0] [Aaave ) 0]

N N,

Na

[%en]

[’\neff ’ 0] P\aave s 0]

(a) 50-82 major shell with jo, = h{; /2 (neutrons and protons)

(c) 82-126 major shell withj, = iq3 /2 (protons)

8 6 2 [12,0] {12,0] 4 20r4 20r0 [8,0]or([12,2] [8,0] or[14,0]
10 6 4 [12,0] [12,0] [16,0] 6 4 2 [12,2] [14,0]
12 60r8 6or4 [12,0]or[10,4] [12,0] or[14,0] [14,0] or [16,0] 8 4 4 [12,2] [14,0] [22,0]
14 8 6 [10,4] [14,0] [14,0] 10 6 4 [18,0] [18,0] {22,0]
16 10 6 [10,4] [14,0] [14,0] 12 6 6 [18,0] [18,0] [20,0]
18 10 8 [10,4] [14,0] [10,0] 14 8 6 [18,4] [22,0] [20,0]
20 12 8 [12,0] [12,0] [10,0] 16 10 6 [20,4] [24,0] [20,0]
18 10 8 [20,4] [24,0] [10,0]
(b) 82-126 major shell with js =1;3/5 (neutrons) 20 10 8 [24,0] [24,0] [10,0]
8 6 2 [18,0] [18,0]
10 6 4 [18,0] [18,0] [22,0] (d) 126-184 major shell with jo = j5/9 (neutrons)
12 8 4 [18,4] [22,0] [22,0] 8 6 2 [24,0] [24,0]
14 8 6 [18,4] [22,0] [14,0] 10 6 4 [24,0] [24,0] [30,0]
16 10 6 [20,4} [24,0] 114,0] 12 8 4 [26,4] [30,0] [30,0]
18 10 8 [20,4] [24,0] {16,0] 14 8 6 [26,4] [30,0] [28,0]
20 12 8 [24,0] [24,0] [16,0] 16 10 6 [30,4] [34,0] [28,0]
22 14 8 [20,6] [26,0] [16,0] 18 10 8 [30,4] [34,0] [28,0]
24 16 8 [18,8] [26,0] [16,0] 20 12 8 [36,0] [36,0) [28,0]
22 14 8 [34,6] [40,0] [28,0]
24 16 8 [34,8] [42,0] [28,0]
B. Quadrupole properties of the v band
Fa™ 2 Cald), (119 The electric quadrupole operator of the system can be
written as
o 5 . .
Anguiar momentand. The. nommalizaton corstarts s Qe=e.Q,+e,Q.. 113
given by Eq.(108). The distribution of C,|? vs J is shown in
Fig. 14 for the coupledr(4)*® v()* system. 0.20 L LA

We recall that the distribution of the angular momeja
andJ, in F, and F, [see Egs(104) and (105] are well
reproduced by the distributions of angular momenta in the
SU@3) representationsh ;= (X ;)eg= (A7) ave=16 and A,
=(\,)ae=22 [see Figs. th) and Zc)]. [Note that the
equivalent SUB) representation for the neutrons is j.q
=20.] We find that the distribution of angular momenta in
F., to be nearly indistinguishable from that in the average
representatiop ., ave0] With X ., ave= N7 aveT Ny ave= 38.

The equivalent representation for th¢%)*® v(3)* system
is [Aeq0]=[36,0]. The distribution of angular momenta in
the [36,0] representation is shown in Fig. 14. The distribu-
tion of angular momenta in the coupledrv system ofa
nucleons follows to a good approximation the rules of cou-
pling of SU3) representations, namely

Probability

0.05 |

0.00

——

=(d) e v(®)' -

projected
A=36

) S W S §

8 16

24 32

Angular momentum J(%)

FIG. 14. Probability distributior;(J) of angular momenta for

the 7, [ m(3)*® v(3)*] IS compared to the corresponding dis-

tribution for the SW3) F¢[Ae=36,0] ZS. See related discussion
[AN+O]®[N,,0] =[N, =N,+X\,,0]. (112 in Sec. VIA.
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wheree,,, are the effective charges for prot¢nsutrons. 36 1T+ T7"—T"T T T
We want to evaluate the reduced matrix elements [ @ ”(”)4® v(13)4 1
30} 2 2 -
ilQelI =, (Il QI3) +e,(3lQ,19) (114 <ot rotor model
S 24 — T T T T4
of Q. between the projected statgh of Eq. (109. Using Q .
this equation and Eq1A-723 of Ref.[20], we obtain < 4
T RN
(IlQA13) = V(23:+1)(23;+1) ™ . .
g}" | —s— projected .. j
’ ’ E 6F  TTTTTT Aeq =36 “\ -
X2 2 3 X A A 0] [ . Aoz, = 54 ]
Iz b Tmow ol 1 v 0 v 01 b L]
0 8 16 24 32
X(_l)J;+J;+Ji+2{J”J"Ji] S o S S S S L S L M B
J 2 I [ b) 7(L)°® v(3)° T
— 50 (2) (2) rotor model
< B —_— — . ]|
X(31Q.113,) 6%} (115 g . 1
(T g
and ? '
N —
QI =23+ 1)(23+ 1) & _
=1 - -
x> JE JZ Aldg:dl JAL1d,,3,] T 1|B<Ezl>=418 L ' ]
g o v 0 1 L 1 ! L 1 1 1 n X It
T 0 8 16 24 32 40
(1)t +2[Jﬂ J, Ji] Angular momentum J (%)
X1 (— 7 Yy T ,
2 J I, FIG. 15. B(E2:J—J—2) values for the yrast band projected

from the coupledrv intrinsic stategsee Sec. VIR The SU3) and

’ rotor B(E2:J—J—2) values are normalized to tH&(E2:proj;2
X |
(JV”QV“JV) 5Jﬂ_J_ﬂ,:| (116) 0) values.
For the system under consideration).(Q./|J,) and A reason for this large value ofge,) may be the pro-

(J))Q,|d,) are just the reduced matrix elements nounced second hump in tB€E2:proj;.J—J—2) vsJ trend
[(3.4):9']|Q](3,4);9] and [(%,4);0'|Q|(¥.4);J], re- for thejiconfiguration{see Fig. 8)]. This feature tends to
spectively, given in Table XIIl. We use these values to cal-increase thd&(E2:proj;,J—J—2) values for the coupledv
culate the matrix elementsl(|Q./|J;) and @¢]Q,||J;). system at higher values dfand makes th&(E2) vsJ trend
The B(E2:J—J—2) values with effective charges,  decrease more slowly. Hence thg,) value for which the
=e,=1e are plotted in Fig. 1) for J=0 to J=J,, B(E2:SU3J—J-2) trend agrees with théB(E2:proj;
=J, maxtJ, max=36. The values obtained with the effec- J—J—2) trend for themv system is larger than the.,

tive chargese,=1.5¢,e,=0.5 were quite similar and are Value. To verify this conjecture we carried out a calculation
not shown. of the B(E2:proj;J—J—2) values for the yrast band pro-

We recall that theB(E2:J—J—2) values for the pro- jected from theZS
jected (%)% and v(3)* states show two maxinaee Fig.

8(b)]. They are smoothed out for the coupled(t)* Foy a(N,Ta=6,NVa=6)=]-‘,Ta(1?1,6) ®F, (1?36)
@v(3)* system, as shown in Fig. (@. The equivalent (117)
SU(3) representatiofi .,,0] for this systen(see Table Il is

given by = Aeg=A; et N, eq=16+20=36.  The  As can be seen in Fig.(®, the projectedB(E2) trends for
B(EZiSU.C{l);eq,O];J;J—.Z) values  normalized to the the ()% and &2)® bands do not have the pronounced sec-
BLE2:proj(3 ,4)®(%,4);2—-0] value are also shown in o oia noted for thetlf)* and )* bands. In addition,

Fig. 15@). The trend of the S(B) [ A= 36,0 values is sig- - .
nificantly less collective than that for the projected states?® shown in Figs. @ and 9b), these projected trends for the

The SU3) representation [Agez,0] for which the (38 and &2)° bands are in good agreement with the SU3

B(E2:SUJ Ag(gy),0];0—J—2) trend best agrees with the {rends with\ ;. ge2)=20 and\, (e2)= 28, respectively. On
B(E2:proj,d—J—2) trend is found to have\gz) =54, the basis of these observations, one expects that the projected

which is appreciably larger thaxe,= 36. B(E2) trend for the coupledr(3)®® v(4)® band might
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0 8 16 24 32 40 coupled v system, both the distribution of angular mo-
30 LN B L B B R B B B menta and thé8(E2:J—J—2) vs J trends show approxi-
R rotor model ] mate SU3-like “additive” property, namely\ =\,
F T b
25F ; 3 N,
N;\ C ‘.‘ L
S 20F sum 7 +Vv 3 VII. CONTRIBUTIONS OF NUCLEONS IN THE NORMAL-
- X ] AND ABNORMAL-PARITY STATES
g 15 C ] TO THE YRAST BAND
S [ - - E . . . .
g - T ~~ . In this section, we use the properties of the projected
g [ S ta : : . _ :
S 10k DU Qv states|(j_a,Naa),Jaa_Kaa> (a_—qr or v) of a nucleons dis- _
%’ r 13\d projected 7 cussed in the previous sections together with the properties
= - 4 V(T) ] of the states|(j,,Ngn);JanKen) Of N nucleons projected
= st ﬂ-’(u) rojected - . : . N
[ ro.gcte dp J - from theirZS's to estimate the relative contributions of the
' prey (a) 3 andn nucleons to(i) the total angular momenturh of the
(e e e e T yrast band of a deformed nucleus afid) the B(E2:J
0 —J—2) value for an yrast-band transition.
o L LN VLI L In a simple description of an axially symmetrically de-
3 - 11 : L
- [ =T (—) projected ] . . . .
= - o \2 V- . formed nucleus within the configuration space of a single
o S =Sk Y V(T) projected o major shell, the NilssoZS of the nucleus consists i,
S = C k ﬂ_®Vd: valence protons and,,, valence neutrons in thestates and
22 _10F projectec N,., valence protons and,, valence neutrons in tha
8 8 C ] states. The total numbers of valence particles inrtlzada
(;%% _153 rotor model _ states areN,=N_,+N,, and N,=N_,+N,,. The total
=3 - 1 NilssonZS is a product of the Nilsson states of theanda
g - (b) : nucleons.
S For deformed nuclei, we have listed in Table VIII of Ref.
0 8 16 24 32 40

[3] the partition of theN valence nucleons in a major shell
Angular momentum J (%) into N, N,n, N, andN,,. In a portion of this table,
which is reproduced herein in Table XX, we have listed the
effective pseudo-S(3) representationEXQﬁ,O] appropriate
for the different number of nucleons occupying therbit-
als. The distribution of angular momenitd,) contained in

resemble the SUB(E2) trend with .., g(ez=48. Thisis e repre;entatiohxgﬁ,O] can be determined using EG).
indeed the case, as is shown in Fig(d5 Also shown in The NilssonZS of a particles is specified in each major
Fig. 150b) is the SU3B(E2) trend corresponding to the shell by the n’umbe.Na listed in Table XX. ThesgS's are
equivalenth ,, o=\, eqt N, oq=42 (See Table lll. For the exactly theZS's ]-"K(J_a,Na) described in Sec. I B. In Tgble
coupled system, the equivalent @ trend is significantly XX, we have also listed the average SV representations
less collective than the projected trend. [Na ave:0] (taken from Table Il) for which the distributions
The transiton momentsQ,(J) deduced from the of _angular momenta are close to those for th8's

B(E2:J—2—J) values for the projectegr» band are com- 7i(ia:Na)-

FIG. 16. (@) Transition moment),(J) and (b) spectroscopic
quadrupole moment®(J) for the yrast band projected from the

Folm(3)*@v(34] IS. See related discussion in Sec. VIB.

pared with the rotor-model values in Fig. (&6 The Q,(J) In Ref. [4_], we showed that the distribution of angular
values for the rotor model are constant and was set equal f§omenta in_ the COUp"ZE pr%on-ngutronZS Forv
the total intrinsic quadrupole moment:Qq(mwrot)  —7Uwa:Nza) F(iva:N,a) (Of ® or 1°%r) is almost iden-

tical to that in the SB) ZS with [\, =\ ;a+ )\ ,a,0]. Such
a result is even more valid for the couples ZS's of n
nucleons for which the pseudo-8) symmetry exists. In the

=Qo[ m,(3)*]1+ Qo[ v,(3)*]=25.4%? (see Table V. The
trend of the projecte®; values is close to the rotor-model
fcrend . t_he states up b= 24. A smooth but rapid decrease following section we use the information contained in Table
in the projected, values relative to the rotor values occurs XX to calculate the contribution of anda nucleons to the

for states withJ>24. For comparison,'we also show in Fig. total angular momenturd of the yrast band of a deformed
16(a) the Q. andQy, values as a function af, andJ,. The |\ leus.

bumps in thes&), values have been smoothed out in the
Q:(J) values for the coupledrv yrast band.

The spectroscopic quadrupole mome@tg)) of the states
J of the projectedrv band are compared with the rotor-band
values in Fig. 16). The latter values are normalized to the ~ The total NilssoriZS of an even-even nucleus with va-
projectedQ(J=2) value. The trend of the projecta@l(J)  lence nucleons can be written as
values differs significantly from the rotor-model trend be-
yond J=8. The results of this section show that for the fK(N):fKn(N“)}—Ka(Na)' (118

A. Contribution of a nucleons to the angular momentum
of an yrast state
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with K,=K,=0 andK=K,,+K,=0. The states(N,,) and
F(Ng) can be expanded a&(N,) ==, C; |Jn) and F(N,)
=EJaCJa|Ja>. The totalZS Fyx can be expanded as

F(N)=2 2 2 C;,C;,(3n32000)|[ 3 Ja19).
) (119
The yrast statdJ) of the nucleus is the state with this
projected fromFi(N) and can be expressed as

[9)=N;20 2 C;,C;,(3n320090)| [, 3519)

(1203
=2 2 A0, Ja)[ 08 Ja 1), (120b
where the normalization coefficieM; is given by
—-1/2
Ny=| 2 2 [C;,Cy,(3n320090)|? (121)
and
A(J;dn,d0)= NJCJnCJa(JnJa00|J0). (122

The probabilityP(J;J,J,) that the yrast statgl) contains
angular momentd, and J, is given by|A(J;J,J,)|% The
probabilitiesP(J;J,,) andP(J;J,) that then or a nucleons
contribute angular momentudy, or J, to the yrast stat¢J)

are given by

P(3:30)= 2 [AG: 30,3217, (1233
P(3:32)=2 |A(3:3,,30)|2 (123b

In

PHYSICAL REVIEW C 61 034317

+N,a aver These representations afe,,0]=[32,0] and
[N2,0]=[36,0]. The distributions of the total angular mo-
mentad in the NilssonZS of °%Gd will be very similar to
the distribution of angular momenta in the &Jrepresenta-
tion[\,0]=[\,+ \,,0]=[68,0]. The yrast stat&J) of 1°4Gd
can be expressed in terms of the coupled sthtise J,]J)

of its n anda nucleons a$see Eq.(1200]

|J,yrash= NJJZ JE C;,[32,0/C, [36,0](J,J,00]J0))|

a

X[Jn®J,19). (124

The expansion coeﬁicienGJn[BZ,O] are obtained for differ-
entJ, values from Eq(3) usingA=\,=32. Similarly, the
coefficientsC, [36,0] are calculated for different, values
using A\ =\ ,=36. Equations(121)—(124) can be used, for
example, to compare the probabilities thgta) nucleons
contribute angular momentudy,, =4 to the yrast statgJ
=4) of %%Gd. If J,=4 in the yrast statR] =4), thea nucle-
ons can have angular momertg=0, 2, 4, 6, and 8. Simi-
larly, if J,=4, the allowed angular momenta for thewucle-
ons are alsd,=0, 2, 4, 6, and 8 in th¢J=4) state. Using
Egs. (12)—(124), we obtain P,(J,=4,J=4)=0.273 and
P.(J,=4J=x)=0.269. Bothn and a nucleons contribute
almost equally to the low-lying yrast states.

We can pose a more detailed question such as, “What is

the average angular momentum contributed by the oy
neutrons to the yrast statd) of °%Gd with J=14?" To
answer this question, we express the yrast state as

[9)=N,20 2 C3[A=2,0.01Cs, [Mia0llI1@,ald),

va (125)

whereJg is the angular momentum of the spectator nucleons

To illustrate the usefulness of Table XX, we ask the quess, which are the nucleons other than the neutrons i the
tion: What is the probability that the angular momentum oforbit. The effective S(B) representation of the spectators is

the J=4 yrast state of35Gdy, is contributed entirely by the

given by A=\ —\,,=68—22=46. The probability for the

n or a nucleons? To answer this question, we notea neutrons to have an angular momentdp in the yrast
that 12%Gdy, hasN,,= 14 valence protons in the 50—82 shell state|J) is given by[see Eq(123)]

with N_,=8 protons in then states andN =6 protons in
the 1h,q, a state. The pseudo-$B) representation of the
eight n protons is[\ .,=10x_,=4] and, hence, its effec-
tive SU3) representation for theK_,=0 band is
[Nan e,0]=[14,0], which is listed in Table XX. The aver-
age SU3) representation for the si& protons in theh;q,
state iS[\ ;2 ave0]=[14,0] from Table Ill. For theN,=10
valence neutrons in the 82-126 shéll,,=6, andN,,=4.
The pseudo-S(B) representation of 6 neutrons in tmshell
is [18,0]; consequently, its effective 3B) representation is
also [\, «#,0]=[18,0]. The average S(3) representation
of the four a neutrons in thei;s, state iS[N,z ave0l
=[22,0]. Thus the total effective representatidns,,0] and
[Na,0] are given byA,=Nin et Aon eff @A Na=N7a ave

P(J;3,0) =2 |A(J;3s,3,4/%, (126)
‘]S

where

A(3:35.,2) =NyC;[46,0/C; [22,01(35,500130).
(127

The average valud,,(J) of the angular momentum contrib-
uted by thea neutrons to the yrast statd) is defined by
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Jva(J)=[<J,2,a>J]1/2 (1283 (JfHQe”‘]i):evra(‘]f”era”‘]i)+eva(‘]f”QvaH‘]i)

0 +1.28,n(I1Qll30) + 1.22,0 (3T Q,nll 90
= JE P(3;3,0) 3,03t 1) | . (128b (132

va

The contribution of just the protons in tlaestate is contained

The value 0fJ,,(J) in the|J=14) yrast state of5%Gd given in (J¢Q.4llJi) . Similar expressions give the contributions of
. o . other groups of nucleons to the total reduced matrix element.
by Eq.(128) is J,,(J=14)=7.2. Similarly the sixa protons

in the i3, orbit contribute an average angular momentum 1. Effective charges

Jra(J=14)=5.6 10 the yrast state with=14. As far as the Calculation of the reduced electric quadrupole matrix el-

n nucleons are concerned, we fidg,(J=14)=5.6 for the  gments requires values for the effective charges, €,,,

six n protons andJ,,(J=14)=6.4 for the sixn neutrons. e _ ande,,, all of which may be considered to be free

Thus each group of nucleons contributes approximately aparameters. As a result of a previous stui@] of the

equal amount of angular momentuion an averageto the  B(E2:0{ —2;) systematics throughout the periodic table

J=14 yrast state with the contribution of the neutrons in theyithin the framework of the single-shell asymptotic Nilsson

82-126 shell being 20% larger than that of protons in thénodel, we recommended that the charges=[1

50-82 shell. o . +(Z/A)]e ande,=2.1(Z/A)e be used. We follow this rec-
Table XX can be used similarly to determine, to a goodommendation and take,,—e_,=[1+(Z/A)]e and e,,

approximation, the relative contribution of theanda nucle- —e,,=2.1@Z/A)e.

ons to the angular momentum of an yrast state of any de-

formed nucleus projected from its Nilss@® within a major 2. Evaluation of the reduced matrix elements

shell. The SW3)-like structure of the distributions of angular

momenta in theZS allows one to calculate, with relative

ease, the separate contributions of the protons and neutr

in a or n states to the total angular momentum of an yras

We now discuss how the four terms contained in Eq.
0{11532) are calculated. Consider first the evaluation of the ma-
{rix element 0:1Q.al3i). We begin by expressing the pro-
jected yrast statel) of the nucleus in terms of the angular

state.
momental ., of the a protons andlg of spectator nucleons.
We write
B. Contribution of a nucleons to aB(E2:J—J—2) value
We next determine the relative contribution @fand n )= ATI:I 3T 233 133
nucleons to aB(E2,J—J—2) value for anE2 transition ) JES JE,Ta [3:37233] [ ra® Js1), (133
between the statgd;) and|J;) projected from the Nilsson
7S of a nucleus. Thd(E2,J,—J;) value is given by where
5 (Jf”Qe”Ji)z A[‘J:‘Jﬂa"JS]:NJCJWa(jWa’NﬂTa)CJS[)\S:)\_)\ﬂTa'O]
B(E2,J,— (129

)= 7
16w 2Ji+1 X(J.23.00/30) (134

which differs from Eq.(63) in the fact that the operatdp, and
above is the electric quadrupole operator, whereas in Eq.

(63) we considered only the mass quadrupole operator. The _ , B
operatorQ, can be written as N;= & JES ICs, (i 7a:N7za)Cy[Ns=N =\ 15,0]
—-1/2
Qe: ewaQwa+ eanva+ eanwn+ evnQvn . (130) X(Jwa3500|30)|2 (135)

Here, Qna) (With a=7 or v) are the mass quadrupole . ) ) .
operators for then(a) nucleons ande,,, their effective The |C;_(j7a:Nra)|” values are listed in Table II, and the
charges. Because the nucleons in deformed nuclei are |CJS[)\S,0]|2 values can be calculated using E8). Using
known to possess pseudo-&Y symmetry to a good ap- Eg. (133, the desired reduced matrix element can be ex-
proximation, it is convenient to express the quadrupole oppressed as

eratorsQ,, andQ,, in terms of the pseudo operatd@s,,

andQ,,, with Q,,=1.2Q,,, [28]. We rewrite Eq(130) as JlQal I =2 2 2 X ALY, L AL I ads]
3o 3 Jmads
Qe=ewaQwa+eyaan+ewn1-2Qﬂn+eml-'Z?Dfn-(131) X([3. 30194 Q,all[3,a® I3, (136

The reduced matrix element on the right-hand side of the Eq.
The reduced matrix element is written as (136) is given by
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([ 223213911 Qrall[ I ra® I6]J) ues or equivalently the transition momeQgJ) hgve peen
measured up td~36. We carry out the calculations in the
=[(23;+ 1)(2‘]i+1)]1/25JéJS configuration space in which the valence protons and neu-
trons are confined to the 50—-82 and 82-126 major shells,
(= )Iratd+3i+2 Jra Js i respectively.
J 2 3, Consider the nucleuddYbg, with N, =20 valence pro-
tons and\, =8 valence neutrons. From Table XX, we obtain
X(‘J;TaHQﬂ'aH‘Jﬂ'a)} (137) N,Tn=12,_N,,i=8, an=§, a_nt:!NVa=2 in the NilssonZS.
Note thatj .,=0h44,, andj,,=0i43,. The ranges of angular

_ , . momenta contained in thigS areJ_.,=0,24...,12,J .,
The reduced matrix element3’ | Q .allJ-a) are tabulated in ~024...,16,3,,=0,2,4 ...,18, and),,=0,2,4 . ..,12.

Table XllI. All other quantities in Eqs(136) and (137) are The yrast band of*®b projected from thisZS contains

k;uﬁwn; H;encr(]eé t?\n? fc?n tﬁalcmﬂﬁb tt?en n;atrn)t( nekimenfeven angular momenta up &,,=58. Thus the equivalent
(J1QallJi) and, therefore, the contribution afprotons to ., SU?3) representation for the NilssofiS of %D is

the total reducedE2 matrix element J;|Q¢l|J;). The re-

duced matrix elements involving neutrons in thstate can [58,0). If we assume that tha.nucleo-ns are coupled towa

be obtained in a similar manner =0 state, the yrast band will terminate at a smallgg,
Just as for thea nucleons, the matrix elements IZ‘JFSm&x;an max+‘1vr%_ maXf: 1?; 18= BtOl,o ar:jd t_neﬁ;)qg:'l'va'
— . en representation for the yrast band wi ,0l.

(31 Qanll37) for then nucleons can be expressed in terms of When thea protons are contributing to the matrix ele-

(Janl QanllNan) - Because of pseudo-$8) symmetry, the lat-  ment, thea neutrons and all the nucleons are spectators.
ter matrix elements can be approximated by the matrix eleTheijr effective) value ish¢=\—\,. Using \ =58 and

ments between the stat@;:n Man]K=0J,n) belonging to N\ ;3=\ s eq= 16 (see thehg, value in Table IV for eight
the K=0 band of the pseudo-3B) representation protons in the @4, orbit), we getAs=42. With this infor-

[Nans2an] @ppropriate for the given number of valenge Mmation, the reduced matrix elemeng|(Q /| J;) can be cal-

X

nucleons. Hence, we may use culated for*®%b using Eqs(136) and(137). The remaining
reduced matrix elementsJ{|Q,alJ)), (J¢l|Q.nlJi), and
(3" 1Qunll ) (J]Q,4l19;) can be similarly calculated by identifying in
. . each case the group of spectator nucleons. For example, in
~(NNan #an]K=03"1Qunlll N an s an]K=0J4n). the calculation of §;/|Q,4/|J;), the protons in tha states and

both protons and neutrons in thestates are spectator nucle-
ons. The spectataxg value is, thereforex;=A;—\ ,,=58

If an SU(3) representatiofi, ] hask> u, one expects that —12=46.
Horep e # P For the ground-state yrast band #° b, the calculated

(139

(N, #]K=0J'|Q|[\,u]K=0,0) values for each of the four terms contained in B2 are
) listed in Table XXI. We note that the contribution of each
~([Ner=N+,0013"| QI[N es= N + ,0]9). (139 group of nucleons to the reduced matrix element is approxi-

mately proportional to the intrinsic quadrupole moment of

We have explicitly verified that this approximation holds for the group. For example,

the[\,2] representation. In view of this result, we write
(Jf”Q’iTn”JI) . QO(Nﬂ'n) _ 2X12

(3 QunlIan) [Qul) _ ) )
(Jf||Q71'a||J|) QO(Nﬂ-a) 14.55

1.65, (141

~(INT 01K =03, [Qunll((NST 0K=0J,,). (140

which is quite reasonable for nucleons sharing the same

eff v i i
The values ol ;=N\ .+ 1o, are listed in Table XX. For a mean field.

representation \,0], the values of the matrix elements In 15%h, when thea nucleons are not forced to couple to

([A,0]K=0J ”Q”D"O]K.: 0J) are given ’bl’EqUO). We av=0 state, botta andn nucleons contribute to the reduced
use the same expression to calcula®, (Qanl[Jan) With  matrix elements over the entire projected band up 458,

with the dominant contribution coming from timenucleons.

When thea nucleons are forced to couple ta& 0 state, not

C. Q) vles o o, e o, andt vy S0 9 1 SOREnS P Wmrucieons 22 gt
We use the results obtained in Sec. VII B to calculate the=30.

contributions of protons and neutrons in betland a states We calculated the reduced electric quadrupole matrix el-

to theB(E2:J—J—2) values for transitions within the yrast ements {¢||Q||J;) using the matrix elementsl(||Q,z|J;)

bands of the Yb isotopesvith A=160-166 projected from and the standard effective charges discussed in Sec. VIIB 1.

their NilssonZS's. For some of these nuclei, tlB{E2) val-  The transition moment is given by

A" in the place ofx.
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TABLE XXI. Individual componentgin units of &%) of the total reduced matrix element of the electric
quadrupole operatdsee Eq(134) with J; replaced byl andJ; by J—2]. The listed values are for the yrast
band in *%%b which extends up td=58. The effective charges used in H@34) to calculate theQ,(J)
values(in units ofe b) aree,,=e,,=1.44 ande,,=¢,,=0.9%.

R N P N A Y FARRNE/] <2 RSN e (%4 B Q)

2 14.961 7.548 24.613 36919 6.119

4 23.970 12.145 39413 59.119 6.113

6 30.188 15.400 49.585 74377 6.102

8 35.242 18.127 57.798 86.698 6.085

10 39.580 20.525 64.786 97.179 6.061

12 43.407 22.647 70.876 106.315 6.030

14 46.834 24.492 76.247 114.371 5991

16 49.928 26.033 81.005 121.507 5.943

18 52.732 27.237 85.217 127.825 5.886

20 55.275 28.086 88.927 133.390 5819

22 57.574 28.578 92.162 138.242 5.742

24 59.641 28.731 94.938 142.467 5.655

26 61.481 28.581 97.263 145.895 5559

28 63.095 28.173 99.139 148.708 5.453
30 64.479 27.551 100.558 150.838 5337
32 65.625 26.761 101.511 152.267 5211
34 66.520 25.837 101.980 152.970 5.075

1 (3-2/|Qel|d) as shown in Fig. 1&®). A question for the experimentalists is
Qi(J)= (3200-20) 2351 (1420 whether the overall trend of th@,(J) values is relatively

smooth as it is in the'®¥b case or jagged as it is in the
16%vh case[see Figs. 1®) and 17a)]. If the trend is indeed
Sjagged, it would pose a serious problem to existing theories.

listed in Table XXI. We have carried out similar calculation The Q,(J) values calculated for the yrast band projected
: 16 t
of the Q,(J) values for the yrast bands tjoYbe,, "7gYba, from a singleZS show a slowly decreasing trend with

16 ; O
and 78Yb96 also. The results are summarized in Fig. 17. TheHow would this trend be interpreted in the cranking model in
calculated values are shown as full curves and are then nor

malized(see the dashed curyds the most accurately deter- vah(|§;1 $r;leJ§s|2?ed|;‘\flirr?rtl)IS for eachJ? In that model, the

minedQ,(J) value for each isotope, which @,(J=2). The t g y

normalization factor is 0.86 fort®%vb. These factors are 6

much closer to unity for the other three Yb isotopes. The _ 2p2/3 o

calculatedQ,(J) trends do not resemble the available experi- Qi(crank) = @ZeroA B>(1+0.368,)cog30 °+ ),

mental datg38-4Q closely for 1*%vb and %2vb, but they (143

do so for1®4yb and *%5vb. The pseudo-S(3) model values,

obtained by assuming that ,=v,,=0, are also shown in where 8, and y are parameters of deformation. Consider

Fig. 17. As a function of], they decrease much faster than 16%p in which the measurements extend upJte 34. The

the projected values. calculated projecte,(J) values(see Table XX] of Q(J
TheQ(J) trend calculated for the projected band can also=2)=5.2 b and Q,(J=34)=4.4e b would then corre-

be described equally welkee the solid and dashed lines in spond toy(J=2)=3° and y(J=34)=16° if we take 3,

Fig. 18@)] by the trend obtained for the band belonging to =0.222 and use Eq143. The y value at thel=58 termi-

the SU3) representation A =Jpma,0]. For *%b, Jo.  nation point would be 44.6°. In other words, for a fixed

=58. That is one of the surprising results to emerge fromyajue of 3,, the cranking model would interpret the decrease

this work. of 0.8 b in theQ,(J) value as a consequence of an increase

The Q(J) trend for **b, calculated[40] using the in y by 29°. In our projection calculation, the intrinsic state
cranked Hartree-FOCk-BOgO”UbQHFB) model, is shown in does not undergo such a Change of Shape_

Fig. 18b). There is a significant drop dt=22, whereas the
data seem to suggest an increase at dhimlue. Both the
projected and cranked HFB trends are smooth. On the other
hand, the trend predictdd 1] by the fermion dynamic sym- The Q;(J) values calculated for the yrast states upJto
metry model(with suitable extensionshas some structure, =40 projected from the single-shell asymptotic Nils4@is

The Q,(J) values for 1%%b calculated using Eq(142) are

D. Q(J) values for 13Dyqg, and 2eDyq,
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of Dy and Dy are shown in Fig. 19. The projected for the yrast bands are given by the pseuda3Uepresen-
values are normalized to the measu@@J=2) values. The tations[\.40]=[32,0] and[38,0], respectively. TheQ,(J)
normalization factors are 0.937 and 0.986, respectively, fotrends for these representations, also normalized to the mea-
15¢Dy and ®y. For these isotopes, if the nucleons are suredQ,(J=2) values, are shown in Fig. 19 by the dotted
assumed to be inert as a result of pairing, @¢J) values lines. The existing datd42] for states with spins up td
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=24 in Dy and up toJ=26 in 5Dy favor the pseudo- the (2]|Q,||0) value, are shown in Fig. 28. Also shown in
SU(3) descriptions. this figure are the rotor model and the pseudd3unodel
values. Experimental data for tlde>24 states are needed to
distinguish between different model predictions.
Oweret al.[43] also give the reducel2 matrix elements
N - for 2% and 2% from their measurements. The comparison
Ower et al. [43] have deduced th&2 transition matrix  petween theory and experiment for these two cases is shown
elements for the yrast band up do=28 in ?*Th. For this i Fig. 2ab) and Fig. 20c), respectively. In%%, the ex-
nucleus, the number of valance nucleons and their distribuperimental values are larger than both the rotor model and
tion in the n and a states ar§N,=8, N;,=4, andN.,  projected model values far>18. Thus the behavior c¥®U

=4 (in the Oy, statg] and[N,=16, N,,=16, andN,, s apparently different from the behaviors 8#Th and 34U.
=4 (in the 0j 15, State]. The appropriate S@3) [ A,0] values

for these particle numbers ake,,=14, \ ,,=24, \ ,,= 20,
and\ ,,=30. The yrast band projected from the Nilsson in- Vill. SUMMARY AND CONCLUSIONS

trinsic state extends up thy.,—88. We use the formulation e have examined, for the first time, in a systematic way,
given ||-'] Sec. VIl to calculate the total re-duced matrix 8|e'the quadrup0|e Co||ectivity of nucleons in the abnormal-
ment given by Eq(132) for each combination od; andJ;.  parity single-particle statgs= 2, 4, ¥, and%? in the Nils-
These calculated values are related to the matrix elemen%n intrinsic states of deformed nuclei. We have used some
(J+2[|E2|[J) deduced by Oweet al. [43] from their ex-  well-known criteria to describe the collectivity afnucleons.

E. Transition matrix elements in %35Th 45, “30U144,
23
and “gU146

periment via This property is not amenable to analytical study by group
theory.
16 ; ; St
(3+2[|Q4|9) = / (3+2[|E2||9). (144) . We have calculated the coIqutwe properties of the intrin
5 sic states of these abnormal-parity nucleons and of the states

with angular momentd projected from each of these intrin-
The measured and calculated values, the latter normalized &c states. The properties studied incl{dethe distribution
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of angular momenta contained in the prolate Nilsson intrinsianits of the size parameter? of the harmonic oscillator
state of different number dd particles andii) the relation-  wave functions used in their calculatiopin inference from
ship between the quadrupole moment of the intrinsic statgne above results is that th€? intrinsic state is less collec-

and th_e maximqm_ angular momer.‘“%m conta_ine_d iT‘ it. Thistive than an SIB) intrinsic state with the samé,,,, by a
numerical description of the collectivity of the intrinsic states, "¢ 1o o max

of a nucleons is put in some perspective by comparing it . .
with the standard quadrupole collectivity of the intrinsic . In the next stage, wg gonS|d§red the quadrupole ch'Lectlv—
states of nucleons having $8) symmetry. This comparison 1Y Of the states of definitd projected from the prolatg;

i instructive because tﬁga configuration space available to Nilsson intrinsic state. This collectivity is characterized

the a nucleons cannot support any G symmetry at the quatitatively by the complete_ set of the matrix elements
microscopic level and yet the distribution of angular mo-(‘]fHQH‘]i) between all the projected states. The calculation

menta in the intrinsic states @f nucleons was found to be _Of these mat_rix elements with high accuracy involved ama-
very similar to the distribution of angular momenta in anJOf computational effort. We have listed all these matrix el-
intrinsic state with S(B) symmetry. ements for the states projected from the vanp’j}mtrmsm

An interesting feature of the quadrupole collectivity of the States. Although the matrix elementd|(Q|[J;) contain all
intrinsic states ofa nucleons brought out by ana|ogy with the information about CO”ectiVity, a more familiar dlsplay of
that of an SU3) intrinsic state is the linear relation between this collectivity is also presented in the form @f the trend
the particle-hole averaged quadrupole mom@y,) ... and  of the B(E2J—J—2) vsJ values for transitions within the
the maximum angular momentudy,,, contained in an axi- projected band andii) the variation of the transition mo-
ally symmetric jN intrinsic state. The result,(Q ph) ments Q,(J) and the spectroscopic quadrupole moments
~0.8),ax, appears to be a new relation not available in theQ(J) of the projected states. Once again the variations of
literature. The relationship between the quadrupole momerthese quantities for the projectadstates are compared with
Qo of an axially symmetric S(B) intrinsic state and thé,,,  the variations of the same quantities for the states wittB5U
contained in it isQp=2Ja. (Both (Qpy) and Qg are in and SQ@6) symmetry. This comparison leads to a surprising
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result that the trend of thB(E2,J—J—2) vs J values for

the projected states morecollective than that of the equiva-
lent SU3) or SA6) representations. In addition, we find the
projected trend over about of the band can be well de-
scribed by the trend obtained for a single (8JJband of
representatiofi\ gg»,0].

Up to this point we described the collectivity of different
numbers of particles occupying only the abnormal-parity or-
bits in the Nilsson intrinsic states. In the next step, we deter-
mined the specific coupling between the collective projected
proton and neutron states induced by the mean field to pro-
duce the yrast band of the proton-neutron systera mdicle-
ons, projected from their combinédroduc) intrinsic states.
The B(E2,J—J—2) trend for thewv coupled band ofa
nucleons is more S@)-like than the trends for the indi-
vidual groups ofa protons ora neutrons.

We finally considered tha nucleons sharing the mean
field with other valence nucleons in the single-particle
states. We obtained the wave functions of the yrast states of
even-even deformed nuclei in terms of the quadrupole col-
lective states of then and a nucleons. The transition mo-
mentsQ, for the members of the yrast band, calculated with
these projected wave functions, are in good agreement with
the measured values. The cranking model achieves similar
results without using wave functions for the specific yrast
states of the nucleus.

In a previous worK4], we showed that the distribution of
the total angular momentum in the asymptotic single-shell
Nilsson ZS of 233 is remarkably close, over 27 orders of
magnitude, to the corresponding one obtained for th€3sU
representatiofi\ = J,2,0], whereJax is the maximum an-
gular momentum contained in the intrinsic state. In this
work, we showed that thB(E2,J—J—2) trend for the pro-
jected yrast band of®Yb is also surprisingly S(B)-like.
Thus, although the S@3) symmetry is absent at the micro-
scopic level, SB)-like features keep cropping up at the
macroscopic level. We can think of two reasofig: The
prolate intrinsic states af nucleons considered here and the
corresponding S(B) intrinsic states both have the maximum
quadrupole moment within their respective configuration
spaces andii) the same projection procedure is used to ob-
tain the states of definite angular momenta from both of
these intrinsic states.
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