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Shell corrections to the nuclear binding energy as a measure of shell effects in superheavy nuclei are studied
within the self-consistent Skyrme-Hartree-Fock and relativistic mean-field theories. As a result of the presence
of a low-lying proton continuum resulting in a free particle gas, special attention is paid to the treatment of the
single-particle level density. To cure the pathological behavior of the shell correction around the particle
threshold, a method based on the Green'’s function approach has been adopted. It is demonstrated that for the
vast majority of Skyrme interactions commonly employed in nuclear structure calculations, the strongest shell
stabilization appears fat=124 and 126, and fdl=184. On the other hand, in the relativistic approaches the
strongest spherical shell effect appears systematicallg #6120 and\N=172. This difference probably has its
roots in the spin-orbit potential. We have also shown that, in contrast to shell corrections which are fairly
independent of the force, macroscopic energies extracted from self-consistent calculations strongly depend on
the actual force parametrization used. That is,AtendZ dependence of the mass surface when extrapolating
to unknown superheavy nuclei is prone to significant theoretical uncertainties.

PACS numbd(s): 21.10.Dr, 21.10.Pc, 21.60.Jz, 27.90.

I. INTRODUCTION sion” reaction &Kr+2%pPp [15], observed threex-decay
chains attributed to the decay of the new elem#nt118,

The stability of the heaviest and superheavy elements hag=293. The measured-decay chains?®®114 and2°*118
been a long-standing fundamental question in nuclear sckurned out to be consistent with predictions of Skyrme-
ence. Theoretically, the mere existence of the heaviest eledartree-Fock(SHP theory[16] and relativistic mean-field
ments withZ>104 is entirely due to quantal shell effects. (RMF) theory[17].

Indeed, for these nuclei the shape of the classical nuclear The goal of the present work is to study shell closures in
droplet, governed by surface tension and Coulomb repulsiorGHEs. To that end we use as a tool microscopic shell correc-
is unstable to surface distortions, driving these nuclei taions extracted from self-consistent calculations. For
spontaneous fission. That is, if the heaviest nuclei were gownedium-mass and heavy nuclei, self-consistent mean-field
erned by the classical liquid drop model, they would fissiontheory is a very useful starting poit8]. Nowadays, SHF
immediately from their ground states due to the large electriand RMF calculations with realistic effective forces are able
charge. However, in the mid-1960s, with the invention of theto describe global nuclear properties with an accuracy which
shell-correction method, it was realized that long-lived su-s comparable to that obtained in more phenomenological
perheavy element6SHES with very large atomic numbers macroscopic-microscopic models based on the shell-
could exist due to the strong shell stabilizatidn-4]. correction method.

In spite of tremendous experimental effort, after about 30 In previous work[19], shell energies for SHEs were ex-
years of the quest for superheavy elements, the borders of theacted by subtracting from calculated HF binding energies
upper-right end of the nuclear chart are still unknol@  the macroscopic Yukawa-plus-exponential mass formula
However, it has to be emphasized that the recent years al$a0] with the parameters of Ref21]. In another work, based
brought significant progress in the production of the heaviesbn RMF theory{22], shell corrections were extracted for the
nuclei [5,6]. During 1995-1996, three new elemen®, heaviest deformed nuclei using the standard Strutinsky
=110, 111, and 112, were synthesized by means of both colehethod in which the positive-energy spectrum was approxi-
and hot fusion reactiong—10. These heaviest isotopes de- mated by quasibound states. Neither procedure can be con-
cay predominantly by groups af particles ¢ chaing as  sidered as satisfactory. A proper treatment of continuum
expected theoreticalljl1-13. Recently, two stunning dis- states is achieved with a Green’s-function meth28]. We
coveries have been made. First, hot fusion experiments peemploy this method for the present study of the shell correc-
formed in Dubna employing®Ca+2*4Pu and *Ca+2*Pu tions of SHEs.

“hot fusion” reactions[14] gave evidence for the synthesis = The material contained in this study is organized as fol-
of two isotopes A=287 and 289 of the elemenZ=114. lows. The motivation of this work is outlined in Sec. II.
Second, the Berkeley-Oregon team, utilizing the “cold fu- Section Il contains a brief discussion of the Strutinsky en-
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FIG. 1. Single-proton levels fdi= 184 isotones with 118Z<130 calculated in the Skyrme-Hartree-Fock model with Skiiéft) and
SkP effective interactions. Positiveegative parity levels are indicated by solidashegllines and by their spherical labelsl{). Note that
in both cases the nucles=126 is proton unbound; i.e., thm, shell has positive energy.

ergy theorem on which the concept of the shell correction igap. Interestingly, while therdering of single-proton states
based. The Green's-function HF method used to extract this practically the same for all the self-consistent approaches
single-particle level density is presented in Sec. IV. Sectiorwith realistic effective interactiongsee Fig. 1 and single-

V discusses the details of our HF and RMF models and departicle diagrams in Refd.19,30), their relative positions
scribes the Strutinsky procedure employed. The results ofary depending on the choice of force parameters. Since in
calculations for shell corrections in spherical SHEs and folhe region of SHEs the single-particle level density is rela-
macroscopic energies extracted from self-consistent bindingyely |arge, small shifts in positions of single-particle levels
energies are discussed in Sec. VI. Finally, Sec. VII containgap, influence the strength of single-particle gaps and be cru-

the main conclusions of this work. cial for determining the shell stability of a nucleus. As a
result, there is no consensus between theorists concerning the
Il. MOTIVATION next proton magic gap beyon®=82. While most

All the heaviest elements found recently are believed tgn@croscopic-microscopianon-self-consisteit approaches
be well deformed. Indeed, the measurediecay energies, predictZ=114 to be magic, self-consistent calp_ulanons sug-
along with complementary syntheses of new neutron-ricHJ€st that the center of the proton shell stability should be
isotopes of elementZ=106 andZ=108, have furnished Moved up to higher proton numberd=120, 124, or 126
confirmation of the special stability of the deformed shell at[19,29-31. It is to be noted that the Coulomb potential
N=162 predicted by theor§24,25. Beautiful experimental mainly influences the magnitude of tie=114 gap.(Here,
confirmation of large quadrupole deformations in this massghe self-consistent treatment of the Coulomb energy is a key
region comes from gamma-ray spectroscopy. Recent expetrfiactor) On the other hand, the spin-orbit interaction deter-
mental works[26,27] succeeded in identifying the ground- mines the position of thef2and 3 shells which define the
state band of*No (the heaviest nucleus studied in gamma-proton shell structure abovg>114.
ray spectroscopy so farThe quadrupole deformation of  The spherical neutron shell structure is governed by the
254No, inferred from the energy of the deducet &ate, isin  following orbitals: 1j;5, (below the N=164 gap, 297,
nice agreement with theoretical predictioft9,21,28,29  3ds,, 3dgp, 45y, and 1j,3, whose splitting determines
Still heavier and more neutron-rich elements are expected tthe size of theN=184 spherical gajgsee Fig. 2 and Refs.
be spherical due to the proximity of the neutron shelNat [19,30). Again, similar to the proton case, the order of the
=184. This is the region of SHEs which we will investigate single-neutron orbitals betwedd=164 and 184 is rather
here. robust, while the sizes of single-particle gaps vary. For in-

In spite of an impressive agreement with available experistance, theN=172 gap, predicted by the RMF calculations
mental data for the heaviest elements, theoretical uncertaishown in Fig. 2, results from the large energy splitting be-
ties are large when extrapolating to unknown nuclei withtween the 8, and 3s;, shells. In nonrelativistic models,
greater atomic numbers. As discussed in REE9,30, the these two orbitals are very close in energy, and this degen-
main factors that influence the single-proton shell structuresracy is related to the pseudospin symm¢8%,33. Inter-
of SHEs are(i) the Coulomb potential an@i) the spin-orbit  estingly, in the SHF calculations, the pseudospin degeneracy
splitting. As far as the protons are concerned, the importartiolds in most cases. Namely, certain neutron orbitals group
spherical shells are the closely spacegskand 2f,, levels  in pairs (pseudospin doublets(2g;,,3dss),(3ds,451)2),
which appear just below th&=114 gap, the B5, shell and the same holds for proton orbitals, e.9.f2 3p3).
which becomes occupied &=120, the 33, shell which  Considering the fact that the idea of pseudospin has relativ-
becomes occupied &= 124, and the B,, and 1i;;,, orbit-  istic roots[34,35, it is surprising to see that this symmetry is
als whose splitting determines the size of #¥ 126 magic  so dramatically violated in RMF theory. As a matter of fact,
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FIG. 2. Single-neutron levels f&= 120 isotopes with 168 N<190 calculated in the RMF approach with N&ft) and NL-Z2 non-
linear parametrizations. The line convention is the same as in Fig. 1. Note the large neutron agkratand 184.

the presence of pronounced magic gapZatl20 andN shell-correction term that fluctuates with particle number re-
=172 in RMF modelgsee belowis a direct manifestation flecting the nonuniformities(bunchiness of the single-
of the pseudospin symmetry breaking. particle level distribution. In order to make a separatibhn
As discussed in Ref[19], neutron-deficient superheavy one starts from the one-body HF density majsix
nuclei are expected to be unstable to proton emission. In-
deed, as seen in Fig. 1, the protop;3 shell has positive roy NPV
energy forZ=126; i.e., in these nuclei thep3,, level is a p(r ,r)—Ei Midir) 47 (1), @
narrow resonance. As a result of huge Coulomb barriers,
superheavy nuclei witQ,<1.5 MeV are practically proton which can be decomposed into a “smoothed” dengitgnd
stable[19]. However, the higher-lying single-proton orbitals a correctionsp, which fluctuates with the shell filling:
are expected to have sizable proton widths.
In order to assess the magnitude of shell effects deter- p=p+dp. 3
mined by the bunchiness of single-particle levels, it is useful
to apply the Strutinsky renormalization proced(iB6—3§ In Eq. (2), n; is the single-particle occupation coefficient
which makes it possible to calculate the shell-correction enwhich is equal to 1(0) if the level g; is occupied(empty).

ergy. Unfortunately, the standard way of extracting the shellrhe smoothed single-particle densfiycan be expressed by

correction breaks down for weakly bound nuclei where the L ~ )
oo ) ; . means of the smoothed distribution numbey$44]:

contribution from the particle continuum becomes important

[39]. Recently, a new method of calculating the shell correc- 5 5

tion, based on the correct treatment of resonances, has been p(l",l’)ZE nii(r')¢r(r). (4)

developed[40,41]. The improved method is based on the :

theory of Gamow stategigenstates of a one-body Hamil- : . : . .
tonian with purely outgoing boundary conditionshich can When considered as a function of the single-particle energies

be calculated numerically for commonly used optical-model€i - the numbers); vary smoothly in an energy interval of the
potential§42]. While this “exact” procedure cannot be eas- Order of the energy difference between major shells. The
ily adapted to the case of microscopic self-consistent poteraveraged HF Hamiltoniahy can be directly obtained from
tials, its simplified version applying the Green’'s-function’s. The expectation value of a HF Hamiltonigcontaining
method carj23]. the kinetic energy and the two-body interactiom) can then
be written in terms op and 8p [43,45:
Ill. SHELL CORRECTION
AND THE ENERGY THEOREM 1 — ~ 2

Ene=Tr(tp)+ 5 Tr Tr(pvp) =E+EesctO(6p%), (5
The main assumption of the shell-correction 2
(macroscopic-microscopienethod[36—38,43 is that the to-

tal energy of a nucleus can be decomposed into two parts:Where

- ~ ~ 1 ~—
E=E+ Eqen ) E=Tr(tp)+§Tr Tr(pvp) (6)

whereE is the macroscopic energgmoothly depending on is the average part d&,r and
the number of nucleons and thus associated with the “uni- 5 5 .
form” distribution of single-particle orbita)jsandEg is the Eosc= Tr(hyedp) with hye=t+Tr(vp) (7)

034313-3



A. T. KRUPPAEet al. PHYSICAL REVIEW C61 034313

is the first-order term idp representing the shell-correction whereG*(e)=(e—h+i0)~! is the outgoing Green’s opera-
c_ontrl_butlon thH,:. If a deformed phenomenological poten_— or of the single-particle Hamiltoniaﬁ(p), and éerree is the
tial gives a similar spectrum to the averaged HF potenuahee outgoing Green'’s operator that belongs to the “free”

hye, then the oscillatory part oEr, given by Eq.(7), IS single-particle Hamiltonian. This latter is derived from the
very close to that of the deformed shell mod€lye=Eosc  full HF Hamiltonian in such a way that those terms are kept
+0(68p®). The second-order term in E¢p) is usually very  which are related to the kinetic energy density and to the
small and can be neglect¢d6]. The above relation, known direct Coulomb term. The interpretation of E@l1) is

as theStrutinsky energy theorgmmakes it possible to calcu-  straightforward: the second term in E€L1) contains the
late the total energy using the non-self-consistent, deformegontribution to the single-particle level density originating
independent-particle model; the average parts usually  from the gas of free particles.

replaced by the corresponding phenomenological liquid-drop The single-particle level density defined by the Green’s-
(or drople} model valueE,cro- It is important thatEg,,,  function expressiorill) behaves smoothly around the zero-
must not contain any reguldsmooth terms analogous to energy threshold; for finite-depth Hamiltonians this defini-
those already included in the phenomenological macroscopittion is the only meaningful way of introducing(e). The
part. The numerical proof of the energy theorem was carriedevel density(11) automatically takes into account the effect
out by Brack and Quentif47] who demonstrated that Eq. of the particle continuum which may influence the results of
(1) holds forEg,e defined by means of the smoothed single-shell-correction calculationg40,41], especially pronounced
particle energiegeigenvalues of ). for systems where the Fermi level is close to zero, i.e., drip-

In this work, we use a simpler expression to extract thdin€ nuclei.
shell correction from the HF binding energy, which should Because it is difficult to calculate the Green’s function, in
also be accurate up 10(5p?). Namely, as an input to the this work we applied the approximation introduced in Ref.
Strutinsky procedure we take the self-consistent single[23]- In this approach, the single-particle level density is ex-
particle HF energies™ . In this case, the shell correction is Pressed as
given by
g(e)~> se—ef)-2 se—e™™), (12
I I
Echei(p) = 2, (M =Mi)&;+0(0p?). ®)

where e are the eigenvalues of the free one-body HF

Hamiltonian. As usual in the Strutinsky procedure, a smooth

The equivalent macroscopic energy can easily be computegdye| density can be obtained by foldigge) with a smooth-
by taking the difference ing function f(x):

~FHF= — = 1(+= -
E macrd EHF E(p) = Eshe(p)- 9 g(e):;J'30 de’g(e’)f(e e)

IV. GREEN'S-FUNCTION HARTREE-FOCK APPROACH

TO THE SHELL CORRECTION =0o(€) ~ Grred ©), (13

The HF equation is generally solved using a harmonicvherey is the smoothing widthgy(e) is the smooth level
oscillator expansion method or by means of a discretizatiolensity obtained from the HF spectrUimcluding the quasi-
in a three-dimensional box. In both cases, a great number dfound states andgg.d€) is the contribution to the smooth
unphysical states with positive energy appear. The effect devel density from the particle gas.
the;e q.uasmound states is disastrous for the Strutinsky renor- |, practice g(e) can be calculated in three steps. First, we
malization procedurf23,39-41,48 Indeed, if one smoothes g4y the HF equations to determine the self-consistent ener-

out the single-particle energy density, giese™. In the next step, we calculate the positive-energy
gas spectrune!’"™® at the self-consistent minimurm par-

gsp(e)zz S(e—efh), (100 ticular, we take the Coulomb force from the self-consistent
i

calculation. Finally, we computgy(e) andgyed€) using the
_ ) same folding function. The quality of approximatidf?2)
it would diverge at zero energy because of the presence @fgas tested in Ref23] where it was demonstrated that, when
unphysical positive energy states. Consequently, the resulincreasing the number of basis states, the resulting single-

ing shell correction becomes unreliable. particle level density quickly converges to the exact result.
In order to avoid the divergence aj(e) around the

threshold, we apply the Green’s-function mettad,49-52

. . . . . V. SELF-CONSISTENT MODELS
for the calculation of the single-particle level density. In this

method, the level density is given by the expression A. Skyrme-Hartree-Fock model
1 In the SHF method, nucleons are described as nonrelativ-
— S ImiTIG () — & 11 istic _partlclgs moving mdependently in a common sel_f-
g(e) T (TG ()~ Gred @11 (1) consistent field. Our implementation of the HF model is
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based on the standard ansgi3]. The total binding energy is composed of the kinetic energy of the nucledis, the
of a nucleus is obtained self-consistently from the energynteraction energies of the, w, andp fields, and the Cou-
functional lomb energy of the proton&: . All these are bilinear in the
nucleonic densities as in the case of nonrelativistic models
€= &t Esict Eskis T Ect Epair™ Eom. (14 [cf. Eq. (5)]. Pairing correlations are treated in the BCS ap-
proach employing the same nonrelativistic pairing energy
whereé,, is the kinetic energy functionaf, is the Skyrme functionalfpairthat is used in the SHF model. The center-of-
functional, &g is the spin-orbit functionalsc is the Cou- ~mass correctiort, ,, is also calculated in a nonrelativistic
lomb energy(including the exchange tepme,,; is the pair- approximation; seg70] for a detailed discussion. The single-
ing energy, and, ,, is the center-of-mass correction. particle energie®; needed to calculate the shell correction
Since there exist more than 80 different Skyrme paramare the eigenvalues of the one-body Hamiltonian of the
etrizations, the question arises, which forces should actuallpucleons which is obtained by variation of the energy func-
be used when making predictions and comparing with thdional (15).
data? Here, we have chosen a small subset of Skyrme forces In the context of our study, it is important to note that the
which perform well for the basic ground-state propertiesSpin-orbit interaction emerges naturally in the RMF model
(masses, radii, surface thicknessasd have sufficiently dif- from the interplay of scalar and vector fielp5]. Without
ferent properties which allow one to explore the possibleany free parameters fitted to single-particle data, the RMF
variations among parametrizations. This subset containgodel gives a rather good description of spin-orbit splittings
SkM* [54], SKT6[55], Z, [56], SkP[57], SLy4 [58], and  throughout the chart of nuclgB0].
Ski1, Ski3, and Ski4 from Ref59]. We have also added the ~ As in the SHF model, there exist many RMF parametri-
force SkO from a recent exploratid60]. Most of these in-  zations which differ in details. For the purpose of the present
teractions have been used for the investigation of the groundtudy, we choose the most successful most commonly
state properties of SHEs befof#6,19,29-31 All the se-  used ones: NL1[71], NL-Z [72], NL-Z2 [30], NL-SH[73],
lected forces perform well concerning the total energy and\L3 [74], and TM1[75]. All of them have been used for
radii. They all have comparable incompressibitg  investigations of SHEE30,31,76,7T
=210-250 MeV and Comparab|e surface energy which re- The parametrization NL1 is a fit of the RMF model along
sults from a careful fit to ground-state proper(ié6]. Varia-  the strategy of Re{56] used also for the Skyrme interaction
tions occur for properties which are not fixed precisely byZ,. The NL-Z parametrization is a refit of NL1 where the
ground-state characteristics. The effective nucleon mass is@orrection for spurious center-of-mass motion is calculated
for SkT6 and SkP, 0.9 for SkO, around 0.8 for SkMnd  from an actual many-body wave function, while NL-Z2 is a
Z,, and even lower, around 0.65, for SLy4, Ski1, Ski3, andrecent variant of NL-Z with an improved isospin depen-
Skl4. Isovector properties also exhibit large variations. Fodence. The force NL3 stems from a fit including exotic nu-
Ski3 and Skl4, the spin-orbit functional is given in the ex- clei, neutron radii, and information on giant resonances. The
tended form 01{59] which allows a separate adjustment of NL-SH parametrization was fitted with a bias toward isoto-
isoscalar and isovector Spin_orbit forces. The Standar@ic trends and it also uses information on neutron radii. The
Skyrme forces use the particular combination of isoscalaforce TM1 was optimized in the same way as NL-SH except

and isovector terms which were motivated by the derivatiorfor introducing an additional quartic self-interaction of the
from a two-body zero-range spin-orbit interactid@1]. (For isoscalar-vector field to avoid the instabilities of the standard

a detailed discussion of the spin-orbit interaction in SHFModel which occur for small nuclei. For SHEs, the results
theory we refer the reader to Ref80,59,62—6%) obtained with NL-Z are not distinguishable from results ob-
tained with the parametrization PL-40, which is contained in
exactly the same manner as NL-Z but uses a stabilized non-
B. Relativistic mean-field model linearity of the scalar-isoscalar fie[@8]. (PL-40 was em-

In our implementation of the RMF model, nucleons arebloyed in some recent investigations of the properties of su-
described as independent Dirac particles moving in locaPerheavy nuclef29,31,79) . o
isoscalar-scalar, isoscalar-vector, and isovector-vector mean All the above parametrizations provide a good description
fields usually associated with, », and p mesons, respec- of the binding energies, charge radii, and surface thicknesses
tively [65]. These couple to the corresponding local densitie&f stable spherical nuclei with the same overall quality as the

of the nucleons which are bilinear covariants of the DiracoHF model. The nuclear matter properties of the RMF
spinors similar to the single-particle density of E2). forces, however, show some systematic differences as com-

The RMF model is usually formulated in terms of a co- pared to Skyrme forces. All RMF forces have comparable
variant Lagrangian; see, e.g., RE85]. For our purpose we Small effective masses aroumd*/m~0.6. (Note that the
prefer a formulation in terms of an energy functional that iséfféctive mass in the RMF model depends on momentum;
obtained by eliminating the mesonic degrees of freedom if1e€nce the effective mass at the Fermi energy is approxi-
the Lagrangian. For a detailed discussion of the RMF modenately 10% largey.Compared with the SHF model, the ab-

as an energy density functional theory, see RE#6~69. solute value of the energy per nucleon is systematically
The energy functional of the nucleus larger, with values arounet 16.3 MeV, while the saturation

density is always slightly smaller, with typical values around
ErMF=EkinT Eat €0t &t Ect Epair— Ecm. (15 0.15 nucleons/fth The compressibility of the RMF forces
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ranges from low values around 170 MeV for NL-Z k0 p [41]; the valuep=10 chosen here is large enough to pro-
=355 MeV for NL-SH, which is rather high. There are also vide in nearly all cases a sufficiently smoogh but also
differences in isovector properties; the symmetry energy cosmall enough that we can restrict the model space to levels

efficient of all RMF forces is Systematica"y Iarger than for up to 60 MeV, which is much |arger than the space used in

and 43.5 MeV for NL1(see discussion below range y to the actual level density of a large number of
nuclei to fulfill a generalized plateau condition along the
C. Details of the calculations strategy of[41]. This leads always to values aroung

In order to probe the single-particle shell structure of =20 for protons andy,=2.2 for neutrons. All results pre-
SHEs, SHF, and RMF calculations were carried out undef€nted in this paper are calculated with 10 andy fixed at
the assumption of spherical geometry. By doing so we intenthese values.
tionally disregard deformation effects which make it difficult
to compare different models and parametrizations. For the VI. RESULTS
same reason, pairing correlations were practically neglected.
(In order to obtain self-consistent spherical solutions for
open-shell nuclei, small constant pairing gaps 100 keV According to the SHF calculations of Refl19], the
were assumed; the corresponding pairing energies are negfipherical magic neutron number in the SHE regionNis
gible. This procedure is approximately equivalent to the fill-=184; all theN=184 isotones have been predicted to have
ing approximatior). spherical shapes. The magicity & 184 in the SHF model

The SHF calculations were carried out using theis confirmed in this study. Figure 3 displays the neutron shell
coordinate-space Hartree-Fock code of H8D]. The HF  correction calculated in several SHF models as a function of
equations were solved by the discretization method. To obN for Z=120. The absolute minimum of the shell energy
tain a proper description of quasibound states, it was necegiways appears aii=184. TheN=172 shell effect is also
sary to take a very large box and a very dense mesh. Theeen, but it exhibits a strong force dependeficis particu-
actual box size was chosen to be 21 fm and the mesh spacingly pronounced for Z, Ski3, Ski4, and SLy#
was 0.3 fm. With this choice, the low-lying positive-energy  As already mentioned, the neutron levels have the same
proton states obtained in the SHF model perfectly reproducgrdering for nearly all forces; all differences seen in the shell
proton resonances obtained by solving the Sdimger equa-  corrections are therefore caused by slight changes in the rela-
tion for the HF potential with purely outgoing boundary con- tive distances of the single-particle levels between the mod-
ditions. els. Forces with large effective masses like SkO, SkP, and

The Strutinsky procedure contains two free parametersgkTe give a comparatively large level density which washes
the smoothing parameter and the order of the curvature oyt the shell effects belo=184. Forces with small effec-
correctionp. In calculating the Strutinsky smooth energy, tive massesi.e., smaller level densifyare much more likely
instead of the traditional plateau condition we applied the show significant shell effects at lower neutron numbers
generalized plateau condition described in R&1]. The op-  aroundN=172.
timal values of y (in units of oscillator frequencyiw, At fixed Z, the proton shell correction changes rather
=41/A") calculated for several nuclei turned out to be closegradually as a function of neutron number; this is illustrated
to y,=1.54 andy,=1.66 for protons and neutrons, respec-in Fig. 3 for the Skyrme force Sk#M (Most of the Skyrme
tively; these values, together with=10, were adopted in forces give a similar resujtNote that the proton shell cor-
our calculations of shell corrections in the SHF model. rections are generally smaller than those for the neutrons. At

In the RMF approach, the shell correction can be exa second glance, however, one sees that the slow variations
tracted from the single-particle spectrum like in the SHFof the proton shell correction with neutron number are cor-
model. To demonstrate it, one proceeds along the steps difelated with neutron shell closures. For instance, e
cussed in Sec. Ill. The total RMF energl5) can be decom- =120 shell correction is largest at neutron numbers around
posed into a smooth part and a correction that fluctuateg =172 and it becomes reduced when approachingl84.
according to the actual level density. Since the RMF energyrhjs is caused by the self-consistent rearrangement of single-
functional is bilinear in the denSitieS, the extracted shell Cor'partide levels according to the actual density distribution in
rection should be accurate up to ord2¢sp?). the nucleus and cannot appear in macroscopic-microscopic

The RMF calculations were carried out using themodels with assumed average potentigiee Refs[30,31]
coordinate-space code of R¢81]. As in the SHF case, the for more discussion related to this pgint

box size was chosen to be 21 fm with a mesh spacing of 0.3 proton shell corrections for thg= 184 andN= 172 iso-

fm. ) ~ tones, obtained in the SHF model, are displayed in Fig. 4 as
~ As already mentioned, all successful RMF parametrizag function ofZ. For SkM¢, neutron shell corrections are also
tions give a rather small effective mass. This leads to a smallhown for theN= 172 andN = 184 isotones. The shift of the
level density around the Fermi surface which in turn requiresnagic proton number with neutron number when going from
a very large smoothing range when calculating the N=172 toN=184 is clearly visible. FoN= 172 most of the
smoothed level density. The values fory are strongly cor- Skyrme forces(exceptions are SkT6 and Sk@gree on a
related with the order of the curvature-correction polynomialmagicZ= 120, while forN=184 the shell correction shows

A. Spherical shell corrections in superheavy nuclei
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FIG. 3. Spherical neutron shell corrections for #e 120 isotopes calculated in nine Skyrme-Hartree-Fock models. The dotted line for
SkM* shows the proton shell correction for comparison. In all nine cases, the minimum of the shell correction is predNcteiBéat

a minimum atZ=124-126 in all casegActually, in most  tematically predicted atN=172. Except for NL-SH and
cases, shell corrections slightly favde= 124 overz=126; TM1, the shell effect aN=182-184 is also clearly seen.
this is related to the gradual increase of the single-particidNote that theN=184 gap in the single-particle spectrum is in
energies of P, and 3, orbitals aboveZ=120) all cases larger than the oneNat= 182 (see Fig. 2 The gaps
Proton shell corrections and the=172 neutron shell cor- areé separated by a single, level which contributes very

rections are systematically smaller than those for neutrons 4{€akly to the shell energy. To illustrate the variation of pro-

N=184. This partly explains why spherical ground states ofion shell effects along thg=120 chain, proton shell correc-

SHEs are so well correlated with the magic neutron numbesg?s;?mli\:;ztg tiraet ?S?aﬂ':gl?g%dl_"g rilgdeslls Their pattern is
N=184; see, €.9[19,22,29. Note that for the majority of Y :

= : ) Looking at the proton shell corrections along the chain of
%ﬁf{:g‘de forces thN=172 isotones are predicted to be de- N =184 isotonegsee Fig. 8, the strongest shell effect is now

Skvrme for with nonstandard i in dependen ?btained forZ=120. When comparing the results for the
yrme forces onstandard 15ospin dependence oL ;g4 andN=172 chains, it can be seen again that the pro-

t_he spin-orbit interaction are the only ones that give aOIOIIton shell correction aZ=120 is strongly correlated with
tional (but not very pronouncedshell closures. In the Skl4 — L9

o neutron numbeN=172. However, unlike in SHF theory, the
model, there appears a secondary minimunzZatll14 for

. . ; : Z=120 shell does not vanish completely fér=184. Proton
N= 184, while Ski3 is the only Skyrme force which points at . . . ) )
Z=120 also forN=184. A nonstandard spin-orbit interac- shell corrections obtained with NL1, NL-Z, and NL-Z2 at

tion, however, does not neccesarily lead to shell closureN.:184 vary rather slowly betwgeZ1= .120 andz=126, anq
othér thanZ=,124—126 forN=184. For SkO. which has a this resembles the patterm obtained in SHF theory. Again, as

, : S . ' ) in the case of Skyrme forces, proton shell corrections in
spin-orbit force that is similar to Skl4, thé=114 shell is RMF theory are smaller than those for the neutréas
only hinted. It is to be noted that for several interactions

. 'NL-Z2 calculations in Fig. § The increase in the proton
such as Z, SkIx, and SkO, the shell correction changes hell . | | & :

L ™1 |
rather slowly betweerz=114 andZ=126. This indicates shell correction at very large values oifor is related

that none of the proton shell gaps in this region can be cor%glghe sphericalz =132 shell predicted by this interaction

sidered as truly “magic.”(The weakZ dependence of the
proton shell correction abové= 114 was pointed out in the
early referenc¢82].)

Shell closures can also be analyzed in terms of the two-
neutron and two-proton shell gaps

The RMF results presented in Figs. 5 and 6 show a pattern Sn=E(N+22)—2E(N,Z)+E(N-22),
that is internally consistent but different from that of SHF
theory. The minimum of the neutron shell correction is sys- 0p=E(N,Z+2)—2E(N,2)+E(N,Z-2), (16
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FIG. 4. Spherical proton shell corrections for the chaind\ef184 isotonegsolid lineg andN= 172 isotonegdotted line$ calculated
in nine Skyrme-Hartree-Fock models. The dastaash-dottegline for SkM* shows the neutron shell correction fér=184 (N=172). For
N=184, the minimum of the shell correction is predictedZat124—126 for all parametrizations.

discussed in Refd.31,77. The pattern of shell corrections proton shell gaps and shell corrections are not equivalent and
calculated in SHF and RMF models qualitatively resembles quantitative comparison between these quantities cannot be
the behavior of neutron and proton shell gaps found there. Imade) While shell gaps are relate@ut not equivalentto
particular, the strong correlation between shell effect at the gaps in the single-particle spectrum, the shell correction
=120 andN=172 in the RMF model is seen in both repre- gives also a measure of the stabilizing effect of a shell clo-
sentations.(It should be emphasized, however, that two-sure on the nuclear binding energy.
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FIG. 5. Spherical neutron shell corrections for #e 120 isotopes calculated in six relativistic mean-field models. In all six cases, the
minimum of the shell correction is predictedMt=172. For NL-Z2 the proton shell correction is given for comparison by the dashed line.
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B. Macroscopic energies nificantly. The RMF forces give qualitatively the same re-

By subtracting the shell correction from the calculatedSU!ts; there are several forcesiL-Z, TM1, and NL-SH
binding energy, one obtains a rough estimate for the assoc?Nich give values o€y, close to the FRLDM.
ated macroscopic energmaco EJ. (9). The macroscopic In an attempt to_under_stand the pattern shown in Fig. 7,
part of the SHF and RMF energies for the= 184 isotones V€ employed the simple liquid-drop model expression
as a function ofZ is displayed in Fig. 7. The macroscopic N—7)2 72
energy of the Yukawa-plus-exponential mass formula of the g Lov= Ao A+ agAZ3+ a !Jrac —
finite-range liquid-drop modelFRLDM) of Ref. [20], with Mmacro. v s oA A3
parameters of Ref.21], is also shown for comparison. To a7
illustrate theZ dependence, all energies were normalized to
the value atZ=100. In general, the behavior & oIS The parameters; of Skyrme and RMF forces were calcu-
similar in all cases. In particular, the macroscopic proton drigated in the limit of symmetric nuclear matter; they are given
line is consistently predicted to be At=120-124. It is in- in Table I, together with the values for the standard liquid-
teresting to note that the only Skyrme force which agreesirop model(LDM) of Ref. [84]. [Note that these values
with the FRLDM is SLy4; other forces deviate from it sig- change slightly when including higher-order terms in the

o
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FIG. 7. Macroscopic energ"'", Eq. (9), extracted from the calculated Hartree-Fock energies oNthe 84 isotones. For comparison,
the phenomenological macroscopic energy of the Yukawa-plus-exponential mass f@rRURM) of Ref.[20] with parameters of Ref.
[21] is also displayed. To illustrate th&dependence, all energies were normalized to the FRLDM val#e=at00.
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TABLE |. Key properties of symmetric nuclear matter for the tweenE,,,.,and Emacro, Lom- While for the RMF model the
Skyrme and RMF forces used in this paper: binding energy pegnergy ordering remains the same in both cases, this feature
nucleon, surface energy, and Symmetry energy, all in MeV. Thqjoes not hold for the SHF model Only When |ook|ng at
RMF values forag, are taken from Ref.83]. The standard liquid- Emacro, Lom @re the results ordered according to the corre-

drop model(LDM) values[84] are also shown. sponding values ofi,,, as expected. All this indicates that
even for very heavy nuclei witth~ 300, the simple lepto-

Force 8vol Asurf Asym dermous expansion with parameters taken from nuclear mat-

SKM* 159 17 59 30.0 ']Eertcalculai[ﬁns is not g(t)ln% fto vg&rl}gS,SG]; finite-size ef-

7 _159 16.94 26.7 ects are still very important for s.

(o8

In spite of the fact that macroscopic energies extracted

SkT6 —16.1 18.12 29.9 from different self-consistent models systematically differ,
SLy4 —16.1 18.18 32.0 the corresponding shell corrections are similar. For instance,
Skil —159 17.31 37.5 the general pattern and magnitude of shell energies displayed
Ski3 —16.0 17.52 34.8 in Figs. 3 and 4 do not depend very much on the Skyrme
Skl4 —-15.9 17.28 29.5 interaction used, and the same is true for the RMF results
SkP -16.0 17.95 30.0 shown in Figs. 5 and 6. This means that although the global
SkO —15.8 17.00 32.0 properties of the effective interactions employed in this work
NL1 —16.4 18.66 435 differ, their single-particle spectra are fairly similar. Hence,
NL-Z —16.2 17.72 41.7 shell corrections extracted from self-consistent single-
NL-Z2 ~161 30.0 particle spectra are very useful measures of the spectral prop-
NL3 162 18.46 374 erties of gffecnve forces. Figure 7 .also |IIustrate_s how da_n—
NL-SH 163 19.05 36.1 gerous ,I'[ is to extrapolate seIf_—cons_|st_ent results_ in the region
™1 163 36.9 of SHE'’s. The trends of relative blnc_zllng energiesg., Q,

LDM 157 18.56 28.1 values are expected to smoothly deviate from force to force.

The nice agreement with experimental data for the heaviest
elements obtained in the SHF calculations with SI[{4]

and in the macroscopic-microscopic calculations with the

FRLDM [21] indicates that the macroscopic energies of

fprces which are too far off the FRLDM values, i.e., SkM

LDM expansion(17).] Figure 8 shows the macroscopic en-
ergy (17) as a function ofZ for the N=184 isotones. The
huge differences between results for various Skyrme an ) RSN !
RMF parametrizations can be traced back to their differenKl1, @nd NL1, are probably not reliable in this region.
symmetry-energy coefficients. Indeed, for most of the forces 19ureé 7 shows that the power of a force for predicting

discussedagyn, is significantly greater than that of the LDM, total binding energies is fairly in_depen_de_nt of its predictive
and this results in an increased slopeEgf,qro Loy FOT the power for shell effects. Forces with a simil@ood descrip-

RMF forces the significantly largea,, even further in- tion of the smooth trends of binding energies can yield rather

creases the difference with respect to the LDM. Unfortu—dlfferent magic numbers; compare, e.g., SLy4 and NL3.
nately, there is very little similarity between the results of the
microscopic calculations of Fig. 7 and the results of expan-
sion (17). When comparing the energy scales of Figs. 7 and The recent experimental progress in the search for new
8, one finds huge differences, of the order of 100 MeV, besuperheavy elements opens a new window for systematic

VII. CONCLUSIONS
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FIG. 8. Macroscopic energ¥macro .om: EQ. (17), for theN=184 isotones as a function dfcalculated for several Skyrme forcémes)
and the standard liquid-drop modg@lots. To illustrate theZ dependence, all energies were normalized to zerd=ai00. The bulk
parameters of Skyrme forces are given in Table I. The Coulomb-energy constant was assumag,te=t8e717 MeV[84] in all cases.
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explorations of the limit of nuclear mass and charge. TheoSHEs will, therefore, be of extreme importance for pinning
retically, predictions in the region of SHEs are bound to bedown the question of the spin-orbit force.
extrapolations from the lighter systems. An interesting and Another interesting conclusion of our work is that the
novel feature of SHEs is that the Coulomb interaction can n@seudospin symmetry seems to be strongly violated in the
longer be treated as a small perturbation atop the nucled@®MF calculations for SHEs. As a matter of fact, the
mean field; its feedback on the nuclear potential is signifi-=172 andZ=120 magic gaps predicted in the relativistic
cant. model appear as a direct consequence of pseudospin break-

The main objective of this study was to perform a detailedng- This is quite'surprising in Iight of several recent works
analysis of shell effects in SHEs. Since many nuclei from@n the pseudospin conservation in RMF the§,89.
this region are close to the proton drip line, a new method of Finally, from calculated masses we extracted self-
calculating shell corrections, based on the Green’s-functiofONSIStent macroscopic energies. They show a §|gr]|f|cant
approach, had to be developed. This technique was appliestpread Whef‘ ext'rapolatlng to unknown SHE.S'.Th'S IS ex-
to a family of Skyrme interactions and to several RMF pa-peCtEd to give rise to sys_temat(smooth _dewe_\tlons_ be-
rametrizations. This tool turned out to be extremely usefufVEEN masses and mass differences obtained in various self-
for analyzing the spectral properties of self-consistent meafionsistent models.
fields.

It has been concluded that both the SHF and RMF calcu-
lations arenternally consistent. That isll the Skyrme mod- This research was supported in part by the U.S. Depart-
els employed in this work predict the strongest sphericament of Energy under Contract Nos. DE-FG02-96ER40963
shell effect atN=184 andZ=124,126. On the other hand, (University of Tennessee DE-FG05-87ER40361Joint In-
all the RMF parametrizations yield the strongest shell effecstitute for Heavy lon ReseargDE-FG02-97ER41018Uni-
atN=172 andZ=120. It is very likely that the main factor versity of North Caroling DE-AC05-960R22464 with
contributing to this difference is the spin-orbit interaction or, Lockheed Martin Energy Research Cof@ak Ridge Na-
rather, its isospin dependeni&®9,59,62—64 The role of the tional Laboratory, the Polish Committee for Scientific Re-
spin-orbit potential in determining the stability of SHEs wassearch(KBN) under Contract No. 2 PO3B 040 14, NATO
posed already in the 197(087,88. The experimental deter- Grant No. CRG 970196, and Hungarian OTKA Grant No.
mination of the center of shell stability in the region of T026244.
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