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Quadrupole deformations of neutron-drip-line nuclei studied within
the Skyrme Hartree-Fock-Bogoliubov approach
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We introduce a local-scaling point transformation to allow for modifying the asymptotic properties of the
deformed three-dimensional Cartesian harmonic oscillator wave functions. The resulting single-particle bases
are very well suited for solving the Hartree-Fock-Bogoliubov equations for deformed drip-line nuclei. We then
present results of self-consistent calculations performed for the Mg isotopes and for light nuclei located near
the two-neutron drip line. The results suggest that for all even-even elements withZ510–18 the most weakly
bound nucleus has an oblate ground-state shape.

PACS number~s!: 21.60.Jz, 21.10.Dr, 21.10.Ky
c
r
ri
es
u

ot

of
ly
th
rly
eu
o
in
el
u

ve
fo
ob
in
ul
. O
ap
-
F

r
te
fo

in
p

ar
nc
av

FB

of
in

the

an-
the

the
y in
do
i.
c
of
de-

ing

en-
ties
ris-
re
rical
en-

ent
el-
.
in

ei.
oret-
ous

i-
e.
ther
ill

O
III
I. INTRODUCTION

Thanks to recent advances in radioactive ion beam te
nology, we are now in the process of exploring the ve
limits of nuclear binding, namely those regions of the pe
odic chart in the neighborhood of the particle drip lin
@1–4#. Several new structure features have already been
covered in these studies, including the neutron halo, and
ers have been predicted.

In contrast to stable nuclei within or near the valley
beta stability, a proper theoretical description of weak
bound systems requires a very careful treatment of
asymptotic part of the nucleonic density. This is particula
true in the description of pairing correlations near the n
tron drip line, for which the correct asymptotic properties
quasiparticle wave functions and of one-particle and pair
densities is essential. In the framework of the mean-fi
approach, the best way to achieve such a description is to
the Hartree-Fock-Bogoliubov~HFB! theory in coordinate-
space representation@5–7#.

Such an approach presents serious difficulties, howe
when applied to deformed nuclei. On the one hand,
finite-range interactions the technical and numerical pr
lems arising when a two-dimensional mesh of spatial po
is used are so involved that reliable self-consistent calc
tions in coordinate space should not be expected soon
the other hand, for zero-range interactions existing
proaches@8,9# are able to include only a fairly limited pair
ing phase space. The main complication in solving the H
equations in coordinate space is that the HFB spectrum
unbounded from below, so that methods based on a va
tional search for eigenstates cannot be easily implemen
Because of this and other difficulties, one has to look
alternative solutions.

In principle, such an alternative solution is well known
the form of the configurational representation. In this a
proach, the system of partial differential HFB equations
solved by expanding the nucleon quasiparticle wave fu
tions in an appropriate complete set of single-particle w
0556-2813/2000/61~3!/034311~14!/$15.00 61 0343
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functions. In many applications, an expansion of the H
wave function in a large harmonic oscillator~HO! basis of
spherical or axial symmetry provides a satisfactory level
accuracy. For nuclei at the drip lines, however, expansion
an oscillator basis converges much too slowly to describe
physics of continuum states@7#, which play a critical role in
the description of weakly bound systems. Oscillator exp
sions produce wave functions that decrease too steeply in
asymptotic region at large distances from the center of
nucleus. As a result, the calculated densities, especiall
the pairing channel, are too small in the outer region and
not reflect correctly the pairing correlations of such nucle

In two recent works@10,11#, a new transformed harmoni
oscillator ~THO! basis, based on a unitary transformation
the spherical HO basis, was discussed. This new basis
rives from the standard oscillator basis by a local-scal
point coordinate transformation@12–14#, with the precise
form dictated by the desired asymptotic behavior of the d
sities. The transformation preserves many useful proper
of the HO wave functions. Using the new basis, characte
tics of weakly bound orbitals for a square-well potential we
analyzed and the ground-state properties of some sphe
nuclei were calculated in the framework of the energy d
sity functional approach@11#. It was demonstrated in@10#
that configurational calculations using the THO basis pres
a promising alternative to algorithms that are being dev
oped for coordinate-space solution of the HFB equations

In the present work, we develop the THO basis for use
HFB equations of axially deformed weakly bound nucl
Our main goal here is to present and test these new the
ical methods. As specific applications, we repeat previ
calculations performed for the chain of Mg isotopes@8#, but
for different effective interactions, and then report a prelim
nary study of light, neutron-rich nuclei near the drip lin
Extensive calculations throughout the mass table, toge
with a more detailed analysis of the pairing interaction, w
be presented in a future publication.

The structure of the paper is the following. The TH
basis for deformed nuclei is introduced in Sec. II. In Sec.
©2000 The American Physical Society11-1
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we present an outline of the HFB theory and discuss sev
features of particular relevance to our investigation. Res
of calculations are given in Sec. IV, and conclusions
presented in Sec. V.

II. TRANSFORMED HARMONIC OSCILLATOR BASIS

In this section, we introduce a generalized class of loc
scaling point transformations, which in principle act diffe
ently in the three Cartesian directions. Next, we apply t
transformation to the three-dimensional Cartesian HO w
functions and derive the corresponding properties of the
cal densities.

A. Local-scaling point transformations

Suppose$wa(r)% represents a complete set of orthono
mal single-particle wave functions depending on the spa
coordinater. ~To simplify the presentation, we suppress t
spin and isospin labels here.! Then, one can introduce
local-scaling point transformation~LST! of the three dimen-
sional vector space, which is a generalization of the an
gous spherically-symmetric LST@12–14#, namely

x→x8[x8~x,y,z!5
x

r
f x~r !,

y→y8[y8~x,y,z!5
y

r
f y~r !, ~2.1!

z→z8[z8~x,y,z!5
z

r
f z~r !,

wherer 5Ax21y21z2.
The LST functionsf k(r ), k5x, y, or z, should have math-

ematical properties ensuring that Eq.~2.1! is a valid invert-
ible transformation of the three-dimensional space. In p
ticular, f k(r ) should be monotonic functions ofr such that

f k~0!50 and f k~`!5`, ~2.2!

and should lead to a nonvanishing Jacobian of the LST~2.1!,
i.e.,

D[
]~x8,y8,z8!

]~x,y,z!
5

x2f x8 f yf z1y2f xf y8 f z1z2f xf yf z8

r 4
Þ0,

~2.3!

where primes denote derivatives with respect tor.
When we apply the LST~2.1! to the set of wave functions

wa(r), we obtain another set of single-particle wave fun
tions

ca~x,y,z!5D1/2waS x

r
f x~r !,

y

r
f y~r !,

z

r
f z~r ! D . ~2.4!

Due to the factorD1/2 entering Eq.~2.4!, the LST of wave
functions is unitary and the new wave functionsca(r) are
automatically orthonormal, i.e.,^caucb&5^wauwb&5dab .
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Summarizing, the LST~2.1! generates from a given com
plete set of orthonormal single-particle wave functions a
other orthonormal and complete set of single-particle wa
functions ~2.4! depending on three almost-arbitrary sca
LST functions f k(r ). The freedom in the choice off k(r )
provides great flexibility in the new set$ca(r)%, and this
opens up the possibility of improving on undesired prop
ties of the initial set. This is the motivation for the prese
study in which we use the LST to modify the incorre
asymptotic properties of deformed HO wave functions.

B. Transformed harmonic oscillator wave functions

The anisotropic three-dimensional HO potential w
three different oscillator lengths

Lk[
1

bk
5A \

mvk
, ~2.5!

has the form

U~r!5
\2

2m S x2

Lx
4

1
y2

Ly
4

1
z2

Lz
4D . ~2.6!

Its eigenstates, the separable HO single-particle w
functions

wa~r!5wnx
~x!wny

~y!wnz
~z!, ~2.7!

have a Gaussian asymptotic behavior at large distances

wa~r→`!;expF2
1

2 S x2

Lx
2

1
y2

Ly
2

1
z2

Lz
2D G . ~2.8!

Applying the LST~2.1! to these wave functions leads t
the so-called THO single-particle wave functions~2.4!,

ca~r!5D1/2wnxS x

r
f x~r ! DwnyS y

r
f y~r ! DwnzS z

r
f z~r ! D ,

~2.9!

whose asymptotic behavior is

ca~r→`!;expF2
1

2 S x2f x
2

Lx
2r 2

1
y2f y

2

Ly
2r 2

1
z2f z

2

Lz
2r 2D G .

~2.10!

This suggests that we choose the LST functions to satisfy
asymptotic conditions

f k~r !5H r for small r ,

LkA2kr for large r .
~2.11!

With such a choice, the THO wave functions at smallr are
identical to the HO wave functions@note that with Eq.~2.11!
one obtainsD51 at smallr #, while at larger they have the
correct exponential and spherical asymptotic behavior,

ca~r→`!;e2kr . ~2.12!
1-2
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C. Parametrization of the LST functions

In principle, we could use the flexibility of having thre
different LST functionsf k(r ) and three different oscillato
lengthsLk of the original deformed HO basis to tailor th
LST transformation to the shape of the deformed nucl
under investigation. However, for large HO bases~in the
present study we include HO states up to 20 major she!,
the dependence of the total energy on the basis deforma
is very weak, so that minimization of the total energy w
respect to the three oscillator lengthsLk is ill-conditioned
~see discussion and examples given in Ref.@15#!. Therefore,
in this study, we use a spherical HO basis depending o
single common oscillator lengthL0,

Lx5Ly5Lz[L05
1

b0
5A \

mv0
. ~2.13!

With such a choice, it is natural to set the three LST fun
tions f k(r ) equal to one another,

f x~r !5 f y~r !5 f z~r ![ f ~r !. ~2.14!

This allows us to use exactly the same LST functionf (r ) as
in the previous studies@10,11#. Under conditions~2.14!, the
Jacobian~2.3! assumes the simpler form

D[
]~x8,y8,z8!

]~x,y,z!
5

f 8~r ! f 2~r !

r 2
. ~2.15!

The parametrization of the LST functionf (r ) used in
Refs.@10,11# was of the form

f ~r !5L0FS r

L0
D , ~2.16!

with the dimensionless universal functionF of the dimen-
sionless variableR defined as

F~R!

5H R~11aR 2!1/3 for R<c,

Ad22

R 2
1

d21

R 1d01d1R1dL lnR for R.c.

~2.17!

Two different formulas can be obtained for the functi
F(R), one forR<c and one forR.c. Imposing the con-
dition that the function should be continuous at thematching
radius c and that it should have continuous first, seco
third, and fourth derivatives leads to the following requir
ments for the constantsd22 , d21 , d0 , d1, anddL :

d225
1

3
Ac4~24314050g18910g217602g312275g4!,

~2.18!

d21528Ac3~8111242g12745g212340g31700g4!,
03431
s
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a
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d052Ac2
„1215g12790g212415g31728g41~486

16480g114310g2112180g313640g4!ln c…,

d15
8

3
Ac~24312430g15211g214380g311300g4!,

dL524Ac2~24313240g17155g216090g311820g4!,

where g5ac2 and A 21581(11g)10/3. In this way, the
LST function f (r ) is guaranteed to be very smooth, whi
still depending on only three parameters,L0 , a, andc.

From Eq.~2.17!, we see that asymptotically the functio
F(R→`);Ad1R. Thus, the LST function obeys condition
~2.11! provided that the parameters satisfy

k5
d1

2L0
. ~2.19!

Two different approaches can be used in calculations. O
possibility is to minimize the total energy with respect toL0 ,
a, andc, obtaining as output the energetically optimal val
of the decay constantk. Alternatively, for a given choice of
k, we could eliminate one of the three parameters and m
mize the total energy with respect to the other two. T
actual procedure used in our calculations is described in S
IV A.

D. Axially deformed harmonic oscillator

In the present study, we restrict our HFB analysis
shapes having axial symmetry. For this purpose, we use
wave functions in cylindrical coordinates,z, r, andw,

x5r cosw,

y5r sinw, ~2.20!

z5z,

which allows us to separate the HFB equations into blo
with good projectionV of the angular momentum on th
symmetry axis.@Note that the use of cylindrical coordinate
is independent of working with equal oscillator lengt
~2.13!.# Since the use of a cylindrical HO basis is by now
standard technique~see, e.g., Ref.@16#!, we give here only
the information pertaining to constructing the cylindric
THO states.

The cylindrical HO basis wave functions are given expl
itly by

wa~z,r,w,s,t !5wnz
~z!wnr

ml~r!
eimlw

A2p
xms

~s!xmt
~ t !,

~2.21!

where the spins and isospint degrees of freedom are show
explicitly, nz andnr are the number of nodes alongz andr
directions, respectively, whileml andms are the components
of the orbital angular momentum and the spin along the sy
metry axis. The only conserved quantum numbers in t
1-3
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case are the total angular momentum projectionV5ml
1ms and the parityp5(2)nz1ml .

In the axially deformed case, the general LST~2.1! acts
only on the cylindrical coordinatesz and r and takes the
form

r→r8[r8~r,z!5
r

r
f r~r !,

z→z8[z8~r,z!5
z

r
f z~r !, ~2.22!

with the corresponding Jacobian given by

D[
]~x8,y8,z8!

]~x,y,z!
5

r2f r8 f r f z1z2f r
2f z8

r 4
. ~2.23!

Finally, the axial THO wave functions are

ca~z,r,w,s,t !5D1/2wnzS z

r
f z~r ! Dwnr

mlS r

r
f r~r ! D

3
eimlw

A2p
xms

~s!xmt
~ t !. ~2.24!

The assumption of a single oscillator length~see Sec. II C!
that we make in our calculations translates in the axial c
to

Lr5Lz[L05
1

b0
5A \

mv0
, ~2.25!

f r~r !5 f z~r ![ f ~r !, ~2.26!

and the Jacobian~2.23! reduces to expression~2.15!.

E. THO and Gauss integration formulas

At first glance, the THO wave functions~2.9! and ~2.24!
look much more complicated than their HO counterpa
~2.7! and ~2.21!. In particular, in contrast to the HO wav
functions, the THO wave functions are not separable eit
in thex, y, andz Cartesian coordinates or in ther andz axial
coordinates. Due to the presence of the Jacobian factor
the r-dependence of the LST functions, the local-scal
transformation mixes thex, y, and z coordinates and ther
andz coordinates. Nevertheless, as we now proceed to sh
the THO wave functions are readily tractable in any config
rational self-consistent calculation. Indeed, the modificati
required to transform a code from the HO to the THO ba
are minor.

One of the properties of the HO basis that makes it
useful is the high accuracy that can be achieved when ca
lating matrix elements using Gauss-Hermite and/or Gau
Laguerre integration formulas@17#. This feature has bee
exploited frequently in various mean-field nuclear struct
calculations~see, e.g., Refs.@16,18,15#!. To illustrate how
the same methods can be applied in the THO basis, we fo
on the specific example of a diagonal matrix element o
03431
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spin and isospin independent potential functionV. This ma-
trix element can be expressed in the axial HO representa
as

^wauVuwa&5E
2`

`

dzE
0

`

rdrV~z,r!wnz

2 ~z!wnr

ml2~r!,

~2.27!

and in the THO representation as

^cauVuca&5E
2`

`

dzE
0

`

rdrV~z,r!D~z,r!wnz

2 S z

r
f z~r ! D

3wnr

ml2S r

r
f r~r ! D . ~2.28!

The way to calculate the second matrix element~2.28! is by
first transforming to ther8 andz8 variables~2.22!. This ab-
sorbs the JacobianD(z,r) and leads to an integral over HO
wave functions that is almost identical to Eq.~2.27!, namely

^cauVuca&5E
2`

`

dz8E
0

`

r8dr8V„z~z8,r8!,r~z8,r8!…

3wnz

2 ~z8!wnr

ml2~r8!. ~2.29!

The only complication in numerically carrying out th
integral ~2.29! involves determining the inverse LST tran
formationsz5z(z8,r8) andr5r(z8,r8) to be inserted into
the known functionV(z,r). But this only has to be done
once, and, moreover, if Gauss quadratures are used to e
ate the integrals, the inverse transformation only has to
known at a finite number of Gauss-quadrature nodes.

Generalization of the above approach to include differ
tial operators, as will often arise in THO basis configur
tional calculations, is fairly straightforward. Such integra
can be done by first transforming derivatives]/]z and]/]r
into derivatives]/]z8 and ]/]r8, and then performing the
integrations in the variablesz8 and r8 over ordinary HO
wave functions~see the next section!.

F. THO and local densities

In calculations using the Skyrme force, or in any oth
calculation that relies on the local density approximation,
can simplify the THO methodology of Sec. II E even furthe
Indeed, suppose the mean-field calculation in question re
on knowing the density matrixraa8 in the THO basis. Then
the spatial nonlocal density can be expressed as

r~r1 ,r2!5(
aa8

ca~r1!raa8ca8
* ~r2!, ~2.30!

and the corresponding standard local densities@19# as

r~r!5r~r,r!, ~2.31a!

t~r!5 (
k5x,y,z

@¹k
(1)¹k

(2)r~r1 ,r2!# r15r2
, ~2.31b!
1-4
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j k~r!5
1

2i
@~¹k

(1)2¹k
(2)!r~r1 ,r2!# r15r2

, ~2.31c!

where

¹k
( i )5

]

]~r i !k
, ~2.32!

for i 51 or 2, andk5x, y, or z. To simplify the notation in
Eq. ~2.30!, we have neglected the spin and isospin degree
freedom and, consequently, have shown only the s
independent densities~2.31!. Analogous formulas for the
spin-dependent densitiess, T, and Jkl @19# are straightfor-
ward.

A direct calculation of the derivatives in Eqs.~2.31! @after
inserting the THO wave functions~2.9! or ~2.24! into the
nonlocal density matrix~2.30!# is prohibitively difficult. For-
tunately, nothing of the sort is necessary. It is enough to n
that the densities~2.31! serve almost uniquely to define th
central, spin-orbit, and effective-mass terms of the me
field Hamiltonian ~see, e.g., Refs.@19,15#!, and that these
terms are in turn used to calculate matrix elements thro
integrals of the type~2.29!. Therefore, the densities~2.31!
have to be effectively known only at selected poin
x8, y8, z8 ~the Gauss-quadrature nodes! of the inverse
LST.

Towards this end, we insert the THO wave functions in
the nonlocal density~2.30!, which gives

r~r1 ,r2!5D1/2~r1!D1/2~r2!r8„r18~r1!,r28~r2!…, ~2.33!

with

r8~r18 ,r28!5(
aa8

wa~r18!raa8wa8
* ~r28!. ~2.34!

The density matrixr8(r18 ,r28) is a standard object expresse
in terms of ordinary HO wave functions, and it can be c
culated using methods that are employed in any code
works in the HO basis. Likewise, the corresponding lo
densities

r8~r8!5r8~r8,r8!, ~2.35a!

tkm8 ~r8!5@¹k
(1)8¹m

(2)8r8~r18 ,r28!# r
185r

28
, ~2.35b!

j k8~r8!5
1

2i
@~¹k

(1)82¹k
(2)8!r8~r18 ,r28!# r

185r
28

~2.35c!

can be calculated without any reference to the THO ba
The only complication is that now we have to calculate
complete kinetic energy tensor densitytkm8 ~2.35b!, while
finally only its trace~2.31b! is needed. Inserting expressio
~2.33! into ~2.31!, and expressing the differential operato
~2.32! as

¹k
( i )5 (

m5x,y,z
Dk

m¹m
( i )8 , ~2.36!
03431
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-

te

-

h

-
at
l

s.
e

for

Dk
m[

]rm8

]rk
5

f m

r
dmk1

r f m8 2 f m

r 3
rmrk , ~2.37!

we obtain that

r„r~r8!…5Dr8~r8!, ~2.38a!

t„r~r8!…5D(
kmn

Dn
kDn

mtkm8 ~r8!

1
1

2 (
km

@¹kD#Dk
m@¹m8 r8~r8!#

1
1

4
D21@“D#2r~r8!, ~2.38b!

j k„r~r8!…5D(
m

Dk
mj m8 ~r8!. ~2.38c!

To use formulas~2.38a!–~2.38c!, we must calculate the
Jacobi matrixDk

m and its determinantD at pointsr(r8); how-
ever, this need be done only once for all iterations. On
other hand, no inverse LST needs to be performed for
densities, because expressions~2.38! give directly the values
of the local densities at the inverse LST points, as require
matrix-element integrals of the type~2.29!.

III. HARTREE-FOCK-BOGOLIUBOV THEORY

Hartree-Fock-Bogoliubov~HFB! theory @20# is based on
the Ritz variational principle applied to the many-fermio
Hamiltonian,

H5(
aa8

taa8aa
†aa81 (

aa8bb8
v̄aa8bb8aa

†aa8
† ab8ab ,

~3.1!

with trial functions in the form of a quasiparticle vacuum
The resulting HFB equations can be written in matrix for
as

S h2l D

2D* 2h* 1l
D S Un

Vn
D 5EnS Un

Vn
D , ~3.2!

where En are the quasiparticle energies,l is the chemical
potential, and the matricesh5t1G andD are defined by the
matrix elements of the two-body interaction

Gaa85(
bb8

v̄aba8b8rb8b ,

Daa85
1

2(bb8
v̄aa8bb8kbb8 , ~3.3!

rb8b and kbb8 being the density matrix and pairing tenso
respectively. HFB theory is by now a standard tool in nucle
structure calculations, and we refer the reader to Ref.@20# for
1-5
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details. Below we discuss several features of the formal
that are especially pertinent to the present applicat
namely canonical states, the pairing phase space, and
quantities that dictate the stability of a nucleus with resp
to two-neutron emission.

A. Canonical states

Canonical states are defined as the states that diagon
the HFB one-body density matrixr(r1 ,r2) of Eq. ~2.30!, i.e.,

E r~r1 ,r2!c̆ i~r2!dr25v i
2c̆ i~r1!, ~3.4!

where, due to the Pauli principle, the canonical occupa
numbersv i

2 obey the condition 0<v i
2<1.

For self-consistent solutions, the canonical occupat
numbersv i

2 are determined by the diagonal matrix eleme
hii and D i ī of the particle-hole~p-h! and particle-particle
~p-p! Hamiltonians in the canonical basis via the followin
BCS-like equation@20#:

v i
25

1

2
2

hii 2l

2Ei
, ~3.5!

where

Ei5A~hii 2l!21D i ī
2 . ~3.6!

The chemical potentiall is determined from the particle
number condition

N5(
i

v i
25(

n
Nn , ~3.7!

whereNn denote the norms of the lower HFB wave functio
of Eq. ~3.2!, i.e.,

Nn5(
a

Van
2 . ~3.8!

In the canonical representation, the average~proton or neu-
tron! pairing gapD̃ @6# is given by the average value ofD i ī
in the corresponding~proton or neutron! canonical states,

D̃5
1

N (
i

D i ī v i
2 , ~3.9!

where N is the number of nucleons of that type@see Eq.
~3.7!#.

Whenever infinite complete single-particle bases are u
in configurational calculations, one may freely expand
upper and lower HFB wave functions of Eq.~3.2! ~the qua-
siparticle wave functions!, as well as the standard eigensta
of the p-h Hamiltonianh, in the canonical basis. These e
pansions are often extremely slowly converging, howev
and any truncation of the basis typically induces large err
Therefore, in practice, when working with finite bases, o
should not expand quasiparticle wave functions and
single-particle eigenstates ofh in the canonical basis. Th
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reason is very simple, and it stems from the differe
asymptotic properties of these objects. As discussed in
@6#, the quasiparticle spectrum and wave functions are pa
discrete and localized and partly continuous and asymp
cally oscillating, respectively. These properties are co
pletely analogous to properties of the eigenstates ofh, which
are also discrete and localized~for negative eigenenergies! or
continuous and oscillating~for positive eigenenergies!. On
the other hand, the properties of eigenvalues and eigens
of the density matrix~3.4! are very different, namely the
entire spectrum is discrete and all the wave functions
localized. Therefore, even if formally the set of canonic
states is complete, it is extremely difficult to expand a
oscillating wave function in this basis.

These considerations make it clear that the optimum w
of solving the HFB equations is by using the coordinate r
resentation, in which the various asymptotic properties ar
a natural way correctly fulfilled. This technique is wide
used when spherical symmetry is imposed; then one only
to solve systems of one-dimensional differential equatio
which is an easy task. On the other hand, the case of a
symmetry requires solving two-dimensional equations, a
that of triaxial shapes requires working with a thre
dimensional problem. None of these two latter cases has
to now been effectively solved in coordinate space, althou
work on the axial solutions is in progress@21#.

Therefore, without having access to coordina
representation solutions, we are obliged to use meth
based on a configurational expansion. In this respect,
may clearly distinguish two classes of finite single-partic
bases, each of which aims at a reasonable solution of
HFB equations~3.2!. One uses a truncated basis compos
of eigenstates ofh @22,8,9#. This basis is partly composed o
discrete localized states and partly of discretized continu
and oscillating states. Technically it is very difficult to in
clude many continuum states in the basis, especially w
triaxial deformations are allowed. In practice, Refs.@22,8,9#
included states up to several MeV into the continuum. Su
a small phase space is certainly insufficient to describe s
tial properties of nuclear densities at large distances,
though some ground-state properties, like total binding en
gies, will be at most weakly affected.

The second uses a truncated infinite discrete basis.
most common of course is the HO basis, which has b
used in numerous HFB calculations, especially those e
ploying the Gogny effective interaction~see, e.g., Refs.@23–
26#!, and in Hartree-Bogoliubov calculations based on a re
tivistic Lagrangian~see, e.g., Refs.@27,28#!. Because it uses
a basis with a similar structure to the canonical basis~infinite
and discrete!, this approach can be viewed as aiming at t
best possible approximation to the canonical states and
the quasiparticle states. In this sense, the amplitudesUn and
Vn that appear in Eq.~3.2! should be considered more a
expansion coefficients of quasiparticle states in a basis s
lar to the canonical basis than as quasiparticle wave fu
tions themselves.

Our approach, which we discuss in greater detail belo
belongs to the second class. The THO basis defined and
scribed in Sec. II is a model that aims at an optimal desc
1-6
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QUADRUPOLE DEFORMATIONS OF NEUTRON-DRIP- . . . PHYSICAL REVIEW C 61 034311
tion of the canonical states. Therefore, in the following
adapt properties of the THO basis, and in particular the va
of the decay constantk ~2.12!, to the asymptotic propertie
of canonical states. In fact, the unique decay constant o
THO basis states is exactly the desired property of canon
states. As discussed in Ref.@7#, the asymptotic properties o
the most important canonical states~those having averag
energies close to the Fermi energy! are governed by a com
mon unique decay constant,

k5A2m~Emin2l!

\2
, ~3.10!

where Emin is the lowest quasiparticle energyEn . This
should be contrasted with decay constants associated
the eigenstates ofh, which are all different and depend on th
single-particle eigenenergies.

B. The cutoff procedure

HFB calculations in configurational representation inva
ably require a truncation of the single-particle basis an
truncation in the number of quasiparticle states. The latte
usually realized by defining a cutoff quasiparticle ener
Emax and then including quasiparticle states only up to t
value. When the finite-range Gogny force is used both in
p-p and p-h channels, the cutoff energyEmax has numerical
significance only. In contrast, HFB calculations based
Skyrme forces in the p-h and p-p channels, as well as
other calculations based on a zero-range force in the
channel

Vd~r,r8!5V0d~r2r8! ~3.11!

requirea finite space of states. This is because, for any va
of the coupling constantV0, they give divergent energie
with increasingEmax ~see the discussion in Ref.@7#!.

The choice of an appropriate cutoff procedure has b
discussed in the case of coordinate-space HFB calculat
for spherical nuclei@6#. It was demonstrated there that on
must sum up contributions from all states close in quasip
ticle energy to the bound particle states to obtain corr
density matrices in the HFB method. Since the bound p
ticle states are associated with quasiparticle energies sm
than the absolute valueD of the depth of the effective po
tential well, one had to take the cutoff energyEmax compa-
rable toD.

In the case of deformed HFB calculations, and especi
when performing configurational HFB calculations, it is d
ficult to look for the depth of the effective potential well i
eachVp subspace. Thus, an alternative criterion with resp
to the above cutoff procedure used in spherical calculati
is needed. For this purpose, we have adopted the follow
procedure~see Appendix B of@6#!. After each iteration, per-
formed with a given chemical potentiall, we calculate an
auxiliary spectrumēn and pairing gapsD̄n by using for each
quasiparticle state the BCS-like formulas,

En5A~ ēn2l!21D̄n
2, ~3.12a!
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Nn5
1

2
2

ēn2l

2En
, ~3.12b!

or equivalently

ēn2l5~122Nn!En , ~3.13a!

D̄n52EnANn~12Nn!. ~3.13b!

Then, in the next iteration, we readjust the proton and n
tron chemical potentials to obtain the correct values of
proton and neutron particle numbers~3.7!, where againNn is
calculated for the equivalent spectrum, Eq.~3.12b!. Due to
the similarity between the equivalent spectrumēn and the
single-particle energies, we are taking into account o
those quasiparticle states for which

ēn<ēmax, ~3.14!

where ēmax.0 is a parameter defining the amount of t
positive-energy phase space taken into account. At the s
time, since all holelike quasiparticle states,Nn,1/2, have
negative values ofēn ~3.13a!, condition ~3.14! quarantees
that they are all taken into account. In this way, we hav
global cutoff prescription independent ofVp, which fulfills
the requirement of taking into account the positive-ene
phase space as well as all quasiparticle states up to the h
est holelike quasiparticle energy.

C. Two-neutron separation energies and Fermi energies

A particular thrust of our analysis will be to identify th
location of the two-neutron drip line. The self-consiste
HFB variational procedure produces two quantities that p
vide information of relevance. One is the two-neutron se
ration energy,S2n , defined as the difference between t
HFB energy for theN22 andN neutron systems~with the
same proton number! and the other is the Fermi energy,ln .

The two-neutron separation energy provides ‘‘global’’ i
formation on the totalQ value corresponding to a hypothet
cal simultaneous transfer of two neutrons into theN22
ground state, leading to the ground state of the nucleus w
N neutrons. TheQ value includes information on all differ
ences in the ground-state properties of both nuclei, like p
ing, deformation, configuration, etc. Whenever thisQ value
becomes negative, the window for the spontaneous and
multaneous emission of two neutrons opens up, and
nucleus withN neutrons is formally beyond the two-neutro
drip line.

The Fermi energy, on the other hand, gives ‘‘local’’ in
formation on the stability of the given nucleus at a giv
pairing intensity, deformation, and configuration. Within th
HFB theory, the sign of the Fermi energy dictates the loc
ization properties of the HFB wave function; it is localized
ln,0 and unlocalized~i.e., behaves asymptotically as
plane wave! if ln.0. Thus, within the HFB approach, nu
clei with ln.0 spontaneously emit neutrons, while tho
with ln,0 do not emit neutrons, irrespective of the ava
ableQ values for the real emission. As such, we must ta
1-7
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STOITSOV, DOBACZEWSKI, RING, AND PITTEL PHYSICAL REVIEW C61 034311
into account all solutions withln,0 in discussing our self-
consistent HFB results.

We will indeed see examples in Sec. IV in which th
nucleus has a negative two-neutron separation energy, so
it is formally beyond the two-neutron drip line, but neverth
less is localized and does not spontaneously spill off n
trons.

IV. RESULTS

In this section, we present the results of several set
HFB calculations performed in the axial-deformed THO b
sis. All the calculations were carried out using the Skyr
interaction SLy4@29#, which has recently been adjusted
the properties of stable nuclei, neutron-rich nuclei and n
tron matter. This force has a proven record in deform
mean-field calculations@30–32,8,33–36#, including calcula-
tions of rotational properties in nuclei@37–41#. At the same
time, it reproduces the masses of spherical nuclei with
accuracy similar to several other Skyrme forces.

Below we review our choice of the various paramet
that define our calculations and present several tests o
THO approach. Then we present results obtained for the
isotopes and for light nuclei at the two-neutron drip line.
more extensive set of calculations will be presented in a
ture study, where we shall also explore in detail the influe
of the type of pairing force on the properties of drip-lin
nuclei.

A. Parameters and numerical details of the calculation

In all of the calculations reported here, we use a con
interaction~3.11! in the p-p channel, which leads to volum
pairing correlations@7#. Following the discussion of Sec
III B, the pairing phase space has been defined by a cu
energy@see Eq.~3.14!# of ēmax530 MeV. This constitutes a
very safe limit, for which all convergence properties are w
satisfied ~see the discussion in Refs.@7,42#!. Within this
phase space, the pairing strengthV0 @see Eq.~3.11!# has been
adjusted in a manner analogous to the prescription use
Ref. @43#, namely so that the average neutron pairing g
~3.9! for 120Sn equals the experimental value ofDn
51.245 MeV. The resulting value isV052206 MeV fm3 .
As demonstrated in the Appendix of Ref.@7#, changes in the
cutoff parameterēmax, leading to a renormalization of th
pairing strengthV0, can be safely disregarded when com
pared to all other uncertainties in the methods used to
trapolate to unknown nuclei.

Although our axially deformed HFB1THO code is able
to work with arbitrary axial oscillator lengthsLr andLz , we
have used in these calculations a spherical basis defined
single common oscillator lengthL0 ~2.25! ~see Sec. II C!.
When optimizing the THO basis parametersL0 , a, andc ~to
minimize the total energy!, we invariably find that for
weakly-bound nuclei the resulting exponential decay c
stant~2.19! is very close to that given by the HFB estima
~3.10!. Based on this observation, we have chosen to eli
nate the THO parametera and to fix it in such a way that the
basis decay constant~2.19!, at the self-consistent solution,
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equal to the HFB decay constant~3.10!. In this way, we only
have two variational parameters in our calculations,L0 and
c. The minimizations were carried out independently f
each nucleus. When describing each specific application
will indicate the number of shells included both in the min
mization that determines the LST parameters (Nsh

par) and in
the final calculations (Nsh).

All Gauss integrations were performed with 22 nodes
the r direction and 24 nodes in thez direction ~due to the
reflection symmetry assumed with respect to thex-y plane,
only 12 nodes forz.0 were effectively needed!.

B. Tests of the method

As the first test of the method, we considered doub
magic nuclei. Such nuclei are known to be spherical and t
amenable to reliable calculation using the coordinate-sp
HFB code@6#. By studying the extent to which our code
able to reproduce the coordinate-space results~referred to in
subsequent discussion asexact!, we can assess the metho
~We should note here that HFB in fact reduces to HF
doubly magic nuclei, since all pairing correlations vanish!

These calculations were carried out both for nuclei alo
the beta-stability line and for the very neutron-rich nucle
28O. Some discussion of this latter nucleus is in order he
28O is known experimentally to be unbound@44,45#, but is
predicted to be bound in most mean-field calculations@46#.
Due to rapid changes of the single-particle energies w
neutron number, shell-model calculations@47# are able to
explain the sudden decrease of separation energies tha
curs in the chain of oxygen isotopes and renders26O and28O
unbound. This effect seems to require modifications to
effective interactions currently in use in mean-field studies
light nuclei. Nevertheless, it is common to use28O as a test-
ing ground of mean-field calculations near the neutron d
line, because according to the standard magic-number
quence it is doubly magic and because it is located~in typical
mean-field calculations! just before the two-neutron drip
line. This is the philosphy underlying our inclusion of28O.
For comparison, the configurational calculations were p
formed both in the HO and THO bases. To assess the c
vergence of the results in the two cases, we varied the n
ber of HO major shells included, consideringNsh58, 12, 16,
and 20. For a given number of the major shells, we mi
mized the total HF energies with respect to the basis par
eters,L0 for the HO basis, andL0 andc for the THO basis,
so hereNsh

par5Nsh. We also tested our HO axial-basis resu
obtained at any givenNsh with those available from
Cartesian-basis calculations@15# and the results agreed pe
fectly. Lastly, for the THO basis, we compared with the c
culations of Ref.@11#, where spherical symmetry was im
posed, and obtained identical results.

As expected, for nuclei within the valley of beta stabili
the HO and THO results are close to one another and,
thermore, coincide with the exact HFB~HF! results. The
situation is quite different for the neutron-rich nucleus28O,
for which the calculations indicate the presence of a sign
cant neutron skin. In Fig. 1, we present the HO and TH
results for the total energy and for the proton and neut
1-8
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QUADRUPOLE DEFORMATIONS OF NEUTRON-DRIP- . . . PHYSICAL REVIEW C 61 034311
rms radii as functions ofNsh. For each of the calculate
observables, the exact results are shown as a straight lin
a function ofNsh. Clearly, when we increase the number
major shells, both the HO and THO results for the total e
ergy and for the proton rms radius converge to the ex
HFB values. In contrast, the HO neutron rms radius s
differs from the exact value, even atNsh520, while the THO
basis gives the correct result.

An explanation of this difference becomes clear wh
looking at Fig. 2, in which we compare~in logarithmic scale!
the HO and THO neutron densities with those from the ex
HFB calculations. The HO neutron density fails to reprodu

FIG. 1. Total energiesE, and proton and neutron rms radii,r p

and r n , obtained in the HFB1SLy4 calculations for28O by using
the HO and THO bases, as functions of the number of HO sh
Nsh. The exact results refer to those obtained from spher
coordinate-space calculations.

FIG. 2. Neutron densities obtained in the HFB1SLy4 calcula-
tions for 28O by using the HO~dashed line! and THO~solid line!
bases. Neutron and proton densities denoted as ‘‘exact’’~dots! have
been obtained from spherical coordinate-space calculations in a
of Rbox520 fm.
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the correct asymptotic behavior at large distances~see also
the discussion in Ref.@7#!. The THO density, on the othe
hand, shows perfect agreement with the exact HFB den
There is a difference, of course, near and beyond the
boundary (Rbox520 fm is used in the coordinate HFB calcu
lations!. The coordinate-space density rapidly falls to zero
the boundary, while the THO density continues with the c
rect exponential shape out to infinite distances.

It is clear that the rather small numerical discrepancy
tween the HO and THO neutron rms radii~Fig. 1! does not
reflect the seriousness of the error in neutron densities
arises when using the HO basis. It is also obvious that
servables which do not strongly depend on neutron dens
at large distances, like the total energy or proton radii,
fairly well reproduced in standard HO calculations. On t
other hand, observables that do depend on densities in
outer region, most notably pairing correlations@7#, require
the correct asymptotic behavior provided by the THO ba

Encouraged by the excellent results in spherical nuc
where a comparison with reliable coordinate-space calc
tions was possible, we next turned to deformed syste
Here, since no coordinate-space HFB results are availa
our tests were limited to a study of the convergence of res
with increasing number of HO shells.~The exact results
would be obtained in either the HO or THO expansion w
a complete space, i.e., an infinite number of shells.! When-
ever the number of HO shells used in the final HFB calcu
tion was 12 or less, we determined the basis parameters
that same number of shells,Nsh

par5Nsh. When the number of
HO shells of the final calculations exceeded 12, however,
still determined the basis parameters withNsh

par512.
In Fig. 3, we show convergence results for the grou

state of the weakly-bound deformed nucleus40Mg. The top
three panels give the results for the total energies, the pro
rms radii and the neutron rms radii, respectively. The fou
gives results for theb deformation, which is related to th
quadrupole moment̂ Q& (Q5( i 51

A 2zi
22xi

22yi
2) and the

rms radiuŝ r 2& by

b5Ap

5

^Q&

A^r 2&
. ~4.1!

The results obtained withNsh520 are indicated in the figure
by horizontal lines. Again, both bases yield very good co
vergence for the total energy and proton radius. In contr
noticeable differences between the HO and THO results
be seen for the deformation and neutron rms radius, and
persist to large values ofNsh. Although these differences ar
small in magnitude, they are caused by a very large erro
the HO neutron density distribution. This is illustrated in F
4, where we show the neutron densities calculated for
nearby 44Mg nucleus. Every point in the figure correspon
to the value of the neutron density at a given Gau
integration node. Since there are always several nodes n
sphere of the same radiusr 5Az21%2, there can be some
scatter of points, corresponding to different densities in d
ferent directions. This is especially true at small distances
large distances, the scatter is greatly reduced and the d

ls
l

ox
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STOITSOV, DOBACZEWSKI, RING, AND PITTEL PHYSICAL REVIEW C61 034311
ties exhibit to a good approximation spherical asympto
behavior, exponential in the case of the THO expansion
Gaussian in the case of the HO expansion. Note, howe
that some scatter persists in the THO results out to la
distances, suggesting that deformation effects are
present there. This is apparently reflecting the importanc
deformation of the least-bound orbitals. Clearly, t
asymptotic properties of the HO and THO neutron densi
are very different from one another, as they were in
spherical calculations~see Fig. 2!.

C. Drip-line-to-drip-line calculations in Mg

The chain of even-Z magnesium isotopes has been t
subject of numerous recent theoretical analyses. The extr
interest in this isotopic chain is motivated by recent measu
ments in 32Mg @48–50#, which show a larger-than-expecte
quadrupole collectivity. Based on the relativistic and nonr
ativistic mean-field approaches and on shell-model calc
tions ~see Ref.@51# for a review!, it is now well documented
that shape coexistence and configuration mixing occur in
N520 nucleus. Moreover, recent advances in radioact

FIG. 3. Total energiesE, proton and neutron rms radii,r p and
r n , and deformationsb obtained in the HFB1SLy4 calculations for
40Mg by using the HO and THO bases, as functions of the num
of HO shells Nsh. The horizontal lines denote the THO resu
obtained atNsh520.
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ion-beam technology allow mass measurements of e
heavier isotopes@52#, giving hope that the neutron-drip lin
can be experimentally reached in theZ512 chain@53#.

In this section, we present results of an investigation
the deformation properties of the even-even Mg isoto
from the proton-drip line to the neutron-drip line. Our resu
are complementary to those of recent Skyrme1HFB calcu-
lations@8#, in which the imaginary-time evolution method o
finding eigenstates of the mean-field Hamiltonianh ~see Sec.
IV ! was combined with a diagonalization of the HFB Ham
tonian within a relatively small set of these eigenstates.
that study, a complete set of results was given only for
SIII force and density-dependent pairing was used. Here,
present a complete set of results for the SLy4 force wit
density-independent~volume! pairing interaction. These cal
culations were carried out withNsh520 andNsh

par512 HO
shells.

In Fig. 5, we plot the total HFB energies per nucleonE/A,
the neutron chemical potentialsln , the neutron and proton
deformation parameters,bn andbp , the neutron, proton, and
total quadrupole moments,Qn , Qp , and Qt , the average
neutron and proton pairing gaps,D̃n and D̃p , Eq. ~3.9!, and
the pairing energiesEpair

n and Epair
p for the magnesium iso-

topes as functions of the mass numberA. Ground-state val-
ues are shown by full symbols connected by lines, while
isolated open symbols correspond to secondary minima
the deformation-energy curves. In the top panel of Fig. 6,
compare the results for the two-neutron separation ener
S2n ~open symbols! with those for the related quantit
22ln ~full symbols!, and in the bottom panel we show th
neutron and proton rms radii.

The lightest Mg isotope predicted by these calculations
be bound against two-proton decay is20Mg. The heaviest
bound against two-neutron decay, on the basis of havin
positive two-neutron separation energy, is40Mg. On this ba-
sis, the position of the two-neutron drip line obtained with
the HFB1SLy4 approach is identical to that obtained in t
finite-range droplet model@54#, relativistic mean field~RMF!
@55#, and HFB1SIII @8# calculations. The RMF approac

FIG. 4. Neutron densities obtained in the HFB1SLy4 calcula-
tions for the deformed ground state of44Mg by using the HO
~circles! and THO~squares! bases. Each point corresponds to o
Gauss-integration node in thez-r plane, and the results are plotte
as functions of the distance from the origin,r 5(z21r2)1/2.

r

1-10



-
-

bi
w

A
ro
to
fo
ic

e

ass

-

-

a-

all
tan-

es,
-
e at
f.
o-
e
rce.
not

from
ults
sar-
o-
tion

al
r-

und,

clei
late

B

n
e

olu
-

ere
r

QUADRUPOLE DEFORMATIONS OF NEUTRON-DRIP- . . . PHYSICAL REVIEW C 61 034311
with the NL-SH effective interaction@56# predicts the two-
neutron drip line at 42Mg, and the relativistic Hartree
Bogoliubov ~HB! approach with the NL3 effective interac
tion @57# predicts it at or beyond44Mg.

On the other hand, from Fig. 6, we see that both42Mg and
44Mg, though having negative values ofS2n , have~small!
negative values of the Fermi energy,ln . According to the
discussion of Sec. III B, these nuclei, both of which exhi
oblate shapes, are bound against neutron emission. We
return to this point later.

The most deformed nucleus of the isotope chain is24Mg
with almost the same neutron and proton deformations.
the other end of the chain, due to a large excess of neut
over protons, significant differences exist between the pro
and neutron quadrupole moments. The onset of large de
mation in 36Mg causes a decrease of the neutron chem
potentialln with respect to its value in34Mg. This gives an
additional binding of36Mg, and correspondingly an increas
and decrease of the two-neutron separation energiesS2n in

FIG. 5. Neutron Fermi energiesln , energies per particleE/A,

deformationsb, quadrupole momentsQ, pairing gapsD̃, and pair-
ing energiesEpair calculated for the Mg isotopes within the HF
1SLy4 method in the THO basis (Nsh520), as functions of the
mass numberA. Apart from the upper panel, circles, squares, a
diamonds pertain to proton, neutron, and total results, respectiv
Closed symbols connected with lines denote values for the abs
minima in the deformation-energy curve~axial shapes are as
sumed!, while open symbols pertain to secondary minima.
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36Mg and 38Mg, respectively~see Fig. 6!. In experiment
@52#, these changes are less pronounced and arrive two m
units earlier, giving rise to a small and large decrease ofS2n
in 34Mg and 36Mg, respectively.

Concerning the ground-state deformation properties~full
symbols connected by lines in Fig. 5!, the proton drip-line
nucleus 20Mg displays a well defined spherical minimum
(N58 is a magic number!. Then, there is a competition be
tween prolate (22,24Mg and 36,38,40Mg) and oblate (26,30Mg)
deformations, while28,32Mg are spherical. The last two lo
calized isotopes~with negative Fermi energies!, 42,44Mg, dis-
play oblate deformations. Secondary minima of the deform
tion energy curves~isolated symbols! exist for isotopes
22,24,26Mg and 36,38,40Mg.

Nonzero proton pairing correlations are present at
spherical or oblate minima. However, at these shapes,
gible neutron pairing exist only in22,24Mg and 34,36,38Mg.
Moreover, for all nuclei with prolate ground-state shap
i.e., in 22,24Mg and 36,38,40Mg, both proton and neutron cor
relations are small or vanish altogether. These results ar
variance with the Gogny-pairing HB calculations of Re
@57#, where nonzero pairing exists in all the heavy Mg is
topes. Also, in Ref.@8#, stronger pairing correlations wer
obtained for the zero-range density-dependent pairing fo
However, in that study, the strength parameters were
adjusted to odd-even mass staggering but rather taken
high-spin calculations of superdeformed bands. Our res
suggest that the pure HFB-pairing approach is not neces
ily the best way to treat pairing correlations in the Mg is
topes, and approximate or exact particle-number projec
should probably be employed.

At this point, it is worth expanding a bit on the unusu
results for 42,44Mg. In these two isotopes, the solutions co
responding to prolate shapes are unstable (ln.0), while
those corresponding to oblate shapes continue to be bo
i.e., they haveln520.253 and20.092 MeV forA542 and
44, respectively. The bound ground states of these two nu
are thus oblate, whereas in the lighter isotopes the ob

d
ly.
te

FIG. 6. Upper panel: two-neutron separation energiesS2n ~open
symbols! compared to22ln ~closed symbols!, and lower panel:
proton and neutron rms radii. Calculations for the Mg isotopes w
performed within the HFB1SLy4 method in the THO basis fo
Nsh520.
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solutions corresponded to secondary minima. This is the
gin of the sudden change in two-neutron separation energ
which become negative in42Mg and 44Mg (S2n522.237
and 21.975 MeV, respectively!. In the case of42Mg, how-
ever, two-neutron emission should be hindered by the
that the parent and daughter nuclei have dramatically dif
ent shapes, and, by this token,42Mg may still have a sub-
stantial half-life even though it is beyond the two-neutr
drip line.

The bottom panel of Fig. 6 shows the neutron and pro
rms radii,r n andr p . At the proton drip line, the neutron rm
radii are smaller than the proton rms radii, and then th
increase with increasing neutron number. Arou
24,26Mg, r n becomes almost equal tor p , and for nuclei
close to the neutron drip line,r n takes significantly larger
values thanr p . The increase ofr n is fairly linear, similarly
as in Refs.@8,56,57#, and gives no hint of an existence o
unusually larger neutron distributions at the neutron drip l
~see also the discussion in Refs.@58,59#!.

D. Neutron-drip-line calculations

Having at our disposal a viable method for performi
deformed HFB calculations up to the drip lines, we ha
performed a systematic study of the equilibrium properties
the neutron-rich nuclei in all even-Z isotopic chains with
proton numbers fromZ52 –18. In this way, we have ex
plored the neighborhood of the neutron-drip line for all ne
tron numbers fromN56 –40.

We first performed spherical HFB1SLy4 calculations in
coordinate space, using the methods and the code devel
in Ref. @6#. We used volume delta pairing, with a couplin
constantV052218.5 MeV fm3, adjusted as in Ref.@43#.
This value is very close to the one used in our deform
THO code~see Sec. IV A!, suggesting that the effective pai
ing phase spaces used in the two approaches are very si
to one another.

From the spherical calculations, we obtained that
heaviest even isotopes, for which the Fermi energies
negative are 8He, 12Be, 22C, 28O, 30Ne, 44Mg, 46Si,
50S, 58Ar. We used these spherical results as a starting p
for our deformed calculations.

Next, within the deformed THO formalism, we found th
the heaviest isotopes with negative Fermi energies
8He, 12Be, 22C, 28O, 36Ne, 44Mg, 46Si, 52S, 58Ar. The
results obtained for these nuclei are summarized in Fig
By comparing the deformed results to the spherical resu
we see that the position of the last bound nucleus is in
enced by deformation only in36Ne and52S. Volume pairing
correlations are very weak in these nuclei; indeed, in all
the one case of36Ne, neutron pairing vanishes in the la
bound nucleus of an isotopic chain. This suggests the ne
sity of using a surface pairing force here. Such a conclus
is supported by the fact that HB calculations@57#, carried out
with a Gogny pairing force, give sizable neutron pairing c
relations in this region.~Note that surface pairing and Gogn
pairing produce quite similar distributions@7# over the
single-particle states.!
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Since neutron pairing vanishes in12Be, our result is iden-
tical to that of Ref.@30#, namely that the SLy4 force does no
produce 14Be as bound, in disagreement with experime
@60#. Similarly, neither pairing nor deformation effects a
present in the calculated28O nucleus, and hence this nucleu
remains bound~see discussion in Sec. IV B!. On the other
hand, the SLy4 force correctly describes8He @60# and 22C as
the last bound nuclei of their respective isotope chains@61#.

A remarkable result obtained in our calculations is th
the last bound nuclei for all chains of isotopes heavier th
oxygen have oblate ground-state shapes. In all of them,
mechanism for this effect is identical to that discussed for
Mg isotopes~see Sec. IV C!, namely that the neutron Ferm
energyln , as a function of the neutron numberN, becomes
positive for smaller values ofN in the prolate ground state
than it does in the oblate secondary minima. Therefore
the heaviest bound isotopes, the prolate states are unbo
whereas the oblate states continue to be bound and bec
the ground-state configurations.

V. CONCLUSIONS

In this paper, we have applied a local-scaling point tra
formation to the deformed three-dimensional Cartesian h

FIG. 7. Neutron Fermi energiesln , energies per particleE/A,

pairing gapsD̃, pairing energiesE, deformationsb, quadrupole mo-
mentsQ, and rms radiir calculated for the neutron-drip-line nucle
~indicated in the lower panel! within the HFB1SLy4 method in the
THO basis, as functions of the mass numberA. Circles, squares,
and diamonds pertain to proton, neutron, and total results, res
tively.
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monic oscillator wave functions so as to allow for a mod
cation of their unphysical asymptotic properties. In this w
we have obtained single-particle bases that remain infin
discrete, and complete, but for which the wave functio
have the asymptotic properties that are required by the
nonical bases of Hartree-Fock-Bogoliubov theory. The
bases preserve all the simplicity of the original harmon
oscillator wave functions, and at the same time are amen
to very efficient numerical methods, such as Gau
integration quadratures. They also allow for very simple c
culations of local densities, which are at the core of se
consistent methods based on a Skyrme effective interac

The axial transformed harmonic oscillator basis has b
implemented to achieve a fast and reliable method for s
ing the HFB equations with the correct asymptotic con
tions. We have discussed several practical aspects of
implementation, like the treatment of pairing correlation
and tested the convergence and accuracy.

The formalism was developed for a general deform
transformed harmonic oscillator basis. Practical applicat
within the configurational HFB formalism suggested a si
plification to a purely spherical basis, however, as had b
used in earlier calculations. We have nevertheless prese
the general formalism because of its possible use in o
applications.

As a first application of this new methodology, we ha
carried out HFB calculations using the SLy4 Skyrme for
and a density-independent~volume! pairing force. The cal-
culations were performed for the chain of even-Z Mg iso-
o
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e
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-
b
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topes and for the light even-Z nuclei located near the two
neutron drip line. We have presented results for bind
energies, quadrupole moments, and for the pairing prope
of these nuclei.

Perhaps the most interesting outcome of our calculati
is that nuclei that are formally beyond the two-neutron d
line, i.e., those with negative two-neutron separation en
gies, may have tangible half lives, provided~i! that they have
localized ground states~negative Fermi energies!, and ~ii !
their ground-state configurations are significantly differe
than those of the~daughter! nuclei with two less neutrons
According to our calculations, precisely such a situation
curs in the chains of isotopes withZ510, 12, 14, 16 and 18
In these chains, the prolate configuration becomes unbo
before ~i.e., for a smaller neutron number! than the oblate
configuration. That change in the ground state structure le
to negative two-neutron separation energies and thus to
exotic conditions given above.
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