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We introduce a local-scaling point transformation to allow for modifying the asymptotic properties of the
deformed three-dimensional Cartesian harmonic oscillator wave functions. The resulting single-particle bases
are very well suited for solving the Hartree-Fock-Bogoliubov equations for deformed drip-line nuclei. We then
present results of self-consistent calculations performed for the Mg isotopes and for light nuclei located near
the two-neutron drip line. The results suggest that for all even-even element® with—18 the most weakly
bound nucleus has an oblate ground-state shape.

PACS numbes): 21.60.Jz, 21.10.Dr, 21.10.Ky

[. INTRODUCTION functions. In many applications, an expansion of the HFB
wave function in a large harmonic oscillatddO) basis of
Thanks to recent advances in radioactive ion beam tectspherical or axial symmetry provides a satisfactory level of
nology, we are now in the process of exploring the veryaccuracy. For nuclei at the drip lines, however, expansion in
limits of nuclear binding, namely those regions of the peri-an oscillator basis converges much too slowly to describe the
odic chart in the neighborhood of the particle drip linesphysics of continuum stat¢g], which play a critical role in
[1-4]. Several new structure features have already been urthe description of weakly bound systems. Oscillator expan-
covered in these studies, including the neutron halo, and ottsions produce wave functions that decrease too steeply in the
ers have been predicted. asymptotic region at large distances from the center of the
In contrast to stable nuclei within or near the valley of nucleus. As a result, the calculated densities, especially in
beta stability, a proper theoretical description of weakly-the pairing channel, are too small in the outer region and do
bound systems requires a very careful treatment of thaot reflect correctly the pairing correlations of such nuclei.
asymptotic part of the nucleonic density. This is particularly In two recent work$10,11], a new transformed harmonic
true in the description of pairing correlations near the neu-oscillator(THO) basis, based on a unitary transformation of
tron drip line, for which the correct asymptotic properties ofthe spherical HO basis, was discussed. This new basis de-
guasiparticle wave functions and of one-particle and pairingives from the standard oscillator basis by a local-scaling
densities is essential. In the framework of the mean-fielcpoint coordinate transformatiofil2—14, with the precise
approach, the best way to achieve such a description is to userm dictated by the desired asymptotic behavior of the den-
the Hartree-Fock-BogoliuboyHFB) theory in coordinate- sities. The transformation preserves many useful properties
space representatigf—7). of the HO wave functions. Using the new basis, characteris-
Such an approach presents serious difficulties, howevetics of weakly bound orbitals for a square-well potential were
when applied to deformed nuclei. On the one hand, formanalyzed and the ground-state properties of some spherical
finite-range interactions the technical and numerical probnuclei were calculated in the framework of the energy den-
lems arising when a two-dimensional mesh of spatial pointsity functional approachll]. It was demonstrated ifll0]
is used are so involved that reliable self-consistent calculathat configurational calculations using the THO basis present
tions in coordinate space should not be expected soon. Ca promising alternative to algorithms that are being devel-
the other hand, for zero-range interactions existing apeped for coordinate-space solution of the HFB equations.
proacheg8,9] are able to include only a fairly limited pair- In the present work, we develop the THO basis for use in
ing phase space. The main complication in solving the HFBHFB equations of axially deformed weakly bound nuclei.
equations in coordinate space is that the HFB spectrum i®ur main goal here is to present and test these new theoret-
unbounded from below, so that methods based on a variaeal methods. As specific applications, we repeat previous
tional search for eigenstates cannot be easily implementedalculations performed for the chain of Mg isotop8$ but
Because of this and other difficulties, one has to look forfor different effective interactions, and then report a prelimi-
alternative solutions. nary study of light, neutron-rich nuclei near the drip line.
In principle, such an alternative solution is well known in Extensive calculations throughout the mass table, together
the form of the configurational representation. In this ap-with a more detailed analysis of the pairing interaction, will
proach, the system of partial differential HFB equations arebe presented in a future publication.
solved by expanding the nucleon quasiparticle wave func- The structure of the paper is the following. The THO
tions in an appropriate complete set of single-particle wavéasis for deformed nuclei is introduced in Sec. Il. In Sec. lll
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we present an outline of the HFB theory and discuss several Summarizing, the LST2.1) generates from a given com-
features of particular relevance to our investigation. Resultplete set of orthonormal single-particle wave functions an-
of calculations are given in Sec. IV, and conclusions areother orthonormal and complete set of single-particle wave

presented in Sec. V. functions (2.4) depending on three almost-arbitrary scalar
LST functionsf,(r). The freedom in the choice df(r)
Il. TRANSFORMED HARMONIC OSCILLATOR BASIS provides great flexibility in the new setj,(r)}, and this

. . . ] opens up the possibility of improving on undesired proper-
In this section, we introduce a generalized class of localties of the initial set. This is the motivation for the present
scaling point transformations, which in principle act differ- study in which we use the LST to modify the incorrect

ently in the three Cartesian directions. Next, we apply thisasymptotic properties of deformed HO wave functions.
transformation to the three-dimensional Cartesian HO wave

functions and derive the corresponding properties of the lo-

. B. Transformed harmonic oscillator wave functions
cal densities.

The anisotropic three-dimensional HO potential with

A. Local-scaling point transformations three different oscillator lengths

Suppose{¢,(r)} represents a complete set of orthonor- 1 [

mal single-particle wave functions depending on the spatial L= b_k: m_wk (2.9

coordinater. (To simplify the presentation, we suppress the

spin and isospin labels heyeThen, one can introduce a has the form

local-scaling point transformatio.ST) of the three dimen-

sional vector space, which is a generalization of the analo- 2 [ x?> y? 72

gous spherically-symmetric LS[M2—14, namely U=z et (2.6)

X y z
X—>X’EX'(X,y,Z)=§fX(I‘), Its eigenstates, the separable HO single-particle wave
r functions

yﬂy,Ey,(X,y,Z): ?’—/fy(r), (21) (Pa(r)_ QDHX(X)@ny(y)(PnZ(Z)’ (27)

have a Gaussian asymptotic behavior at large distances,

z
z—>z’sz’(x,y,z)=FfZ(r), 1( %2 yz 22
@, (r—o,)~ex _E |__>2(+|__§+|__§ . (2.8

wherer = X%+ y?+ 22,
The LST functiond(r), k=X, y, or z, should have math- Applying the LST(2.1) to these wave functions leads to

ematical properties ensuring that Eg.1) is a valid invert-  the so-called THO single-particle wave functioi2s4),

ible transformation of the three-dimensional space. In par-

ticular, f(r) should be monotonic functions ofsuch that

wa<r>=Dl’2<an(’r—(fx<r))<pny(§fy<r>)<pnz(§fz<r>),

f(0)=0 and f, ()=, 2.2 (2.9
and should lead to a nonvanishing Jacobian of the (BT,  whose asymptotic behavior is
ie.,
, , , 'S S A
O ax',y',z") X fofyf ot y? i d f+ 2268 f) ‘0 o(r—oe)~exg — > L2r? + L§r2 + 2 |
d(X,y,2) r4 03 (2.10

This suggests that we choose the LST functions to satisfy the
where primes denote derivatives with respect.to asymptotic conditions
When we apply the LST2.1) to the set of wave functions

¢,(r), we obtain another set of single-particle wave func-

r forsmall r,
tions fr(r)=

Lyv2kr forlarge r.
X
—f

—_nl2 y z With such a choice, the THO wave functions at sniadire
Ya(xy.2)=D Feo| 111N, P10 | (24 identical to the HO wave functiorjsiote that with Eq(2.11)
one obtaind =1 at smallr], while at larger they have the
Due to the factoD*? entering Eq.(2.4), the LST of wave  correct exponential and spherical asymptotic behavior,
functions is unitary and the new wave functiong(r) are
automatically orthonormal, i.e{i,|¥g) =(@.l¢p) = Sup Y (r—o)~e <, (2.12

(2.11
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C. Parametrization of the LST functions do=2.Ac?(1215y+ 2790y* + 2415y°+ 728y* + (486

In principle, we could use the flexibility of having three 2 3 4
different LST functionsf,(r) and three different oscillator 6480y +14310y"+12180y"+ 3640y )ln ),
lengthsL, of the original deformed HO basis to tailor the
LST transformation to the shape of the deformed nucleus dl:—Ac(243+ 2430y+5211y%+ 4380y°+ 1300y%),
under investigation. However, for large HO bages the
present study we include HO states up to 20 major shells
the dependence of the total energy on the basis deformatlon
is very weak, so that minimization of the total energy with

— 4 AC?(243+ 3240y + 7155y°+ 6090y° + 1820y%),

where y=ac? and A *=81(1+y)3. In this way, the

respect to the three oscillator lengthg is ill-conditioned
(see discussion and examples given in R&5]). Therefore,

in this study, we use a spherical HO basis depending on a

single common oscillator length,,

(2.13

With such a choice, it is natural to set the three LST func-

tions f (r) equal to one another,
fx(r)=fy(r)=f,(r)=f(r). (2.14

This allows us to use exactly the same LST functi¢n) as
in the previous studiefl0,11]. Under condition2.14), the
Jacobian(2.3) assumes the simpler form

' x5! ' 2
0y ) PO 015

D= =
(x,y,2) r

The parametrization of the LST functiof(r) used in
Refs.[10,11 was of the form

f(r)= L0F< )
0

with the dimensionless universal functidhof the dimen-
sionless variabl&R defined as

(2.19

F(R)
R(1+aR2)1’3 for R<c,
\/ +d0+d1R+d,_InR for R>c.
(2.1

Two different formulas can be obtained for the function
F(R), one forR=<c and one forkR>c. Imposing the con-

dition that the function should be continuous at thatching

radius c and that it should have continuous first, second,
third, and fourth derivatives leads to the following require-

ments for the constants ,, d_,, dy, d4, andd, :

1
d_,= §,4<:4( 243+ 4050y + 8910y%+ 7602y%+ 2275)%),
(2.18

d_;=—8Ac3(81+ 1242y+ 2745)%+ 2340y + 700y%),

LST function f(r) is guaranteed to be very smooth, while
st|II depending on only three parametels, a, andc.
From Eq.(2.17), we see that asymptotically the function

F(R—»)~+d;R. Thus, the LST function obeys conditions
(2.11) provided that the parameters satisfy
_ G 2.1
K= 2_L0' (2.19

Two different approaches can be used in calculations. One
possibility is to minimize the total energy with respecttg,

a, andc, obtaining as output the energetically optimal value
of the decay constant. Alternatively, for a given choice of

x, we could eliminate one of the three parameters and mini-
mize the total energy with respect to the other two. The
actual procedure used in our calculations is described in Sec.
IVA.

D. Axially deformed harmonic oscillator

In the present study, we restrict our HFB analysis to
shapes having axial symmetry. For this purpose, we use HO
wave functions in cylindrical coordinates, p, and ¢,

X=p COS,

y=psine, (2.20

=17,

which allows us to separate the HFB equations into blocks
with good projection() of the angular momentum on the
symmetry axis[Note that the use of cylindrical coordinates
is independent of working with equal oscillator lengths
(2.13.] Since the use of a cylindrical HO basis is by now a
standard techniquésee, e.g., Ref.16]), we give here only
the information pertaining to constructing the cylindrical
THO states.

The cylindrical HO basis wave functions are given explic-

itly by
m eim|(p
(Pa(zvp! QD,S,t) - (Pnz(z)(tpnp(p) \/ﬂXmS(S)th(t)i
(2.21)

where the spirs and isospirt degrees of freedom are shown
explicitly, n, andn, are the number of nodes alozgand p
directions, respectively, while, andmg are the components
of the orbital angular momentum and the spin along the sym-
metry axis. The only conserved quantum numbers in this
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case are the total angular momentum projectidn m, spin and isospin independent potential functinThis ma-

+mg and the parityr=(—)"z"™ . trix element can be expressed in the axial HO representation
In the axially deformed case, the general L&T1) acts as

only on the cylindrical coordinates and p and takes the

form (¢alV]pa)= f dz fo pdpV(Z,p)6% (267 (),

p—>p’Ep’(p,Z)=§fp(r), (2.27)

and in the THO representation as

z
—2'=7"(p,z)==1,r), 2.2 o o
z—27'=7'(p,2) r (r) (2.22 <‘/’“|V|w“>zj,wdzjo pde(z,p)D(z,p)<pﬁz(;fz(r))

with the corresponding Jacobian given by

p
X2 — . :
oo MKy PPt 2 - n, (rfp<r)> (2.28

o dxy.z) re B

The way to calculate the second matrix elem@n8) is by
first transforming to thep’ andz’ variables(2.22). This ab-
sorbs the JacobiabD(z,p) and leads to an integral over HO
wave functions that is almost identical to Eg.27), namely

Finally, the axial THO wave functions are

wa(zapa(Pysrt):Dl/z(PnZ(FfZ(r))@:;(?fp(r)) - -
. <¢/a|V|¢/fa>=f dz’f p'dp'V(z(Z',p"),p(Z".p"))
K (2.24) o
== Xm(S) Xm,(1). :
V2 ® ! X (pﬁz(z')gonmllz(p’). (2.29

The assumption of a single oscillator lengsee Sec. 11 ¢

that we make in our calculations translates in the axial case 1€ only complication in numerically carrying out the
to integral (2.29 involves determining the inverse LST trans-

formationsz=2z(z’,p’) andp=p(z’,p’) to be inserted into
the known functionV(z,p). But this only has to be done
Lo=L=Lo=1-= Voo (2259  once, and, moreover, if Gauss quadratures are used to evalu-
0 ate the integrals, the inverse transformation only has to be
known at a finite number of Gauss-quadrature nodes.
Generalization of the above approach to include differen-
tial operators, as will often arise in THO basis configura-
tional calculations, is fairly straightforward. Such integrals
can be done by first transforming derivativé®z and o/ dp
into derivativesd/dz' and d/dp’, and then performing the
At first glance, the THO wave functiori®.9) and(2.24  integrations in the variableg’ and p’ over ordinary HO
look much more complicated than their HO counterpartsyave functionssee the next section
(2.7 and (2.23). In particular, in contrast to the HO wave
functions, the THO wave functions are not separable either E. THO and local densities
in the x, y, andz Cartesian coordinates or in theandz axial ) ] ]
coordinates. Due to the presence of the Jacobian factor and N calculations using the Skyrme force, or in any other
the r-dependence of the LST functions, the Iocal-scalingcam“'_at'oﬂ that relies on the local density approximation, we
transformation mixes the, y, and z coordinates and the ~ ¢&n simplify the THO methodology of Sec. Il E even further.
andz coordinates. Nevertheless, as we now proceed to shoW)deed, suppose the mean-field calculation in question relies
the THO wave functions are readily tractable in any configu-On knowing the density matrip,, in the THO basis. Then
rational self-consistent calculation. Indeed, the modificationgh€ spatial nonlocal density can be expressed as
required to transform a code from the HO to the THO basis
are minor. _ _ _ p(11.1) =2 Yolr)paa¥l(ra), (.30
One of the properties of the HO basis that makes it so aa’
useful is the high accuracy that can be achieved when calcu-

lating matrix elements using Gauss-Hermite and/or Gaus@nd the corresponding standard local densfti€} as
Laguerre integration formulagl7]. This feature has been

f(r)=f(r)=1f(r), (2.26
and the Jacobiaf®.23 reduces to expressid.15.

E. THO and Gauss integration formulas

exploited frequently in various mean-field nuclear structure p(=p(r.n), (2.313
calculations(see, e.g., Refd.16,18,19). To illustrate how

the same methods can be applied in the THO basis, we focus r) = vOV@,(r r 231
on the specific example of a diagonal matrix element of a (") k:x,y,z[ CViICpL = (2310
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for
JKN=o [<V<1>—V<2>>p<r1 2)]r-r, (2319
argy rfl —f
m_7m_ ‘m m”Im
where D= g T Omit 3 Fmlks (2.37)
V(ki)=(9((:_) , (2.32 we obtain that
1k p(r(r'))=Dp’(r"), (2.383

fori=1 or 2, andk=x, y, or z. To simplify the notation in

Eq. (2.30, we have neglected the spin and isospin degrees of r(r')=D> DXD™r (1)
freedom and, consequently, have shown only the spin- 3 m
independent densitie€2.31). Analogous formulas for the

spin-dependent densities T, and J,, [19] are straightfor- + E D [V,DIDTV/! p'(r')]
ward. km m
A direct calculation of the derivatives in Eq.31) [after 1
inserting the THO wave function.9) or (2.24 into the + D YVD12o(r' 238
nonlocal density matrix2.30] is prohibitively difficult. For- 4 [LVEFp(r), (2.380

tunately, nothing of the sort is necessary. It is enough to note
that the densitie$2.31) serve almost uniquely to define the
central, spin-orbit, and effective-mass terms of the mean-
field Hamiltonian (see, e.g., Refd.19,15)), and that these
terms are in turn used to calculate matrix elements through To use formulag2.389—(2.389, we must calculate the
integrals of the typg2.29. Therefore, the densitie®.3)  Jacobi matriXDy' and its determinar® at pointsr(r’); how-
have to be effectively known only at selected pointsever, this need be done only once for all iterations. On the
x', y', z' (the Gauss-quadrature noglesf the inverse other hand, no inverse LST needs to be performed for the

jk(r<r’>)=D§ DRim(r"). (2.389

LST. densities, because expressidRs88 give directly the values
Towards this end, we insert the THO wave functions intoof the local densities at the inverse LST points, as required in
the nonlocal density2.30), which gives matrix-element integrals of the tyg@.29.
p(r1,12) =DM A1 )DYA1y)p’ (ry(r1),ry(ry)), (2.33 IIl. HARTREE-FOCK-BOGOLIUBOV THEORY

with Hartree-Fock-BogoliuboyHFB) theory[20] is based on
the Ritz variational principle applied to the many-fermion
Hamiltonian,

p'(ry,r3)= E Cal(r)Paar @(r2). (234
H= Etwraaﬂr E Vel gprdldl agag,
The density matrix’(r1,r5) is a standard object expressed aa' BB’ e a PR
in terms of ordinary HO wave functions, and it can be cal- (3.9

culated using methods that are employed in any code that
works in the HO basis. Likewise, the corresponding local’
densities

with trial functions in the form of a quasiparticle vacuum.
The resulting HFB equations can be written in matrix form

as
RN
v "Bl | (3.2

where E,, are the quasiparticle energies,is the chemical
1 , / otential, and the matricds=t+1I" andA are defined by the

i T Q) @)\ 1t o p ) y
()= 57 LV =Vid)p (rr) I - (2.350  matrix elements of the two-body interaction

’ ’ _ * _h*
T 1) =[VVE 0 (1 1)) ]y (2,350 AT mhten

can be calculated without any reference to the THO basis.
The only complication is that now we have to calculate the
complete kinetic energy tensor density,, (2.35b, while
finally only its trace(2.31h is needed. Inserting expression

Faa’: 2 UVaBa'B'PB' B
BB’

(2.33 into (2.3, and expressing the differential operators Aw,=52 Vaa’'pp'Kpp' 33
(2.32 as BB
pprp and kg being the density matrix and pairing tensor,
v = E DMy ()’ (2.36 respectively. HFB theory is by now a standard tool in nuclear
K Sy M structure calculations, and we refer the reader to RéN. for
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details. Below we discuss several features of the formalismeason is very simple, and it stems from the different
that are especially pertinent to the present applicationasymptotic properties of these objects. As discussed in Ref.
namely canonical states, the pairing phase space, and tho®j, the quasiparticle spectrum and wave functions are partly
quantities that dictate the stability of a nucleus with respectiiscrete and localized and partly continuous and asymptoti-

to two-neutron emission. cally oscillating, respectively. These properties are com-
pletely analogous to properties of the eigenstatds afhich
A. Canonical states are also discrete and localiz€dr negative eigenenergiesr

Canonical states are defined as the states that diagonalig@ntinuous and oscillatingfor positive eigenenergigsOn

the HFB one-body density matrjxr;,r,) of Eq.(2.30, i.e., the other hand, the properties of eigenvalues and eigenstates
of the density matrix(3.4) are very different, namely the

. 2 entire spectrum is discrete and all the wave functions are
J p(ri,r2) gi(ra)dro=vidgi(ry), (34 |ocalized. Therefore, even if formally the set of canonical
states is complete, it is extremely difficult to expand any
where, due to the Pauli principle, the canonical occupatiomscillating wave function in this basis.
numberSUi2 obey the condition &vizsl. These considerations make it clear that the optimum way
For self-consistent solutions, the canonical occupatiorof solving the HFB equations is by using the coordinate rep-
numberSUi2 are determined by the diagonal matrix elementsresentation, in which the various asymptotic properties are in
hi and A;; of the particle-hole(p-h) and particle-particle a natural way correctly fulfilled. This technique is widely
(p-p) Hamiltonians in the canonical basis via the following used when spherical symmetry is imposed; then one only has
BCS-like equatiorf20]: to solve systems of one-dimensional differential equations,
which is an easy task. On the other hand, the case of axial
, 1 hj=x symmetry requires solving two-dimensional equations, and
ViTo T 2E; ' (3.9 that of triaxial shapes requires working with a three-
dimensional problem. None of these two latter cases has up
where to now been effectively solved in coordinate space, although
work on the axial solutions is in progregl].
Ei=(hi—\)2+ A (3.6 Therefore, without having access to coordinate-
representation solutions, we are obliged to use methods
The chemical potentiak is determined from the particle based on a configurational expansion. In this respect, one
number condition may clearly distinguish two classes of finite single-particle
bases, each of which aims at a reasonable solution of the
N=E 02:2 N (3.7) HFB equationg3.2). One uses a truncated basis composed
SR of eigenstates df [22,8,9. This basis is partly composed of
discrete localized states and partly of discretized continuum
whereN,, denote the norms of the lower HFB wave functionsand oscillating states. Technically it is very difficult to in-
of Eq.(3.2), i.e., clude many continuum states in the basis, especially when
triaxial deformations are allowed. In practice, R¢f22,8,9
NnZE Vzn_ (3.9 included states up to 'severaI.Me\'/ into_ t_he continuum. Such
a a small phase space is certainly insufficient to describe spa-
tial properties of nuclear densities at large distances, al-
In the canonical representation, the avergg®ton or neu-  though some ground-state properties, like total binding ener-
tron) pairing gapA [6] is given by the average value &f;~  gies, will be at most weakly affected.

in the correspondingproton or neutropcanonical states, The second uses a truncated infinite discrete basis. The
most common of course is the HO basis, which has been
Zzi S A2 (3.9 used in numerous HFB calculations, especially those em-

N < o ' ploying the Gogny effective interactidsee, e.g., Ref$23—

26]), and in Hartree-Bogoliubov calculations based on a rela-
where N is the number of nucleons of that tyfeee Eq. tivistic Lagrangian(see, e.g., Ref$27,28). Because it uses
(3.7]. a basis with a similar structure to the canonical bésinite

Whenever infinite complete single-particle bases are usednd discretg this approach can be viewed as aiming at the
in configurational calculations, one may freely expand thebest possible approximation to the canonical states and not
upper and lower HFB wave functions of E®.2) (the qua- the quasiparticle states. In this sense, the amplitijeand
siparticle wave functionsas well as the standard eigenstatesV,, that appear in Eq(3.2) should be considered more as
of the p-h Hamiltoniarh, in the canonical basis. These ex- expansion coefficients of quasiparticle states in a basis simi-
pansions are often extremely slowly converging, howeverlar to the canonical basis than as quasiparticle wave func-
and any truncation of the basis typically induces large errorstions themselves.

Therefore, in practice, when working with finite bases, one Our approach, which we discuss in greater detail below,
should not expand quasiparticle wave functions and thdelongs to the second class. The THO basis defined and de-
single-particle eigenstates of in the canonical basis. The scribed in Sec. Il is a model that aims at an optimal descrip-
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tion of the canonical states. Therefore, in the following we 1 e.—\
adapt properties of the THO basis, and in particular the value Nn=§— ;E , (3.12b
of the decay constant (2.12), to the asymptotic properties n
of canonical states. In fact, the unique decay constant of a[%r equivalently
THO basis states is exactly the desired property of canonica
states. As discussed in R¢T], the asymptotic properties of e,—\=(1-2N,)E (3.133
the most important canonical statébose having average " e
energies close to the Fermi energye governed by a com- ~ _ Nz NS
mon unique decay constant, An=2EnVNn(1=Ny). (3.139
Then, in the next iteration, we readjust the proton and neu-
_ [2M(Emin—\) tron chemical potentials to obtain the correct values of the
K= 22 ' (3.10 proton and neutron particle numbé8&7), where agailN,, is

calculated for the equivalent spectrum, E§.12h. Due to

where E.,, is the lowest quasiparticle enerdy,. This the similarity between the equivalent spectr@mnand the
should be contrasted with decay constants associated witlingle-particle energies, we are taking into account only
the eigenstates df, which are all different and depend on the those quasiparticle states for which

single-particle eigenenergies. o
€n=C€max: (3.149
B. The cutoff procedure _
) . _ _ o . Where e,,;,>0 is a parameter defining the amount of the
HFB calculations in configurational representation invari- sitive-energy phase space taken into account. At the same

ably require a truncation of the single-particle basis and g&me  since all holelike quasiparticle statdé,<1/2, have
truncation in the number of quasiparticle states. The latter is

. - . . tive values o, (3.133, condition (3.14 quarantees
usually realized by defining a cutoff quasiparticle energynega nos .
. . . . ~that they are all taken into account. In this way, we have a
Emaxand then including quasipartice states only up to this lobal cutoff prescription independent &7, which fulfills

value. When the finite-range Gogny force is used both in th he requirement of taking into account the positive-energy

p-p and p-h channels, the cutoff energy,, has numerical S =
significance only. In contrast, HFB calculations based Orphase space as vyell as all quasiparticle states up to the high
est holelike quasiparticle energy.

Skyrme forces in the p-h and p-p channels, as well as any

other calculations based on a zero-range force in the p-p . . ] .
channel C. Two-neutron separation energies and Fermi energies

A particular thrust of our analysis will be to identify the
location of the two-neutron drip line. The self-consistent
E|FB variational procedure produces two quantities that pro-
of the coupling constant,, they give divergent energies vid.e information of reIeyance. One i§ the two-neutron sepa-
with increasinge, ., (see the discussion in R&T]). ration energy,S,,, defined as the difference bet_ween the

The choice of an appropriate cutoff procedure has beeF”:B energy for theN—2 andN neutron system(a/wth the
discussed in the case of coordinate-space HFB calculatior?ér_pﬁ proton numbgand the_ other is the Fe_rdml ‘%Pelzr%ynl;, .
for spherical nucle[6]. It was demonstrated there that one f € two-nerl:tron separlatlon energy %r_ow es EO ah n-
must sum up contributions from all states close in quasipar—orma}tlon on the totad) value corresponding tq a hypotheti-
ticle energy to the bound particle states to obtain correcf:al simultaneous _transfer of two neutrons into We-2 .
density matrices in the HFB method. Since the bound parground state, leading to _the 9“)”’?0' state .Of the nuclgus with
ticle states are associated with quasiparticle energies Smalllélrneutrons. The value includes !nformanon on a!l Q|ffer- .
than the absolute valub of the depth of the effective po- ences in the ground—s@ate properties of both nucle_|, like pair-
tential well, one had to take the cutoff energy,,, compa- Ing, deformatlon, conflgurgtlon, etc. Whenever tQiwalue :
rable toD. becomes negative, the window for the spontaneous and si-

In the case of deformed HFB calculations, and especialh?]nulitaneoqsh’\?mlssmn O.f :,WO nﬁut[;ons gpins up, and the
when performing configurational HFB calculations, it is dif- ucleus withN neutrons s formally beyond the two-neutron

ficult to look for the depth of the effective potential well in d”El)_rl]'ne# . h her hand. ai “ocal” i

eachQ)™ subspace. Thus, an alternative criterion with respec} ?. ermi t(?‘nerg[y,t)?? t ?tcr:t €r hand, g:ves ?ca -
to the above cutoff procedure used in spherical calculationsrmation on the stability of Ihe given nucieus at a given
is needed. For this purpose, we have adopted the followin airing intensity, deformation, and configuration. Within the

: . . ~ HFB theory, the sign of the Fermi energy dictates the local-
P J?rﬁigu\sveﬁsheg 'SR/F;“(;K( e?nic():[aﬁ])b (;Atfetﬁtri ;La\(fvr;'tf;?ﬁ;{ epgg ization properties of the HFB wave function; it is localized if

. iy — _ My<0 and unlocalized(i.e., behaves asymptotically as a
auxiliary spectrume,, and pairing gap4,, by using for each plane wavgif \,>0. Thus, within the HFB approach, nu-
guasiparticle state the BCS-like formulas,

clei with A,>0 spontaneously emit neutrons, while those
— Y with A ,<0 do not emit neutrons, irrespective of the avail-
En=V(en—N)+Af, (3.123  aple Q values for the real emission. As such, we must take

Vo(r,r )=Vod(r—r’) (3.11)

requirea finite space of states. This is because, for any valu
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into account all solutions with ,<<0 in discussing our self- equal to the HFB decay constai3t10. In this way, we only
consistent HFB results. have two variational parameters in our calculatidng,and

We will indeed see examples in Sec. IV in which the c. The minimizations were carried out independently for
nucleus has a negative two-neutron separation energy, so theédch nucleus. When describing each specific application, we
itis formally beyond the two-neutron drip line, but neverthe- il indicate the number of shells included both in the mini-
less is localized and does not spontaneously spill off neupmization that determines the LST parametex§) and in
trons. the final calculationsNg).

All Gauss integrations were performed with 22 nodes in
the p direction and 24 nodes in thedirection (due to the

reflection symmetry assumed with respect to xhe plane,

In this section, we present the results of several sets oy 12 nodes foz>0 were effectively needéd
HFB calculations performed in the axial-deformed THO ba-

sis. All the calculations were carried out using the Skyrme
interaction SLy4{29], which has recently been adjusted to
the properties of stable nuclei, neutron-rich nuclei and neu- As the first test of the method, we considered doubly-
tron matter. This force has a proven record in deformedmagic nuclei. Such nuclei are known to be spherical and thus
mean-field calculationg30—32,8,33—3p including calcula- amenable to reliable calculation using the coordinate-space
tions of rotational properties in nuclg87—41. At the same HFB code[6]. By studying the extent to which our code is
time, it reproduces the masses of spherical nuclei with a@ble to reproduce the coordinate-space resuiferred to in
accuracy similar to several other Skyrme forces. subsequent discussion azac}, we can assess the method.
Below we review our choice of the various parameterstWe should note here that HFB in fact reduces to HF in
that define our calculations and present several tests of tH&oubly magic nuclei, since all pairing correlations vanish.
THO approach. Then we present results obtained for the Mg These calculations were carried out both for nuclei along
isotopes and for light nuclei at the two-neutron drip line. Athe beta-stability line and for the very neutron-rich nucleus
more extensive set of calculations will be presented in a fu2%0. Some discussion of this latter nucleus is in order here.
ture study, where we shall also explore in detail the influenceé O is known experimentally to be unboufd4,45, but is
of the type of pairing force on the properties of drip-line predicted to be bound in most mean-field calculatipts).

IV. RESULTS

B. Tests of the method

nuclei. Due to rapid changes of the single-particle energies with
neutron number, shell-model calculatiop7] are able to
A. Parameters and numerical details of the calculation explain the sudden decrease of separation energies that oc-

_ curs in the chain of oxygen isotopes and rendé@and 20
~Inall of the calculations reported here, we use a contacinnound. This effect seems to require modifications to the
interaction(3.11) in the p-p channel, which leads to volume effective interactions currently in use in mean-field studies of
pairing correlationg7]. Following the discussion of Sec. |ight nyclei, Nevertheless, it is common to U&© as a test-
B, the pairing phase space has been defined by a cutoffy ground of mean-field calculations near the neutron drip
energy[see Eq(3.14] of en,,=30 MeV. This constitutes a line, because according to the standard magic-number se-
very safe limit, for which all convergence properties are wellquence it is doubly magic and because it is loc#bedypical
satisfied (see the discussion in Reff7,42]). Within this  mean-field calculationsjust before the two-neutron drip
phase space, the pairing strength[see Eq(3.11)] has been line. This is the philosphy underlying our inclusion &O.
adjusted in a manner analogous to the prescription used iFor comparison, the configurational calculations were per-
Ref. [43], namely so that the average neutron pairing gagormed both in the HO and THO bases. To assess the con-
(3.9 for 2°Sn equals the experimental value d,  vergence of the results in the two cases, we varied the num-
=1.245 MeV. The resulting value ¥,=—206 MeV fm?.  per of HO major shells included, consideriNg,=8, 12, 16,

As demonstrated in the Appendix of R€T], changes in the and 20. For a given number of the major shells, we mini-
cutoff parametere ., leading to a renormalization of the mized the total HF energies with respect to the basis param-
pairing strengthV,, can be safely disregarded when com-eéters,L, for the HO basis, antl, andc for the THO basis,
pared to all other uncertainties in the methods used to exso hereN&'=Ng,. We also tested our HO axial-basis results
trapolate to unknown nuclei. obtained at any givenNg, with those available from
Although our axially deformed HFBTHO code is able Cartesian-basis calculatiofi$5] and the results agreed per-
to work with arbitrary axial oscillator lengths, andL,, we  fectly. Lastly, for the THO basis, we compared with the cal-
have used in these calculations a spherical basis defined bycalations of Ref[11], where spherical symmetry was im-
single common oscillator length, (2.25 (see Sec. IIC posed, and obtained identical results.
When optimizing the THO basis parametérs a, andc (to As expected, for nuclei within the valley of beta stability
minimize the total energy we invariably find that for the HO and THO results are close to one another and, fur-
weakly-bound nuclei the resulting exponential decay conthermore, coincide with the exact HF@IF) results. The
stant(2.19 is very close to that given by the HFB estimate situation is quite different for the neutron-rich nucletf®,
(3.10. Based on this observation, we have chosen to elimifor which the calculations indicate the presence of a signifi-
nate the THO parameterand to fix it in such a way that the cant neutron skin. In Fig. 1, we present the HO and THO
basis decay constaf®.19, at the self-consistent solution, is results for the total energy and for the proton and neutron

034311-8



QUADRUPOLE DEFORMATIONS OF NEUTRON-DRIP. . . PHYSICAL REVIEW C 61 034311

-173.2f ‘ ‘ "] the correct asymptotic behavior at large distan@ee also
the discussion in Ref.7]). The THO density, on the other
= 1734¢ hand, shows perfect agreement with the exact HFB density.
2 1736} N There is a difference, of course, near and beyond the box
o T boundary Ryo=20 fm is used in the coordinate HFB calcu-
7381 oyact T g A lations. The coordinate-space density rapidly falls to zero at
the boundary, while the THO density continues with the cor-
2.832 N rect exponential shape out to infinite distances.
2834l exact / R It is clear that the rather small numerical discrepancy be-
tween the HO and THO neutron rms ra¢kiig. 1) does not

2,836} reflect the seriousness of the error in neutron densities that

r, (fm)

THO arises when using the HO basis. It is also obvious that ob-
2.838F How 1 servables which do not strongly depend on neutron densities

’ at large distances, like the total energy or proton radii, are

3.4g| exact . | fairly well reproduced in standard HO calculations. On the
,./.. ------ " other hand, observables that do depend on densities in the

fE: 3.46| THOe—* ] outer region, most notably pairing correlationd, require

= the correct asymptotic behavior provided by the THO basis.
344 wHow ] Encouraged by the excellent results in spherical nuclei,

; ; ; . where a comparison with reliable coordinate-space calcula-

8 12 16 20 tions was possible, we next turned to deformed systems.

Now Here, since no coordinate-space HFB results are available,

our tests were limited to a study of the convergence of results
andr,,, obtained in the HFB-SLy4 calculations for’®0 by using with increasing number of HO shell¢The exact results

the HO and THO bases, as functions of the number of HO shellg\’OUId be obtained n elther_th_e_HO or THO expansion with
Ngn. The exact results refer to those obtained from sphericaf':1 complete space, i.e., an infinite n}meer_of shelighen-
coordinate-space calculations. ever the number of HO shells used in the final HFB calcula-

tion was 12 or less, we determined the basis parameters with
N . par_
rms radii as functions oNg,. For each of the calculated thatsame number of shellg, =Ns,. When the number of

observables, the exact results are shown as a straight line 89 Shells of the final calculations exceedetj 12, however, we

a function ofNg,. Clearly, when we increase the number of Still determined the basis parameters wittf'=12.

major shells, both the HO and THO results for the total en- !N Fig. 3, we show convergence results for the ground

ergy and for the proton rms radius converge to the exacgtate of the weakly-bound deformed nucléislg. The top

HFB values. In contrast, the HO neutron rms radius stillthree panels give the results for the total energies, the proton

differs from the exact value, even ldt,= 20, while the THO  'MS radii and the neutron rms radii, respectively. The fourth

basis gives the correct result. gives results for thes deformation, which is related to the
An explanation of this difference becomes clear whenduadrupole momentQ) (Q=3=1,2z°~x/~y{) and the

looking at Fig. 2, in which we compafe logarithmic scalg ~ rms radius(r?) by

the HO and THO neutron densities with those from the exact

HFB calculations. The HO neutron density fails to reproduce _T (Q) @.1)

5A(r3)’ '

FIG. 1. Total energie€, and proton and neutron rms radij,

0, SLy4 The results obtained witN,= 20 are indicated in the figure

by horizontal lines. Again, both bases yield very good con-

10 .

- . Exact HFB solution vergence for the total energy and proton radius. In contrast,
g 10 noticeable differences between the HO and THO results can
"-;'_ 10° be seen for the deformation and neutron rms radius, and they

persist to large values &g;,. Although these differences are
small in magnitude, they are caused by a very large error in
the HO neutron density distribution. This is illustrated in Fig.

4, where we show the neutron densities calculated for the
nearby Mg nucleus. Every point in the figure corresponds
to the value of the neutron density at a given Gauss-

FIG. 2. Neutron densities obtained in the HFBLy4 calcula-  INtegration node. Since there are always several nodes near a

tions for 2%0 by using the HO(dashed lingand THO(solid ling  Sphere of the same radius= \z>+ o2, there can be some
bases. Neutron and proton densities denoted as “exality have scatter of points, corresponding to different densities in dif-

been obtained from spherical coordinate-space calculations in a bdgrent directions. This is especially true at small distances. At
of Ryox=20 fm. large distances, the scatter is greatly reduced and the densi-

el sl s ool ssiend +ound 2o 1ol sined ol sl

0 5 10 15 20 25 30
r (fm)
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23 ] 10"

]
" " I' “Mg’ Sty 11
I A Mg, SLy4 . 10° E
> r 1
g \= | -~ : :
w2661 1 E o !
\i\' S 107 THO(N,,=20) L
-267} s = EENE W = 1 1
t t t + t + + + a 10.9 r % '!
3.255| r g, 1
10" f HO(N,=20) ® o
3.250} _r G
E 3245} =\ 0 4 8 12 16 20 24 28 32 36 40
=" 3.240| r=(2%+p)™ (fm)
3.235} \‘ﬁ:-\|\ 1
- —_ ey FIG. 4. Neutron densities obtained in the HFBLy4 calcula-
R tions for the deformed ground state 6#Mg by using the HO
3.801 /./°i: _______ p (circles and THO (squareps bases. Each point corresponds to one
3.78| R - L ] Gauss-integration node in tlzep plane, and the results are plotted
T 376 s ] as functions of the distance from the origins (22 + p?) /2.
= 3.74F 1
3.72| ] ion-beam technology allow mass measurements of even
s heavier isotopef52], giving hope that the neutron-drip line
——t can be experimentally reached in the 12 chain[53].
0.432} o m-m] In this section, we present results of an investigation of
/l/'/' """" . the deformation properties of the even-even Mg isotopes
0.426} ; . o e
- : from the proton-drip line to the neutron-drip line. Our results
0.420} :::?30 are complementary to those of recent Sky#h#=B calcu-
0414 lations[8], in which the imaginary-time evolution method of
) finding eigenstates of the mean-field Hamiltonfa(see Sec.
6 8 10 12 14 16 18 20 IV)_Was (_:or_nbined W_ith a diagonalization of the_ HFB Hamil-
N tonian within a relatively small set of these eigenstates. In

sh

that study, a complete set of results was given only for the

FIG. 3. Total energie€, proton and neutron rms radii, and ~ SllI force and density-dependent pairing was used. Here, we
rn, and deformationg obtained in the HFB-SLy4 calculations for ~ present a complete set of results for the SLy4 force with a
“OMg by using the HO and THO bases, as functions of the numbeflensity-independer{volume pairing interaction. These cal-
of HO shellsNg,. The horizontal lines denote the THO results culations were carried out withg,=20 andN2'=12 HO
obtained aiNg,= 20. shells.

. ] ~InFig. 5, we plot the total HFB energies per nucldaii,

ties exhibit to a good approximation spherical asymptotiche neutron chemical potentials,, the neutron and proton
behavipr, gxponential in the case of the THO expansion angeformation parameters, and,, the neutron, proton, and
Gaussian in the case of the HO expansion. Note, howevefgig) quadrupole moment®),, Q,, and Q;, the average

that some scatter persists in the THO results out to Iargeeutron and proton pairing gags,, ande, Eq. (3.9, and

distances, suggesting that deformation effects are stiff e paifing energie€” . and EP... for the maanesium iso-
present there. This is apparently reflecting the importance Q[tp P ]9 i 9 fpfﬁ; pair BerG gd tate val-
deformation of the least-bound orbitals. Clearly, the Opes as functions ot i€ mass num round-state va

asymptotic properties of the HO and THO neutron densitied©S ar€ shown by full symbols connected by lines, Wh!le the
are very different from one another, as they were in thésolated open symbols correspond to secondary minima of

spherical calculationgsee Fig. 2 the deformation-energy curves. In the top panel qf Fig. 6, we
compare the results for the two-neutron separation energies
S,, (open symbols with those for the related quantity
—2\,, (full symbolg, and in the bottom panel we show the
The chain of everZ magnesium isotopes has been theneutron and proton rms radii.
subject of numerous recent theoretical analyses. The extreme The lightest Mg isotope predicted by these calculations to
interest in this isotopic chain is motivated by recent measurebe bound against two-proton decay 9g. The heaviest
ments in32Mg [48-50, which show a larger-than-expected bound against two-neutron decay, on the basis of having a
quadrupole collectivity. Based on the relativistic and nonrel-positive two-neutron separation energy*#g. On this ba-
ativistic mean-field approaches and on shell-model calculasis, the position of the two-neutron drip line obtained within
tions (see Ref[51] for a review, it is now well documented the HFB+SLy4 approach is identical to that obtained in the
that shape coexistence and configuration mixing occur in thifinite-range droplet mod¢b4], relativistic mean fiel{RMF)
N=20 nucleus. Moreover, recent advances in radioactivef55], and HFB+SllI [8] calculations. The RMF approach

C. Drip-line-to-drip-line calculations in Mg
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of JR . swf | | f L S N S S SO
S 4l E/A oo | - ¢ ‘ I Mg-isotopes, SLy4, THO[N, =20} I
o e e 30 O . . . pod
2 8 "0—~o—070'——0—0"—‘°"'_. < $ ‘
< 12 O""AO.' 3 20 F .
w e ] £
~ a8l 07y Mg isotopes, SLy4, THO(N, = 20) s 10 ]
< 20 ¢ " n ® ot 1
i ) i ]
04f . Y g [ B
02l ;J “‘ a ,"/ 4.0} E
0.0 ! — : = 3 )
= "“ ,1/’ "‘ a a ® £
-0.2 B a ~.¢’ B o %m < 32f 4
g -
e 2'8.- S A o — -]
| 1 J. 1 1 1 1 L L
20 22 24 26 28 30 32 34 36 38 40 42 44
8 \ A
o o]
g FIG. 6. Upper panel: two-neutron separation ener§igs(open
N BN, symbolg compared to— 2\, (closed symbols and lower panel:
2 1 proton and neutron rms radii. Calculations for the Mg isotopes were
< O o 5 e~ performed within the HFB SLy4 method in the THO basis for
g IR Ng=20.
S LA
or e " 3Mg and *®Mg, respectively(see Fig. 6. In experiment
0 on — [52], these changes are less pronounced and arrive two mass
o~ F = oo ll— | —E—E—n —a—a_ . N . . .. .
2 S E L units earlier, giving rise to a small and large decreass,pf
= Ll 0 ] in 3*Mg and **Mg, respectively.
w? ¢ 0 8 % e B 8 0 e, Concerning the ground-state deformation propertfe
4| ] symbols connected by lines in Fig),8he proton drip-line

nucleus ?°Mg displays a well defined spherical minimum
(N=8 is a magic number Then, there is a competition be-
A tween prolate Mg and 36:3840Mg) and oblate {¢3Mg)
deformations, while’®3Mg are spherical. The last two lo-
deformationsg, quadrupole moment®, pairing gapsA, and pair- calized isotopeswith _negative Fermi engrgi}:s“z*‘“‘\/lg, dis-
ing energieskE,,;; calculated for the Mg isotopes within the HFB play oblate deformat!ons. Secondary minima of the deforma-
+SLy4 method in the THO basidNg,=20), as functions of the 2224 zenergy cg%rélsef(|solated symbols exist for isotopes
mass numbeA. Apart from the upper panel, circles, squares, and Mg and %% 9. '
diamonds pertain to proton, neutron, and total results, respectively. NONZzero proton pairing correlations are present at all
Closed symbols connected with lines denote values for the absolu@herical or oblate minima. However, at these shapes, tan-
minima in the deformation-energy curv@xial shapes are as- gible neutron pairing exist only if>?Mg and 3*3%3\g.
sumed, while open symbols pertain to secondary minima. Moreover, for all nuclei with prolate ground-state shapes,
i.e., in 22?2Mg and %¢-3840\g, both proton and neutron cor-
with the NL-SH effective interactiofi56] predicts the two- relations are small or vanish altogether. These results are at
neutron drip line at*’Mg, and the relativistic Hartree- variance with the Gogny-pairing HB calculations of Ref.
Bogoliubov (HB) approach with the NL3 effective interac- [57], where nonzero pairing exists in all the heavy Mg iso-
tion [57] predicts it at or beyond*Mg. topes. Also, in Ref[8], stronger pairing correlations were
On the other hand, from Fig. 6, we see that b¥ilg and  obtained for the zero-range density-dependent pairing force.
4Mg, though having negative values 8f,, have (smal) However, in that study, the strength parameters were not
negative values of the Fermi energy,,. According to the adjusted to odd-even mass staggering but rather taken from
discussion of Sec. Il B, these nuclei, both of which exhibit high-spin calculations of superdeformed bands. Our results
oblate shapes, are bound against neutron emission. We wglggest that the pure HFB-pairing approach is not necessar-
return to this point later. ily the best way to treat pairing correlations in the Mg iso-
The most deformed nucleus of the isotope chaifdg  topes, and approximate or exact particle-number projection
with almost the same neutron and proton deformations. Ashould probably be employed.
the other end of the chain, due to a large excess of neutrons At this point, it is worth expanding a bit on the unusual
over protons, significant differences exist between the protoresults for*?>4Mg. In these two isotopes, the solutions cor-
and neutron quadrupole moments. The onset of large deforesponding to prolate shapes are unstablg>0), while
mation in 3®Mg causes a decrease of the neutron chemicathose corresponding to oblate shapes continue to be bound,
potential\ , with respect to its value if*Mg. This gives an i.e., they haven,= —0.253 and—0.092 MeV forA=42 and
additional binding of*®Mg, and correspondingly an increase 44, respectively. The bound ground states of these two nuclei
and decrease of the two-neutron separation enejiesn  are thus oblate, whereas in the lighter isotopes the oblate

20 22 24 26 28 30 32 34 36 38 40 42 44

FIG. 5. Neutron Fermi energies,, energies per particle/A,
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solutions corresponded to secondary minima. This is the ori- __ [ ]
gin of the sudden change in two-neutron separation energies,> 0T ._._n______.__.——--—l.__—-~. N
which become negative if?Mg and *Mg (S,,= —2.237
and —1.975 MeV, respectively In the case of**Mg, how-
ever, two-neutron emission should be hindered by the fact
that the parent and daughter nuclei have dramatically differ-
ent shapes, and, by this tokeffMg may still have a sub-
stantial half-life even though it is beyond the two-neutron
drip line.

The bottom panel of Fig. 6 shows the neutron and proton
rms radii,r, andr,. At the proton drip line, the neutron rms
radii are smaller than the proton rms radii, and then they
increase with increasing neutron number. Around

E/A, A (Me

E,A (MeV)

2428Mg, r, becomes almost equal tg,, and for nuclei g-g r —a—= 7
close to the neutron drip ling,, takes significantly larger :0'4 | —o—B, 1
values tharr,. The increase of, is fairly linear, similarly 2 o6F OB, b
as in Refs[8,56,57, and gives no hint of an existence of © g —8—Q_/(1b) 3
unusually larger neutron distributions at the neutron drip line -1.0 - —e—Q,/(1b) -
(see also the discussion in Ref§8,59). P e ————
36|
D. Neutron-drip-line calculations _30F
Having at our disposal a viable method for performing g 24| ;

deformed HFB calcul'atlons up to the gl'np. lines, we have 1.8 | *He Be —m—r —e—r ¢l
performed a systematic study of the equilibrium properties of T S T T T T T
the neutron-rich nuclei in all eveh-isotopic chains with 10 20 30 40 50 60
proton numbers fronz=2-18. In this way, we have ex- A

plored the neighborhood of the neutron-drip line for all neu-

tron numbers fronN=6-40. . -~ . .
We first performed spherical HFBSLy4 calculations in pairing gapsi, pairing energieg, deformationss, quadrupole mo-
ntsQ, and rms radir calculated for the neutron-drip-line nuclei

. . m
,Coordmate space, using the methods _a,nd the_ code deV(?IOpﬁﬁdicated in the lower paneWwithin the HFB+SLy4 method in the

in Ref. [6]. We used volume delta_ pairing, W_'th a coupling THO basis, as functions of the mass numBerCircles, squares,
constantV,=—218.5 MeV fi?, adjusted as in Refi43]. and diamonds pertain to proton, neutron, and total results, respec-
This value is very close to the one used in our deformedively.

THO code(see Sec. IV A suggesting that the effective pair-

ing phase spaces used in the two approaches are very similar SINCe neutron pairing vanishes t#Be, our result is iden-
to one another. tical to that of Ref[30], namely that the SLy4 force does not

From the spherical calculations, we obtained that th roduc_e 1_4Be as l_Jound, i_n_ disagreement With experiment
. . S . . 60]. Similarly, neither pairing nor deformation effects are
heaviest even isotopes, for which the Fermi energies ar

) p 12 29 28~ 30 a4 Ao resent in the calculatetfO nucleus, and hence this nucleus
hegative - are He, =Be, *C, <O, "Ne, ™Mg, "SI,  \amains boundsee discussion in Sec. IVJBOn the other
S, “°Ar. We used these_spherlcal results as a starting powﬁand, the SLy4 force correctly describise [60] and 22C as
for our deformed calculations. _ the last bound nuclei of their respective isotope chafis.
Next, within the deformed THO formalism, we found that A remarkable result obtained in our calculations is that
the heaviest isotopes with negative Fermi_energies arge |ast hound nuclei for all chains of isotopes heavier than
8He, ’Be, %C, %0, *Ne, *Mg, *°si, 525, 58Ar. The
' e ' ' J) ' - B oxygen have oblate ground-state shapes. In all of them, the
results obtained for these nuclei are summarized in Fig. 7mechanism for this effect is identical to that discussed for the
By comparing the dgf_ormed results to the spher|cal.re§ults1wg isotopes(see Sec. IV € namely that the neutron Fermi
we see that the position of the last bound nucleus is '”ﬂu'energy)\ as a function of the neutron numbir becomes
. - 26 52, .. n»
enced by deformation only '_'?1 Ne and™“S. Volume pairing  hqsitive for smaller values dfl in the prolate ground states
correlations are very weak in these nuclei; indeed, in all but,5n it does in the oblate secondary minima. Therefore, in
6 .. . . - 1
the one case of°Ne, neutron pairing vanishes in the last ihe heaviest bound isotopes, the prolate states are unbound,

bound nucleus of an isotopic chain. This suggests the neCegmereas the oblate states continue to be bound and become
sity of using a surface pairing force here. Such a conclusiog,q ground-state configurations.

is supported by the fact that HB calculatidag], carried out

with a Gogny pairing force, give sizable neutron pairing cor-
relations in this region(Note that surface pairing and Gogny
pairing produce quite similar distributiong7] over the In this paper, we have applied a local-scaling point trans-
single-particle statek. formation to the deformed three-dimensional Cartesian har-

FIG. 7. Neutron Fermi energies,, energies per particlE/A,

V. CONCLUSIONS
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monic oscillator wave functions so as to allow for a modifi- topes and for the light eveni-nuclei located near the two-
cation of their unphysical asymptotic properties. In this way,neutron drip line. We have presented results for binding
we have obtained single-particle bases that remain infinitesnergies, quadrupole moments, and for the pairing properties
discrete, and complete, but for which the wave functionsof these nuclei.
have the asymptotic properties that are required by the ca- Perhaps the most interesting outcome of our calculations
nonical bases of Hartree-Fock-Bogoliubov theory. Thesas that nuclei that are formally beyond the two-neutron drip
bases preserve all the simplicity of the original harmonic-line, i.e., those with negative two-neutron separation ener-
oscillator wave functions, and at the same time are amenablges, may have tangible half lives, providgithat they have
to very efficient numerical methods, such as Gausslocalized ground stateghegative Fermi energigsand (ii)
integration quadratures. They also allow for very simple caltheir ground-state configurations are significantly different
culations of local densities, which are at the core of self-than those of thédaughter nuclei with two less neutrons.
consistent methods based on a Skyrme effective interactiomccording to our calculations, precisely such a situation oc-
The axial transformed harmonic oscillator basis has beeours in the chains of isotopes wiit= 10, 12, 14, 16 and 18.
implemented to achieve a fast and reliable method for solvin these chains, the prolate configuration becomes unbound
ing the HFB equations with the correct asymptotic condi-before (i.e., for a smaller neutron numbethan the oblate
tions. We have discussed several practical aspects of tteonfiguration. That change in the ground state structure leads
implementation, like the treatment of pairing correlations,to negative two-neutron separation energies and thus to the

and tested the convergence and accuracy. exotic conditions given above.
The formalism was developed for a general deformed
transformed harmonic oscillator basis. Practical application ACKNOWLEDGMENTS
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