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Intrinsic state for an extended version of the interacting boson model
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An intrinsic-state formalism for the interacting boson model IBM-4 is presented. A basis of deformed
bosons is introduced which allows the construction of a general trial wave function that has Wigner’s spin-
isospin SW4) symmetry as a particular limit. Intrinsic-state calculations are compared with exact ones, show-
ing good agreement.

PACS numbd(s): 21.60.Fw, 21.30.Fe, 21.60.Ev

The interacting boson modé€IBM) was originally pro-  studying the competition betwedh=0 andT=1 pairing in
posed to describe collective low-lying states in even-evemN~Z nuclei. First, the mean-field formalism for IBM-4 is
nuclei. The model building blocks are monopolaj and  presented. This formalism is subsequently checked against
quadrupolar(d) bosons. In the original formulation of the the results of an exact calculation.
model (IBM-1) no distinction was made between neutrons The ensemble of bosons in the IBM-4 consists of isovec-
and protong/1]. Later, connections with the nuclear shell tor T=1 and isoscalaT=0 bosons which have intrinsic
model were investigatef2,3] and a new version was pro- spin S=0 andS=1, respectively, to ensure spatial symme-
posed in terms of neutronsf,d,) and proton §.,d.) try. The allowed spin-isospin combinations are thdsS)
bosons, known as IBM-21]. The model has been widely =(1,0) and [,S)=(0,1). These, together with the orbital
applied to medium-mass and heavy nuclei, where neutronsngular momenta=0,2, give rise to 36 different bosons.
and protons fill different major shells. In lighter nuclei with The corresponding boson creation and annihilation operators
N=~Z, however, neutrons and protons are in the same sheljre lem’TT'SU and yim.1-.s, Wherel is the orbital angular mo-
and a boson made of one neutron and one prdtodwn as  mentum,miis its projection,T is the isospin is its projec-

a & boson should be included. This version of the bosontion, S is the spin, ands is its projection. The operators
model, called IBM-3[4], is the simplest isospin invariant - ) THS=m=r—o

: Yimtrnse=(—1 Yi-mT-rs-o are introduced
formulation of the IBM. The three types of bosons, (r, because of their appropriate tensor transformation properties.

and 6) form an isospinT =1 triplet and correspond, micro-  he construction of an intrinsic state requires two ingre-
scopically, to spatially symmetric nucleon pairs wBr-0.  gients. First, it needs a basis of deformed bosons and sec-
In particular, thes boson corresponds to a spatially symmet-onqyy it requires a trial wave function. The deformed bosons

ric S=0 neutron-proton pair. A further extension of the IBM e defined in terms of the spherical ones through a unitary
introduces the neutron-proton boson witk-0, or o boson,  Hartree-Bose transformation

corresponding to a spatially symmetric nucleon pair v8th
=1. This version is known as IBM-fb] and gives a proper " oTrSo t
description of even-even as well as odd-ddie Z nuclei. QD,TT,SU':% N ™ YimTr.S0 s
The IBM-3 and IBM-4 are appropriate models fdr~Z
nuclei approaching the proton drip line. Such nuclei are un-
der intensive study at the moment, in particular with radio- 7|Tm,TT,sc:2 AF[;IFTSG*QE,TT,S(T’ (1)
active nuclear beams. In addition, the IBM-4 is a reasonably P

simple, yet detailed model to study the competition between . . . .
T=0 andT=1 pairing, one of the hot topics in present-day and their Hermitian conjugates. The deformation parameters

nuclear structure physics. \ in these equations satisfy the following orthonormalization

All versions of the IBM are algebraic in nature and do not relations:
have a direct geometrical interpretation. Such interpretation

can be achieved, however, by introducing an intrinsic state > )\I"n']TTS"*)\,F’nTTS"z Spp’

that provides a connection to geometric models such as that Im

of Bohr and Mottelsor{6]. Intrinsic states have been pro-

posed for IBM-1[7-10|, IBM-2 [11-13, and IBM-3 S NPTSTH)\PTST_ 5 s )
[14,15. Their primary use is to provide a geometric visual- 5 im Pme S Emm

ization of the model. In addition, a considerable reduction is

achieved in the complexity of calculations, which leavesFor convenience, a global labglis used for spin, isospin,

room for the inclusion of extra degrees of freedom. and their projections{=(T7Sc). This new index plays the
The purpose of this paper is to propose an intrinsic statsame role in IBM-4 as the isospin projectiendoes in the

for IBM-4. In the limit of strong isovector pairing it reduces IBM-3 intrinsic-state formalisnj15]. The indexp labels the

to the intrinsic state for IBM-3; in general, it can be used fordifferent deformed bosons. The fundamental deformed boson
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has p=0 while excited ones have=1,2,... 2/(2I+1) E(\,d,at,as)
—1. If only sandd bosons are included, the maximum value
of p is 5. Only the ground-state properties are considered
here; so the superscriptis always zero and can be omitted
henceforth.

The definition of the ground-state trial wave function fol- n 2
lows Ref.[15]; it is different depending on whether the sys- N
tem is even-even or odd-odd. For even-even nuclei with pro- e
ton excess(the case of neutron excess is obtained by
interchangingN, andN,) the proposed trial wave function
for the ground state has the form

:;;4 €§1§2~f1(5aaT:a5a§1§2)
12

21,52,53,64?2( o,ar,as,£16283€4),

where

TNy—N
|p(8,ar,a5))ee= AT™(8, a1, a9 Q17 _11]0),  (3) _ ~ £* \ &

ee T=ir=1 651’52_|1m1|2m2 8'1'“1'51'2"“252)\'1”‘1 PUPY ®)

whereN, (N,) is half the number of valence neutrofgso-

tons and Ve

§1,§2,§3,§4

AT(8,ar,a9)=(Qf_1,_107_1,_

T i = Vlmf,lmg,lmg,lmg
tarQr_g,0Qr-1,-0) I1mqlomalgmglm, 1 1517272520737853 14454

+ol 0L, NN IR
( ?_10_1 i_la_ ' X)\lllml I22”‘2 '33"‘3 ':m4' ©)

tasQgo15-0Qs-15-0)- (4)
The description of odd-odd nuclei is complicated even in the f1(d.ar,as,6187)
ground state, since in general their spin-isospin values are &(8,ar,a9)| Q! Q. | (8 ar,as)
not knowna priori. In N=2Z nuclei, which is the case of =S¢ ¢ < Tl G §2| TS >'
most interest, those values are known, being eitfigS 2 ($(8,ar,a5)|d(8,ar,as))
=(1,0) or (T,S)=(0,1). Correspondingly, two trial wave (10)
functions are proposed:

_ and
|B(8,a1,as))00-1=A™ M8, a7, a5) Q1_1,24[0)  (5)
and To(8 a7, as,£16265E,)

t ot

| (8,07, @8))00-2,= AN Y2(5, 07,09 QL_1,/0). () ((8,a7,a9|0 Qg QO |$(5,ar,ag))

51 1 5! 1
Which of these two states is lower in energy depends on a (9(d.a1.a9)$(.a1.a3))

delicate balance of the different terms in the Hamiltonian (13)
which in turn follow from the competition betwedn=0 and
T=1 pairing. The isospin matrix element€l0) and (11) are calculated

In addition to the deformation parameters, three variaStraightforwardly from a binomial expansion of the trial
tiona! parametersqy, as, and 6, appear in .the trial wave wave function. Furthermore, the parameters, ¢ 1,m,z, and
functions. The first two are related to isospin and spin symy, in Egs.(8) and (9) are defined as
metry breaking in the trial wave function. For deformation
parameters independent §&nd for = ag= — 1/2, the op- ~ .
eratorAT(8,a1,as) corresponds to a bosonic pair scalar in 8'1m1§1'2m2525<|1m1§1|H|I2m2§2>'
spin and isospin. The paramet@measures the relative im-
portance of isovector and isoscalar bosons in the ground V,
state. In the limit of6=0, the number of isoscalar bosons in
the ground state is zero and the IBM-3 trial state is recovered =2(11my &1, Lmpé,| V|l gmgég | smagy)
[15]. Another interesting limit isS= + 1 which is obtained if
the IBM-4 Hamiltonian has Wigner's S4) symmetry[5]. X1+ 81,1, 0m,my 0,6, L+ 811, Omgm, Ozt
In this caseT=0 andT=1 bosons are treated on an equal (13)
footing.

Given a general IBM-4 Hamiltoniahl, the ground-state ~ . I
equilibrium g|]3arameters are obtained by minigmizing the ex_vAvhere.V stands fgr the txvc-)-body Ferms |n. the Hamiltonian
pectation value of the Hamiltonian in the appropriate trialH- It is worth noting thats is not diagonal il. .
wave function(3), (5), and(6). A general expression for this ~ The energy(7) depends explicitly on the deformation pa-
expectation value can be written as rameters\ and implicitly ona+, ag, andé throughf; and

1Myéq.lomoés Iamaés.lymyéy

(12

1Myé1.lomyés Iamaés .l smyéy
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Nfz- The deformation parameteksare obtained by minimiz- TABLE I. Exact and mean-field energies of ground states, and

ing the energy with the constraint of conserving the transforinelr isospins, for selected values lofa. The cases shown corre-
spond toN=2Z odd-odd nuclei withN=5 andN=15 bosons, re-

mation norm, .
spectively.
5 E()\,é‘,a-r,as)—glz EAENE,|=0. (14) Ege/a (N=5) Ege/a (N=15)
m
] ] blfa T Exact Mean field Exact Mean field
The Hartree-Bose equations for IBM-4 are obtained by de
riving with respect to\ £ , ~10 0 -27.8359 —27.8357 —236.126 —236.125
—-0.8 0 —20.5261 —-20.5257 —183.938 —183.937
¢ p p —0.6 0 —13.4392 —13.4383 —132.395 —132.394
IZm hF g 1o M m, = el m, (15  _04 0 -6.69081 —-668917 —81.9874 —81.9861
2 —0.2 0 —0.46290 —-0.46140 —34.0488 —34.0484
Where the Hartree-Bose matiié is 00 0,1  5.00000  5.00000 5.00000  5.00000
02 1 6.56989 6.57374 11.8499 11.9770
hé -7 TS ar.as, £6)0 04 1  7.76803  7.78117 152339  15.4644
My oMy Flamy Elpme TR T S 255 Emm, 06 1 870462  8.72895 175636  17.8459
08 1 9.45690 9.49143 19.3676 19.6743
+2 Vi my 61 amatg lumaé, lm,é, 1.0 1  10.0763  10.1187 20.8479 21.1652
I3malgmyénéaéy
}\53* &y )
% I3mg 1 4my '2m2? (8.ar s, EEaEats) invariant in Eq.(17) is an orbital deformation term associ-
A 25T TS 6630462/ ated with an SU(3) algebra which is scalar in spin and
2 isospin.
(16) With this Hamiltonian three situations are studied. The

first case corresponds ®#0 andc=0. In Ref.[17] the
. . i €competition of T=0 andT=1 pairing was discussed using
solved for fixed values oy, as, andd in a self-consistent i Hamiltonian. This is a relevant test for the formalism
way. This procedure yields the equilibrium deformation pa-presented here since it explores the spin-isospin degrees of
rametersk. The equilibrium values for the parameters,  freedom, which represent the main difference of IBM-4 with
as, and & are obtained by an additional minimization. In respect to previous versions of the IBM. In this case the
fact, if the deformation parameters are independerd @he  mean-field and exact calculations are almost identical al-
parametersiy andas can be fixed to the value 1/2, which  hough the exact calculation is always slightly lower in en-
corresponds, as mentioned above, to a state with wellsrgy " This can be appreciated in Table | where exact and
defined spin and isospin. As was shown for IBM334,15,  ean-field ground-state energi@s units ofa) are given for
this is a good approximation fdi=Z nuclei. _ N=5 and N=15 bosons for selected values bfa. The

To test the present formalism, comparisons with exacyajyebh=0 yields a Hamiltonian with the SU(4) symmetry,
calculations are carried out. Numerical calculations in they g4 degenerate lowest=0 andT=1 states. Negative val-
framework of IBM-4 are now possible6] but still difficult. o5 of the ratich/a favor T=0 while positive values favor
Also, only few dynamical limits have been studied. Here ther_ 1 pairing. The expectation value of the schematic Hamil-
following schematic Hamiltonian is considered: tonian (17) with c=0 is independent of the deformation pa-
. . . . rameters. The minimum of the energy occurs §andepen-
H=aCy[SUrg(4)]+bCy[SUs(3)]+cCy[SUL(3)], (17  dent parameters and;=as=—%. This is so because the

R energy has no orbital dependence. It is worth noting that the

where C,[G] stands for the quadratic Casimir operator of variational wave function§3)—(6) contain for special values
the algebrdaG. The first operator is an invariant of the algebraof ¢ the lowest eigenfunctions of the $(B)® SUg(3) limit
SUrg(4) which is the boson equivalent of Wigner's super-[18] (=) and of the Si{g(4) limit [18] (§=—1).
multiplet algebra[5]. It is worth noting here that, as men-  The second case correspondsats0 andb=0 and in-
tioned in[18], there are two alternative §4(4) limits with  ¢jydes the deformation ter@,[ SU,(3)]. The exact ground-
the same eigenspectrum but different phases in the wavgate energy is known analytically:
function. The results presented below are obtained within
one of them, which is associated with the election of the E=a\(A+4)+Cc2N(2N+3). (18)

operator\?;v (using the notation of Refl18]). The use of the

alternative limit, using?;v, gives identical results but with a This is so because, for sufficiently large negatiyethe
different sign fors. The second operator in E¢L7) is an  ground state belongs to the $4¢4) representation (R,0)
invariant of the SY(3) algebra associated with the (S  and the SY(3) representation (2,0), whereN is the boson
=1,T=0) boson. (Its definition is analogous to that of number and\=T for even-even nuclei and=1 for odd-
SUg(3) considered in the =0 IBM-4 of Ref.[18].) The last odd N=Z nuclei[18]. The corresponding calculation is also

There are six coupled equations of this form, which ar
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performed with the mean-field formalism presented here anthtions for an arbitrary number of bosons and a general
the exact results are reproduced. The calculation gives aramiltonian, not necessarily corresponding to a dynamical
intrinsic state withB,=\5¢\§o= 2, ar=as=—3, andd  symmetry limit of the model.

=—1, which is an eigenstate of the Hamiltoniél) with To summarize, a Hartree-Bose mean-field approximation
a#0 andb=0. This result is similar to that obtained for the for IBM-4 has been presented, along with trial wave func-
intrinsic state of IBM-1]19]. tions valid for even-even and odd-odd nuclei with=Z.

The last case considered is the general one with and  The trial wave functions include boson correlations in the
c different from zero. The ground state still belongs to thespin and isospin spaces. Comparisons with exact calculations
SUL(3) representation (2,0) and hence the contribution to show good agreement from which it can be inferred that the
the ground-state energy coming fra,[SU, (3)] is diag-  present formalism gives a good approximation to the full
onal. The other two terms in the Hamiltonian can be diagodiagonalization. The aim is now to consider more realistic
nalized as in Ref[17]. Thus the exact energies are those|BM-4 Hamiltonians that include both types of pairing (
calculated in Table Kunder “Exact”) plus c2N(2N+3). =0 andT=1), and a spin-orbit coupling as well as more
This calculation is repeated with the mean-field formalismgeneral quadrupole deformation terms. This will enable the
and produces an intrinsic state with the same @) sym-  sydy of the interplay between single-particle, spin-isospin,
metry as the exact one, KB0). As in the preceding case ang orbital degrees of freedom. This work is currently in
B:=NsJA5=+2, ar=as=—3, but now §+—1. The progress.
mean-field energies are those given in Tablerider “Mean
field”) plus c2N(2N+3). We wish to thank S. Pittel and D. D. Warner for useful

These results demonstrate that the present mean-field fogomments. This work has been supported by the Spanish
malism has the correct ingredients for reproducing the fulDGICYT under Contract Nos. PB98-1111 and PB95-0123
IBM-4 calculation. In addition, this formalism allows calcu- and a DGICYT-IN2P3 agreement.
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