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Shell model Monte Carlo investigation of rare earth nuclei
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We utilize the shell model Monte Carlo method to study the structure of rare earth nuclei. This work
demonstrates the first systematic full oscillator shell with intruder calculations in such heavy nuclei. Exact
solutions of a pairing plus quadrupole Hamiltonian are compared with the static path approximation in several
dysprosium isotopes frold= 152 to 162, including the odd mags=153. Some comparisons are also made
with Hartree-Fock-Bogoliubov results from Baranger and Kumar. Basic properties of these nuclei at various
temperatures and spin are explored. These include energy, deformation, moments of inertia, pairing channel
strengths, band crossing, and evolution of shell model occupation numbers. Exact level densities are also
calculated and, in the case 8Dy, compared with experimental data.

PACS numbgs): 21.60.Cs, 21.60.Ka, 27.70q, 21.10.Ma

I. INTRODUCTION We study a range of dysprosium isotop&s<66,86<N
<96), which exhibit a rich spectrum of the behaviors such as
Our goal is to develop an improved microscopic under-shape transitions, level crossings, and pair transfer that have
standing of the structure of rare earth nuclei, i.e., an underPeen observed in the rare earths. These results should there-
standing based on the behavior of individual nucleons in thdo'® apply quite generally in the rare earth region, although
nucleus. Toward that end we solve the shell model systenfl'® iImmediate work focuses on dysprosium. We have se-
atically in a full oscillator shell basis with intruders for the ected this element since the half-filled proton shell makes
AN S the model spaces particularly large.
first time in rare earth nuclei using the Monte Cai8VIMC) A previous paper discussed SMMC for the test case
technique; calculations using other methods have been ra_—;oDy which does not exist as a stable nucl&gls The work
stricted to a severely truncated model space. SMMC allow rese’nted here is much more systematic and thorough. Algo-
us to trace structural rearrangements within nuclei induceé :

by changes in temperature and spin, so that we may obtain thm improvements subsequent 8] have increased the
y 9 P pin, y . caOmputationaI execution by a factor of 10 or more and have

clearer microscopic picture of general structural features "llowed us to calculate the rare earths at lower temperatures

this region of the penodl_c table. . nuclear shapes are calculated using the correct calculated
We assume an effective two-body nucleon-nucleon inter-

action and perform a Hubbard-Stratonovich transformatio quadrupole variancot just a constaptand pairing opera-

to obtain a path integral representation for the partition funcr-10rs not used i3] are calculated.

tion, which is then evaluated by Monte Carlo_ meth@lse Il. THEORETICAL BACKGROUND
Sec. I) to produce an exact shell model solution within sta-
tistical errors; this substantially enhances the predictive Shell model diagonalization is still limited #~ 50 in the
power of the nuclear shell model for some observables. InOf1p shell [4]. In contrast, SMMC determines thermal ob-
deed, direct diagonalizations of the shell model Hamiltoniarservables, but explicit wave functions are never constructed;
in a full basis have been limited #&~ 50, while we present this is the key to how the predictive power of the shell model
calculations forA~150. is extended so tremendously. The method is far less demand-
We examine how the phenomenologically motivated pairing on machine storage and there is no need to perform ma-
ing plus quadrupole interaction compares in exact shelhipulations with the exponentially increasing numbers of
model solutions vs Baranger and Kumar's HFB treatmenwariables that are encountered in direct diagonalization.
and the static path approximatigB8PA). We also examine SMMC storage scales IikNﬁNt, whereNs is the number of
how the model solutions compare with experimental datasingle-particle shell model states ahy is the number of
There have been efforts recently by others to use SPA catime slices(see below.
culations, since it is simpler and fastdSee[1,2] as ex- No known discrepancies exist between SMMC and direct
amples. Note that Rossignoli and co-workers use the SPA idiagonalization in cases where the comparison has been pos-
the “natural” decomposition while the SPA here is done in sible. This includes odd mass nuclei computed for appropri-
the density decompositionin particular, it is useful to know ate temperatures. Realistfip and sd shell solutions using
not only if phenomenological pairing plus quadrupole typemodified KB3 and Brown-Wildenthal interactions, respec-
interactions can be used in exact solutions for large modeively, agree with experiment&]. These results give us a
spaces, but also if the parameters require significant renohigh degree of confidence in the SMMC technique.
malization because this affects the accuracy of the SPA. As with any shell model, an effective nucleon-nucleon
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interaction must be specified. We use the well-known pairing B. Shapes and moments of inertia
plus quadrupole interaction as formulated by Baranger and

The quadrupole expectation val vanish under ro-
Kumar[6]. The Hamiltonian is q p p ues,,)

tational symmetry. However, for a given Monte Carlo
sampleQ,, will havezsome finite, nonzero value. We calcu-
A= Hsp_GpP;Pp_GnPEPn_ ;Q o) (1) late Q;; = 3x;x; — g;;r < for each sample a_nd relate its eigen-
values to the quadrupoj@ and y deformation parameters, as

done previously with SMM{J8,3]. The intrinsic frame for

with Q=Q,+Q,. The pairing and quadrupole operators areeach sample with a field configuratien has nonzero com-

defined as ponentsQ, andQ5,=Q’ , as
R . FUA , 3 [|Am ,
PI:O:,E (_)J_m+|aj1.ma}‘_m, (2) <QO>U:E ?<r >0’ﬂ0003701
jm
o o W3 JAm . By
Q0= 3 (iQIQ.aaaa, @) (Q2e=37 N 5 {0 5 sine @

ikl
whereQ,=r%Y,,(0,¢) as usual. The single-particle ener- In terms of eigenvalue®y;, Qz, andQs; of Q;j give
gies are also taken from Baranger and Kurr@dr pp
Effective charges are incorporated to account for core po-  (QJ)),= \/ = V3[{Q%) s+ (Q",),) — V2(Qp),1,
larization to fit measured electric quadrupole transition 5
strengths. The electric quadrupole operator, with effective

i 2
chargess, andey, is (0= \ 5[~ VBUQDH(Q" )~ V2(Qb)],

Q: epr+ en(’\gn . (4)
! 47T !
<Q33>0:2 \[ 5 <QO>0"

Detailed procedures for the SMMC are explained fully in We can also calculate the free eneifgys,y) to construct
[5] and references therein. We provide no further explanashape contour plots. This is done using
tion, except as regards the “sign problem.”

A. Method and sign problem

. _ ~ ~ . . P ,
We defmedD—TrUU/|TrAUU-| as .the sign for a given F(B.9)=—TIn 3([_3 Y) . ®
Monte Carlo sample, wherd , is defined as B°sin 3y
QUZONt(Jer. . .01, (5) P(B,v) is the shape distribution as a function of the defor-

mation coordinatesf, y) andT is the temperature. Plots are
_ _—aph truncated at smally for an obvious reason. All shape plots
U,=e 7 (6) discussed in this paper are for the mass quadrupole and are
~ not for electric quadrupoles.
h, is the one-body Hamiltonian for the auxiliary field con- Moments of inertia are calculated in the cranked Hamil-

figurationo and g is the inverse temperature. In SMMC, the tonjan (H—H — wJ,) usingZ,=d(J,)/dw. We expect mo-
partition function path integral is divided infd, time steps  ments of inertia to initially increase as the nucleus is cranked

of size A so that3=N;A 8. Hence, the complete evolution and then to decrease when pairs are broken.
operator is expressed as a product of operators in each time

step. In these studies, we use the canorficaiber projec- C. Pairing composition
tion) formalism to evaluate the trace. o ] ] ) )

If ® is not equal to 1, numerical instabilities can arise.. Pairing correlations in nuclei can be studied by calculat-
This has become widely known as the Monte Carlo “signind pairing strengths in different spins for protons and neu-
problem.” The simple phenomenological pairing plus quad_trons. For like particle pairs, define the pair creation operator
rupole interactior(without addedpn pairing does not have @S
an inherent sign problem. However, sign problems can arise
even with this simple interaction if time-reversal symmetry T 2t At Y
is broken, as when odd masses are studied or the system is Ao V1+ 5ab[a]axa]b]JM( ) ©)
cranked by adding a term wJ, to H. In these studies, the
sign violation turned out to be minor for odd mass groundWhere
states and canonical ensemble cranking was limited to
=<0.3 MeV. Experimentally, these nuclei are observed to [éjT xé}‘ Lm= > (jaMaj bmb|JM)éJT éj‘f (10)
0~0.6 MeV[7]. a b Mg My
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Note that we consider only like particle pairing, i.e., E. Level density in shell model Monte Carlo
proton-proton and neutron-neutrdieqg. (1)]. Now let «
=(ja,Jp) @anda’=(j¢,jq)- Using the pair creation operator
a matrixMi'a, can be constructed as

SMMC is an excellent way to calculate level densities.

" E(B)=(H) is calculated for many values @, which then
determines the partition functian as

Mi?a':% <A}M(jaajb)AJM(jcajd)>v (11) |n[Z(B)/Z(0)]=—foﬁdB’E(,B’); (16)

from which we can then define a pairing strenfthas
P g gth Z(0) is the total number of available states in the space. The

level density is then computed as an inverse Laplace trans-

pir= > Mifar- (120 form of Z. Here, the last step is performed with a saddle
aza! point approximation:
The correlated pair strength, which is more useful, is ob-
tained by subtracting uncorrelated mean field pairs from the S(E)=BE+InZ(pB), (17
total P’™ defined above. A Fermi gas has generally been
used for the mean field with SMMC. Letting= (a/a,) and p(E)=(2mB?C) "2 exp(9), (18

substituting nyny (85,3014~ 854819 for (alalasa,) in Eq.
(11) yields the Fermi gas mean field pair strengf-. In
this case, of course, we could use the SPA occupations as t
“mean field” to subtract from the complete pairing plus ;
qguadrupole solutions. heavier Dy. e . S
Even-even nuclei have correlated ground states, so Wﬁ Nuclear_ Ievlel bden5|_t|es '? thte dSLat'Zlﬁath _gppr((j)xgmart:c;n
expect an excess af=0 pairs beyond the mean field in ave previously been investigated by AAnassid and bush for

even-even ground states. The hallmark for a pair condensa; S"T‘p'e. solvable L|p|_<|n modeﬂllo_]. The simple Lipkin
. . . I . amiltonian does not include pairing, however. These au-
is the existence of one eigenvalue M’ , that is much

thors found the SPA to be superior to the mean field approxi-

greater than all the rest. , , , _mation and the difference between the two depended on in-
The pair matrix can be diagonalized to find the eigen-araction strength.

5
bosonsB ;. @s

where 87 2C=—dE/dB. SMMC has been used recently to
|;fglculate level densities in iron region nuc|&i. Here, we
present the first exact level density calculation for the much

F. Recap on interaction and model space

T T
Baomn % Yaamm(@D)As-(ab), (13 It is fortunate that the elementary pairing plus quadrupole

interaction does not break the Monte Carlo sign so thag no
wherea=1,2, ... labels the various bosons with the sameextrapolation is required. The calculation of level densities is
angular momentum and parity. The,;, are the eigenvec- also simplified, since accurate results require very low statis-
tors of the diagonalization, i.e., the wave functions of thetical uncertaintie9].

boson, and satisfy the relation We do not include isovector proton-neutroon) pairing
in the interaction. This is a reasonable assumption sfipce
E lﬁﬁwﬂﬂaw: By (14) shell calculations with SMMC have shown clearly that is-
falp ovectorpn correlations diminish quickly al exceed< and
) ) we are not aiN~Z [11]. Further, in our case the valence
These eigenbosons satisfy protons and neutrons occupy different oscillator shells. To be
sure, somepn correlations are included via the isoscalar
% (Bl 3maByamam) = NasrSay (150  quadrupole interaction @,-Q,), but any observable that

depends strongly ompn correlations such as the Gamow-
Teller strength will not be accurately determined with this
interaction.

We chose one shell each for protorsd) and neutrons
_ (pfh) with the opposite parity intrudens,,;, andiqs., re-

D. Backbending spectively. The space encompasses 32 proton levels and 44

We can monitor the pair strength for neutrons coupled taeutron levels. The oscillator lengths= z/mw,, was taken
J=12 as a signature for the anticipated band crossing oo be 1.0AY6 fm.
backbending. The only orbital in our model space that can With this space, Dy has sixteen valence protons so that
produce this coupling is the neutrag, level. We do not the proton shell is half filled. The number of valence neu-
monitor backbending by mapping out the typical backbendirons varies from four in'>Dy to fourteen in%?Dy. This
ing plot of | vs w because the backbend in the plot requiresmodel space is identical to the one used by Kisslinger and
a multivalued solution of, whereas SMMC always produces Sorensen[12], but is smaller than the two-shell space
a single-valued solution from the statistical ensemble. Baranger and Kumar used.

where the positive eigenvalues,;,, are the number od =
pairs of typea.
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**py py 2Dy and are therefore not shown. Also, note that the quadrupole
=80 T T moments are expressed @3?)/b*, whereb is the oscillator
@®  eecCanonical T @  e—e Canonical @ e—e Canonical
—45 | ooSPA ] o aSPA ’R\:;:\_SDPA 1 length.

?A, _60 R 18 1 gag--0 The SPA energy is greater than the exact energy, except
sl 1 98-8 | ] at very high temperatures, for all three of these nuclei; at the
00 et L L lowest temperatures, the difference is a few MeV. The origin

© 'H(';anon'ical © IO—QCIanonilcaI " lo—o(‘:anonilcal of this discrepancy will be discussed beld®ec. Il A 2).
300 casPA ] casPA | cosPA ] The difference between SPA and exact canonical ground

o} 200 - - state energies is 2.390.15 MeV for Dy and 2.59
100 [ +0.18 MeV for Dy, so there is not a significant discrep-

0 ancy between the lighter and heavier isotopes. Thus, the SPA
800 ] does not predict absolute energies accurately, but works well
“a 600 | ] for relative differences. The partition function integral in
% 400 | _ _ ] SMMC is always divided into time steps of fixed siAgs,
Y 200 o Sanonieal 0 Sanonical 1 o~# Garonical | which is fixed at 0.0625 MeV'. As the temperature A/
ol i L L increases the number of time slices in the exact partition
0 2 3[:nev§‘] 8 02 ﬁ[:llevg] 8 0 2 ﬁ[:nev§‘1 8 10 function expression decreases. Hence, it is not surprising that
the SPA is more accurate for higher temperatures.
FIG. 1. (8—(c) Energy, spin, and quadrupole moment {8iDy. Looking at (J?) shows that the SPA calculations only
(d)—(f) Energy, spin, and quadrupole moment f6fDy. (9)-()  cool to aboutJ=8-10 for even the lowest calculated tem-
Energy, spin, and quadrupole moment'f#iDy. peratures, while the even-even ground states are, of course,

J=0. In these canonical SMMC calculation¥=0 is not
We have also done some calculations in a larger SpacﬁxaCUy reached even in the full canonical calculations be-
including the unique-parity orbits below our original model cause the thermal ensemble always includes contributions
space @, for protons anchy;, for neutrong. These results from higher energy states. An estimate for fheequired for

are discussed last. good filtering to the even-even ground states fs
=1/E(2]), whereE(2;) is the measured energy of the first
G. Static path approximation and mean field 2" state. Thisg value varies fromg=1.6 MeV ! for

15Dy to B=11.5 MeV ! for Dy asE(2;) varies from

The static path approximation is the one-time-slice |Imlt0.614 t0.0.087 MeV.

of the patrtition function path integral and is obviously easily . _— . S
implemented in SMMC. The mean field approximation is the The tr:jermal_ spt)lrtlhexpecta'glo@ 2 Ican, ",: prlr;'mple, be
saddle point estimation of the path integral; neither include§OMpPared against theé expenmental spectra. However, one

imaginary time-dependent terms. The SPA differs fromnever experimentally knows all the states in a nucleus so

mean field since the integral over time-independent auxiliarf uch a dlrecrt]_C(r)]mparlson 1S cllff(;cglt et:;](cept T}tklow exmtatlor:j
fields in the SPA is done exactly, so that contributions fromc1€rgles, which are dominated by the well-known groun

multiple configurationgeven with large fluctuationsare in- state band. The difference iJ%) between SPA and full

cluded rather than just the single, steepest-descent me nonical solutions at the lowest temperatures is. o8 for
field ] ¢ P %gsz, 74 for %Dy, and 91 for'®*Dy. Hence, the deviation

Static path calculations do not do as well with realistic'S WOrs€ with increasing deformation in these isotopes.

interactions as with schematic interactions, e.g., pairing plu%hThe SPA works very well for the quadrupole moments.

2 . is result is also very robust, i.e., strengthening or weaken-
quadrupole. Also, the accuracy of the approximation varies ! :
. . ing the couplingy beyond the nominal Baranger-Kumar
among operators, as will be demonstrated in Sec. lll.

value does not affect the agreement between SPA and exact

results.
Il RESULTS More information about the static quadrupole moment ap-
A. Static path approximation versus full solution: Static pears in Figs. @)—2(d), where the proton and neutron quad-
properties rupole components are shown separately. The neutron quad-
; : 15
_ rupole moment increases quickly frof?Dy to %Dy and
1. Energy, spin, and quadrupole moments increases much more slowly after the onset of deformation in

Comparisons of the SPA and full path solutions for the *>Dy. The proton quadrupole moment, meanwhile, remains
static observables enerd{d), spin(J2), and mass quadru- approximately fixed for all the isotopes studig®?) in-
pole moment(Q?) are shown for the experimentally de- creases rapidly aé increases from 154 to 162. Relative to
formed, transitional, and spherical isotopes in Figg)d (Q? it is only 8.5% [Fig. 2], but the total quadrupole
1(i). A few of the full canonical calculations do not extend moment at3=6 MeV ! is 46% larger for'®Dy than for
quite as low in temperature as the SPA results due to numer>Dy (1221* vs 834%). (Q?)/(Q?) is roughly 10% for all
cal instability developing from multiple matrix multiplica- isotopes, whereQ, is the isovector quadrupole operator
tions. Error bars in these plots are smaller than the dot sizeg,— Q).
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0.3 ; . : 152Dy 154Dy 156Dy
A —e Canonical 0 — —— —————— ——————
NO 02+ o o SPA i s aeim Ao Proton
v 2B N gémr:;s(;:}\)f B o ] A.:Z':mSPA] E
-~ THONeutron (SPA)
A 0.1 | i = Y o --n--go - ONeutron (SPA)
G 2 4 N\ + p
v T \
0.0 &o
gy 6 r ]
100 - B (_?
- | —+
2 8ot 1 -8
o C
80 C\e—¥ | 10 |t RERRES
o ) e aron,
40 f } } CFONeutron (SPA) A l::mn (s;:)A
eo—e Canonical 15 + | DONeutron ¢ 1 ]
— 35 oo sPa :
Z‘=30 - 4 210 b € O --0--0 i
N\: (\l<
le] 25 N A-AProton
© 0.5 - SR Neutron
2 B e
o—e Canonical
= 20 'o o SPA T 0.0 L 1 L L 1 L 1 1 1 1 1 1 @
Soqs [ 1 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 10
= e B [MeV™] B MeV™] B MeV™]
% 10 | 1
5 ‘ , ) FIG. 3. Pairing energy in®Dy (a), Dy (b), and *Dy (c).
150 154 158 162 BCS pair gaps are shown fdP?Dy (d), Dy (e), and Dy (f).

A

FIG. 2. SPA and exact canonical solutions for quadrupole ob-'meré1Ct|0n depends strongly on the pairing strength and is

servables in selected dysprosium isotopes152 to A=162. All naturally b?tter for W_eaker pairng. . 15

results are for3=6 or T=0.167 MeV.(Q?) is defined as Q, The pairing energies and BCS pair gaps 1‘5_)2( Dy are

—Q,)? andb is the oscillator length shown in Figs. 82)—3(f). The latter were obtained from the
v .

pairing energies bA3.dG=H ;. The disagreement be-
|Iween SPA and exact calculations looks worse for protons,
but recall that there are 16 valence protons and just 4-8
valence neutrons in these isotopes.

Another comparison between SPA and full canonical ca
culations is how quickly the solutions cool for various ob-
servables. For example, itt°Dy (H) appears to have sta-
bilized by =6 MeV ! in both the SPA and the full
solution. The spin(J%) and quadrupole momerQ?) also B. B(E2) and effective charges
appear to have minimized ne@=6 MeV ! in the SPA The
and exact calculations. Similar results are evident in th
other nuclei, except fo¢J?) in °Dy, Wlhich is clearly de-
creasing still in the SPA fop=8 MeV™ -, the largest value _ A A )2
for which the calculation could be done. B(E2)=((€Qp*enQn)", 19

reduced electric quadrupole transition strength
e‘B(E2) is computed from

wheree, ande, are effective proton and neutron charges.
We have taker,=1+X,e,=X. Results are shown in Table
Some insight can be had by looking at the pairing energy and Fig. 4, where it has been assumed that the R{&R)
and gaps. The quadrupole energy).5v(Q- Q) in the SPA  calculated in SMMC is the same 8E2;2; —0;). Effec-
agrees well with the full canonical solution, but the total tive charges in column 3 and column 4 are fitted to measured
energies in the SPA shown above have clear deviations froB(E2) values. Typical effective charges in rare earths are
the exact canonical results. The differencgi) is due to  approximatelye,;)=2(1), sothese values are in a reason-
the pairing energy. The accuracy of the SPA in the pairingable range.

2. Pairing energy and gaps

TABLE I. SMMC B(E2) vs measure®(E2;2; —07) with specified effective chargeB(E2) in W.u.
Errors are statistical Monte Carlo sampling errors. ColumB@2) for SMMC/BK e(n), is the B(E2)
obtained from SMMC calculated quadrupole moments with Baranger-Kumar effective charges.

A N e e, B(E2) B(E2) B(E2)
152 86 1 0 130.2 N/A 13
154 88 15 0.5 9Z0.2 N/A 97
156 90 1.75 0.75 1460.6 126.4-0.5 146
162 96 1.75 0.75 1990.7 150.%0.5 199
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300 ‘ ‘ . TABLE Il. Some sphericaE(2]) values from Baranger-Kumar
o—e Measured [6]. Energies in keV.
=——a Calculated by Kumar and Baranger

250 - A SMMC (fitted charges) Al

0 SMMC (Kumar-Baranger charges) E(21+)expt E(27)theor

s 13883 1438 2767

= 2007 1 4B 602 2006

S 40ce 1596 2531

< 150 o 1 Me 641 1772

oL - 144ce 397 1095

N

o

@ 100 i

15Dy to avoid severely overestimating tlB§E2;2; —0;)

50 | , strength as it is calculated above. The fitted effective charge

is e,=1.75 for the deformed isotopes and it is intermediate

for E)“_"‘Dy. This is a reflection of the fact that exact solutions

= e T for the mean field interaction yield lighter dysprosiums
A which are too deformedSec. Il B); the effective charge

should be constant.

FIG. 4. SMMC results foB(E2;2; —0;) for dysprosium iso- It .
should be noted that Baranger and Kumar did not cal-
topes. Results also shown in deformed cages 156, A=162) for 9

strengths calculated with  SMMC quadrupole moment andCUIateB(EZ) values_ fpr spherlca_ll nuclei in the Sa.me way as
. for deformed nuclei, i.e., they did not take effective charges
Baranger-Kumar effective charges.

for spherical nuclei as,=1+1.5Z/A, e,=1.5Z/A. For

] spherical nuclei, they combined phonon and rotational model
Table I and Fig. 4 also show whB{(E2) strength WOU|d' properties(see[6], p. 552. They usecE(2;) = (C/B)Y2 and

be obtained from SMMC quadrupole moments with (E2,O—>2)ocZZRé(BC)*1’2 from the phonon model with

Barange_r-Kumar charges. This illustrates how a Smal he relationQ=B(E2)*2 TheseE(2;) predictions are not
change in the effective charge can produce a comparativel

large change in thB(E2). For 1Dy, the 7% difference in very good(Table Il

e, when using Baranger-Kumar charges leads to a 23% ) o ) )
change inB(E2). C. Static path approximation versus full solution: Cranking

The collectivity of a nucleus, and thus tlB£E2) value, 1. Sign limits on cranking
varies with the energ¥(2;). The effective proton charge

. . + . .
&y is plotted againsE(2; ) in Fig. 5. For the SMMC results, Cfarlo sign from unity and that calculations become imprac-
the neutron effective charge needs to be zero for sphericglc,| when the sign drops below 0.5. This is illustrated for

both full canonical and SPA results fdf®Dy in Figs. Ga)

Recall from Sec. Il A that cranking degrades the Monte

2.0 ' ' ' ' and &b). Error bars are not displayed in these figures since
n—a {+1.5Z/A they are small; the statistical error b for B=6 MeV !
£—A Fitted SMMC - . . T
18 | . andw=0.3 MeV is 0.04. Canonical cranking in this nucleus
/ is limited to small frequencies foB=8 MeV ™!, as evi-
161 _ denced by the quick drop in sign from=0.05 MeV tow
1ol | '*Dy Canonical Dy SPA
a o Mz : : — ; ; —
(]
12
08 | + ]
10 4
0.6 + -
¢
0.8 |
0.4 + .
*—x @=0.05 — gé
0.6 | L L L L === =0.1 (D=O.3
650 550 450 350 250 150 50 02 | == =015 L b ]
E, [keV] et =02
—e =03
FIG. 5. Effective charge vE(2;) in Dy. Shown for Baranger- 0.0 ' . . ' ' ' ' '
: - ) o 2 4 6 8 0 2 4 6 8 10
Kumar effective charge in deformed nucle,=1+1.5Z/A, and B [MeV] B [MeV"]

fitted SMMC chargesE(2,)=614 keV is spherical’®®Dy and
E(27)=335 keV is *Dy. The other points are for deformed  FIG. 6. Monte Carlo sign for canonicé) and SPA(b) crank-
15Dy and Dy. ing in %Dy,
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Canonical Canonical Canonical
-50 T T T T 1400 T T T T 1000 T T T
— =0 [

_ e =01 o 1 803 .
-60 | 502 1 4000 j\g ] [ ]

<H> [MeV]

’HF’:S ©) ] FIG. 7. Canonical vs SPA cranking results in
15€Dy for energy(a) and(b), spin(c) and(d), and
SPA guadrupole momer{e) and(f). Error bars are not
— T shown for SPA results since they are smaller than
1 the symbols.

b oexp=l ]
L +—p=s -
| *kp=8 0 1

2 4 6_18‘10 0‘2 4‘6_18‘10 00.0I011‘012‘0.3 0.4
B [MeV™] B [MeV™] ®[MeV]

<H> [MeV]

=0.1 MeV. The canonical cranking is fairly good fg@ computed there so it is difficult to say if the quadrupole
<6 MeV !, especiallyB<4 MeV . SPA cranking pre- moment is declining at frequency 0.1 or 0.15 MeV in the
dictably has better sign properties. In the SBEDy can be  SPA. The SPA agrees very well with the exact solution for
cranked well out tg3=8 MeV ™%, which is the approximate (Q?) at all temperatures and cranking frequencies computed.
limit of temperature that can be reached in this nucleus with-

out matrix stabilization. 3. Moments of inertia
The J, variation with cranking frequency determines the
2. Energy, spin, and quadrupole moments again moment of inertia. Results fol*®Dy are displayed in Figs.

; . 8(a) and 8b) for both canonical and SPA cases.
Energy, spin, and quadrupole moments at various tem= . . X
9y, Sp q b The moment of inerti&, for >y is 44.6-7 #2/MeV

peratures are compared at different cranking frequencies in h ical | — ith
exact canonical and SPA methods. Calculations f§py N the exact canonical ensemble ai~4 with S

— -1 H 2 H
appear in Figs. (B)—7(f). Energy results for the SPA at dif- — 8 MeV ~andis 73.0- Z_ﬁ /MeV at the samev in the
ferent cranking frequencies mirror the full canonical result, SPA- At this temperature=0.125 MeV, the SPA moment

In the range 5B8<8 MeV'!, or 0T

156 156

<0.125 MeV, 0w=0.1 MeV lies at small excitation energy 0 ‘ DV‘ . ‘0 . DVI .

e above thew=0 baseline,w=0.2 MeV lies roughly & —ept @ —ps ©

above the baseline, ano=0.3 MeV is excited by approxi- 30 | +ohs e 08 | Lf 1

mately 6 abovew=0. pisted ?,;/ < 06 | |
The spin results reveal thal?) in the SPA is higher than Mg |- / I

the exact canonical result untiT=1 MeV when o Y p SB04 ]

=<0.2 MeV. However, foro=0.3 MeV, the SPA agrees 10 Z . 02 | i

well with the exact solution. The exact solution is not shown Canonical Canonical

for B=8 MeV 1! at this frequency due to numerical diffi- Ot * = 0.0 ¥ = =

culties. The SPAJ?) for w=0.2 MeV is very flat across ot v © 08 | ot 9]

the computed temperature range, 0&£25<1 MeV. As 30 r 1

with the exact solutiorn{J?) decreases with rising tempera- A & 06 ]

ture for 0=0.3 MeV. el 2ol ]
Quadrupole results with cranking are similar to the .l |

=0 results in that the quadrupole moment does not change 02 ]

when the temperature is decreased below 200 keV at any . SeAa 00 , SPA

frequency studied here. Note that the quadrupole results are 00 o1 02 03 00 o1 02 03

plotted vsw for various temperatures. At the lowest tempera- © @

tures, the quadrupole moment begins to decrease after  FiG. 8. (a) and (b) (J,) for canonical and SPA cranking in
=0.15 MeV in the canonical case. It decreases afber >y (c) and(d) J=12 pair strength in canonical and SPA crank-
=0.1 MeV in the SPA; howeverm=0.15 MeV is not ingin **Dy. J=12 pair strength comes exclusively framy,.
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FIG. 9. SMMC vs SPA moment of inertia i?®Dy. Moment of 3 =n="+f,:Hﬁ o B=1 MeV™'
inertia is in units#2/MeV. Cosp.” == =3 .
-+ o =6
of inertia is 64% larger than the exact result. The experimen- 00 0 1|o 2|o 3|o 40
tal moment of inertiaZ,=40 A%/MeV at J=4, which <J>
matches the SMMC canonical result. Also, the rigid body _ _
moment of inertia for 156Dy with (8,7)=(0.24,0) is FIG. 10. Occupation for protoh;y,, (8) and neutron 155, (b) vs

73 #2/MeV. This coincides with the SPA moment of inertia. spin.

The moment of inertia as a function of frequency is plot-
ted in Fig. 9. As discussed in Sec. Il D, the moment of inertia
calculated with SMMC in a backbending region can be mis- Nuclear shapes have also been computed to clarify how
leading because SMMC cannot produce a multivalued soluthe shape varies with temperature and spin. Temperatures
tion. As discussed in the next section, the band crossing o@nd frequencies for these calculations are given in the figure
curs around w=0.15 in the full canonical ensemble captions. In all shape graphs, tifeaxis is radial and the
calculation. From Fig. 9, we see that the moment of inertiaother axis is they axis. Results for'®Dy at temperatures
peaks neaw=0.125 in SMMC and peaks at slightly lower from T=0.25 MeV to T=2 MeV are shown in Fig. 11.
spin nearo=0.075 in the SPA.

E. Shape versus temperature and spin

D. Band crossing

The pairing strength fod=12 pairs in**Dy, which can
be produced only from,s,, neutron pairs, is shown in Figs.
8(c) and 8d). The strengttP;_,, begins to increase quickly
in the canonical case forB,w)=(8,0.15), which corre-
sponds toJ=16*1. In the SPA,P;,_,, increases sharply
beyond (8,w)=(8,0.1), which corresponds td=14. The
increasingd =12 pair strength coincides with declining mo-
ment of inertia(Fig. 9).

The occupations of both the protbiR,,» and neutron 3,
intruder orbitals for*®®Dy are given in Figs. 1@&) and 1@b). (c) 1**Dy, T=2 MeV
The proton intruder occupation is comparatively stable over
this same spin range at each temperature. However, it is clee
that thei ;5,, occupation is increasing with spin, particularly
for lower temperatures, as expected. Thng,, occupation
number decreases slightly with temperature for all frequen-
cies computed. Occupation shifts slightly tads,. For B8 Vi
=6 MeV !, the maximum spin), corresponds tal~ 32 LS
and forB=1 MeV !, the maximum spin ig~28. Unfor- 000 005 010 045 020
tunately for B=6 MeV™', or T=167 keV, the Monte FIG. 11. (a) Shape al=0.25 MeV for *2Dy. Contour spacing
Carlo sign is reduced to 0.4 at the maximum spin showns 0.79 MeV.(b) Shape af =0.5 MeV for 15Dy. Contour spacing
(recall Fig. 6. At B=1 MeV %, however, the sign is still is 0.64 MeV.(c) Shape aT=2 MeV for 152Dy. Contour spacing is
very stable at 0.96. 2.9 MeV. Each plot is compiled from 2000 samples.
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134Dy at T= 0.133 MeV 136Dy

(b) T= 0.5 MeV

(a) T=0.25 MeV

FIG. 12. Shape atT=0.133 MeV for %Dy from 4800
samples. Contour spacing is 0.92 MeV.

(c) T=1 MeV
The nucleus becomes increasingly spherical for rising tem-
perature.
Shapes for'®Dy and *®Dy are shown in Figs. 12—-14.
These were all produced from the exact canonical ensembli
except Fig. 1&), which was produced with the static path

approximation. Cranked contour plots, such as Figd)Lfbr

By at (B,w)=(8,0.1), show the nuclei becoming increas-

154])y

0.00 0.05 0.10 0.15 0.20 0.25 0.30

(e) T=0.5 MeV, w = 0.2 MeV~!  (f) SPA: T= 0.125 MeV, w = 0.6 MeV~"!

FIG. 13. (a) Shape aff=0.25 MeV andw=0.05 (~6) for
154py. 2560 samples. Contour spacing is 2.9 Méh). Shape afl
=0.25 MeV andw=0.1 (J~8) for ™Dy. 2400 samples. Con-
tour spacing 2.5 MeV(c) Shape aff=0.25 MeV andw=0.2 for
154Dy, 2400 samples. Contour spacing 2.4 Med) Shape afT
=0.5 MeV andw=0.05 (J~10) for >Dy. 3840 samples. Con-
tour spacing 3.4 MeV(e) Shape aff=0.5 MeV andw=0.2 (J
~20) for ®Dy. 1920 samples. Contour spacing 4.2 Mef¥)
Shape afT=0.125 MeV andw=0.6 (J~50) for *Dy in SPA.
Sign ®=0.5. 2000 samples. Contour spacing 1.2 MeV.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

FIG. 14. (a) Shape aff=0.25 MeV for !5Dy. 2000 samples.
Contour spacing is 6.5 MeW(b) Shape af=0.5 MeV for >®Dy:.
2000 samples. Contour spacing is 6.9 Mel) Shape atT
=1 MeV for Dy. 2000 samples. Contour spacing is 2.0 MeV.
(d) Shape aff=0.125 MeV for Dy with «=0.1 MeV 1. 4800
samples. Contour spacing is 3.0 MeV.

ingly gamma-soft with increasing spin. This is also true in
the SPA[Fig. 13f)], which was utilized in this case since the
Monte Carlo sign for the exact calculation becomes too small
to obtain useful results. There is no sign of oblate shape at
this spin in Dy, as predicted by Cranmer-Gorde al.
using a Nilsson-Strutinsky cranking model3]. However,
the SMMC ground state deformation i“Dy with these
parameters is clearly too large. M al. [14] claimed evi-
dence for a return to some collectivity it*’Dy from spin
36" to 48". The shape plot for*Dy at J~50 [Fig. 13f)]
appears soft. The SMMB(E2)=5 W.u. at this spin using
the fitted effective charge.

Note that with increasing\ in these isotopes, the ground
state deformation is roughly constant and the depth of the
minimum increases. In fact fd°®y, the depth of the well is
roughly the same as the fission barrier40 MeV) [15].
The very low temperature results féf®Dy and Dy (not
shown do not coincide with the mean field.

Previously published shape plots from SMMC results in
gamma-soft nuclei using a pairing plus quadrupole Hamil-
tonian with quadrupole pairing16] did not exhibit this.
However, those nuclei are only weakly deformeg@ (
~0.05-0.15) while the dysprosiums with=154 are well
deformed 3~0.3). For the dysprosium shapes in this paper,
the unexpected depth of the potential well is evident only for
well-deformed cases.

It is apparent from the above that the dysprosiums are all
deformed in their ground states in the exact model calcula-
tion. However, %Dy is known experimentally to be spheri-
cal. Baranger and Kumar did not calculat&Dy, though
they did calculate some other spherical isotopes. A shape
plot has also been constructed from SMMC results4Ba
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140Ba at T=0.25 MeV Dy
_30 T T T T M
% -60 e g = =
I 75+t 8
v L
-90 —— : —
300 L e Canonical  ®) ]
A I oo SPA
“‘—V, 200 8
100 C T
0} : : . '
0.0 0.2 0.4 0.6 0.8 . 800 N ()]
- 14 < 600 | ]
FIG. 15. Shape aI=0.25 MeV for 14Ba. 4000 samples. Con- A o ) ]
. e ] 400 | e—e Canonical
tour spacing 0.42 MeV. v 200 L o0 SPA ]
, , : S U= T M
for comparison with Baranger and KuméFig. 15. The & ‘i X gg%ﬁ:ﬁgﬁﬁﬁgﬁ)\) ]
SMMC result for **°Ba agrees with the Baranger-Kumar re- e b\, =
sult; both calculations indeed show a spherical nucleus. This Q
isotope hasz=56 andN=284. For the shell model space
used, this becomes six valence protons and two valence neu-
trons so that, unlike dysprosium, the proton shell is less than
half filled. The SMMCB(E2;2—0) is 5 W.u. using the
effective charge fitted for the dysprosiums. Reducing the

guadrupole coupling to half its mean field strength still
yielded deformation3~0.3 for 1*Dy with a deep potential.

However, reducingy to half the mean field strength returns . s
’ ; S . . FIG. 17. Energy(@), spin (b), quadrupole momen(), pairin
152Dy to a spherical distribution which fits the measuredenergy(d) and B%I(S)paﬁ g;&e)qin 153&, for BararﬁgefKumgr

B(E2) Stfef_‘gth_ with effective chargeg,e,) =(1.0). interaction strengths. Symbols fG# match the symbols ifd).

The equilibrium shape was also calculatedfBa for
inverse temperaturef=4 MeV . *Ba has E(2]{) the Monte Carlo sign behaves well and remains at 0.82 for
=199 keV[23] and deformatior8=0.19[24]. This nucleus canonical3=10. Also, some of this reduction in sign may in
proved to be extremely deforme@{0.45) in SMMC with  fact be due to limits of numerical accuracy in the machine.
the Baranger-Kumar interaction parameters, but with a de-
formation well not nearly so deep as for the= 154 dyspro- 1. Static observables

siums(Fig. 16. In this case, the potential was only about 2.5 pog it for static observables are quantitatively similar to

MeV deep. Baranger and Kumar did not calculate this iSOy, eyen-even results. The energy difference between the full
tope, so direct comparison with them is not possible in th'stanonical and SPA calculations at=100 keV is 1.97
case. Baran.ger and Kgmar also made no claims that their 0.4 MeV [Fig. 17a@)], which is a little less than the 2.49
model is valid for nuclei at such extreme deformatj@z]. +0.16 MeV canonical-SPA energy difference in neighbor-
ing ®Dy and the 2.15:0.06 difference in*>*Dy. This dif-
F. Odd A ference is due to different pairing energies in these odd-even
As mentioned previously, the odd nucleon in an odd mas&nd even-even isotopes. The discrepancyJf) between
nucleus violatesT reversal symmetry and can break the SPA and full solutions is\J*=66 or AJ~8 [Fig. 17b)].
Monte Carlo sign, even with an interaction free from repul-The ground state spin fof*Dy is (7/2)” so that(J?)
sive contributions. Results frofP®Dy are shown below in  =15.75 and the first excited state is (3/2at excitationE
Figs. 17a)—17(e). In this case, for our simple Hamiltonian =109 keV. Thus, the estimatgél needed for filtering the
ground state is reachable agd?)=16=4 in the SMMC
canonical ensemble agrees very well with experiment.
Again, the SPA quadrupole moment 1Ay is in excellent
agreement with the full canonical calculatipRig. 17(c)].
The total pairing energy and BCS gapsigs. 17d) and
17(e)] are similar to results it°Dy and Dy [Figs. 3a)—
3(e)].
Occupation numbers for protons and neutrons in the ca-
nonical ensemble fol**Dy appear in Figs. 18) and 18b).

As the temperature increasesTe-2 MeV, the proton oc-
cupation shifts only slightly to the highest orbitals. For neu-
FIG. 16. Shape af=0.25 MeV for **Ba. 2300 samples. Con- trons, however, there is a clear rise in thg, occupation.
tour spacing is 0.7 MeV. The occupation numbers are also compared for full canonical

B [MeV™]

00 01 02 03 04 05 06
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158, 153

Dy Protons Dy Neutrons 2. Cranking
8 ey 8 T ) ) 1 . 15 .
@grp a5 hi dse si2 O toe naz g e si2 With cranking at3=10 MeV !, the sign for®Dy is

| 0.69 for @=0.05 MeV, 0.52 foro=0.1 MeV, and just
o3 0.10 for w=0.2 MeV. Recall that the sign forg
=10 MeV ! in uncranked'®®Dy is 0.82. The moment of
inertia Z, is 49.6-3 #2/MeV in the limit o—0 for the
| canonical calculation.

M j—.—l—.'# G. Level density

(c) Canonical B=10 (d)
SPA B=10 5 Canonical B=10

SPA =10 The level density results fol*Dy are shown in Figs. 20
and 21. E(B) points are calculated at intervals g
=0.0625 to execute the saddle point inversion to the level
density p(E) [Eq. (18)]. The level density[Fig. 20@)] is
compared with a few parametrizations of backshifted Fermi
gas formulas. The"®Dy density is not directly compared
= with experimental data since no measurements are available.
O 4 2 3 4 5 6 ‘0123 4586 7 SMMC results are not as accurate for low temperatures or
Orbital Orbital small excitation energie€£<<1 MeV) since numerical errors
FIG. 18. Proton and neutron occupations'iiDy. Results(a) tend to be_larger ther_e. This i_s not a serious concern since the
and (b) are for the canonical ensemble &=0.1 MeV andT saddle point approximation itself is not really valid at the

—2 MeV while (¢) and(d) are canonical vs SPA &t=0.1 MeV. lowest en(_argies anyway..For the Iqwest energies, thg density
of states is best determined by simple state counting from

known experimental levels.

vs SPA calculations in®®Dy for =10 in Figs. 18c) and Three versions of Fermi gas density formulas are used.
18(d). These occupation numbers look very similar, thoughThe first, labeled BBF witha=19.25 and5§=1.0 in Fig.
the agreement is slightly better for the protons. Pairing20(a), is the classic Bethe formuld7]:
strengths are more revealing.

The pairing strengths in both proton and neutron channels 1
has also been computéBigs. 19a) and 19b)]. The sum of p(E)= 1224 E — 5)5/4exq2 Va(E-4)]. (20
these eigenvalues, with no background subtractiom (in)
‘J_:0+ channels is 2.3.0 (0.39) for the exact canonical SOIU'The calculation for Dy was done with a=A/8
tion and 1.70 (0.27) in the SPA. These values are stronger. 19.25 MeV ! and the energy is backshifted Bs- & for
in the full canonical than in the SPA, as would be expected5: 1 MeV for an even-even nucleus. This formula happens
from looking at Fig. 17b). For the protons, the difference in ¢, agree quite well with the SMMC prediction for tH&Dy
the eigenvalue sum is mostly due to eigenvalue number Zyensity for energies above 2 MeV. Notice that solutions to
where the full canonical eigenvalue is more than twice thehis formula will diverge a&— & for positive 5, so the result
SPA result. These eigenvalues are otherwise distributed vei% shown only down to an energy where the density formula
similarly in the full and SPA results. A similar situation yields a sensible result.
holds for the neutrons, where the first eigenvalue for the full Holmes, Woosley, Fowler, and ZimmermaawFz) cal-
canonical solution is more than double the SPA value. Theulate backshifted level densities [ds3]
SPA in the density decomposition does not produce the

(=2}
(o2}
T

=10
=05

N
T

Occupation number
N
T
1 L
Occupation number
N IS
T
.

o
o

o
T
L
(o2}
T
L

IS
T
1
IS
T
Il

n
T
L
Occupation number

.

Occupation number

nuclear pair condensate revealed in the exact calculation. 0.482
p(E)= 56 (E—06) ¥ exg2ya(E-98)]. (21
« Pair Strength in 153Dy v Pair Strength in 153Dy
5 @ Em‘umﬂ,;w 04 . 'Ecm'mﬂ;w The a pa}rameters for HWFZ can depend on whether the
SPAp-10 i sPpto ] nucleus is deformed or not. FdPDy, §=0.89 MeV and

a=22.28 MeV ! for spherical parameters amad= 20.05 for
the deformed parametrization. The spherical HWFZ curve is
always slightly low and the magnitude tails off too quickly
below E=2.5 MeV as compared with the SMMC result.
! ! HWFZ (spherical is too small by a factor 2.5 akE
g 1 in e: |4 3 B g 1 25'3 4| 5 B ¥ =10 MeV and too low by a factor of 4 &=1.5 MeV.
genvalue genvatue HWFZ (deformed, which has a smallea parameter, is
FIG. 19. (a) Pairing matrix eigenvalues for protons df=0" clearly a worse fit. It is more than an order of magnitude
for %Dy at T=0.1 MeV. (b) Pairing matrix eigenvalues for neu- smaller atE=10 MeV and is six times smaller aE
trons inJ"=0" for Dy at T=0.1 MeV. =15 MeV. The typical BBF a parameter, A/8, is
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2 © SMMC ® SMMC
10 = = - BBF (BM; a=19.25, 3=2) = = - BBF (BM; a=20.25, 3=2)
— — BBF (HWFZ-T; a=19.58, 5=0.90) — — BBF (HWFZ-T; a-=20.15, 8=0.88) 1
AAAAAAA BBF (HWFZ; 2x20.05, 5-0.89) w-eee BBF (HWFZ; 2=18.48, 8=0.63)
10° — - BBF (HWFZ; a=22.28, 5=0.89) — - BBF (HWFZ; a=20.25, $=0.63)
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FIG. 20. (a) Level density for!®Dy in SMMC shown with backshifted Fermi gas approximations. BBfandard backshifted Bethe
formula. HFWZ= parametrization of Holmes, Woosley, Fowler, and Zimmerman, and HWFEWFZ formula with Cowan-Thielemann-
Truran parameters. See text. HWFZ witk: 22.28 is for sphericat>Dy parameters whila=20.05 is for deformed®Dy parameters. SPA
denotes the SPA result for the level density from SMMIE. SMMC result for 152Dy compared with the same backshifted Bethe formula
approximations.

19.25 MeV ! for A=154. This is smaller than the HWFZ whereC, stops decreasing is taken as the limit of validity for
(deformed density parameter and would make the fit eventhe calculation. An inert core is assumed here at all times.
worse. The SPA level density fof**Dy has also been calculated
Cowan, Thielemann, and Trurd@0] have modeled the and compared with SMMGFig. 22). Here, the excitation
parameters> anda slightly differently from HWFZ. In this ~ energy has been taken relative to the SPA ground state. The
paper, these are called HWFZ-T parameters. He has takenSPA level density agrees well with SMMC for low excitation
as energies, but is consistently lower for energies above 4 MeV.
Recall that the SPA enerdyvs B [Fig. 1(d)] agrees with the
8=A(Z,N)—10/A (22 full SMMC at high temperatures, but never cools completely
to the SMMC value for lower temperatures. ThAE from
with T=0 to T=x is smaller in the SPA than in the full canonical
SMMC, and this difference of a couple of MeV makes a
12/A, even-even (23 perceptible difference in the level density. B=10 MeV,
the SPA density is smaller by a factor of 4.
A(Z,N)={ —12//A, odd-odd (24) It is in a sense peculiar that although the SPA energy
0, odd. (25) agrees well with the SMMC energy at high temperatures, the
level density just mentioned above agrees worse at high tem-
peratures than at low. Whether the SPA level density appears
better or worse for low or high temperatures depends on

He obtained the density paramewirom afitto experimen- what ground state reference is used. A shifted plot with the

tal densities at one neutron separation energ,20. For 0 . : . .
py, this givesd=0.90 anda=19.58. The HWFZ-T level . ®SMMC .
density is somewhat lower than the calculated SMMC den- — Spline

sity in ®Dy at all energies, but the slope agrees pretty well
with the SMMC calculation. The HWFZ-T magnitude is 44|
lower by a factor 15 aE=10 MeV for Dy and a factor 6 R
for E~1.5 MeV.

Certainly for the case of*Dy, the most naive Bohr-
Mottelson Fermi gas formula works much better than the ;o9 | .
more carefully developed parametrizations of HWFZ and V

Cowanet al. This serves as an example of the utility of more
realistic SMMC calculations to determine nuclear level den-
sities. 10l

From the specific hedfig. 21) and the knowrE vs g, .
the Dy density calculation is expected to be valid up to
10-15 MeV excitation before finite model space effects set °
in. The specific heat will increase with increasing tempera- ¢ s

ture. Eventually, however, the model space will become ex- B Mev-]
hausted as the valence particles are all promoted as high in
energy as possible within the finite space. The turnover point FIG. 21. Heat capacity if®*Dy.
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» o—< SPA
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® SMMC 10
©SPA .

EMeV] B [MeV ]

FIG. 22. SPA vs SMMC level density it?*Dy. FIG. 24. SPA heat capacity iHDy.

SPA energy referred to the SMMC ground state instead leads actor 2 of SMMC forE=1 MeV and smaller than

to better agreement at high temperatures and worse at lowy\,vic by a factor of 3 aE=10 MeV. In contrast td"*Dy

temperaturesFig. 23. o _ HWFz fits very well for %Dy using a=A/8
The heat capacity can be found in Fig. 24. This Iooks:20_25 MeV 1. The simple backshifted Bethe formula

similar to the full SMMC calculation except that the magni- fails badly here, however, especially for higher energies.

tude of C, is smaller except for the lowest temperatures \yq getermined that the level density calculation for this
(highestg). The heat capacity has a sharp dropoff beBw iqq10ne s valid up to excitations of 15-20 MeV. This is

=1 MeV for both SPA and full SMMC solutions. The heat gjjghiy higher than the valid range for the densityfDy.
curve implies that the SPA should be valid for up to about 13 "4 comparison of SMMC density if®Dy with the

MeV excitation. However, the SPA density clearly diverges-l-veter et al. [21] data is displayed in Fig. 25. The experi-

from SMMC well before this limit. mental method of Tveteet al. can reveal fine structure, but

Similar calculationsdzélzr[e) shown fo¥*Dy in Fig. 20b).  oes not determine the absolute density magnitude. The
For the more deformed™Dy, the HWFZ-T formula works  q\imc calculation is scaled to facilitate comparison. In this

comparatively well as Fermi gas estimates go, but is still Offcase, the scale factor has been chosen to make the curves

by a factor 3 neal_Ejel MeV and a factor 1.4 nedE  ,qree at lower excitation energies. From 1 to 3 MeV, the

=10 MeV. HWFZ in **Dy is better than HWFZ-T at low - agreement is very good. From 3 to 5 MeV, the SMMC den-

energies, but is clearly worse at higher energies. It is withiryjyy jncreases more rapidly than the data. This deviation from
the data cannot be accounted for by statistical errors in either

14

10 ; ; . ;
- 107 ; ; ; i
10° | f‘
10° | m #J o] Mﬁg
4 ﬁ ”H# 10° L ol II}: I
10° - ﬁ* # 1 ML E
4 mﬁ *m 10" | fof %ﬁ
a 10° | ) Ly 1 - L=
# > ol ==
2 10° ¥l
10 j =2 s
a IE@JQHJ}:
10° |
10° eSMMC 1 =
© Shifted SPA 10" Eﬁ
10° . * SMMC x 0.3
10° :gﬁa# o Tveter, et al.
102 . L I i
6 8 10 12 107 WH . . .
E [MeV] 0 2 4 6 8
o L E [MeV]
FIG. 23. SPA level density with energy shift i¥*Dy. See text
for explanation. FIG. 25. SMMC density vs data itfDy.
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FIG. 26. SMMC density in**Ba. FIG. 27. SMMC heat capacity i#*’Ba.

the calculation or measurement. Near 6 MeV, the measureg@ranger and Kumar, but were unable to goAovalues
density briefly flattens before increasing and this also apfigher than about 1 due to the prohibitive amount of com-
pears in the calculation, but the measurement errors ar%lJter time required.

larger at that point.

The measured density includes all states included in the

theoretical calculation plus_ some others, so that one would The work has systematically laid the groundwork for ap-
expect the measured density to be greater than or equal to ti@jing the shell model in rare earths. Previous applications
calculated density, and never smaller. We could have choséiave been plagued by severely truncated model spaces. An
our constant instead to match the densities for moderate exdvantage of being able to explore exact shell model solu-
citations and let the measured density be higher than thons in more expansive model spaces is to explain in funda-
SMMC density for lower energie€l—3 MeV). mental ways behaviors such as band crossings and pair cor-
Comparing structure between SMMC and data is difficultrelations that have been previously understood from
for the lowest energies due to statistical errors in the calcuphenomenological models.
lation, and comparison at the upper range of the SMMC The static path approximation done in density decompo-
calculation, i.e.,E~15 MeV, is unfortunately impossible sition for this phenomenological pairing plus gquadrupole
since the data only extend to about 8 MeV excitation energymodel works well for calculating deformation and relative
Level density information has also been calculated for the&energy differences between ground states of different iso-
lighter nearer closed shell nucled®Ba. This was done to topes regardless of deformation. Additionally, deformations

investigate possible systematic differences in level densitied'® Well determined in the SPA for quadrupole coupling

Its level density is shown in Fig. 26 and the specific heat ins'trengths even a factor of 3 larger than the Baranger-Kumar

) . . .. mean field values.
Flg. 27. L1J4r(1):éke.the dys%lprtosmms, the calculated heat capacity The density decomposition SPA results for the pairing
curve n als very flat. energy and pair gaps are not as good, however, and the dis-
crepancy is worse for increasing pair strengths. The SPA also
overestimates the low-spin moments of inertia. However, the
SPA does produce thei 5, band crossing at the predicted
Whether or not one has included enough configurations igpin for *°*®Dy. The SPA does not produce the ground state
the model space is always an issue in these types of calculauclear pair condensate and pair gap; hence the discrepancies
tions. As mentioned in Sec. Il F, we examined deformationgn energy and moments of inertia.
and moments of inertia in an enlarged model space including SPA in the “natural” decomposition might lead to better
the unique-parity orbit below our original space, igy, for moment of inertia results. Additionally, we note that Ros-
protons andhy,, for neutrons. The deformations dfDy  signoli, Ansari, and Ring have applied spin projection in the
and **®Dy remained unchanged. The moments of inertia forSPA to improve agreement fqg?) at low T in deformed
156Dy differ by only a few percent in the new model space systemg25].
and this difference was within the sampling errors of the The low-spin SMMC moment of inertia if®®Dy for this
calculation. Thus, enlarging the model space in this way doeBlamiltonian agrees well with experiment. As expected, the
not seem to make any difference in the results. We furthecalculated moment of inertia initially increases and then de-
attempted calculations for the entire two-shell space used byreases. The decreasing moment of inertiatifDy is ac-

IV. SUMMARY

H. Changing the model space
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