PHYSICAL REVIEW C, VOLUME 61, 034004

Charge symmetry breaking in neutron matter
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We examine the nuclear medium effect on the charge symmetry bre@&8® caused by isospin mixing
of two neutral vector mesons interacting with nucleons in neutron matter. It is found that isospin mixing is
strongly enhanced in neutron matter as the neutron density increases and the charge symmetry is broken to a
large extent. We illustrate the influence of the enhanced CSB for bulk quantities by calculating the mass of a
fictitious neutron star composed of only neutrons. For the stars with central densities around the normal density
of nuclear matter, the masses are reduced by as much as 35% in comparison with those emerging from an
ordinary relativistic nuclear model with no CSB considered. The effect of CSB is attenuated for stars with
higher central densities which actual neutron stars are supposed to have, although the charge symmetry remains
broken to a large extent.

PACS numbgs): 21.30-x, 21.65+f, 24.10.Jv, 26.60:C

[. INTRODUCTION rapidly and strongly enhanced as soon as nuclear matter de-
parts from the isosymmetric state. The strong isospin mixing
Charge symmetry is one of the salient features of nucleainduces a large energy increase of nuclear matter and works
forces. However, it is known that the symmetry is slightly eventually to restore minimal isospin symmetry. This moti-
broken and only approximafd]. A typical manifestation of vated us to investigate the medium effect on CSB in neutron

charge symmetry breakin@SB) is seen in the small differ- matter which has the largest isospin asymmetry. We will
ence between then and pp scattering lengths that remains pursue it in this paper.

after the Coulomb correction is madi2—4]. A part of the The extent of the isospin mixing is usually parametrized
mass difference betweeél and *He is another example that in terms of a mixing angle, which can depend on the nucleon
could be understood in terms of C$B-7]. density of the medium. We are mainly interested(iinthe

It has been suggested that the CSB caused by isospiuclear density dependence of the mixing angle @ndhe
mixing of two neutral vector mesons can account for most oinfluence of DDCSB due to the isospin mixing on the equa-
the difference between thpp and nn scattering lengths tion of state of neutron matter. Regarding the latter, we illus-
[7,8]. Piekarewicz and Williams proposed a basic mechairate it by calculating the mass of a fictitious neutron star
nism for the isospin mixing of vector mesof®. According  composed of only neutrons, since the equation of state is
to this, two vector mesons in different isospin eigenstatesubstantial to determine the mass.
undertake a transition to each other through a baryon loop. In our previous works, we have used a relativistic nuclear
An essential point is the incomplete cancellation between thenodel proposed by Zimanyi and MoszkowsiM) [12].
contributions from a loop with a proton and antiproton andThis is a modified version of quantum hadrodynamic nuclear
one with a neutron and antineutron to the transition ampli-models originally proposed by Waleck&3], and can repro-
tude. The small mass difference between the proton and neduce the compression modulus as well as the correct satura-
tron causes this incomplete cancellation. One can take adion density and binding energy per nucleon of nuclear mat-
vantage of this idea to study the nuclear medium effect oner. However, when the model by ZM is applied to neutron
CSB. The medium effect on the isospin mixing appearsmatter, we find that it makes the equation of state in the high
through the Pauli principle for nucleons in the intermediatedensity region so soft that a type of gas-liquid phase transi-
baryon loops and nucleon effective masses, leading to tion can take place. In other words, the attractive interaction
density-dependent CS@®DCSB) in a nuclear medium. between the nucleon and scalar meson seems to be too strong

With the above idea of DDCSB, we have examined thein the model by ZM in the high density region. Since our
medium effect on the isospin mixing in nuclear matter in apurpose in the present work is to investigate how much CSB
previous worK 10]. We found that the density dependence ofis modified in isospin asymmetric matter, we make use of an
CSB works in the right direction such that the Okamoto-original version called QHD Il of quantum hadrodynamic
Nolen-Schiffer anomaly is resolvg8,11]. A striking feature  nuclear models rather than using the model by ZM. We
which we have learned there is that the isospin mixing ismodify it such that the model can describe the transition

between two vector mesons. We refer to QHD Il whenever
we compare our results with those from ordinary nuclear
*Present address: Department of Physics, University of Texas anodels with no CSB considergd3].

Austin, Austin, TX. We arrange this paper as follows. In the next section, we
"Present address: Theory Group, RCNP, Osaka Universitypresent the modified QHD Il as our theoretical framework
Ibaraki, Osaka, Japan. for the study of CSB in neutron matter. In Sec. Ill, we de-
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scribe the transition process of vector mesons in detail and We add a phenomenological interaction which causes the
relate the transition amplitude to the isospin mixing angle intransition between the isoscalar- and isovector-vector me-
neutron matter. We demonstrate DDCSB on various quantisons to the model of QHD Il. We assume the form of the
ties in Sec. IV. A discussion and comments are also givernteraction to be
there.
Ly=e(n)VOVDE, (4)
II. QHD Il WITH BROKEN ISOSPIN SYMMETRY . . . . L
The e(n) is related to the isospin mixing that is dictated by
The version QHD Il of the quantum hadrodynamic the transition between the vector mesons and can depend on
nuclear models proposed by Walecka contains an isovectothe neutron number density. We will relate e(n) to the
vector meson degree of freedom in addition to an isoscalatransition amplitude in the next section. The Lagrangian with
scalar and isoscalar-vector mesons which are relevant devhich we start our study of neutron matter is, thus,
grees of freedom in QHD[I13]. The Lagrangian of QHD Il
iS giVen by EZL:QHD ||+'CX' (5)

Owing to Ly, the vector mesons are no longer in isospin
eigenstates, but mixtures of them. Nuclear systems in which
nucleons exchange such mesons eventually break the charge
symmetry.
Let us apply the mean-field approximation to our study of
L neutron matter. Many authors have discussed the validity of
1 " 2 .o the MFA in the quantum hadrodynamic nuclear model and
+5( o b—m;é H;O found it to be a good approximation for a first step to study
many-nucleon systems in the relativistic schefhd]. Al-
though the quantum correction is considered to improve the
' @ approximation, we leave it out for simplicifyL6]. In a static
and uniform state, all meson fields in H§) are replaced by
where ¥ is the nucleon field operator which is a spinor in constant classical fields in the MFA according to
isospin space and can be expressed as
d—(p)=dc, (6)

\Pp(X) | | |
.0/ @ VO (VD)= 6,0V, (7)

Lonp n=" Yﬂ(i%_GoVLO)_GlTsVS))

at?
— Fl<m> 730, V{D—(M— f¢)}\lf

X

1 1
— ZF(I)WF,SB»"' Em|2\/(|),uvi:)

‘If(x)=<

with the field operators for the protap) and neutror(n) as ~ for 1=0 and 1, wherg:- - -) represents the expectation value
the upper and lower components, respectivelyis the third of a quantity inside the brackets in the ground state of neu-
component of the Pauli’s isospin matrices, amd”=(i/  tron matter. The Lagrangian in the MFA is, then,

2)[y*,v"]. Regarding mesons involved in Ed), ¢, V(©, _ o0 o

and V() are the field operators for the isoscalar-scalar, £mrr="Y[iy*d,—Goy V=G 1907V = M* (o)W
isoscalar-vector, and neutral isovector-vector mesons, re-

. . 1
spectively,m,, mo, andm, are their massed, Gy, Gy, — S [m2p2—m2V2—m2y(D2] 4 ¢(n)vOVD)
andF; their coupling constants with nucleon, aRfl’*” the 2
tensor fields of vector mesons defined by (8
FOmr—= guyr— gryOn, (3)  The elements of the diagonal effective mass ma¥ti( ¢.)

where the superscriptdenotes the isospin and takes 0 or 1.are

The parameteM  in Eg. (1) is the average of the proton and M§ (po)=Mp—f e, 9
neutron masses. We follow the metric convention of Bjorken

and Drell[14]. The diagonal “mass” matriXM has proton whereb stands fop or n. Note that the tensor coupling term
mass M,) and neutron massd\,,) as its diagonal elements. of the isovector-vector meson plays no role in the MFA for
Since the tensor coupling of the isoscalar-vector meson witBtatic and uniform matter.

the nucleon is expected to be negligibly small, we ignored it The vector meson sector ifiy,rr can be diagonalized in
[15]. We will shortly apply the mean-field approximation terms of

(MFA) in which all meson fields are replaced by classical

fields. The isovector meson does not play any relevant roles we=VPcoso—VMsing, (10)
in the MFA for isosymmetric nuclear matter, since the cor-
responding classical field is proportional to the nucleon is- pe=Vsing+Vv{Ncoss. (11)

ovector density as we will see later. However, it becomes
important in isospirasymmetrimuclear matter such as neu- The w. and p, may be interpreted as the classical fields of
tron matter in our case. physicalvector mesonss and p® whose dominant compo-
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nents havel =0 and 1, respectively. The diagonalization
condition determines the mixing angeto be

2¢e(n)

2
m;—

tan 20= (12

5
Mg

Remember tha® depends on the neutron density through.

e(n). The diagonalized Lagrangian is written as

Lyupr="[iv*d,—g7Y’wc—9" Y°rapc— M* (¢) 1

1
— S (Mg —miwg—mgpg), (13
where
gp O Gocosf— G sind 0
9=lo g,/ 0 Gocosf+G;sing)’
(14

0

: I

0 on

G,cosf+Ggsiné
0

2

0
G,c0s0—Ggsing)

(15
The masses,, andm,, which are defined by
o mi+mi  mi—m? 16
@ 2 2cosd’
m2_m§+mf_ m§—m3 an
) 2cosX’

are interpreted as the effective masses @ndp® in neutron
matter. Whem=0, therefore, they reduce to their free val-
ues, that ism,=782 MeV andm,=770 MeV Note that
thereis a crltlcal angle for which elthm2 or m can vanish.

It actually takes place fdrn when the mixing angle reaches
0. defined by

(18)

cos 26c=(—

where 6, is the mixing angle ah=0.

The nucleon field satisfies the Lagrange equation which is

derived from Eq.(13):

[i 749, = M* (¢e) 1¥ (X) = (gwc+ g’ m3pc) YOV (X).
19
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wC_g_gnv (21)
mw
gI
pe=——3N, (22)

p

in terms of the vector and scalar densities defined by

n=_vh:), (23

=(:PV:), (24)
respectively. HereQ: represents the normal product of an
operatorQ. The right-hand side of Eq24) can be calculated

to give
. E
n F
272 K& —)

Ne= M*2In , (25)

*
n

whereK andEg=M*Z+K? are the Fermi momentum and
energy of neutrons. Note tha is related ton by K
=(37%n)Y® which emerges from Eq23).

With the help of Eq(25), we can transform Eq$9) and
(20) into the coupled equations which determine the effec-
tive masses of proton and neutron in neutron matter:

*

f2M*
27°m

K+E

2 F

M “In| ———
n

M =M, — KE,: (26)

The energy density and pressure of neutron matter can be
obtained easily according to the usual procedures given in
standard textbooksl 3]:

K+E
€= ——| KER(M%2+2K?) —MA‘In——"
Mn
2 2 12
m;, 9n  On
+E(Mn—M:)2+§ — —2) 2 @D
o p
1 K+Eg
p=— KEF(sM*Z—zKZ)—sl\A*“ln—]
2472 ¥ oM
2 2 12
9  On
24| =+ —|n2 (29
2 2 2
of 2\m; m

Note that the density dependence of CSB appears thréugh
and hence through,, g,, m,, andm,.

[1l. ISOSPIN MIXING IN NEUTRON MATTER

This can be solved easily and the ground state of neutron
matter can be constructed for a given neutron number den- Let us expresg(n), which determines the magnitude of

sity. The classical meson fields are obtained from

(20

the isospin mixing, in terms of the transition amplitude be-
tween the vector mesons in different isospin eigenstates in
neutron matter. We follow the procedure that we used for the
study of CSB in nuclear matter in our previous pafHd|.
Here we give only the basic idea to obtaifin). We first
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construct the transition amplitude between the isoscalar- and K2 (1
isovector-vector mesons. Then we average it with an appro- TI1M)(k;n)= —f dzZ1-2)n
. . . . . 2
priate weight function. Finally we relate the averaged ampli- 2mJo
tude toe(n). Since only the time component of the vector 2 )
meson fields is relevant in the MFA, we consider the transi- N 1 fK 4E7(p)—k . 2p+k|
tion between the time component of the vector mesons. 2k En(p) 2p—k\
Apart from trivial factors, the transition amplitude be-
K+Eg
— (36)
M n

tween the isoscalar- and isovector-vector mesons is given by
for Eq. (30), where we denotgk| with k. Similarly we have

M;2+z(1—z)k2]
M*2+7(1—2)k?|

1
_ * 2
+2—77-2{KE|: Mn In
M(k;n)=GlIM(k;n)G,+GoIIM(k:n)F,, (29

where
4 k?
d M (k;n)=—- — —fdl Mi2+2z(1—2)k?
H<V><k:n>:‘if224Tr[y°e<p+k>y°rse<p>], (im==g 5 3 g, S2nIME -+ 2(1-2)k
T
(30) k MF d p I2p—|—k -
T a2 MyJo “PEL(p) " 2p—K
4
H(T)(k;n)z—iJ' p4Tr[y°G(p+k)
(2m) for Eq. (31), wheren,=+1 forb=p and—1 for b=n.

_ 40 As we have done in the previous paper, we incorporate
#) TSG(p)}- (31) the effect due to the multiple scattering of nucleons by the
2My CSB interactions int@(n). Considering that a wide range of

momentum transfer is involved in the multiple scatterings,
The first and second terms on the right-hand side in(2g. ~ We take an appropriate average.bt(k;n) with respect to
represent the contributions from the baryon loops whose vethe momentunk. Then we can relate the average which we
tices with the isovector meson are subject to the vector andenote Wlth/\/l(n) to e(n) by
tensor couplings, respectively. The propagat®(p) of
nucleon with four-momenturp is a diagonal matrix in isos-

X

[ i M(n
pin space. The elements are given by ()= g _( ) , (38)
Mo
yP,+M¥
Gp(p)= Z’JT‘) (32)
Po—Mp +ie Where/\/lo M(n 0) and ¢y is a parameter representing
e(n) atn=0.

For the weight function to obtaitM(n), we utilize the

G,(p)= YPat My i YPat My product of the form factors at the vertices associated with
n P2—M*2+je En(p) and p° in the Bonn potential. The normalized weight func-
tion is, therefore,
X[Pro—En(P)]10(K—1p)), (33
3
for neutron matter, wherB/=(P,,,p) and their time com- F(k)=— 1 °A1(A0+2A1) , (39)
ponents are defined by w2 (A5+Kk?)2(A3+Kk?)?
9pOn  9pYn whereA, and A, are the cutoff momenta for the isoscalar-
Poo=Po— | —= ——=> | (34) and isovector-vector mesons. We use the values used in the
o m, Bonn potential forAy and A4, that is,A;=A;=A=1850
MeV [17]. Then we have
2 12
9n 9
Pro=Po~| —5+—5|n. (35 _
w My M(n)=f d3kF(k)M(k;n). (40)

We work in the static limit for nucleons. Then we can
evaluate the integrals in Eg0) and(31) analytically with  The integration with respect to can be performed analyti-
the help of dimensional regularization. We obtain cally to give the averages &1 (k;n) andI1(D(k;n):
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*
p

K+ Ep

KEg A?
7 127%(AP—-4M}?)?

8KEE

A2
H(V)(n)__ln A2+ 4K?2

[ (A2=4M}?) =AM} (A% +2M}?)

CANMRA(AP-aME?)

A?(A%2—10M*?)W(n)

A?+4K?
A2 AME2(A24+2ME2) + A2(A2—10ME2)Z(ME)
_2 - b b b b (41)
6’7T2 b b (A2_4M;2)2 !
2 * 4 20A2_ *2
ﬁ‘T’(n)=—aA—|n Mo |1 . - LeE A2—10M:2——A (AN
4 K+EF 247 (A*—4M}?)2[ (A%+4K?) A2+ 4K?2
A2 AMF2(A2+8MF2)+3A%(A2-8M*2)Z(MY)
2 2 b b b b
—3(A°—8M7p )W(n)]—oz12772 ; Mo (A7— a2y (42)
where
2A K\4AM*2— A2
W(n)= tan ! 2M* > A
( ) /4M:2—A2 AEF ( n )
A K = 4M*2+AEF‘ oME-A) s
= < ,
Ryl PR ey AEg| "
Z(50) = 2A . 2x—A x> A
(x)—\/ﬁtan m (2x )
A VA +2x+ A —2x (2x<h) "
= n X ,
VAZ=4x% | JA+2x— A —2x

anda= (M7 +M7)/(My+M,). In obtaining Eq/(42), we replaced {1 ;/My) and (M} /My) with « in good approximation.
Forn=0, Egs.(41) and(42) reduce to

— A% (M) A2 AM3(A%+2MD)+ A% (A%—10MB)Z(My)
HE)V):—In( e X o) TATA AW Z(My) (45)
672 \Mn/ 672 (A%2—4M})?
A% (M A? AME(A?+8M2)+3A%(A2—8M2)Z(M )
M= ———In (_P> - o - P (46)
472 \Mp) 1272 % (A2—4M3)?
|
Finally we obtain masses ofo andp® determinem, andm; through Eqs(16)
o o and(17), and e, is obtained from Eq(12) with 6= 6,.
Iy +c, 1 M(n)
E(n)_ €0 ﬁ(v)-i—C ﬁ(T) (47)
0 100 IV. CALCULATIONS AND DISCUSSIONS
whereC,=F,/G;. In the present study we are interested(inthe nuclear

The parametelk, is determined as follows. We fi¥,  density dependence of the mixing angle ingthe influence
such that a nuclear force of whiehandp® are those defined of DDCSB on the equation of state of neutron matter. When
by Egs.(10) and (11) reproduces a quantity attributed to we compare our results with those emerging from ordinary
CSB. Actually, when we choos®=4° and usgyandg’ for  nuclear models, we refer to the QHD Il as a typical one of
the coupling constants ab and p® with the nucleon, the ordinary models. To be consistent, therefore, we fix the
Bonn potential reproduces the difference betweeminand  meson-nucleon coupling constants appearing in the present
Coulomb correctegp scattering lengths. Then the observedcalculations to the values used in QHD[113]:
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. . S FIG. 2. Masses of physical vector mesons in neutron matter.
FIG. 1. Density dependence of the isospin mixing angle. The .
solid and dot-dashed curves correspon€{e-3.7 and 6.1, respec- The solid and dot-dashed curves represent the massg$ with

tively. WhenK =0, 6 goes to 4°. The approaches to 44.6° in the C,=3.7 and 6.1, respectively, and the long-dashed and dotted
high aensity Iimit' ' curves the masses ab with C;=3.7 and 6.1, respectively. At

densities higher thak=5.9 (7.3) fm'* for C;=3.7 (6.1), m’
dives into negative values.

M 2
f2<—N> —267.1, (49) , L
m, The effective masses of vector mesons are also modified
to a large extent. According to Eqgl6) and (17), we can
M 2 . .
c2 MN 1959 calculatem,, andm, for a given neutron density. The result
\my) B is depicted in Fig. 2, showing a large modification of them.
As we have mentioned in the preceding section, it is not
o[ Mn 2 5471 surprising that the system described By, becomes un-
1 m_1 ~T 4 stable with respect to the excitation of thedegree of free-

dom. The critical density to givenf):O isn.,=6.90 fm 3
Note that the numerical factor of 4 on the right-hand side offor C,=3.7, and the critical mixing angle i9.=44.6°
the third relation is due to the difference of our definition of which we can obtain from Eq18). However, this instability
the isovector interaction in Egl) from the definition in Ref.  should not be understood as such caused bgyantumex-
[13]. The tensor coupling constaRy is somewhat ambigu- citation with p quantum number in neutron matter, since
ous, lying in the interval fronC,=F;/G;=3.7 to 6.1[15].  quantum fluctuation which is coupled with nuclear excitation
We perform our calculations for both extremafef. has been ignored throughout in the MFA. In addition, it oc-
First of all, we calculated which is obtained from Eqg. curs at an extremely high density region where nucleons will
(12) with Eq. (47). The density dependence 6fis shown in  no longer be the only relevant degree of freedom. It is inter-
Fig. 1. One can see that the isospin mixing is very much an@sting to see whether or not suchp anstability is generated
rapidly enhanced as the neutron density increases. It reacheg DDCSB in neutron matter when the quantum fluctuation
41° (40°) already ah=0.17 frmi 3, the normal density of is taken into account. We leave this for a later investigation.
nuclear matter, whe©,=3.7 (6.1). This is in contrast to When we study the effects of DDCSB on various quantities
#=2°, a small suppression of CSB, for nuclear matter within the framework of the MFA, we shall not proceed with our
normal density{10]. We emphasize that our specific choice calculations exceeding=6.90 fm 2 hereafter. Note that
of nuclear model has nothing to do with the enhancement othis value ofn is considerably larger than the central density
CSB due to the large isospin mixing, but the medium effectof a neutron star with its heaviest mass.
is essential for it. The energy per nucleon, which is defined by
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- /
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E 20 E:, 0
%] %] i
10 =100
0 -200 t—
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-1
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FIG. 4. Contributions from individual meson degrees of free-
om on the right-hand side of E(R7) to E obtained from QHD II.
he long-dashed, dot-dashed, and dotted curves represent the con-
tributions fromo, , andp. The solid curve represents the sum of
them.

FIG. 3. The energy per nucleon as a function of the Fermi mo-
mentum. The solid and dot-dashed curves show the energies o
tained from the model with DDCSB witle,=3.7 and 6.1, respec-
tively, and the dotted curve the energy from QHD II.

& The pressure obtained from E&7) is shown in Fig. 6 as
E= n Mn, 49 3 function of logarithmic neutron density. It is seen that neu-
tron matter with DDCSB is softer aroung=10"
~10% glen? (n=0.06-0.60 fm %) than that described
is depicted in Fig. 3 as a function of the Fermi momentumby QHD II. Interestingly the central densities with which
The solid and dot-dashed curves represent the energies whigleutron stars can be formed in a supernova explosion fall
we obtain from the model with DDCSB witle;=3.7 and into this interval. Let us demonstrate how large the effect of
6.1, respectively, and the dotted curve the one from QHD IIDDCSB appears on bulk quantities by calculating the mass
We show the contributions from individual meson degrees obf a fictitious neutron star which is assumed to be in the
freedom in Eq(27) to Eiin Figs. 4 and 5 for QHD Il and the ground state of a nuclear system composed of only neutrons.
model with DDCSB, respectively. The first term of E@7)  Our neutron star can approximate actual neutron stars with
contains an attractive interaction of with nucleons. The central densities around or higher than the normal density of
o-field energy, the second term in E@7), is positive and  nuclear matterpyy=2.84x 101 glcn?. As discussed by
smaller than the attractive interaction energy with nucleon$ethick and Ravenhall, when actual neutron stars have cen-
in magnitude. Thus the energy per nucleon arising from theral densities lower thapy,,, they are likely to have crustal
o degree of freedom, which is drawn with the long-dashedstructure[19)]. Also actual neutron stars contain electrons,
curves in the figures, turns out to be negative when they arprotons, and other hadrons in addition to neutrons, being at
added. In QHD II, thereforey is responsible for most of the beta equilibrium among them. Nevertheless, in order to illus-
repulsive interaction with nucleons in neutron matter. On thearate the magnitude of DDCSB, it is still meaningful to
other hand, our calculation with DDCSB shows that the re-evaluate the mass of such a fictitious neutron star. The mass
pulsive interaction ofw with nucleons is suppressed by the is obtained by applying Eq.(27) to the Tolman-
enhancement of CSB, while the repulsive interactiorpof Oppenheimer-Volkoff equatiofl8]. We compare our results
develops as neutron density increases. The plateau behavigith those emerging from QHD Il with no CSB considered
seen in the energy obtained from the model with DDCSB inand see the effect under a common scheme of relativistic
Fig. 3 arises essentially from suppression of the repulsivenany-body theories. The result is depicted in Fig. 7 as a
interaction ofw with nucleons. function of the central density. Since the nuclear force with
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FIG. 6. The pressure vs density. The solid and dot-dashed
FIG. 5. Contributions from individual meson degrees of free-CUrVes represent the pressures emerging from the calculations with
dom on the right-hand side of E427) to E obtained from the C,=3.7 and 6.1, respectively, and the dotted curve the pressure

model with DDCSB. The result witlC,;=3.7 is shown. The at- oM QHD II.
tributes of curves are the same as those in Fig. 4.

DDCSB vyields a softer equation of state than the one which
ordinary nuclear forces do, naturally DDCSB works to re- =
duce the masses from those which QHD Il predicts. Reduc-
tion amounts to approximately 35% for stars with central
densities aroungyy . The effect due to DDCSB is attenu-
ated for the stars with higher central densities which actual
neutron stars are supposed to have. We will study separately
whether or not it remains to be reckoned with.

We do not proceed with further calculations for neutron
stars. But let us speculate about what takes place in actue
neutron stars when the charge symmetry of the nuclear forct
is strongly broken inside the stars. We have seen that the ) ) , ) ) ,
strong enhancement of CSB leads to giving lower energy ta 14 T 15 16
neutron matter than ordinary nuclear forces do. It implies
that actual neutron stars will enhance CSB and, hence, will
reduce the energy by transferr!ng a ngmber of protons to FIG. 7. The mass of the neutron star vs the central density. The
neutrons. Thus neUtrpn stars will contain a Sma_"er nurnbezgolid and dot-dashed curves labeled as CSB are the masses emerg-
of protons than ordinary nuclear forces predict. ConseTng from the model with DDCSB withC,=3.7 and 6.1, respec-
quently the Urca process will be suppressed and the COOIinﬁl/ely, and the dotted curve labeled as QHD is the mas’s from QHD
of neutron stars will be deceleratg20]. Il. The solar mass is denoted M, ., The inset shows the ratio of

To summarize, we have investigated DDCSB due t0 th§he masses emerging from the model with DDCSB and QHD I,
isospin mixing between isoscalar- and isovector-vector Meynere the solid curve corresponds to the case @itk 3.7 and the
sons in neutron matter. It was found that isospin mixing isdot-dashed curve to the case wiBh=6.1. The vertical arrows in
rapidly and strongly enhanced as the neutron density inthe large and small figures indicate the neutron density correspond-
creases. Consequently the charge symmetry is broken toigg to the normal density of nuclear mattepyy=2.84
large extent. We saw that DDCSB modifies the energy pex 10t g/cnt.

m
=
=)
Q
2]

MCSB/MQHD
=3
@

14 15 16
log,, p (g/cm’)

log,, p(g/cm’)
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