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Shell model description of normal parity bands in odd-mass heavy deformed nuclei

PHYSICAL REVIEW C, VOLUME 61, 03130(R)

C. Vargas-* J. G. Hirsch*' T. Beuschef* and J. P. Draay@f
IDepartamento de Bica, Centro de Investigaaioy de Estudios Avanzados del IPN, Apartado Postal 14-740,
Mexico 07000 DF, Mgico
2Instituto de Ciencias Nucleares, Universidad Nacional Aotna de Mgico, Apartado Postal 70-543, Mizo 04510 DF, Mgico
3Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803-4001
(Received 7 September 1999; published 1 February 2000

The low-energy spectra arfi(E2) electromagnetic transition strengths 6fEu, °°Tb, and *Dy are
described using the pseudo @Jmodel. Normal parity bands are built as linear combinations df35ttates,
which are the direct product of $8) proton and neutron states with pseudospin 2évo even number of
nucleon$ and pseudospin 1/%or odd number of nucleonsEach of the many-particle states has a well-
defined particle number and total angular momentum. The Hamiltonian includes spherical Nilsson single-
particle energies, the quadrupole-quadrupole and pairing interactions, as well as three rotor terms which are
diagonal in the S(B) basis. The pseudo $8) model is shown to be a powerful tool to describe odd-mass
heavy deformed nuclei.

PACS numbse(s): 21.60.Fw, 21.60.Cs, 23.20.Js, 27:%0.

The shell model is a fundamental theory that is applicableemoved from active consideration and pseudo-orbital and
in nuclear, atomic, and nonrelativistic quark phydits In  pseudospin angular momentum are assigned to the remaining
its simplest formulation it provides a natural explanation ofSingle-particle states. The coupling of a deformed rigid-rotor
magic numbers as shell closures and the energy spectra §¢'€ With one extra particle in a pseudo (SWorbital has
closed shelt: 1 odd-mass nucldi2,3]. Powerful computers been u_sed to describe rotational bands anq ele_ctromagnetlc
and special algorithms for diagonalizing large matrices hav@ropertles of heavy odd-mass nudl#B] and identical nor-

. ) ) mal and superdeformed bands9].
allowed systematic studies of nuclei of thd shell[4] and A fully microscopic description of low-energy bands in

pf shell up toA=56 [5]. New methods for solving large eyen-even nuclei has been developed using the pseut® SU
scale shell-model problems in medium mass nuclei have alsgodel. The first applications used the pseudo(Blas a
been developef6]. A shell-model description of heavy nu- dynamical symmetry, with a single $8) irrep describing
clei requires further assumptions that include a systematithe whole yrast band up to backbendii@]. A comparison
and proper truncation of the model spdédé of quantum rotor and microscopic £) stateq21] provided

In light deformed nuclei the dominance of the a classification of the S@) irreps in terms of their transfor-
quadrupole-quadrupole interaction led to the introduction ofnation properties undetr rotations in the intrinsic frame
the SU3) shell mode(7], and with it a very natural means to [22] and led to the construction ofi&” operator which plays
truncate large model spaces. Although realistic interaction& Crucial role in the description of the gamma ba@d].

mix different irreducible representatiofisreps, the ground On the computational side, the development of a com-
state wave function of well-deformed light nuclei normally puter code fo calculate reduced matrix elements of physical

consists of only a few S@) irreps[8—11]. The strong spin- operators between different &) irreps[24] represented a

orbit interaction renders the usual &Y scheme useless in breakthrough in the development of the pseud¢3thodel.

X . . For example, with this code it is possible to include pairing,
heavy nuclei, but at the same time pseudospin emerges agdion is gn SUB) symmetry bret)aking interaction ﬁ\ theg
good symme.trjlz—léﬂ. . Hamiltonian and exhibit its close relationship with triaxiality
Pseudospin symmetry refers to the experimental fact tha[t25 26, Full-space calculations in thef shell [27] in an

S|ng|e-part|c!e orbitals W'th._l_llz and=(1-2)+1/2in SU(3) basis[11] show that for a description of the low-
the shell » lie very close in energy and can therefore be : .
. . ~ energy spectra of deformed nuclei the Hilbert space can be
labeled as pseudospin doublets with quantum numbers ncated to leading irreps of the quadrupole-quadrupole and
=j, n=n—1, andl =1—1. The origin of this symmetry has spin-orbit (or pseudospin-orbjitinteractions. However, the
been traced back to the relativistic Dirac equafi@b—17.  inclusion of a pairing-type interaction is essential for a cor-
The pseudo S(B) model capitalizes on the existence of rect description of moments of inertia in such a truncated
pseudospin symmetry. space.
In the simplest version of the pseudo @Umodel, the Once a basic understanding of this overall structure was
intruder level with opposite parity in each major shell is achieved, a powerful shell-model theory for a description of
normal parity states in heavy deformed nuclei emerged. For
example, the low-energy spectra of many Gd and Dy iso-

*Electronic address: cvargas@fis.cinvestav.mx topes, theiB(E2) andB(M1) transition strengths for both
Electronic address: hirsch@nuclecu.unam.mx their scissors and twist mod¢28] and their fragmentation
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TABLE I. The 15 pseudo S(3) irreps used in the description of TABLE Il. Parameters used in HamiltonidB).
159Th bands.
X G, G, a b Aa\sym
N rotm) (Ny,m)) Total (\, )

%Eu  0.00753 0.132 0.106 —0.0508 0.0009 0.0008
(10,9 (18,9 (28,9 (29,6 (30,49 (31,2 (32,0 (26,9 19Th  0.00753 0.132 0.106  0.0198—0.0031 0.0008
(11,2 (18,9 (29,6 (30,49 (31,2 Dy  0.00753 0.132 0.106  0.0048  0.0006 0.0008
(10,4 (20,0 (30,9
(11,2 (20,0 (31,2

(7,7 (18,49 (25,1) (26,9 The Hamiltonian contains spherical Nilsson single-
(10,4 (16,5 (26,9 particle terms for protons and neutronsig, .i,;), the
(8,5 (18,9 (26,9 quadrupole-quadrupoleQ(- Q) and pairing Hpair,=(»7) in-

teractions as well as three “rotorlike” terms which are diag-
onal in the SUW3) basis:
In the present Rapid Communication we introduce a re-
fined version of the pseudo $8) formalism which uses a 1 - - )
realistic Hamiltonian with single-particle energies plus H=Hsp»+Hsp,— QXQ' Q= GxHpair, == G Hpair »+akKj
guadrupole-quadrupole and monopole pairing interactions
with strengths taken from known systematics. The model is ~ +bJ?+A,synCo. (3
applied to three odd-mass rare earth nucléfEu, °Tb,
and ®Dy. The results represent a full implementation of theThe term proportional td(§ breaks the S(B) degeneracy of
very ambitious program implied in first applications of the the differentk bands[23], the J? term represents a small
pseudo SUB) model to odd-mass nuclei performed nearly 30 o rection to fine tune the moment of inertia, and the Gist
years agq 14]. _ _ , term is introduced to distinguish between SVirreps with
Many-particle states ai,, active nucleons in a given nor- 54, hoth even from the others with one or both daa.
mal parity shelln,, a=w», or m, can be classified by the g Nilsson single-particle energies as well as the pairing
following chains of groups: and quadrupole-quadrupole interaction strengths were taken
from systematic$30,31; only a andb were used for fitting.

{1n§} {fot FadvaNa tta)  SeKe Parameter values are listed in Table Il and are consistent
with those used in the description of neighboring even-even
UM ouQN2)xU(2)DSU3)xSU2)D nuclei[29].
Figure Xa) shows the calculated and experimerit32]
T N K=2, 3% and} bands for°Tb. The agreement between

theory and experiment is in general excellent. The model
predicts a continuation of th&=3 band and overempha-
1 sizes staggering in thi€=3% band.
The role played by each term in the Hamiltonian will be

where above each group the quantum numbers that ch(':lra%'-scl‘lssed in detail elsewhef@3]. In this Rapid Communi-

terize its irreps are given ang, and K, are multiplicit cation we wish to emphasize that the pairing interaction is
PS 9 e @ plicity absolutely essential despite the strong truncation of the Hil-
labels of the indicated reductions.

The most important configurations are those with highesP ert space. To thgs end_we present in F'gb)lt.he low-
) R ~ energy spectra of>Tb with the same Hamiltoniaexcept
spatial symmetry20,11). This implies thatS; ,=0 or 1/2,  hat the pairing interaction has been turned .off clearly

that is, only configurations with pseudospin zero for evengyhipits the importance of the pairing interaction in building
number of nucleons and 1/2 for odd number of nucleons argp the correct moment of inertia: the speatrithout pairing

taken into account. s . is strongly compressed. It can also be seen that pairing af-
We will describe**°Tb as a first example. It has 15 pro- fects the other energies in a similar way with an overall

tons and 12 neutrons in the 50-82 and 82-126 shells, respegtfect that resembles the introduction of a multiplicative fac-

tively. The number of nucleons in norm@l) and abnormal  tor in the Hamiltonian. We conclude that the proposed trun-
(A) parity orbitals is determined by filling the Nilsson levels ¢ation scheme is justified and works as expected.

with a pair. of .particles for3~0.25 in order of increasing Theoretical and experimental32] B(E2) transition
energy. This gives strengths between yrast states'iiTb are shown in Table
IIl. The E2 transition operator that was used is giver[ Bg]

SO(3)XSU(2)DSU,(2),

nN=9, n%2=6, n\=8, ni=4.

v

B nat1lo n,+1.
After decoupling the pseudospin in E¢l) we get{f,} Qu=e:Q,+e,Q,~e; . Q-te, ”n Q,
={2%1},{f,}={2} with S,=1/2 andS,=0. Table | lists
the 15 pseudo S@) irreps, with the largest value of the with effective charges,=2.3,e,=1.3. These values are
Casimir operatoC,, which were used in this calculation.  very similar to those used in the pseudo(S)tescription of

031301-2
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FIG. 1. Energy spectra of°Tb. “Exp” represents the experi-
mental results and “Theo” the calculated ones. Ingarshows the
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FIG. 2. (a) Energy spectra of**Eu and(b) **®Dy, with the same
convention of Fig. 1.

energies obtained with the Hamiltonian parameters listed in Table
I, insert (b) shows the energies obtained without pairing.

5% U, including theK=3,3, and % bands built with seven

even-even nucldi20,29. They are larger than those used in Protons in the normal parity subshej=3 and 8 neutrons in
standard calculations &(E2) strength$30] due to the pas- #=4. There is a good agreement between the experimental
sive role assigned to nucleons in unique parity orbitals[32] and theoretical results. The model predicts a sedonhd
whose contribution to the quadrupole moments is paramstate in the =3 band which is missing in the experimental

etrized in this way.

In Fig. 2(a) we present the low-lying energy spectra of

TABLE Ill. Theoretical and experimentaB(E2) transition

strengths for*>°Th.

JT—J+2)* Th. (e?b?) Expt. (€2 b?)

3+ I+ 1.6503 1.4736:0.2047
S+ _,3+ 2.0553 1.8596:0.1023
I+ i+ 2.1966 2.2186:0.0537
9+ _, 13+ 2.2464 2.3286:0.0645
U+ 15+ 2.2568 2.1086:0.1433
3+ i1+ 1.4542 1.986%0.1316
JF-A+1)*t Th. (€2 b?) Expt. (€2 b?)

3+ 5+ 2.9988 2.80130.1458
S+ I+ 1.6914 1.569%0.3411
AN 1.0471 0.74830.0831
9+ i+ 0.7084 0.687%0.0675
U+ 13+ 0.5201 0.376%0.0477
13+ _,15+ 0.3726 0.4386:0.0760

spectra, as well as several other states in the excited bands.

It is interesting to notice that the ground state*Tb is
3+ while in *%Eu itis 2*. Reproducing this effect is one of
the successes of this theory; realistic single-particle energies
are required to get this ordering correct.

The low energy spectra dfDy is presented in Fig. (D).
There are three bands, wiki=3,3, and3, respectively. As
in the other cases the agreement between theory and experi-
ment is remarkably good. In thé= 2 ground state band the
i~ state is predicted to have an energy higher than the
experimentally observed one. This departure of the experi-
mental ground state band from the rigid rotor behavior may
be related with a band crossing. The possibility of describing
it by increasing the Hilbert space is under investigation. In
the K=1 band thel ™ state lies higher than it~ partner
which contradicts the experimental results. As in the other
cases, the model predicts several excited levels that are as yet
undetected.

It has been shown that normal parity bands in odd-mass
heavy deformed nuclei can be described quantitatively using
the pseudo S(B) model. Only a few representations with
largest C, values and pseudo spin O or 1/2 are needed.
The Hamiltonian uses Nilsson single-particle energies,
quadrupole-quadrupole and pairing interactions with
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strengths fixed by systematics, and three small rotor termgp the possibility of a more detailed microscopic description

which with the others yield excellent results for energies andf other properties of heavy deformed nuclei, both with even

B(E2) values inA=159 nuclei. and odd protons and neutrons numbers, sucly &sctors,
This work exhibits the usefulness of the pseudo(3U M1 transitions, and beta decays.

model as a shell model, one which can be used to describe _ _ ..

deformed rare-earth and actinide isotopes by performing a This work was supported in part by_ Conadydexico)

symmetry dictated truncation of the Hilbert space. It opendnd the U.S. National Science Foundation.
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