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Zero-energy determination of the astrophysicalS factor and effective-range expansions
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The first three terms of a Taylor expansion of the astrophy$idalctor are determined in the potential
model of radiative-capture reactions. As input, the radial Stihger equation and its inhomogeneous energy
derivatives are solved at zero energy. The radial wave function and its energy derivatives are obtained by
matching the solutions of these equations with the corresponding exact asymptotic forms. Explicit expressions
are derived for thé& factor and for its first and second derivatives at zero energy. The same algorithm allows
one to accurately determine the first terms of the effective-range expansion. In particular, the effective-range
formula converges much faster than the Schwinger-Bethe formula. The method is illustrated with potential-
model descriptions of théHe(a, y)"Be, °Li(p,y) Be, "Be(p,y)®B, and *O(p, y)*F reactions.

PACS numbgs): 25.40.Lw, 03.65.Nk, 24.10.Ht, 24.56g

[. INTRODUCTION lished, the determination of the Taylor expans{@nof the S
factor becomes very easy. The method will be presented in
In astrophysics, the determination of reaction rates rethe framework of the simple potential modelee, for ex-
quires accurate values of radiative-capture cross sectiorsnple, Refs[3—5,9—13) but its principle can be extended to
down to very low energiefl,2]. In order to eliminate the more sophisticated models. The present algorithm is not
main part of the energy dependence of these cross sectiormmed at eliminating calculations at higher energies but

one makes use of the astrophysi&dhctor defined as rather at giving accurate values downHe-0. The philoso-
phy of our method is rather similar to the effective-range
S(E)=Eexp27n)o(E), (1) expansion in elastic-scattering studjéd—19. Therefore, it

is not surprising that our method will also offer a new algo-
rithm to accurately compute the parameters of this low-
eqergy expansion of the phase shift.
%o prevent confusion, let us make two warnings. First our
ethod is not a new way of extrapolating experimental data.
is a new way of obtaining accurate low-energy results in
the frame of a well-known model. A similar idea has been

S(E)=S(0)+S'(0)E+ 1S"(0)E?+ - - -. ) exploited i_n Ref[13] but only to c_jeterminéS(O), and inRef.

[7] to derive a Taylor expansion of th® factor for the
Restricted to a few terms, this expansion provides an accusquare-well potential in the extranuclear-capture mze).
rate approximation over some energy domain. Second, a number of authors loosely use the notations
Because the energies of interest in astrophysics can us&0), S'(0), S’(0) for the parameters in a polynomial ap-

ally not be reached experimentally, an extrapolation based oproximation of theS factor on a given energy domaisee,
some nuclear model must be perforni8e-5]. Extrapolating ~ for example, Ref[21]). Such a procedure does not provide a
model results to very low energies and even to zero energyaylor expansion in the mathematical sense which is used in
present difficulties which should not be underestimated. Inthis paper.
deed, a model giving accurate numerical results in a large In Sec. I, the determination of the coefficients of the
energy domain may fail at energies close to zero because tifefactor expansion is explained. After defining the notations
scattering wave function describing the initial state of the(Sec. Il A) and the basic formulaSec. 1B, some proper-
system becomes so small that its numerical determinatioties of the Coulomb functions are discussed on the basis of
becomes hazardous. Also, the computation of the CoulomRefs.[22,23 in Sec. IIC. Then the algorithm is described
functions which are necessary to fix the asymptotic normaland applied to the determination of ti&factor expansion
ization may present inaccuracies at very low energies. ReSec. IID) and of the effective-range expansit®ec. Il B.

whereE is the energy in the center-of-mass framgeis the
Sommerfeld parameter and is the radiative-capture cross
section. Except when resonances are present, the behavior
Sis in general expected to be rather smooth at low energies,
In fact, the astrophysicé factor possesses a Taylor expan- It
sion arounce=0,

cent examples have shown that cases occur wis¢E)  Some numerical aspects are discussed in Sec. lll. The
markedly varies nedE=0 making an accurate interpolation method is applied to different examples in Sec. IV. Conclud-
difficult [6-8]. ing remarks are presented in Sec. V.

Our aim in the present paper is to circumvent the extrapo-
lation problem_by _performlng a direct calculanon of_ tBe Il. SFACTOR EXPANSION AT ZERO ENERGY
factor and derivatives at zero energy, i.e., by solving the o .
Schralinger equation at the single energy-0. The method A. Definitions and notations

is based on a study of the limit of a rescaled scattering wave The nuclear Bohr radius is defined as
function and of its derivatives with respect to energy when
this energy tends towards zero. These properties being estab- an="h?uzZ,Z,e* 3
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and the nuclear Rydberg energy as d d2
Fi(E;r)=——=F(Er), F/(Er)=—=F(E,r),
En=h%2ua3. (4) ' dE™ ! de?”
(10)

An important variable at low energies is the squared inverse
of the Sommerfeld parameter which reads and similar expressions for other functions.

1 B E ®) B. Potential-model expression ofS(E)

7? En’ Let us consider a capture process where two nuclei with

) o o respective masses; andA, and charge numbei; andZ,
With definitions(3) and(4), the wave numbek is given by fyse into a nucleus with mags by emitting a photon with
wave numberk,. The energy of the final nucleus with re-
K2= E _ (6) spect to the elastic threshold will be denotedEas Let |,

aﬁIEN andl, be the spins of the colliding nuclei aricbe the total

spin. In the potential model,is both the channel spin of the

When E tends towards zeroy tends to infinity and the scattering wave function and the total intrinsic spin of the
Coulomb wave functions become unpractical. Indeed, théinal nucleus. Letl; and |; be the initial and final orbital
regular functionF, tends to zero while the irregular function angular momenta for the relative motions between the clus-
G, tends to infinity. Therefore, we define rescaled Coulomhers andJ; and J; be the initial and final total angular mo-
functions menta resulting from the coupling with the total spin

1 The radiative-capture cross section in the potential model
Fi(E,r)=k""expmn)F(kr) (7} is given for example in Ref[2]. Here, we prefer to give
immediately an expression for ti&factor by absorbing the
factor E exp(2r7) of Eq. (1) into the initial wave function
T [5,6]. TheSfactor for an electric transition of multipolarity
Q|(E,f):EkfllzeXp(—Tfﬂ)GKkr)- (8)  then reads

and

_1 20+1 2
Their advantage is that they have a finite limit wHea-0. Sen(B) =2 afiCNeg ko THE) T, (1D

From the properties of the standard Coulomb functi@s,

; where« is the fine-structure constant. We shall denote it as
one deduces the Wronskian

S(E) in the following. In practice, this expression is multi-
W{G, , /it =2, (9) plied by a spectroscopic factor for each component of the
final state and summed over initial or final angular momenta.
whereW{g,f}=g(df/dr)—f(dg/dr). Through Eqs(7) and  Since we are dealing here with low-energy dependences
(8), we consider the rescaled Coulomb functions as directlyvhich may vary from one transition to another, we shall
depending on the enerdy. In the following, we shall use neither introduce spectroscopic factors nor perform summa-
primes to designate derivativegth respect to energyFor  tions.

example, we shall write In Eqg. (11), the normalization factor is given by
|
Ne —8 Z(Az A+z Al)“(x+1)(2>\+1) (23 +1)(23+ D)2+ D)2 +1) (1s N V(I 1y 1)?
BT O 41| A 2l 7 A NONENE (21,+1)(21,+1) o0 o |, 3 A"

(12

The photon wave number is related to the initial enefgy where u; (E,r)=uy; (E,r) and uj (r)=u, ;(r) are, re-

through spectively, the initial and final radial wave functions. These
wave functions are eigenfunctions of the Sdlinger equa-
k,=(|Eg|+E)/%c. (13)  tion
The matrix element(E) is given by the one-dimensional B
integral Hiu=Eu, (15)
I(E)= JOCU| (r)riu, (E,r)dr, (14) with respective energies andEg. In Eq. (15), the Hamil-
o f i tonian reads
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#2[d2 1(1+1) G(E,r)=[1—exp(—2mn) " (E)VA )2

e r—2+vN<r)+T/c<r), (16)

X

1 1
91(X) +———0a(X) + O(—)
wherey is the reduced mass of the systery, is the nuclear 127% 288" 7°
interaction between the clusters, avig(r) is the Coulomb (23
interaction between thertfor example, a point-sphere Cou- .
lomb interactioh. The Coulomb interaction between two- With
point charges will be denoted & in the following. In order

to be useful, Eqs(11) and (14) require a definition of the

normalization ofu;, given with the notation$7) and(8) by  The functionsw,(E) [u;() in Humblet's notationkread

Qo(X)—

x=2(2r/ay)2 (24)

2

1+?.

ui(E,r) — cosé(E)F(E,r) w(E)—l_II
r—o ! -

n=1

(25

2
+—exp2my)sing(E)G(E,r). (17 Because of Eq(5), they are polynomials of degréeof the
energy. The function$; read

This normalization ensures that has a finite limit wherg Fo(X) =11+ 1(X) (26)

tends towards zel®,6]. It will be convenient to make use of

a function of the phase shi#f defined as X\ 2 X
2 fl(X): E) 3(|+1)|2|+3(X)+E|2|+4(X) y (27)
Di(B)=_—[exp2m7n)—1]tand(E), (18) ,
X
fo(x)= —) 9(I+1)(1+2)l (X)
which also has a finite limit wheE— 0 (see Sec. Il 2 2 2es
In the following, we concentrate on very low energies, 8\ x X\ 2
i.e., on energies verifying +6| 1+ 5 §|2|+6(X)+ > Ly 7(x)], (29
exp(—2 <1. 19
A=2mn) 19 while the functionsy; read
This condition is well satisfied for
9o(X) =Kz +1(x), (29
n>1 or E<Ey. (20 |2 «
X)=|5]| |3(I+1)K x)— 5K X)[, (30
Then, the phase shiff; is very small. With notatiori18) and 9:(x) (2) 1+ DKa500) 2 2+40)|. (30
approximation(19), the asymptotic form17) of the radial .
wave function becomes X
gz(X):(§> 9(1+1)(1+2)Ka1+5(X)
u(E.r) — A(E,r)+D(E)G(E.r), (21 g 5
r—oo X X
_6(|+§ 7 K6 | 5] Karer(X) |- (39
which remains finite aE=0.
From these expressions, we deduce the limits
C. Properties of Coulomb functions 0 )
_ . _ FR(r)=lim F(E,r)=(ar)"fo(x), (32)
Coulomb functions can be described at low energies on E_0
the basis of an expansion in powers 0;3[22]. Rigorous
expressions of such an expansion Fgrand an asymptotic Go(r)=1lim G,(E,r)=(mr)"go(x). (33
approximation forG, have been derived by Humblg23]. E—0
Using Egs.(2.109 and(4.89 of Ref.[23], the rescaled func- ] ) ) . )
tions (7) and (8) can be approximated by (%1; course, these functions still satisfy the Wronskian relation
FE.r)=[1-exp(—2mn)] “wm(E) VA7) 0 o
W{G  F\}=ml2. (34
1 1
X| fo(x)— 2f1(X)+—4fz(X)+O(—6) The exponential exp(277) and all its derivatives tend to
129 288y Y zero whenE tends to zero. Therefore, the first factor in Eq.
(22) (22) or (23) will behave as a constart.e., unity in the
calculation of a Taylor expansion and will play no role. Us-
and ing notations with an upperscript O for functions calculated at
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zero energy, we can express with E¢82) and (23) the
limits of the first derivatives with respect to energy as

Fo =T b o0t 35
|(r)—m[p1 o(X) = f1(x)], (39
o _(,n_r)l/Z

g (r)_l—ZEN[plgO(X)_gl(X)]' (36)

In these expressions, we introduce the constant

|
|01=6ENW|’(0)=6HZ1 n2, (37)

which takes the integer value

p=1(1+1)(21+1). (38

PHYSICAL REVIEW C61 025801

H,ul=0. (46)
This solution satisfies the boundary conditions

u’(0)=0 (47)
and

ul(r) — FX(r)+Dy(0)G (). (48)

r—ow

The normalization of the functi0[1|0 is fixed by Eq.(48).
Using Eq.(34), the normalization condition can also be writ-
ten as

W(G?,u’} — m/2. (49)

r—o

Similarly, the second derivatives with respect to energy of-etYo(r) be a solution of Eq(46) satisfying condition(47).
the rescaled Coulomb functions can be written at zero energyh€ physical solution can be written as

as
100 =T 5 B (00— 2paf 10+ £200]
ry= - X) — X x)1,
| (12E,,)2 P2—P1)To Pim1 2
(39
(7TI' 1/2
Ggror)= —p?)go(X)—2 X)+0-(X)].
i (1) (12EN)2[(D2 P1)Yo(X) —2P191(X) +ga(X) ]
(40
Here we introduce the constant
[
p,=72E2W/(0)=144 >, m?n?, (41)
m>n=1
which takes the integer value
:E 2_ 2_
Po= (17~ 1)(41°=1)(51 +6). (42)

D. Expansion of S(E)

uP(r)=coyo(r), (50

where the constart, is determined by the asymptotic con-
dition (49). Another Wronskian property of E¢48),

W(FP uf} — = 5Di(0), (51

r—oe

formally allows calculatindg,(0) from u|°. A more efficient
method is described in Sec. Il E.

The first-order coefficiens; in Eq. (43) is obtained by
differentiating Egs.(11) and (14) with respect toE [5,6],
yielding

S'(0) 2a+1 21'(0)

1750) ~ Eg | 1(0) (2
with the energy derivative of the integral given by
I’(O):j u|f(r)rxu|’_°(r)dr. (53)
0 I

Now we have all the ingredients needed to perform a

Taylor expansion of thé factor near zero energy. Let us

rewrite the expansiofR) restricted to second order as

S(E)~S(0)(1+s,E+s,E?) (43

and let us derive computable expressions of the coefficients.

From Egs.(11) and(14), one immediately obtains
S(0)=3ahcNg, (Eg/hc) *H1(0)]?, (44)

with the integral

I(O):foxu|f(r)r"uf’i(r)dr. (45)

A radial wave functionuf’(r)zu,(o,r) at zero energy is a

solution of the Schidinger equation

The energy derivativa,’O of the radial wave function at zero
energy is a solution of the derivative of the Sdlirger
equation(15) at the limitE—0, i.e.,

Hyu/ °=uf. (54)

The required solution of this inhomogeneous differential
equation verifies

u/°(0)=0. (55)

Its asymptotic form is given by the energy derivative of Eq.
(21) at the limitE—0 as

u °(ry — F/°%r)+D,(0)G,°(r)+ D (0)G(r), (56)

r—o
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where F/°(r) and G, °(r) are given by Eqs(35) and (36),
respectively. In this expressioB,/ (0) is still unknown. Us-
ing Eq. (34), one obtains the Wronskian limit

W{g|0,U|/O_]:|,0_D|(0)g|/o} - 0.

r—o

(57)

Lety,(r) be a solution of Eq(54) with the initial condition
(55). This solution may still differ fromu/°(r) by an arbi-
trary solution of the homogeneous Scfimyer equatiori46)
at zero energy. If we write

u/o(r) =y (r)+cqul(r), (58

the unknown constant,; can easily be obtained with Eq.
(49 from the Wronskian limit(57). Another Wronskian of
the asymptotic forn(56),

W{}-O,UI/O_fI/O_DI(O)gllO} N _ngl(o)’ (59)

—

allows, in principle, extracting the value @, (0). As for

D,(0), weshall describe a more efficient method in the nex

subsection.
The second coefficiers, in the Taylor expansiori43)

reads
S(0) M(2h+1) 2(2x+1)17(0) 17(0)
%7250 g2 Ez  1(0) ' 1(0)
I/(O) 2
W (60)

with the second energy derivative of the integral given by

I”(0)=f:u“(r)r*u{’io(r)dr. (62)

The second derivativa|® can be determined by differenti-

ating Eq.(15) twice and by taking the limiE—D0, i.e.,
Hyu/%=2u/°, (62
with the initial condition

u/°(0)=0. (63)

PHYSICAL REVIEW ®1 025801

from which the unknown coefficienD|(0) disappears.
Again a solution of the inhomogeneous equaii6® verify-

ing the boundary conditiori63) may contain an arbitrary
amount ofu,O(r). Lety,(r) be such a solution. The function

u/® can be written as

ui(r)=ya(r)+coup(r), (66)
where the constant, is determined by imposing condition
(65). The Wronskian limit

W{FP,uf°~ F1°~D,(0)¢{°~2D{(0)G|°}

™ n
— —5D{(0)

5 (67)

r—o

allows, in principle, extracting the coefficieby/(0).
The present algorithm can easily be extended to higher
order by solving the inhomogeneous equation

H,u(W0=ny("~ 10 (68)

with uf°(0)=0 and by using its solutioy(r) +c,uf(r) to

determine thenth energy derivativei™°(r). The unknown

coefficient of theu,o(r) component is fixed with the Wronsk-
ian limit
n—1

w| 6 - 7S,

— 0.

r—o

(69

(f‘)Dp)(o)gfn—J)O}
j

This calculation requires higher terms in the expansi@2s
and(23) which can be deduced from R¢23]. The value of
D{M(0) is formally given by

n-1

>

n ) :
W[f?,uf”)o—ff”)o— (J.)D.“)(O)gf””o]
a

2

— —=D{M(0). (70)

r—o

E. Effective-range expansion

As a byproduct, the present algorithm provides a simple
and accurate way of computing the coefficients of the
effective-range expansion.

Its asymptotic form is fixed by the second energy derivative L€t us start from the effective-range expangid4] for an

of Eq. (21),

uy%(r) — F/°(r)+D(0)G/°(r)+2D{(0)G,%(r)

— 00

+D{(0)G(r), (64)

where F/°(r) andG/°(r) are given by Eqs(39) and (40),
respectively. Equatiof64) leads to the Wronskian property

W{G?,u/°—F/°~D(0)G/°-2D/(0)G/° — 0 (65)

r—o

arbitrary partial wavg17-19 given by

2

2w,(E)
Di(E)

an

1 1
+h(7;)}= ~at STik= Pirik*+0(k®),
(71)

when notationg18) and (25) are used. The asymptotic ex-

pansion of functiorh(#) reads[14,24]

1
1277

- +0

h(7)= (72

1 )
1207]4 776 '
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While expression(71) is standard for thes wave, we have 2 -

modified it a little for other partial waves in order to avoid D{(0)=—— f Ve D[ FP(r)u°(r)
complicated dimensions for the scattering length effec- manEnJo

tive ranger,, and shape coefficie®, [19]. In Eq. (71), q /0 0

andr, have the dimension of a length for ahyand P, is +F(nu(n)]dr. (79)
dimensionless. Fdr>0, the present coefficients differ from \yjitpy Eq. (79), accurate values of the effective rangecan

other defi'nitions by a factdr 2a2 . _ be deduced from Eq78) since the integrand is short ranged.
By taking the limitE—O of both sides of Eq(71), one  For|=0, this approach provides an alternative to the famous
e Schwinger-Bethe formuld15,16,14, which reads in the
present notations
ay
al:_ZDI(O)' (73) 16 i}
= 0 0/,\12__ 1.0/ \12
lo= 2D (0)2f0 {[Fo(r)+Dg(0)Go(r)1°—[ug(r)]=}dr.
T
The scattering lengthe; can thus be deduced from the N0 0

Wronskian limit (51). However, contrary to the Wronskian

(49) which is well behaved and can be computed directly,Equation(79) converges much faster than E&0) and re-
expressior(51) is not useful in practice because it involves a mains valid forl >0.

difference of two large numbers. Therefore, we rather restart The dimensionless shape parame®gris given by the
from a more general relation deduced from EQ4) and(9),  second derivative of Eq71) as

3
T | an 2 1 2 an | 2pih
W{]—",u|}r:>m—ED,(E), (74 P= 2r, [E+ E(4p1 pz)a*’ 3ay
I . . aNEn|? " an ., o
which is valid at an arbitrary enerdy small enough so that i D/(0)+ ED' 0)“|¢. (81
condition (19) is satisfied. If the Wronskian in Eq74) is ! !
written as an integral expression, one obtains By differentiating Eq.(75) twice, one obtains the integral
expression
2 0
Di(BE)=~ 2p JO F(E,N)Ve(r)u(E,r)dr. (75 w
maNEn D/(0)=—— f V(D[ F2(r)u®(r)+2F,°(r)u/°(r)
mayEn /o0
The potentiaNM¢(r) appearing in Eq(75) is the short-range 0 0
part of the interaction between the colliding nuclei, defined +F(r)up(r)]dr, (82

b .
y which can be used to accurately determihe In the neutral

case fol =0, a formula only based oud(r) is presented in
Ref.[25].
The generalization of Eq$77), (79), and(82) is obvious.

Vel 1) = V(1) +Ve(r) —V(r). (76)

Notice the difference of Coulomb potentials. Since all the

energy-dependent factors have a well-defined limit Eor
—0, one obtains Ill. NUMERICAL ASPECTS

The algorithm described in the preceding section can be
2 * applied in various ways differing by the numerical technique
Di(0)= - —2E fo FUOVsnu(ndr. (7D chosen to solve the differential equations. Here we briefly
NEN present our computational choices.
For approximately solving the differential equations, we
ir;f1pply the Numerov algorithm which is valid for inhomoge-
neous equations as wgR6]. A differential equation of the

Equations(73) and (77) provide a simple and accurate way
of calculating the scattering length which does not appear
standard textbooks.

Differentiating Eq.(71) leads forE=0 to the expression form
of the effective range 2
d%y
— =V(r)y+W(r) (83
Nl p, 2N 3an EnD/ (0) (79) o
n=—=\1-p,———
'3 tay 222 is discretized as
with p; given by Eq.(38). In practice, the effective range E(r+h)=2£(r)—&(r—h)+h?v(r)y(r)

cannot be deduced from the WronskiésD), which is not 12 B
well behaved. By differentiating Eq.75), one obtains the 22T TWCr+h) +10W(r) +W(r —h) ],
accurate integral expression (84
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TABLE I. Potential parameters for the radiative-capture reac-in Table |. Woods-Saxon potentials can be distinguished

tions (in MeV and fm. from Gaussian potentials by the occurrence of an entra.for
The potentials are extracted from Refl13] for
Reaction Il 1 J Vo Vs R a R 3He(w,y) 'Be, from Refé[ll] for :Li(p,y)7Be, and from
Refs.[9,12] for ‘Be(p,y)®B. In the *He(a, y) ‘Be case how-
3 7 1 ’ ’
He(e,y)'Be 02 67.67 2417 3248 o\ er, we have slightly refitted the publish¥g andV/ g for
1 85.99 922 2.477 3.248

) I=1 in order to better reproduce the experimental bound-
5Li(p,y)'Be 0,2 3/2 51.72

1 3/2 3/2 65.29

2.27 0.65 2.27  gtate energies. In thiLi( p, y)’Be case, we only consider the
2.27 0.65 2.27 |1=3/2 channel spin and neglect the imaginary part of the

0
0
0
0
'Be(p,7)®B (T) 0,2 2 356 0 295 052 295 potential of Ref.[11]. The potentials for’'Be(p,y)®B are
1 2 3262 0 295 052 295 denoted as T for Ref9] and as B for Ref[12]. The ®B
"Be(p,y)®B (B) 0,2 2 56.18 0 2.39 0.65 2.39 binding energy0.137 Me\} is not accurately reproduced by
02 1 4552 0 2.39 0.65 2.39 these potentialésee Table IV but we did not modify them.
1 2 2 4662 0 239 065 239 The Gaussian potentials fdPO(p, y)1’F are fitted by us.
160(p, y)17F 0 47.212 0 3.553 3553 First, we discuss the effective-range expansion_of the
1 360 0 3.553 3553 °Heta system. The zero-energy radial wave functigh
2 58731 0  3.553 3.553 and its energy derivatives,’ andu’ are displayed in Fig.
1. The functionu exhibits two nodes due to the orthogonal-
ity to two bound states of the deep Gaussian potential which
where simulate Pauli-forbidden states. The derivatives also have
nodes. The first one is very close to the first nodeibut
&r)=y(r)[1-h?V(r)]. (85  the second one progressively shifts to larger distances.

Therefore, the derivatives reach their asymptotic behavior at
The initial values arey(0)=0 and an arbitrary choice for larger distances thamg. Notice that the relative signs of the
y(h) [for example,y(h)=h']. An interesting aspect of the derivatives with respect tad are significant.
method presented in Sec. Il D is that, whilg[Eq. (50)], ¢, The convergence of EqéZ3), (78), and(81) is illustrated
[Eq. (58)], andc; [Eq. (66)] depend on the choices 9f(h), by Table II. It is very fast for the different coefficients. A
y1(h), andy,(h), the physical quantitie$§(0), s; ands,  comparison between E(8) and the standard approa(30)
must be almost insensitive to them. This provides an efficienfs also performed. One observes that Ef8) provides an
test of the code. accuracy of about 10" with a step of 0.2 fm, which is not
The Wronskian relation$49), (57), and (65) are calcu-  reached with a step of 0.001 fm by E9). This is not so
lated with a five'pOint differentiation formu[24]. The value Surprising since Eq(78) makes use OUI’O which brings
R, at which they are calculated must be such ¥igtR,) be  more physical information about the scattering. The addi-
negligible. This is usually realized not far beyond 10 fm.tiona) effort in calculatings ® seems to be worthwhile. Simi-
Agaln the results must be insensitive to the choiceRef larly, we think that our expression fd?, should be more
Using very large values foR, (such as the values used for gfficient than generalizations of the expression presented in
R, below) may lead to inaccuracies. The integrél3), (79),  Ref. [25].
and(82) are accurately computed with a simple constant-step  The scattering length, effective range, and shape param-
integration from 0 toR, [27]. eter of the initial partial waves are given in Table Iil for the
Finally, 1(0) and the derivatives’(0) andl”(0) are also djfferent systems. The stdpis chosen small enough so that
accurately calculated with the same equal-step method bufy| the displayed digits are convergeti=£0.001 fm). We

much larger thamR,. Values as large as 600 fm are needed in

the following. The value obtained in the present method for
R, is also valid for potential-model calculations at positive 5_
energies. s

IV. APPLICATIONS

We now illustrate the algorithms described in Sec. Il with S
a few examples. These examples are selected among litera- 2 4 6 8 10
ture studies of radiative-capture reactions. Two types of po- 7 (fm)
tentials are encountered. The Gaussian potentials are written
here asV(r)=—[Vy+(8V, s/R?L-Slexp(—r?R? and the
Woods-Saxon  potentials  as V(r)=—V{1l+exd(r 3He + a
—R)/al}"1, whereV,, R, anda are parameters. The point-
sphere Coulomb potential is used ﬁ@ with a parameter
Rc. In all cases, experimental masses are empl¢g&H FIG. 1. Zero-energy’He+ « radial wave functiorud and en-

The parameters of the different potentials are summarizedrgy derivativesu,” andug’ in arbitrary units.
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TABLE II. Convergence of =0 effective-range coefficients for

the He+ « scattering b, a,, andr, are in fm.

PHYSICAL REVIEW C61 025801

The coefficientsS(0), s;, ands, in the S-factor expansion
(43) are presented in Table IV for selected transitions of the
different reactions. TheS(0) factors correspond to sums

N h &  rolEq.(78)] ro[Eq.(80]  Po over the possibld; values in Eq(12). Summations ovel; ,
24 05 36.01899 096727 0.5872 —0.091678 i, |, andJ; are not performed here in order to display the
60 02 3688286 0.97276 07980 —0.090844 €nergy dependence of each term. To obtain a ®falktor,
120 01 3688984  0.97269 08802 —0.090295 the differentl; con'gril?utions must first bg added. The results
240 005 36.88732 0.97264 09248 —0.090141 Must then be multiplied by spectroscopic 1‘act.6ff$Jf before
600 0.02 36.88631 0.97263 0.9530 —0.090097 Performing the other sums. The upper bolRyin the inte-
1200 0.01 36.88615 0.97263 09627 —0.090090 drals varies from 50 fm for°Li(p,y)’Be and 100 fm for
2400 0.005 36.88611 0.97263  0.9677 —0.090089 He(a,y)'Be to 500 fm for ‘Be(p,y)°B and 600 fm for
6000 0.002 36.88610 0.97263 09706 —0.090088  Several transitions it®0(p, y)*'F. The steph is chosen in
12000 0.001 36.88610 097263 0.9716 —0.090088  Such away that the displayed digits are all significant. This is

usually achieved with a step of 0.02 fm. The obtained accu-
racy is much better than required by the physics of astro-

. . hysical applications but should help the reader testing his
provide a test for the interested reader. In each case, we ha 8iculations. Good values can already be obtained with a

chgcked the eﬁective—ran_g_e expansjon by calculating phas§‘tep of 0.1 fm. Here also, we have checked the expansions
shifts at a number of positive energies. with radiative-capture calculations at positive energies.

; : 3
(‘jl’?(%s-wave scattelrlr}g Iengtpo IS Igrgehfor t.hellHeer ab h The s, values offer a large variety of situations. Negative
and O+ p systems. Itis negative and rather similar for both, 5,65 are obtained in most cases forstamdp waves, as is

2 : : )

GB_e+ p potentials. Theswave effective range, is large for e known from individual studies of these systems. A re-
_Li+p. The P, parameters are often small but the interest-y . ape exception is the2 capture to thé 'F ground state
ing guarjtlty- in the effe60t.|ve-range expansiorl) is rather i, ihe 160(p, y) 17 reaction. This effect was emphasized and
Porp which is large for°Li+p. For|>0, the results are not gyplained in Ref[8]. In this case, the simple extranuclear-
very intuitive but correctly reproduce the phase-shift behavantyre model is completely wrong. The very large scattering
iors. The scattering Iengths are oft_en quite small. This is du‘f‘ength implies the existence of a node in the initial wave at
to the effect of the centrifugal barrier which damps the Wav8arge distances, which must be taken into accountsAis
functions in the region wher¥, is large in Eq.(77). The  ayen larger, a Taylor expansion is here of little utility. For
corresponding effective ranges are very large because of thge g wavess, is positive for all examples and will lead to a

occurrence of in the denominators of Eq78). They lead  gjower decrease of the tot@lfactor. The value o8, is quite
to very small shape paramete?s. variable.

_ The integrands appearing in the expressions! (@), Let us now compare these results with the literature. In
1'(0), and 1”(0) for the I;=0 component of the the 3He(a,y)"Be case, oud;=3/2 andJ;=1/2 results for

He(a,y)Be reaction are displayed in Fig. 2. One observess(o) are in good agreement with those of REf3] in spite
that the maximum shifts towards larger distances when thgs 5 sjightly modified final potential.

order of the derivativ_e increases. The integration must be gq; the "Be(p, v)®B reaction, detailed studies have been
performed to larger distancé®, whens, ands; are calcu-  performed by Barker[12,29 and recently by Jennings,
lated than for calculations &¥(0) only. Karataglidis, and Shoppg7]. Following Ref.[20], Barker
determines coefficients(=s;) andb(= Zsz—si) for the to-

tal Sfactor. When we calculate the corresponding quantities

TABLE Ill. Coefficients of effective-range expansiong, (and

r, are in fm.
Collision | | a, r P ‘:’f
SHe+ a 0 36.886 0.9726  —0.09009 &
2 2.442<10°2  —900.6 —2.748<10°°
Li+p 0 32 1.0228 16.650 0.02165
2 3/2 —2.693x10°4 2.011x10* 6.258<10° 10
Bet+p (T) O —4.9966 2.8231 —0.03894
2 —7.327x10°° 7.639x10* —8.575x10 ! 0
Be+tp(B) 0 2 —7.8527 4.2455 —0.08322
2 2 —1.488<107° 3.138x10° 6.897x10°°
01 2.6088 1.9116 0.4038
2 1 —1.075<102 5.336x10° 2.850x 10 °
%0+p 0 12 6847.9 1.2102 —0.2436
11/2 27.439 —0.4262 47.647
2 1/2 2.2489 —40.679 —2.197x10°3 FIG. 2. Integrands of(0), I'(0), andl”(0) for theE1 capture

from thes wave of the®He(a,y)"Be reaction in arbitrary units.
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TABLE IV. Coefficients of Sfactor expansionsHg is in MeV andS(0) in MeV b).

Reaction I l; ¢ Js N Eg S(0) S; S,
SHe(a,y)'Be 12 0 1 32 1 -15878 3.180%10* -—0.8772 0.2586
12 2 1 32 1 -15878 4.129%510°© 6.6340 3.9322
12 0 1 12 1 -—11593 1.378%10* —0.9222 0.3797
12 2 1 12 1 -—11593 2396910 °© 6.4433 2.8318
5Li(p,y)'Be 32 0 1 32 1 -56143 1.383%10 % -0.3277 —0.0338
32 2 1 32 1 -56143 4.824%108% 2582 104.4
Be(p,y)®B (T) 2 0 1 2 1 -01161 2.158%10°° —2.8350 24.534
2 2 1 2 1 -0.1161 1.650%10 © 7.164 —13.216
"Be(p,v)®B (B) 2 0 1 2 1 -0.1460 2.176X10° —2.2708 15.810
2 2 1 2 1 -0.1460 1.336%310 ° 8.541 —13.334
1 0 1 2 1 -0.1460 2.150810° —2.4143 15.745
1 2 1 2 1 -0.1460 1.336%x10°° 8.540 —13.353
%0(p, y)¥F 12 1 0 1/2 1 -0.1055 1.653%102 —5.5709 45.049
12 1 2 52 1 -0.6008 6.139%10* —0.0192 0.2096
12 0 2 52 2 -—0.6008 6.754810°% 44.745 61.495
12 2 0 12 2 -0.1055 2451810°°% —0.4377 16.142

with the Barker spectroscopic factof,,=0.765 andS;,, tives atE=0, one easily obtains the first terms of this ex-
=0.251, we cannot reproduce either of the conflicting valuegansion. The results are accurate and can be used to check
in those references. However, osy coefficient is in much Standard calculations at positive energies and to correctly
better agreement with Reffi7] than with Ref[29]. As men- extrapolate them. We think that the present simple technique
tioned in Ref[7], the numerical determination afandb (or should become_ an indispensable Complement. to future
s; ands,) from S(E) is difficult and must be performed at Sfactor calcu'lat.lons. However, th_e Taylo_r expansion 1 only
very low energies €10 keV in the present caselhe large val|d.o.ver a limited energy domain starting fﬁt:o a.”d its
value ofs,, i.e., the strong curvature @&E), makes this coefficients cannot be expected to necessarily provide a good
2y .Gy y . .
determination especially difficult for théBe(p,y)®B reac- pa[ﬁ:g e;:zat;%nigfathﬁ;i;%cﬁgrgrg uphitgi?nelzmg\t,\ér?tie;ilkho del
tion. It also indicates that the limited Taylor expansion is . pp . ; piep .
valid only at very low energies. For0, the value ofs, is but the main ingredients of its algorithm, i.e., the properties

 good sgeement i te exanuciercaptr resut of 1242 ICUOns 3Lz ey car sumoponuey be
Ref.[6]. For|=2, the values of; ands, are almost inde- P

. models[3-5].
pendent of the potential and very close to the extranuclear- . .
: In passing, the present approach also offers an alternative

capture estimates. way of calculating the coefficients of the effective-range ex-

The ®O(p, y)1'F reaction has been studied in R¢&,8]. Y ‘ Ing ial. The calculation is b dg N
The s, value of the extranuclear-capture model pansion for a given potential. The calculation is based on the
(-5 331 MeV 1) agrees nicely with the present result for same solutions of the Schiimger equation and its energy
the Iél capture to tﬁe excited sytate For thg round-state ca derivatives alE=0 complemented by simple and fast con-
ture. the Zmall alue 0.55 MeV '.s ot f ”g confirmed R/erging integrals. It is valid for any partial wave. Strikingly,
ure, vaiue ©. ! Uty : * the convergence and accuracy of the effective range are

Strong curvatures ar7e obtame_d n R_e[fs,s] for someE1 .., much better than with the traditional Schwinger-Bethe for-
andE2 transitions to'’F states in qualitative agreement with mula

the presens, values.
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