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Zero-energy determination of the astrophysicalS factor and effective-range expansions

D. Baye and E. Brainis
Physique Nucle´aire Théorique et Physique Mathe´matique, Code Postal 229, Universite´ Libre de Bruxelles, B-1050 Brussels, Belgium

~Received 23 September 1999; published 20 January 2000!

The first three terms of a Taylor expansion of the astrophysicalS factor are determined in the potential
model of radiative-capture reactions. As input, the radial Schro¨dinger equation and its inhomogeneous energy
derivatives are solved at zero energy. The radial wave function and its energy derivatives are obtained by
matching the solutions of these equations with the corresponding exact asymptotic forms. Explicit expressions
are derived for theS factor and for its first and second derivatives at zero energy. The same algorithm allows
one to accurately determine the first terms of the effective-range expansion. In particular, the effective-range
formula converges much faster than the Schwinger-Bethe formula. The method is illustrated with potential-
model descriptions of the3He(a,g)7Be, 6Li( p,g)7Be, 7Be(p,g)8B, and 16O(p,g)17F reactions.

PACS number~s!: 25.40.Lw, 03.65.Nk, 24.10.Ht, 24.50.1g
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I. INTRODUCTION

In astrophysics, the determination of reaction rates
quires accurate values of radiative-capture cross sect
down to very low energies@1,2#. In order to eliminate the
main part of the energy dependence of these cross sect
one makes use of the astrophysicalS factor defined as

S~E!5E exp~2ph!s~E!, ~1!

whereE is the energy in the center-of-mass frame,h is the
Sommerfeld parameter ands is the radiative-capture cros
section. Except when resonances are present, the behav
S is in general expected to be rather smooth at low energ
In fact, the astrophysicalS factor possesses a Taylor expa
sion aroundE50,

S~E!5S~0!1S8~0!E1 1
2 S9~0!E21•••. ~2!

Restricted to a few terms, this expansion provides an ac
rate approximation over some energy domain.

Because the energies of interest in astrophysics can
ally not be reached experimentally, an extrapolation base
some nuclear model must be performed@3–5#. Extrapolating
model results to very low energies and even to zero ene
present difficulties which should not be underestimated.
deed, a model giving accurate numerical results in a la
energy domain may fail at energies close to zero because
scattering wave function describing the initial state of t
system becomes so small that its numerical determina
becomes hazardous. Also, the computation of the Coulo
functions which are necessary to fix the asymptotic norm
ization may present inaccuracies at very low energies.
cent examples have shown that cases occur whereS(E)
markedly varies nearE50 making an accurate interpolatio
difficult @6–8#.

Our aim in the present paper is to circumvent the extra
lation problem by performing a direct calculation of theS
factor and derivatives at zero energy, i.e., by solving
Schrödinger equation at the single energyE50. The method
is based on a study of the limit of a rescaled scattering w
function and of its derivatives with respect to energy wh
this energy tends towards zero. These properties being e
0556-2813/2000/61~2!/025801~10!/$15.00 61 0258
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lished, the determination of the Taylor expansion~2! of theS
factor becomes very easy. The method will be presente
the framework of the simple potential model~see, for ex-
ample, Refs.@3–5,9–13#! but its principle can be extended t
more sophisticated models. The present algorithm is
aimed at eliminating calculations at higher energies
rather at giving accurate values down toE50. The philoso-
phy of our method is rather similar to the effective-ran
expansion in elastic-scattering studies@14–19#. Therefore, it
is not surprising that our method will also offer a new alg
rithm to accurately compute the parameters of this lo
energy expansion of the phase shift.

To prevent confusion, let us make two warnings. First o
method is not a new way of extrapolating experimental da
It is a new way of obtaining accurate low-energy results
the frame of a well-known model. A similar idea has be
exploited in Ref.@13# but only to determineS(0), and inRef.
@7# to derive a Taylor expansion of theS factor for the
square-well potential in the extranuclear-capture model@20#.
Second, a number of authors loosely use the notati
S(0), S8(0), S9(0) for the parameters in a polynomial ap
proximation of theS factor on a given energy domain~see,
for example, Ref.@21#!. Such a procedure does not provide
Taylor expansion in the mathematical sense which is use
this paper.

In Sec. II, the determination of the coefficients of th
S-factor expansion is explained. After defining the notatio
~Sec. II A! and the basic formulas~Sec. II B!, some proper-
ties of the Coulomb functions are discussed on the basi
Refs. @22,23# in Sec. II C. Then the algorithm is describe
and applied to the determination of theS-factor expansion
~Sec. II D! and of the effective-range expansion~Sec. II E!.
Some numerical aspects are discussed in Sec. III.
method is applied to different examples in Sec. IV. Conclu
ing remarks are presented in Sec. V.

II. S-FACTOR EXPANSION AT ZERO ENERGY

A. Definitions and notations

The nuclear Bohr radius is defined as

aN5\2/mZ1Z2e2 ~3!
©2000 The American Physical Society01-1



rs

th
n
m

ct

ith

-

e
he

lus-
-

del

as
i-
the
ta.
ces
all
ma-

D. BAYE AND E. BRAINIS PHYSICAL REVIEW C 61 025801
and the nuclear Rydberg energy as

EN5\2/2maN
2 . ~4!

An important variable at low energies is the squared inve
of the Sommerfeld parameter which reads

1

h2
5

E

EN
. ~5!

With definitions~3! and ~4!, the wave numberk is given by

k25
E

aN
2 EN

. ~6!

When E tends towards zero,h tends to infinity and the
Coulomb wave functions become unpractical. Indeed,
regular functionFl tends to zero while the irregular functio
Gl tends to infinity. Therefore, we define rescaled Coulo
functions

Fl~E,r !5k21/2exp~ph!Fl~kr ! ~7!

and

Gl~E,r !5
p

2
k21/2exp~2ph!Gl~kr !. ~8!

Their advantage is that they have a finite limit whenE→0.
From the properties of the standard Coulomb functions@24#,
one deduces the Wronskian

W$Gl ,Fl%5p/2, ~9!

whereW$g, f %5g(d f /dr)2 f (dg/dr). Through Eqs.~7! and
~8!, we consider the rescaled Coulomb functions as dire
depending on the energyE. In the following, we shall use
primes to designate derivativeswith respect to energy. For
example, we shall write
l

02580
e

e

b

ly

F l8~E,r !5
d

dE
Fl~E,r !, F l9~E,r !5

d2

dE2
Fl~E,r !,

~10!

and similar expressions for other functions.

B. Potential-model expression ofS„E…

Let us consider a capture process where two nuclei w
respective massesA1 andA2 and charge numbersZ1 andZ2
fuse into a nucleus with massA by emitting a photon with
wave numberkg . The energy of the final nucleus with re
spect to the elastic threshold will be denoted asEB . Let I 1
and I 2 be the spins of the colliding nuclei andI be the total
spin. In the potential model,I is both the channel spin of th
scattering wave function and the total intrinsic spin of t
final nucleus. Letl i and l f be the initial and final orbital
angular momenta for the relative motions between the c
ters andJi and Jf be the initial and final total angular mo
menta resulting from the coupling with the total spinI.

The radiative-capture cross section in the potential mo
is given for example in Ref.@2#. Here, we prefer to give
immediately an expression for theS factor by absorbing the
factor E exp(2ph) of Eq. ~1! into the initial wave function
@5,6#. TheS factor for an electric transition of multipolarityl
then reads

SEl~E!5 1
2 a\cNElkg

2l11@ I ~E!#2, ~11!

wherea is the fine-structure constant. We shall denote it
S(E) in the following. In practice, this expression is mult
plied by a spectroscopic factor for each component of
final state and summed over initial or final angular momen
Since we are dealing here with low-energy dependen
which may vary from one transition to another, we sh
neither introduce spectroscopic factors nor perform sum
tions.

In Eq. ~11!, the normalization factor is given by
NEl58pFZ1S A2

A D l

1Z2S 2
A1

A D lG2~l11!~2l11!

l~2l11!!! 2

~2Ji11!~2Jf11!~2l i11!~2l f11!

~2I 111!~2I 211! S l f l l i

0 0 0D
2H Jf l f I

l i Ji lJ 2

.

~12!
se
The photon wave number is related to the initial energyE
through

kg5~ uEBu1E!/\c. ~13!

The matrix elementI (E) is given by the one-dimensiona
integral

I ~E!5E
0

`

ul f
~r !r lul i

~E,r !dr, ~14!
where ul i
(E,r )[ul i IJi

(E,r ) and ul f
(r )[ul f IJ f

(r ) are, re-

spectively, the initial and final radial wave functions. The
wave functions are eigenfunctions of the Schro¨dinger equa-
tion

Hlul5Eul , ~15!

with respective energiesE andEB . In Eq. ~15!, the Hamil-
tonian reads
1-2
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Hl52
\2

2m F d2

dr2
2

l ~ l 11!

r 2 G1VN~r !1ṼC~r !, ~16!

wherem is the reduced mass of the system,VN is the nuclear
interaction between the clusters, andṼC(r ) is the Coulomb
interaction between them~for example, a point-sphere Cou
lomb interaction!. The Coulomb interaction between two
point charges will be denoted asVC in the following. In order
to be useful, Eqs.~11! and ~14! require a definition of the
normalization oful i

given with the notations~7! and ~8! by

ul~E,r ! →
r→`

cosd l~E!Fl~E,r !

1
2

p
exp~2ph!sind l~E!Gl~E,r !. ~17!

This normalization ensures thatul has a finite limit whenE
tends towards zero@5,6#. It will be convenient to make use o
a function of the phase shiftd l defined as

Dl~E!5
2

p
@exp~2ph!21#tand l~E!, ~18!

which also has a finite limit whenE→0 ~see Sec. II E!.
In the following, we concentrate on very low energie

i.e., on energies verifying

exp~22ph!!1. ~19!

This condition is well satisfied for

h.1 or E,EN . ~20!

Then, the phase shiftd l is very small. With notation~18! and
approximation~19!, the asymptotic form~17! of the radial
wave function becomes

ul~E,r ! →
r→`

Fl~E,r !1Dl~E!Gl~E,r !, ~21!

which remains finite atE50.

C. Properties of Coulomb functions

Coulomb functions can be described at low energies
the basis of an expansion in powers of 1/h2 @22#. Rigorous
expressions of such an expansion forFl and an asymptotic
approximation forGl have been derived by Humblet@23#.
Using Eqs.~2.10a! and~4.8a! of Ref. @23#, the rescaled func-
tions ~7! and ~8! can be approximated by

Fl~E,r !5@12exp~22ph!#21/2wl~E!1/2~pr !1/2

3F f 0~x!2
1

12h2
f 1~x!1

1

288h4
f 2~x!1OS 1

h6D G
~22!

and
02580
,

n

Gl~E,r !5@12exp~22ph!#1/2wl~E!1/2~pr !1/2

3Fg0~x!2
1

12h2
g1~x!1

1

288h4
g2~x!1OS 1

h6D G
~23!

with

x52~2r /aN!1/2. ~24!

The functionswl(E) @ul(h) in Humblet’s notations# read

wl~E!5 )
n51

l S 11
n2

h2D . ~25!

Because of Eq.~5!, they are polynomials of degreel of the
energy. The functionsf i read

f 0~x!5I 2l 11~x!, ~26!

f 1~x!5S x

2D 2F3~ l 11!I 2l 13~x!1
x

2
I 2l 14~x!G , ~27!

f 2~x!5S x

2D 4F9~ l 11!~ l 12!I 2l 15~x!

16S l 1
8

5D x

2
I 2l 16~x!1S x

2D 2

I 2l 17~x!G , ~28!

while the functionsgi read

g0~x!5K2l 11~x!, ~29!

g1~x!5S x

2D 2F3~ l 11!K2l 13~x!2
x

2
K2l 14~x!G , ~30!

g2~x!5S x

2D 4F9~ l 11!~ l 12!K2l 15~x!

26S l 1
8

5D x

2
K2l 16~x!1S x

2D 2

K2l 17~x!G . ~31!

From these expressions, we deduce the limits

F l
0~r !5 lim

E→0
Fl~E,r !5~pr !1/2f 0~x!, ~32!

G l
0~r !5 lim

E→0
Gl~E,r !5~pr !1/2g0~x!. ~33!

Of course, these functions still satisfy the Wronskian relat
~9!,

W$G l
0 ,F l

0%5p/2. ~34!

The exponential exp(22ph) and all its derivatives tend to
zero whenE tends to zero. Therefore, the first factor in E
~22! or ~23! will behave as a constant~i.e., unity! in the
calculation of a Taylor expansion and will play no role. U
ing notations with an upperscript 0 for functions calculated
1-3
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zero energy, we can express with Eqs.~22! and ~23! the
limits of the first derivatives with respect to energy as

F l8
0~r !5

~pr !1/2

12EN
@p1f 0~x!2 f 1~x!#, ~35!

G l8
0~r !5

~pr !1/2

12EN
@p1g0~x!2g1~x!#. ~36!

In these expressions, we introduce the constant

p156ENwl8~0!56(
n51

l

n2, ~37!

which takes the integer value

p15 l ~ l 11!~2l 11!. ~38!

Similarly, the second derivatives with respect to energy
the rescaled Coulomb functions can be written at zero ene
as

F l9
0~r !5

~pr !1/2

~12EN!2
@~p22p1

2! f 0~x!22p1f 1~x!1 f 2~x!#,

~39!

G l9
0~r !5

~pr !1/2

~12EN!2
@~p22p1

2!g0~x!22p1g1~x!1g2~x!#.

~40!

Here we introduce the constant

p2572EN
2 wl9~0!5144 (

m.n51

l

m2n2, ~41!

which takes the integer value

p25
2

5
l ~ l 221!~4l 221!~5l 16!. ~42!

D. Expansion ofS„E…

Now we have all the ingredients needed to perform
Taylor expansion of theS factor near zero energy. Let u
rewrite the expansion~2! restricted to second order as

S~E!'S~0!~11s1E1s2E2! ~43!

and let us derive computable expressions of the coefficie
From Eqs.~11! and ~14!, one immediately obtains

S~0!5 1
2 a\cNEl~EB /\c!2l11@ I ~0!#2, ~44!

with the integral

I ~0!5E
0

`

ul f
~r !r lul i

0~r !dr. ~45!

A radial wave functionul
0(r )[ul(0,r ) at zero energy is a

solution of the Schro¨dinger equation
02580
f
gy

a

ts.

Hlul
050. ~46!

This solution satisfies the boundary conditions

ul
0~0!50 ~47!

and

ul
0~r ! →

r→`

F l
0~r !1Dl~0!G l

0~r !. ~48!

The normalization of the functionul
0 is fixed by Eq.~48!.

Using Eq.~34!, the normalization condition can also be wri
ten as

W$G l
0 ,ul

0% →
r→`

p/2. ~49!

Let y0(r ) be a solution of Eq.~46! satisfying condition~47!.
The physical solution can be written as

ul
0~r !5c0y0~r !, ~50!

where the constantc0 is determined by the asymptotic con
dition ~49!. Another Wronskian property of Eq.~48!,

W$F l
0 ,ul

0% →
r→`

2
p

2
Dl~0!, ~51!

formally allows calculatingDl(0) from ul
0 . A more efficient

method is described in Sec. II E.
The first-order coefficients1 in Eq. ~43! is obtained by

differentiating Eqs.~11! and ~14! with respect toE @5,6#,
yielding

s15
S8~0!

S~0!
5

2l11

EB
1

2I 8~0!

I ~0!
, ~52!

with the energy derivative of the integral given by

I 8~0!5E
0

`

ul f
~r !r lul i

80~r !dr. ~53!

The energy derivativeul8
0 of the radial wave function at zero

energy is a solution of the derivative of the Schro¨dinger
equation~15! at the limit E→0, i.e.,

Hlul8
05ul

0 . ~54!

The required solution of this inhomogeneous different
equation verifies

ul8
0~0!50. ~55!

Its asymptotic form is given by the energy derivative of E
~21! at the limit E→0 as

ul8
0~r ! →

r→`

F l8
0~r !1Dl~0!G l8

0~r !1Dl8~0!G l
0~r !, ~56!
1-4
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whereF l8
0(r ) andG l8

0(r ) are given by Eqs.~35! and ~36!,
respectively. In this expression,Dl8(0) is still unknown. Us-
ing Eq. ~34!, one obtains the Wronskian limit

W$G l
0 ,ul8

02F l8
02Dl~0!G l8

0% →
r→`

0. ~57!

Let y1(r ) be a solution of Eq.~54! with the initial condition
~55!. This solution may still differ fromul8

0(r ) by an arbi-
trary solution of the homogeneous Schro¨dinger equation~46!
at zero energy. If we write

ul8
0~r !5y1~r !1c1ul

0~r !, ~58!

the unknown constantc1 can easily be obtained with Eq
~49! from the Wronskian limit~57!. Another Wronskian of
the asymptotic form~56!,

W$F l
0 ,ul8

02F l8
02Dl~0!G l8

0% →
r→`

2
p

2
Dl8~0!, ~59!

allows, in principle, extracting the value ofDl8(0). As for
Dl(0), weshall describe a more efficient method in the ne
subsection.

The second coefficients2 in the Taylor expansion~43!
reads

s25
S9~0!

2S~0!
5

l~2l11!

EB
2

1
2~2l11!

EB

I 8~0!

I ~0!
1

I 9~0!

I ~0!

1F I 8~0!

I ~0! G2

~60!

with the second energy derivative of the integral given b

I 9~0!5E
0

`

ul f
~r !r lul i

90~r !dr. ~61!

The second derivativeul9
0 can be determined by different

ating Eq.~15! twice and by taking the limitE→0, i.e.,

Hlul9
052ul8

0 , ~62!

with the initial condition

ul9
0~0!50. ~63!

Its asymptotic form is fixed by the second energy derivat
of Eq. ~21!,

ul9
0~r ! →

r→`

F l9
0~r !1Dl~0!G l9

0~r !12Dl8~0!G l8
0~r !

1Dl9~0!G l
0~r !, ~64!

whereF l9
0(r ) andG l9

0(r ) are given by Eqs.~39! and ~40!,
respectively. Equation~64! leads to the Wronskian propert

W$G l
0 ,ul9

02F l9
02Dl~0!G l9

022Dl8~0!G l8
0% →

r→`

0 ~65!
02580
t

e

from which the unknown coefficientDl9(0) disappears.
Again a solution of the inhomogeneous equation~62! verify-
ing the boundary condition~63! may contain an arbitrary
amount oful

0(r ). Let y2(r ) be such a solution. The functio
ul9

0 can be written as

ul9
0~r !5y2~r !1c2ul

0~r !, ~66!

where the constantc2 is determined by imposing conditio
~65!. The Wronskian limit

W$F l
0 ,ul9

02F l9
02Dl~0!G l9

022Dl8~0!G l8
0%

→
r→`

2
p

2
Dl9~0! ~67!

allows, in principle, extracting the coefficientDl9(0).
The present algorithm can easily be extended to hig

order by solving the inhomogeneous equation

Hlul
(n)05nul

(n21)0 ~68!

with ul
(n)0(0)50 and by using its solutionyn(r )1cnul

0(r ) to
determine thenth energy derivativeul

(n)0(r ). The unknown
coefficient of theul

0(r ) component is fixed with the Wronsk
ian limit

WH G l
0 ,ul

(n)02F l
(n)02 (

j 50

n21 S n

j DDl
( j )~0!G l

(n2 j )0J →
r→`

0.

~69!

This calculation requires higher terms in the expansions~22!
and~23! which can be deduced from Ref.@23#. The value of
Dl

(n)(0) is formally given by

WHF l
0 ,ul

(n)02F l
(n)02 (

j 50

n21 S n

j DDl
( j )~0!G l

(n2 j )0J
→

r→`

2
p

2
Dl

(n)~0!. ~70!

E. Effective-range expansion

As a byproduct, the present algorithm provides a sim
and accurate way of computing the coefficients of t
effective-range expansion.

Let us start from the effective-range expansion@14# for an
arbitrary partial wave@17–19# given by

2wl~E!

aN
F 2

Dl~E!
1h~h!G52

1

al
1

1

2
r lk

22Plr l
3k41O~k6!,

~71!

when notations~18! and ~25! are used. The asymptotic ex
pansion of functionh(h) reads@14,24#

h~h!5
1

12h2
1

1

120h4
1OS 1

h6D . ~72!
1-5
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While expression~71! is standard for thes wave, we have
modified it a little for other partial waves in order to avo
complicated dimensions for the scattering lengthal , effec-
tive ranger l , and shape coefficientPl @19#. In Eq. ~71!, al
and r l have the dimension of a length for anyl and Pl is
dimensionless. Forl .0, the present coefficients differ from
other definitions by a factorl ! 2aN

2l .
By taking the limit E→0 of both sides of Eq.~71!, one

obtains

al52
aN

4
Dl~0!. ~73!

The scattering lengthal can thus be deduced from th
Wronskian limit ~51!. However, contrary to the Wronskia
~49! which is well behaved and can be computed direc
expression~51! is not useful in practice because it involves
difference of two large numbers. Therefore, we rather res
from a more general relation deduced from Eqs.~21! and~9!,

W$Fl ,ul% →
r→`

2
p

2
Dl~E!, ~74!

which is valid at an arbitrary energyE small enough so tha
condition ~19! is satisfied. If the Wronskian in Eq.~74! is
written as an integral expression, one obtains

Dl~E!52
2

paN
2 EN

E
0

`

Fl~E,r !Vsr~r !ul~E,r !dr. ~75!

The potentialVsr(r ) appearing in Eq.~75! is the short-range
part of the interaction between the colliding nuclei, defin
by

Vsr~r !5VN~r !1ṼC~r !2VC~r !. ~76!

Notice the difference of Coulomb potentials. Since all t
energy-dependent factors have a well-defined limit forE
→0, one obtains

Dl~0!52
2

paN
2 EN

E
0

`

F l
0~r !Vsr~r !ul

0~r !dr. ~77!

Equations~73! and ~77! provide a simple and accurate wa
of calculating the scattering length which does not appea
standard textbooks.

Differentiating Eq.~71! leads forE50 to the expression
of the effective range

r l5
aN

3 F12p1

aN

al
2

3aN
2

2al
2

ENDl8~0!G ~78!

with p1 given by Eq.~38!. In practice, the effective ranger l
cannot be deduced from the Wronskian~59!, which is not
well behaved. By differentiating Eq.~75!, one obtains the
accurate integral expression
02580
,

rt

d

in

Dl8~0!52
2

paN
2 EN

E
0

`

Vsr~r !@F l
0~r !ul8

0~r !

1F l8
0~r !ul

0~r !#dr. ~79!

With Eq. ~79!, accurate values of the effective ranger l can
be deduced from Eq.~78! since the integrand is short range
For l 50, this approach provides an alternative to the famo
Schwinger-Bethe formula@15,16,14#, which reads in the
present notations

r 05
16

paND0~0!2E0

`

$@F 0
0~r !1D0~0!G 0

0~r !#22@u0
0~r !#2%dr.

~80!

Equation~79! converges much faster than Eq.~80! and re-
mains valid forl .0.

The dimensionless shape parameterPl is given by the
second derivative of Eq.~71! as

Pl52S aN

2r l
D 3H 2

15
1

1

18
~4p1

22p2!
aN

al
1

2p1r l

3aN

2S aNEN

al
D 2FDl9~0!1

aN

2al
Dl8~0!2G J . ~81!

By differentiating Eq.~75! twice, one obtains the integra
expression

Dl9~0!52
2

paN
2 EN

E
0

`

Vsr~r !@F l
0~r !ul9

0~r !12F l8
0~r !ul8

0~r !

1F l9
0~r !ul

0~r !#dr, ~82!

which can be used to accurately determinePl . In the neutral
case forl 50, a formula only based onu0

0(r ) is presented in
Ref. @25#.

The generalization of Eqs.~77!, ~79!, and~82! is obvious.

III. NUMERICAL ASPECTS

The algorithm described in the preceding section can
applied in various ways differing by the numerical techniq
chosen to solve the differential equations. Here we brie
present our computational choices.

For approximately solving the differential equations, w
apply the Numerov algorithm which is valid for inhomog
neous equations as well@26#. A differential equation of the
form

d2y

dr2
5V~r !y1W~r ! ~83!

is discretized as

j~r 1h!52j~r !2j~r 2h!1h2V~r !y~r !

1 1
12 h2@W~r 1h!110W~r !1W~r 2h!#,

~84!
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where

j~r !5y~r !@12 1
12 h2V~r !#. ~85!

The initial values arey(0)50 and an arbitrary choice fo
y(h) @for example,y(h)5hl#. An interesting aspect of the
method presented in Sec. II D is that, whilec0 @Eq. ~50!#, c1
@Eq. ~58!#, andc2 @Eq. ~66!# depend on the choices ofy0(h),
y1(h), and y2(h), the physical quantitiesS(0), s1 and s2
must be almost insensitive to them. This provides an effic
test of the code.

The Wronskian relations~49!, ~57!, and ~65! are calcu-
lated with a five-point differentiation formula@24#. The value
R1 at which they are calculated must be such thatVsr(R1) be
negligible. This is usually realized not far beyond 10 f
Again the results must be insensitive to the choice ofR1.
Using very large values forR1 ~such as the values used fo
R2 below! may lead to inaccuracies. The integrals~77!, ~79!,
and~82! are accurately computed with a simple constant-s
integration from 0 toR1 @27#.

Finally, I (0) and the derivativesI 8(0) andI 9(0) are also
accurately calculated with the same equal-step method
the integration must be extended to a valueR2 which is often
much larger thanR1. Values as large as 600 fm are needed
the following. The value obtained in the present method
R2 is also valid for potential-model calculations at positi
energies.

IV. APPLICATIONS

We now illustrate the algorithms described in Sec. II w
a few examples. These examples are selected among li
ture studies of radiative-capture reactions. Two types of
tentials are encountered. The Gaussian potentials are wr
here asV(r )52@V01(8VLS /R2)L•S#exp(2r2/R2) and the
Woods-Saxon potentials as V(r )52V0$11exp@(r
2R)/a#%21, whereV0 , R, and a are parameters. The poin
sphere Coulomb potential is used asṼC with a parameter
RC . In all cases, experimental masses are employed@28#.

The parameters of the different potentials are summar

TABLE I. Potential parameters for the radiative-capture re
tions ~in MeV and fm!.

Reaction l I J V0 VLS R a RC

3He(a,g)7Be 0,2 67.67 0 2.477 3.248
1 85.99 0.922 2.477 3.248

6Li( p,g)7Be 0,2 3/2 51.72 0 2.27 0.65 2.27
1 3/2 3/2 65.29 0 2.27 0.65 2.27

7Be(p,g)8B (T) 0,2 2 3.56 0 2.95 0.52 2.95
1 2 32.62 0 2.95 0.52 2.95

7Be(p,g)8B (B) 0,2 2 56.18 0 2.39 0.65 2.39
0,2 1 45.52 0 2.39 0.65 2.39

1 2 2 46.62 0 2.39 0.65 2.39
16O(p,g)17F 0 47.212 0 3.553 3.553

1 36.0 0 3.553 3.553
2 58.731 0 3.553 3.553
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in Table I. Woods-Saxon potentials can be distinguish
from Gaussian potentials by the occurrence of an entry foa.
The potentials are extracted from Ref.@13# for
3He(a,g)7Be, from Ref. @11# for 6Li( p,g)7Be, and from
Refs.@9,12# for 7Be(p,g)8B. In the 3He(a,g)7Be case how-
ever, we have slightly refitted the publishedV0 andVLS for
l 51 in order to better reproduce the experimental bou
state energies. In the6Li( p,g)7Be case, we only consider th
I 53/2 channel spin and neglect the imaginary part of
potential of Ref.@11#. The potentials for7Be(p,g)8B are
denoted as T for Ref.@9# and as B for Ref.@12#. The 8B
binding energy~0.137 MeV! is not accurately reproduced b
these potentials~see Table IV! but we did not modify them.
The Gaussian potentials for16O(p,g)17F are fitted by us.

First, we discuss the effective-range expansion of
3He1a system. The zero-energy radial wave functionu0

0

and its energy derivativesu08
0 andu09

0 are displayed in Fig.
1. The functionu0

0 exhibits two nodes due to the orthogona
ity to two bound states of the deep Gaussian potential wh
simulate Pauli-forbidden states. The derivatives also h
nodes. The first one is very close to the first node ofu0

0 but
the second one progressively shifts to larger distanc
Therefore, the derivatives reach their asymptotic behavio
larger distances thanu0

0. Notice that the relative signs of th
derivatives with respect tou0

0 are significant.
The convergence of Eqs.~73!, ~78!, and~81! is illustrated

by Table II. It is very fast for the different coefficients. A
comparison between Eq.~78! and the standard approach~80!
is also performed. One observes that Eq.~78! provides an
accuracy of about 1024 with a step of 0.2 fm, which is no
reached with a step of 0.001 fm by Eq.~79!. This is not so
surprising since Eq.~78! makes use oful8

0 which brings
more physical information about the scattering. The ad
tional effort in calculatingul8

0 seems to be worthwhile. Simi
larly, we think that our expression forP0 should be more
efficient than generalizations of the expression presente
Ref. @25#.

The scattering length, effective range, and shape par
eter of the initial partial waves are given in Table III for th
different systems. The steph is chosen small enough so th
all the displayed digits are converged (h50.001 fm). We
give more digits than requested by the physics in order

FIG. 1. Zero-energy3He1a radial wave functionu0
0 and en-

ergy derivativesu08
0 andu09

0 in arbitrary units.

-
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provide a test for the interested reader. In each case, we
checked the effective-range expansion by calculating ph
shifts at a number of positive energies.

The s-wave scattering lengtha0 is large for the3He1a
and 16O1p systems. It is negative and rather similar for bo
7Be1p potentials. Thes-wave effective ranger 0 is large for
6Li1p. The P0 parameters are often small but the intere
ing quantity in the effective-range expansion~71! is rather
P0r 0

3 which is large for6Li1p. For l .0, the results are no
very intuitive but correctly reproduce the phase-shift beh
iors. The scattering lengths are often quite small. This is
to the effect of the centrifugal barrier which damps the wa
functions in the region whereVsr is large in Eq.~77!. The
corresponding effective ranges are very large because o
occurrence ofal in the denominators of Eq.~78!. They lead
to very small shape parametersPl .

The integrands appearing in the expressions ofI (0),
I 8(0), and I 9(0) for the l i50 component of the
3He(a,g)7Be reaction are displayed in Fig. 2. One observ
that the maximum shifts towards larger distances when
order of the derivative increases. The integration must
performed to larger distancesR2 whens1 ands2 are calcu-
lated than for calculations ofS(0) only.

TABLE II. Convergence ofl 50 effective-range coefficients fo
the 3He1a scattering (h, a0, andr 0 are in fm!.

N h a0 r 0 @Eq. ~78!# r 0 @Eq. ~80!# P0

24 0.5 36.01899 0.96727 0.5872 20.091678
60 0.2 36.88286 0.97276 0.7980 20.090844

120 0.1 36.88984 0.97269 0.8802 20.090295
240 0.05 36.88732 0.97264 0.9248 20.090141
600 0.02 36.88631 0.97263 0.9530 20.090097

1200 0.01 36.88615 0.97263 0.9627 20.090090
2400 0.005 36.88611 0.97263 0.9677 20.090089
6000 0.002 36.88610 0.97263 0.9706 20.090088

12000 0.001 36.88610 0.97263 0.9716 20.090088

TABLE III. Coefficients of effective-range expansions (al and
r l are in fm!.

Collision l I a l r l Pl

3He1a 0 36.886 0.9726 20.09009
2 2.44231022 2900.6 22.74831026

6Li1p 0 3/2 1.0228 16.650 0.02165
2 3/2 22.69331024 2.0113104 6.258310210

7Be1p ~T! 0 24.9966 2.8231 20.03894
2 27.32731025 7.6393104 28.575310211

7Be1p ~B! 0 2 27.8527 4.2455 20.08322
2 2 21.48831023 3.1383103 6.89731028

0 1 2.6088 1.9116 0.4038
2 1 21.07531023 5.3363103 2.85031029

16O1p 0 1/2 6847.9 1.2102 20.2436
1 1/2 27.439 20.4262 47.647
2 1/2 2.2489 240.679 22.19731023
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The coefficientsS(0), s1, ands2 in theS-factor expansion
~43! are presented in Table IV for selected transitions of
different reactions. TheS(0) factors correspond to sum
over the possibleJi values in Eq.~12!. Summations overl i ,
l f , I, andJf are not performed here in order to display t
energy dependence of each term. To obtain a totalS factor,
the differentl i contributions must first be added. The resu
must then be multiplied by spectroscopic factorsSl f IJ f

before

performing the other sums. The upper boundR2 in the inte-
grals varies from 50 fm for6Li( p,g)7Be and 100 fm for
3He(a,g)7Be to 500 fm for 7Be(p,g)8B and 600 fm for
several transitions in16O(p,g)17F. The steph is chosen in
such a way that the displayed digits are all significant. Thi
usually achieved with a step of 0.02 fm. The obtained ac
racy is much better than required by the physics of as
physical applications but should help the reader testing
calculations. Good values can already be obtained wit
step of 0.1 fm. Here also, we have checked the expans
with radiative-capture calculations at positive energies.

Thes1 values offer a large variety of situations. Negati
values are obtained in most cases for thes andp waves, as is
well known from individual studies of these systems. A r
markable exception is theE2 capture to the17F ground state
in the 16O(p,g)17F reaction. This effect was emphasized a
explained in Ref.@8#. In this case, the simple extranuclea
capture model is completely wrong. The very large scatter
length implies the existence of a node in the initial wave
large distances, which must be taken into account. Ass2 is
even larger, a Taylor expansion is here of little utility. F
thed waves,s1 is positive for all examples and will lead to
slower decrease of the totalS factor. The value ofs2 is quite
variable.

Let us now compare these results with the literature.
the 3He(a,g)7Be case, ourJf53/2 andJf51/2 results for
S(0) are in good agreement with those of Ref.@13# in spite
of a slightly modified final potential.

For the 7Be(p,g)8B reaction, detailed studies have be
performed by Barker@12,29# and recently by Jennings
Karataglidis, and Shoppa@7#. Following Ref. @20#, Barker
determines coefficientsa(5s1) andb(52s22s1

2) for the to-
tal S factor. When we calculate the corresponding quantit

FIG. 2. Integrands ofI (0), I 8(0), andI 9(0) for theE1 capture
from thes wave of the3He(a,g)7Be reaction in arbitrary units.
1-8



ZERO-ENERGY DETERMINATION OF THE . . . PHYSICAL REVIEW C61 025801
TABLE IV. Coefficients ofS-factor expansions (EB is in MeV andS(0) in MeV b!.

Reaction I l i l f Jf l EB S(0) s1 s2

3He(a,g)7Be 1/2 0 1 3/2 1 21.5878 3.180331024 20.8772 0.2586
1/2 2 1 3/2 1 21.5878 4.129531026 6.6340 3.9322
1/2 0 1 1/2 1 21.1593 1.378531024 20.9222 0.3797
1/2 2 1 1/2 1 21.1593 2.396931026 6.4433 2.8318

6Li( p,g)7Be 3/2 0 1 3/2 1 25.6143 1.383531024 20.3277 20.0338
3/2 2 1 3/2 1 25.6143 4.824731028 25.82 104.4

7Be(p,g)8B ~T! 2 0 1 2 1 20.1161 2.158231025 22.8350 24.534
2 2 1 2 1 20.1161 1.650531026 7.164 213.216

7Be(p,g)8B ~B! 2 0 1 2 1 20.1460 2.176231025 22.2708 15.810
2 2 1 2 1 20.1460 1.336331026 8.541 213.334
1 0 1 2 1 20.1460 2.150831025 22.4143 15.745
1 2 1 2 1 20.1460 1.336231026 8.540 213.353

16O(p,g)17F 1/2 1 0 1/2 1 20.1055 1.653231022 25.5709 45.049
1/2 1 2 5/2 1 20.6008 6.139331024 20.0192 0.2096
1/2 0 2 5/2 2 20.6008 6.754831028 44.745 61.495
1/2 2 0 1/2 2 20.1055 2.451031026 20.4377 16.142
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with the Barker spectroscopic factorsS12250.765 andS112
50.251, we cannot reproduce either of the conflicting val
in those references. However, ours2 coefficient is in much
better agreement with Ref.@7# than with Ref.@29#. As men-
tioned in Ref.@7#, the numerical determination ofa andb ~or
s1 ands2) from S(E) is difficult and must be performed a
very low energies (,10 keV in the present case!. The large
value of s2, i.e., the strong curvature ofS(E), makes this
determination especially difficult for the7Be(p,g)8B reac-
tion. It also indicates that the limited Taylor expansion
valid only at very low energies. Forl 50, the value ofs1 is
in good agreement with the extranuclear-capture resul
Ref. @6#. For l 52, the values ofs1 ands2 are almost inde-
pendent of the potential and very close to the extranucl
capture estimates.

The 16O(p,g)17F reaction has been studied in Refs.@6,8#.
The s1 value of the extranuclear-capture mod
(25.33 MeV21) agrees nicely with the present result f
theE1 capture to the excited state. For the ground-state c
ture, the small value 0.55 MeV21 is not fully confirmed.
Strong curvatures are obtained in Refs.@6,8# for someE1
andE2 transitions to17F states in qualitative agreement wi
the presents2 values.

V. CONCLUSIONS

The coefficients of the Taylor expansion of the ast
physicalS factor can be directly calculated at zero energ
By solving the Schro¨dinger equation and its energy deriv
e
s,

02580
s

of

r-

l

p-
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tives atE50, one easily obtains the first terms of this e
pansion. The results are accurate and can be used to c
standard calculations at positive energies and to corre
extrapolate them. We think that the present simple techni
should become an indispensable complement to fu
S-factor calculations. However, the Taylor expansion is o
valid over a limited energy domain starting atE50 and its
coefficients cannot be expected to necessarily provide a g
parametrization of theS factor around the Gamow peak.

The method is applied here to the simple potential mo
but the main ingredients of its algorithm, i.e., the propert
of wave functions at zero energy, can straightforwardly
extended to more elaborate models such as the microsc
models@3–5#.

In passing, the present approach also offers an alterna
way of calculating the coefficients of the effective-range e
pansion for a given potential. The calculation is based on
same solutions of the Schro¨dinger equation and its energ
derivatives atE50 complemented by simple and fast co
verging integrals. It is valid for any partial wave. Strikingly
the convergence and accuracy of the effective range
much better than with the traditional Schwinger-Bethe f
mula.
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