PHYSICAL REVIEW C, VOLUME 61, 025205
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A modified linear model that allows foig,=1.26 by addition of vector and pseudovecte coupling
terms was discussed by Bjorken and Nauenberg and by Lee. In this extende®linezdel the elastierN
scattering amplitudes satisfy the relevant chiral low-energy theorems, such as the Weinberg-Tomozawa rela-
tion for the isovectorrN scattering length and in some cases Adler’s “consistency condition.” The agreement
of the isospin symmetrierN scattering length with experiment is substantially improved in this exteBded
model as compared with the original linear one. We show that the nucleon sigmaXgjnin(the linear and
the extende@® models with three different kinds of chiral symmetry breaking terms are identical. Within the
tree approximation the formal operator expression for Ieterm and the value extracted from theN
scattering matrix coincide. Large valuesXy are easily obtained without arsszcontent of the nucleon. Using
chiral rotations the Lagrangian of this extendeanodel reproduces the lowest-ordeN chiral perturbation
theory Lagrangian.

PACS numbgs): 14.20.Dh, 13.75.Gx, 25.80.Dj

I. INTRODUCTION In an earlier publicatiofi4] one of us reinitiated the study
of a venerable, but little-known extension of the linéar
Gell-Mann and Levy’'s(GML) linear 3, model is a prin- model, see, e.g., Reff5]. This extension allows the nucleon
cipal example of spontaneously broken chiral symmetry inaxial coupling constarg, to be different from unity without
strong interaction$l1]. It is known that the lineak model violating chiral symmetry. The extra term introduced in the
does not always give the correct phenomenology, e.g., thehear 3 model is a nonrenormalizable, derivative-coupling
value of the isoscalar pion-nucleon scattering length is t0Qerm, analogous to the Pauli anomaldetectron magnetic
large. We shall show that in the extended lin®amodel o moment term that describes the finite one-loop radiative cor-
be presented in this paper, the phenomenology is considefaction in QED, and that is often introduced into other effec-
ably improved compared to the original GML model. An- e | agrangians. This extended lineiirmodel allows one

other alleged .drawback of the linear sigma model is thatto study theg,, dependence of theN scattering lengtha._
apart from chiral symmetry, the model has not been CON-. 1 of the nucleor® term S It is well known thatal~)
nected directly to QCD. Recently, however, it has been N 7N

shown that the model can be thought of as a low-energ§lePends crucially on the value gf, whereas thewy de-
effective theory of Coulomb gauge QCD, albeit in the unre-Pendence og, is unknown[6]. We shall display this depen-
alistic limit of maximal Uy(1) symmetry breaking2]. dence and show that a Iarge_valueSqﬁ can easily be ob-
Another “weakness” of the linea® model is that the tained without recourse to arss component of the nucleon.
value of the axial coupling strength, equals one. It is We can also reproduce the new, tiny experimental value of
known that the one-loop “radiative” corrections in the linear the isoscalarrN scattering Iengthag+). Our methods and
> model lead to the renormalization of the nucleon part ofresults are potentially important for studies of nuclear matter,
the axial current3], but it is not widely known how to pecause the quark condensate in nuclear matter is determined
incorporate that kind of correction, i.e., a value@{#1,  py then-nucleonS terms[7,8], and the issue ofR-wave
Into an effectlve(tr‘?e-lev_e] ,I,_qgrang|an._ In some publica- pion condensation depends crucially gr being different
tions a proposed “solution” is to multiply the total axial fqm unity [9].

currentJis=Aj, + &, by ga where the nucleon part of the  The purpose of this study is to use the extended lidear
axial current isA% = ¢y, vs(7*/2)¢, and the meson part of model to derive some of the low-energy theorems for the
the axial current isal,=od,n"—n%J,0. Another “solu-  elasticwN scattering amplitude, to calculate thé\ scatter-
tion” posits the same, but this time just fdxi. Both of ing lengths, and to discuss the nucleBnterm . We
these “solutions™ are inconsistent with the chiral symmetry believe that at least some of the generally valid predictions

of the model. The first one violates the chiral charge algebraf chiral symmetry are most economically obtained in this

by leading to model. Throughout this paper we shall use the tree approxi-
mation, save for one illustrative example done at the one-
[Q2,QR]=032ie?"QC+is2P°Q°. (1)  loop self-consistent approximation level, shown in Appendix

A. In order to explore the various possibilities, and to facili-
The second “solution” leads to Edq1) for the nucleon part tate comparison with earlier studies of the Gell-Mann—Levy
of the axial charge, and in addition to a nonconserved axidinear2 model we introduce three different chiral symmetry
Noether current even in the chiral limit since the equations obreaking (¢SB) terms, as in Ref$6,9]. For two of the three
motion havenot been modified. xSB terms, the effects on the pion’s mass appear at the tree
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level, whereas the thirg SB term’s effect is only visible at field by its vacuum expectation valu¢o)o=f., i.e., o

the one-loop level, see Appendix A. =f _+s, where from the minimum requirement we obtain
This paper falls into six sections. In Sec. Il we define the ) )
extended linea® model, present thg:'SB terms and the (o= Aof7)fr=—¢e1. 4

canonical field variables, and show that the Noether charg
close the chiral algebra althougiy# 1. Section Il is de-
voted to a derivation of the elastieN scattering amplitude,
the Adler consistency condition and the scattering lengths. In 1 1

Sec. IV we examine the nucleon sigma teliy, first from — — £t =2 (Ms?+mim?) + o (Mg —m2+ 265)
the (formal) operator point of view and second as extracted m

from the elasticwN scattering amplitude in the first Born

the meson interaction Lagrangian in the new field variable
reads

. . . . 2 1 2 2 2 2
approximation and draw conclusions from the comparison of X s(s?+ %)+ W(m"_ mZ+2g,)(s*+ 72)2.
the two methods. In Sec. V we examine the connection with g
the effective pion-nucleon chiral perturbation theory, and (5)

Sec. VI summarizes the results. ] )
The resulting nucleors-meson, and pion masses are

Il. THE EXTENDED LINEAR 3 MODEL

M:83+gofﬂ., (6@
The extended@ model is the linea model modified by ) ) )
adding a pseudovector pion-nucleon coupling to the pseudo- m;=—up+3Nof7, (6b)
scalar ong[4]. This model allows a nucleon axial current 5 5 5
with arbitrary ga(#1). The Lagrangian density of this Mz=— ot Nof 2+ 2e,=8, /T +2¢,. (60)

model is given b .
9 y The axial-vector Noether current

— — 1
— _ . . - 2 2 o a _1
L=yibp—godlo+iysm 7Y+ 5[(3,0)7+(3,m)?] P wmsgw) (i 0=+ 9%}2 )
+EM3(0'2+172)_E(0'2+172)2+£X55 — 7 of— T \°
2 4 X\ dvuvsm - m|m+ o Yyuys5 i
ga—1\|[— 7 ) a
+| — |- (X — 7
+ Zyﬂ%%zp) (od*m—mito)|. (2)  is partially conserved in this model. The divergence of this

axial current is

We assume that the parameterg and ,uS are positive,
which ensures spontaneous symmetry breaking in the tree

approximatiqn. The Iz_ast line in _Ecq2) is a nonrenormaliz- When we assume that the physical one-pion stat, does
able derivative-coupling term, introduced by Bjorken and — .
not have anysa) or [INN) components, the matrix element

Nauenberg and. by L‘.*S]' We shall focus on Some conse- of the divergence of the axial currefusingo="f_+s) for

quences of adding this term to the lin€amodel Lagrang- h : - )

ian. the one-pion-to-vacuum transition gives
The chiral symmetry breakingySB) terms in the La-

grangian are those discussed in Rg€s9]

&“J‘;E,Z(sl-l- 2820')7Ta—83% V57 (8

m2f =g,+2f ¢,. 9)

_ To see explicitly that the purely one-nucleon part of the axial
Lyse=—H,s5=810— &, — £34. (3 current has acquired the coupling constgrt 1, Eq.(7) is

) o ] rewritten with the shifte@® field (oc=f,+s), and we obtain
An example of a differenyySB term is discussed in, e.g.,

Ref. [8]. Each one of the three terms in E@) separately a _ T
breaks the chiral symmetry and is capable of shifting the  Ju5=0a lﬂ)’,ﬂsz'/’
pion mass, though not always in the tree approximation. Yet

a

+ 10,7+ (sd, 77— md,s)?

the three terms do not always predict the same physics in all ga—1\|({— T
specific instances. In particular they predict different shifts of ( 2 ) ('J’%ﬂsg g | 7+ s(2f 1 +9)
the nucleon mass, see RE#), and, e.g., we find a different i
Goldberger-TreimarGT) relation:gaM =g,.nf -+ 3. — T \? — 7 a
As usual we choose the ground state of the model as the X ‘WNSE ‘p) t(fzts) ‘MME‘/’X" } (10
minimum of the meson interaction Lagrangidifs.,,with

respect to ther— and = fields. This means shifting the The axial charge density, however,
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Ta
P5=35s= v ys 5 = (w11, —0l}), (1D

retains its linear®, model form when written in terms of

PHYSICAL REVIEW C 61 025205

canonical fields and their associated canonical moment:

[10]:
. ga—1 ;T
Ho=0=| ==z || ¥ vs—5 ¥ (123
_1 a
%= 7"+ gAfz )[ l/fTTzﬁlﬂ) +U¢T7’5%a'//}-
" (12b)

The axial charge density, E¢ll), and the vector charge
density

p?=35= W’;ws“%ﬂbﬂb, (13)

close the algebra
[p%(0X),p°(0y)]=i82"% (0X)8(x~Yy), (143
[2(0X),p2(0Y)]=182"°(0X) 8(x~Y),  (14b)
[p2(0X),p°(0y)]=i82"E(0X) 8(x~y), (149

when we assume the canonic¢ahticommutation relations

{2(0x),I1(0y)} =i 8*°5(x~y), (159
[(0X),I1,(0y)]=i8(x—Yy), (15h)
[72(0x),IT12(0y)]=186%°S8(x—y). (150

Thus we see that in this extend&dmodel only the spatial

N 4 > ~ e <
\ 4 ~ z
) ‘ + N4 +
N /7 \A/
(a) (b)
T w i
N 7
N ’
A +
N s

(@)

FIG. 1. The elastierN scattering amplitude(a) the direct and
(b) crossed nucleon-pole diagrants) the contact, or sea-gull dia-
gram, andd) the o-meson-pole diagram. The dashed line denotes a
pion; the zig-zag line denotes@ meson, the solid line denotes a
nucleon.

1
TaBZT(+)5aﬁ+T(_)§[Ta,TB],

1
T=A+B§(K1+k2), (16)

where the incoming and outgoing pion’s momentalgrand
k,, anda and g are their isospin indices. An explicit calcu-
lation of the four tree-level diagrams in Fig. 1 leads to

part of the nucleon axial current is renormalized and the

algebra of the charge operators is satisfied.

Ill. THE ELASTIC &N SCATTERING AMPLITUDE

We follow the discussion and methods of the linear
model in Ref.[6], but extended to include the new terms in
the Lagrangian shown in the last line of E&). The main

consequence of this modified Lagrangian is that the original

7N coupling constantgy is renormalized tog,y=0o[1
+(ga—1)(M/gof )], where the nucleon mass M =g,f
+e35. This leads to a different set dbwave scattering

lengths and to the GT relation written above. Otherwise in

the tree approximation the nucle@terms are identical to
those found by Campbel6] as we show below.

A. The scattering amplitude

The elasticrN scattering amplitudd is usually written

in terms of its two isospin and two Dirac matrix components

as follows:

2 2
g m;—m;,+2¢e,
A(+):(f_°) (? +2(ga—1)
L[ M
+(ga—1) o) | (173
AT =0, (17b)

1 1

B”):gg 25 M2—u

M 2
1+(9A_1)(gof ” [M

(179
2
B()=g31+(ga—1) M ! - !
0 A gof,/ | [M?—s = M?-u
1 2
_F(QA_D' (179

ks

wheres, t andu are the standard Mandelstam variables, and
s+t+u=2M?+ki+k3. Below we will use the traditional
kinematical variables in the expressions for the amplitudes:

1 s—u
v= m(k1+kz)'(p1+Pz):m7 (183
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_ kike t—ki—k3 (18b) 2= D {ivéshold 1
VBT T oM aM dm(1+m_IM) 4m(1+m_I/M)
We follow standard notation and uBé=) as an abbreviation XA +m B Jipresnola (24
for
. . . which leads to the standard result for the isospin-symmetric
DEI=AF) 4B, (190 scattering length in thes,=e3=0 (but £;#0 sincem,_
#0) limit
In the tree approximation the extendEdmodel isospin an- )
tisymmetric amplitudd (™) then reads for on- and off-mass- 2
. gﬂ'N m7T 1
shell pions ai=--" [ )1
47(1+m_ /M) M 1—(m_/2M)
2 » l—gfz )
D)(w,vg k2 k3) = ( ) 232—< A) A
Vg— v 2M Jda m,| |m.
1283 2
x| 1+gpt || +O(sd), (20 _ gmn Mz
A7r(1+m_ /M)

where we have used our GT relation. The second term in the m, \? [m, 21 1
square bracket<(1—g,?)/2M is absent in the regulak X ZM) —0a ( ) Pt (29

model whereg,=1. To obtain the tree-level isospin sym-

metric amplitude we rewrite Ed173 as follows: The value forag” is smaller than the value in the ordinary

linears model, see, e.g., Delornst al.[8], due to the factor
+(9(82) g;z in front of the second term. This will be discussed fur-
ther in Sec. IV C.

+gA M

o

2
gon m:—t—2e,
(H)=| 27 2 _m
A (M)[l gA( m2—t

(22) The isospin antisymmetric scattering length equals the
and Eq.(179 is rewritten as standard Weinberg-Tomozawa result
2 2 2
g'n'N v g7TN m; _
(+)_27N 2 (") 9™ —(1—q"2
B 220N, 22 & Tza(ivm, /M)( ) [1—(m7,/2M) (17057
which gives, even for off-mass-shell pions, % 1 +O(e2)= giN my 2[ 1
2m, ¥ 8m(1+m, M)\ M| | g2m,
D) (v, vg k3 KE) = (g"“ T (26
va [ Mi—t=2s, In the case whem;#0, i=1,2,3, we have
XN 22 O |\ — =2
Vg—V m,—t 5 )
A 9 (m_) (m_)
+gA MJ+O(82) (23) 0 47T(1+m7T/M) 2M
_ ) _ | [ M2—2e, &3 1 5
Note that Eq.(23) is zero forv=vg=0 andt=m:. only if 0| ——=— |~ v m—+(9(si ),
g,=e3=0. This means both the isospin symmefit") and m; "
antisymmetricD(™) amplitudes have Adler zerosnly if 27)

PCAC, in its narrow definition, is satisfied as an operator

equationin the extended model. This can also be seen by for the isoscalar scattering length. Note the negative sign in
following Campbell's analysig6] of the original linear  front of the &5 term which allows for either sign of this
model. The main difference from the original lin€amodel scattering length. The isovector scattering length is

is that themN coupling constant is renormalized frogg in

the original linears, model tog,n=9a00[ 1+ (e3/90f ;) (1 gZN
—gx )], see Eq.(179), and that the GT relation becomes ag’)~8(1+—7;n/M)
gaM =g, nf -+ &3, after “turning on” e5#0, i.e., at the
tree-level the GT relation acquires an “anomaly’z ;.

(m )2 11 +0 (28
gim (83) )

unchanged from the Weinberg-Tomozawa result. To com-
pare these results with experiment we will determine the val-
ues of theySB coefficientse; from some other source, see
The wN scattering lengths are given by Eq$79—(17d:  Sec. IV C and Appendix B. However, as all thrg8B terms

B. Scattering lengths
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in Eq. (3) with their full strengths are not possible without Hamiltonian densityH,sg. When thexSB term is taken to
overcounting, some care with the interpretation of these repe the current quark mass in the QCD Hamiltonian
sults is necessary. . . .
Hgyse=AMgd=myuu+mgdd,
IV. THE 3 TERM
Eq. (30) yields
The pion-nucleor®, term is of importance for investiga-

tions of the(y) condensate in nuclear mat{é,8], and in (fodmidf 59 ?"=—(0|[ Q2.[Q2,amQq]]|0)
determination of the flavor content of the nuclddd]. As xa] AP

we shall show the extendé& model gives a very interesting = _<0|EH mo _] ,—]q|0), (31)
answer to the question of the flavor content of the nucleon. 22

First we discuss the nucledy, term as obtained from thg
operator and then evaluate the nucl@gpterm from themN
amplitude. We shall show that the connected one-nucleo

where A2, are the Gell-Mann matrices. By averaging over
A= 1,2,3 one finds the Gell-Mann—0Oakes—Ren(@&MOR)
relation between the pion mass and decay constant on one

matrix element of th& term operator coincides with another hand and the current auark mass Hamiltonian vacuum expec-
(operational definition of the nucleor®, term based on the . u qu ) fitonian vacuum exp
tation value on the other:

pion-nucleon elastic scattering amplitude in the tree approxi-

mation. Finally we make a short estimate of the possible 2:2 o 0/nl 0/nIA.
values of theX term in this model and also discuss the M f7= = [my(0]uu|0)+m(0ldd]|0)], (32
possible values of theN scattering lengths. To make contact with our previous discussion we apply
Eqg. (30) to our extende® model with the three kinds of
A. Operator definition xSB terms of Eq.(3). We use the canonical commutation
The'S, operator is defined as (r)et:?;gns, Eqgs(15a,(15b), and the axial charge, E(l1), to
i
22°=[Q5.[Qs, H,sall.
ST [Q3,[Q5. H,ss(0)]]
3 _
s = 1 S s, (29) =—£,06%°— 2e,(?5%°— TP TP) + e 3 h 5P
3 a=b=1 (33)

Using a chiral Ward identity this operator appears after Woring the vacuum expectation value of this expression we
applications of Sakurai's “master formula” to any elastic find

Smatrix element with one pion in the initial and one in the

final statg[lZ,l?J.aHerea,b are the flavor indices qf the axial (M, f1)2=£1(0| | 0) + 2&5(0| 2|0) — £5(0| 4| 0),
chargeQg= [dxpz appropriate to the corresponding pseudo-

scalar mesongpions, and H,gg is the chiral symmetry-

breaking Hamiltonian density. In principle all of the objects This relation goes beyond the tree approximation of (6q).
entering Eq(29) are meant to be exact Heisenberg represenas we show in Appendix A. We shall first examine E84)
tation operators. As we do not have exact solutions to théor the three distinct types of theSB Hamiltonian in order
quantum-field equations of motion, we will discuss two ap-to determine/normalize the values of the coefficients

proximate matrix elements of tf&2® operator for two cases: (i) £,=0 fori=2 and 3 leads to

(i) the vacuum expectation valug0|X|0) and (ii) the

nucleon ex i i [ £1(0|o]0)=(m,f)? (35
pectation value of its volume integral 1 ala) s

(N|fdxZ (x)|N). The vacuum matrix element is well under- . 2
stood[14], so it leads to valuable constraints on the form of € #1=Mzlx-

the ySB terms. As for the nucleon matrix element, we com- (1) £i=0 fori=1 and 3 leads to

pare the results obtained from the above operator definition 2 210\ — )2

using the equations-of-motion, with another derivation based #2(0]0%(0)=(mf)% (36
on the off-shell elastiarN scattering amplitude. e, e,= Im2.

1. TheS vacuum expectation value (i) ;=0 fori=1 and 2 leads to the relation
The vacuum expectation value of tRe operator yields —&5(0[ g0y =(m, f )2 (37

Dashen'’s formuld13]
We remark that this last relation looks similar to a nucle-

(fm?f)3P=f,m3 f,= —(0|[QE,[Q2,H,se]]|0). (30)  onic version of the GMOR relations, E(82). To make this

analogy more obvious, we introduce the expligiSB

This formula describes the lowest ordeBB correction to  “bare” nucleon mass matrix in our extended model La-

the otherwise vanishing pseudoscalar meson mass squargeangian, Eq(2), and compare it withZ,sg, Eq. (3). The
(mf)s) for arbitrary chiral symmetry-breaking terms in the correspondinggSB Hamiltonian density
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HNXSB=JM‘&¢=M85P+ Mﬂﬁn, m_# 0 in agreement with the Dqshen formula}, Eq4), at
the one-nucleon-loop self-consistent approximation level.
One immediate conclusion is that the nominally identical
forms of ySB terms in Eq(34) do not always produce the
same kinds of effects at the same level of approximation,
even if the approximations conserve chiral-symmetry in the
, o 0 chiral limit £;=0, 1=1,2,3.
The obvious conclusion is that;=My, the averaged — apother consequence of E(@4) is that if one assumes
bare” nucleon mass, as expected from E(®.or (68. We ¢ existence of more than og&B term, then not all of such
naturally express in terms of the current quark masdds  terms can have their “full” strengths. Specifically, if one
=3mg=3(mj+mJ) =23 MeV. wishes to have more than on&B term in the Hamiltonian,
The basic underlying assumption of chiral perturbationEqg. (3), the coefficients:; must be rescaled. The new ‘“scal-
theory as an effective hadronic field theory of QCD is thating coefficients” «; are defined as
the ySB part of the Hamiltonian is a small perturbation. Two

is used in Eq(30) to obtain the relation

m2f2=—[M%(pp)o+Mnn)o]. (39)

theories with different degrees of freed¢B®F), e.g., quarks £,= almifw, (3939
in one and hadrons in another, can be viewed as effectively

mirroring each other provided both satisfy the same chiral 1

symmetry transformations. For example, in a model with 82=a’2§mi, (39b

hadronic DB the xySB part due to the current quark mass
term in QCD is effectively mirrored in a pion mass term _
(plus possibly other terms with the same transformation £3= agMy, (399
properties. Chiral perturbation theory goes one step further
and includegto a given chiral orderall possibleySB terms  subject to the condition of Eq34) thatEf;laiz 1. Similar
in the Hamiltonian. The so-called low energy coefficientsproblems arise in other quantities sensitive 8B terms,
multiplying theseySB terms are then fit to the experimental such as the scattering lengths, E@) and(28) as in, e.g.,
data, though they could also be modelled in an underlyindgRef. [8].
guark model[15].
In the following we argue that the cas@y (ii), and(iii) 2. The nucleony, term
could be interchangeable, at least as far as the nonzero pion
mass is concerned. We wish to establish to what extent thiéI
mterchgnggablhty of tthB_terms actually hplds in various integraf of the S operator
approximations(They certainly are not equivalent when it
comes to nonvacuum matrix elements of theerm, as we
shall show below. In the tree approximation the first two 2N=<NJ dx3(x) |\|>
terms on the right-hand side of E@4) are the same as those connected
in Eq. (9). Thus we see that the bafeurrenj nucleon mass disconnected
f de(x)> —< J dXE(x)>
N
1
3

The nucleorn term () is, by definition, the connected
astic one-nucleon matrix element of the spatialume

term with e5#0 does not lead to a massive pion in the tree =
approximation. In Appendix A we show how the bare

nucleon massl\/lﬁ,=83¢0 produces a nonzero pion mass

N

3
2 1 <N|[Qg![ngH)(SB]]|N>

a=b=

INote that two sets ofSB terms may effectively mirror each 3

other under a “lower” chiral symmetry like SW2)x SUg(2), but —(2m)35%)(0) 3 > (0|[Q2.[Q2.H,se(0)1]/0)

be very different under a “higher” symmetry such as a=b=1

SU, (3)X SUg(3). For example, the chiral transformation proper-

ties of both the current quafi, sg and the bare nucleon mass term = f dx{{Z(x))n—(Z(0))o}, (40
Hnyse are those of (2,29(2,2). However, in theN;=3 case the

quarks form an SUB) triplet, which means that their bare mass yhere H ss=JdxH,sg(X). In this application it is prefer-
terms transform as (3)®(3,3), whereas the spin-1/2 baryons are gble to quantize the system in a finite volufie so as to
part of an SW3) octet, which means that theiSB terms transform  ayoid dealing with a new infinity in the form of a Dirac delta
as either (8,8) or (8,1)(1,8) under the chiral SU3)XSU(3)  function of zero argument, @@)35®)(0)=limg ...(Q
group[14]. This group theoretical difference implies different pseu- =[odx). Subtraction of the disconnected term proceeds
doscalar meson mass spectra in these two modegl$Bf Since we naturally using the equations of motion.

know that the observed pseudoscalar masses conform rather well Initially we have

with the current quark mass modédl], we are forced to conclude
that the baryon-antibaryon contribution to the pseudoscalar mass

spectrum is supressed. This raises the question to what extent one

may apply the baryon current mass modej&B ande;# 0 in the 2This accounts for the different dimensions of the vacuum and
two-flavor sector. nucleons, terms.
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3

1
3.2 | dXQEIQE 0]

~ [ ax

= _Q(Sl+ 282fﬂ.)fﬂ._ J’ dX[S(81+482fﬂ.)—83E¢]

1
—810'_282( o’ =

3 te 3?‘1[/}

+O(s?)+ O(7?). (41)

Using Eq.(5) we obtain the equations of motion for the

shifted o field s

mZ—m2+2e,

[5°+ mi]S=—go$¢f—( T )(3s2+ )

ga—1
2f2

ks

m

m2—m?2+2¢,
212

ko

)s(sz+ )+

X[ (P, vsm mh) + (Py, ys7h) - (94a)].
(42)
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where the dots represents higher order terms of the fields
which are neglected since we are working within the tree
approximation. Using Eq(6a and the tree approximation
result, Eq.(9), we find

mi.‘l' 282
SN=M| ———| +e3+0(s?). (45)
m

o

Naively we expect the value & to be given by the sum of
the current quark mass¢&1] «&5 which is reflected in a
nonzero “bare” nucleon mass. The presence of the scalar
field which induces the spontaneous chiral symmetry break-
ing in our model, changes radically the valueXqf, see Eq.
(45). We shall return to this expression in Sec. IV C. Since
there are no elementary scalar fields in the QCD Lagrangian
it is difficult to demonstrate how this could happen in QCD
but we note that there are scalundstates in QCD.

B. The X term from the scattering amplitude

The t-dependent pion nucleol term can also be de-
fined in terms of the on-mass-shell isospin symmetric ampli-

The lowest-order perturbative solution is the following inte- e as followd6,12,13:

gral equation defined in terms of the free Klein-Gordon

Green’s functiomM(x;m,):
s(X)=f d“yAF(x—y;mg)[gJ(y)w(y)

2_ 2
me—m,+2¢e,

+ T) [3s(y)+7%(y)]

2_ 2
m;—m_+2¢e,

+
212

gA_]-)

s(Y)[S%(y) + 72(y) ]+ 72

X[M(hy, ysT wh) + (Py, vs7h) - (aﬂm]] , (43

which upon inserting into the definitio@1) leads to
EN: <E>cNonnected

1 3
:§ a:%:l dX<N|[Qg'[Qg ’H)(SB(X)]]| N>connected
— (ot deat ) [ AX(SO0N— e [ dXEOOPOO)y
+0O(s%) + O(7?)

:_90(81+482f7r)f dxf d*YAR(X—y;mg)

X<$(y)¢//(y)>N+83J' dx{((X) (X))
+O(SZ)+O(172)

=%(81+482fw)+83+0(82)---, (44

o

D(+)(V,VB,ki=m2

ikl

ks=m’)

EDI(D-{—/)Bom(V-V& ki:mz kg:mir)

ikl

Sn(t)
+ o (469
2 2
gan| VB
Ot v =, Koy =| S 7B
(46b)

where we have defineB S ;. as given by the diagrams,
Figs. 1@ and Xb), using a pure pseudovect®V) =N in-
teraction Lagrangian. Equivalently

N Sn(t=2m?2)
D(»=0, vg=0, K2=m2, k§=mi)=”—f2—,
(47)

which when evaluated at the unphysical Cheng-Dashen point
gives the value OEN(t=2me). Here as usual

B(i):D(i)_DI(Dl\—/)Bom' (48)

When we compare Eq47) with Eq. (23), we obtain the
expression

3As a simple illustration of this point one may take the example of
the NJL model in which there are no elementary scalar mesons, but
the fermion(in that case the constituent quaik term is dominated
by the scalar bound state’s contribution.
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2 2
m _t_282 _g N m
—e— m 2 Q) PO A S i
EnB)=e5~M Comi-t 0D, %o 4w(1+m,,/|v|)<|v|)
2 m? M
X == +9:2 (1—ay)| — | —«a (—)
2 2 26, 2m| T T )Tl
Sy(t=2ml)=es+ M| — >—|+0(c?), (49
o 1
xm—w+0(82) (52)
where in the last step we assumé<m?, and as above we and
assumemiocsi, i=1,2,3. Equation(49) is in agreement
with the canonical result of Eq45) and with the original o 21 1
linear >, model result of Campbelg]. () e N (My)7 L L 2
2 = ga(Trm M) | M| g2 m, O 53

C. Comparison with experiment Despite the tiny “bare” nucleon madd <M the value of

The X operator, Eq(29), is often identified with the chi- the isoscalar scattering Iengﬁi{f) shows significant depen-
ral symmetry breaking Hamiltonian itself. In two of the three dence on both ther, and a3 parameters for values ah,
cases in Eq(33), the nucleon®, term is a measure of the <My. In the extended lineaX model the theoretical value
¥SB in the nucleon. In those cases it equals the shift of thef ab”) can easily reproduce the “old” experimental value
nucleon mas$M due to theySB terms in the Hamiltonian. a§)+)|expt=—0.010(4)n;1, Ref. [16], and can have either
This reasoning underlies the standard interpretation of theign with extreme values of; parameters. Recent pionic
nucleon3, term as being a measure of the strangeness coratom experiments allow foa{") values of comparable size

tent of the nucleoll]. A large value oft =65 MeV has

often been interpreted as a sign of a substasgalontent of

the nucleon. We shall show that in the extended lingar

model, Eq.(2), such a large values fd& \(t=2m?) can be

obtained without any strangeness content of the nucleon.
In the tree approximation the value of thg, term in

terms of the values of the parametersof Eqgs.(399—(390

is

SN=MY(1—ai—an) +M(1+ ay)

m2
—’;) +0(g?),
mﬂ'
(50

where we useMy=23 MeV, M=940 MeV, and m,
=140 MeV. For possible values of themeson mass in the
interval m,=400-1400 MeV[2] we have M(m_/m,)?
=115-9 MeV, and hence

2N=(1—a1—a2)><23 MeV+(l+ Cllz)

X (115-9) MeV+O(g?). (51)

of either sign if only hydrogen data are taken into account
[17]. The addition of the latest pionic deuteron data can flip
the sign and definitely reduces both the mean value and the
uncertaintieg17]. The new experimental value fai")] ey

e= iO.OOZO(len;1 is much(almost 50 timessmaller than

the “natural” size obtained from the usuél sg and requires
further cancellations among these small terms. Thus, this lat-
est value ofagfr)|expt appears to be of)(¢?). In order that

our O(e?) calculation of theag’) Swave scattering length
(52) reproduce this very small experimental value, a very
delicate cancellation between the various terms must take
place in our model that makes it very sensitive to bath
andas and to the value ofn, . We conclude that the present
approximate calculation is not sufficiently precise to be reli-
ably and profitably compared with the most recent data.

To O(e) the isospin antisymmetric scattering wave scat-
tering Iengthag’) is independent ofy;. The leading order
(Weinberg-Tomozawaprediction (53) is within one stan-
dard deviation from the(old) mean experimental value
ag’)|expt=0.091(2)rn;1, Ref. [16]. The new experimental
value ofa§)|e,,—0.0868(14)n !, Ref.[17], is subject to
the same caveats as for the isoscalar one described above.

V. RELATIONSHIP TO CHIRAL PERTURBATION
THEORY

This range of values easily encompasses the experimentally

allowed range of 45-75 MeV, for sufficiently ligim, and
for reasonable values af;, i=1,2,3. Note, however, that
due to the large uncertainty im, this experimental value

A “chiral rotation” defined in the limitm,—c by

can not be used to effectively fix the above linear combina-

tion of the «; parameters.
To compare therN scattering lengths, Eq&7) and(28),

with experimental values, we discuss the general egse

#0, 1=1,2,3:

N=\VR(1+iysr & ¢, (543
=R, (54b)
o=, R(1-&), (540
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¢ 2
1*(&)

-1 which when combined with Eq(55) leads to Weinberg's
=[1+&]17Y (540  nonlinear Lagrangian witlya#1. One can now write the
resulting nonlinear Lagrangian in the notation of chiral per-
leads, by way of standard argumefit8,19 from the linear  turbation theory and thus convince oneself that this is

. model Lagrangian without the extra derivative interactionequivalent to the lowest order Lagrangian of Gasser, Sainio,
terms in Eq.(2), to the nonlinear one and Sarc (GSS [20,21]. Conversely, one should be able to

convert finite-chiral-order terms in the G®®nlinear chiral

R=

= 1, 5 1 Lagrangian into extended linear ones. This is more than an
L= Lyse=Nlid— M]N+§R (0. )"+ R 2f academic point, for it makes it clear that the choice between
the linear and nonlinear realizations is a matter of conve-

— nience. Quite often it is more expedient to work in the rep-
X(N7#757N)"9M¢_R(E resentation wherein one has the or s fields from the be-

_ ginning, rather than building it up from the pions. Moreover,
X(Ny, M) (X ). (55 the linear Lagrangian is always a polynomial in the meson

) ) ) fields, rather than a fractional, or evémanscedentalexpo-
The above form of the nonlinear Lagrangiabd) differs  nential function ofr as is the case in the nonlinear realiza-
from Weinberg's 18] by the absence of aad hocfactorg,  jgn.

in front of the “pseudovector” coupling term. The source of
this difference, as emphasized by Weinberg himself, was the

need to have both the gmpiricga,& factor in the'axial cgrrent VI. SUMMARY AND CONCLUSIONS
and the correct two-pion-nucleon contact interaction. We
shall now show that the extended lin€armodel, Eq.(2), In this work we have shown that the extension of the

leads to Weinberg's nonlined model Lagrangian, i.e., that linear> model allowsg,# 1 in the axial current in the linear
the extra terms in Eq(2) promoted by Bjorken-Nauenberg realization of chiral symmetry. The chiral charge algebra
and by Lee provide precisely the difference prescriaed holds in the extended line@r model despite the fact that the
hoc by Weinberg. The extra terms in E(R) can be written  spatial part of the nucleon axial current is renormalized by
in terms of the current¥ , ,v,, andA , ,a,,: 0a, because the nucleon axial charge is not renormalized.
We evaluated the elastieN scattering amplitude in the

(9a 1) [— 7 . tree approximation with three kinds gfSB terms similar to
Lon= fZ VYum | (mxotm) Ref.[6]. Thea ) scattering length is now in agreement with
the We(in)berg-Tomozawa result, and we can obtain a very
- 7 _ smallal") scattering length value in contrast to the original
- ¢7”752¢> (odtm=mita) IinearEo model.
The X term with three differentySB terms was also
= _z_gA_1>[V VAHA -] (56) evaluated. In the tree approximation thg term from the
2 ® a canonical operator definition using the equations of motion
a a coincides with the result derived from theN scattering am-
TheV,, andv, are plitude. The vacuum matrix element of tie operator puts
;s \a one constraint on a linear combination of the three different
Vi:Rl(l_fz)(NhiN) —Ny,7s(7X §°N xSB parameters;, i=1,2,3. Itis noteworthy that in our
extended linea® model a large value fok can easily be

_ obtained without anyss components in the nucleon. The
+ &Ny, (7 §)N], (57)  reason for this is that the scalar meson can make a large
contribution to%,y depending on the value of the mass.
a_ 12 a Finally we showed that a chiral rotation of the extended lin-
Vu=RAPXIuP)". 8 ear>, model Lagrangian leads to the lowest-ordeM xPT
Similarly, Lagrangian in the limitm,—. .
We close with several suggestions for future resea(i¢gh:
a o[ = N a Derive ¢;, for i=1,2,3 from quark models or QC[for a
A=Ry(1-&) NV#VSEN —Ny,(7X§°N sketch of such a derivation in the NJL model, see Appendix
B). (ii) Apply the extende@® model to a re-evaluation of a
— possible pion condensation in nuclear matter, wiggre 1 is
+ &Ny, ys(T f)N] ' (59 very important, but has not been consistently implemented to
date.(iii) Establish a relation between the free parameters of
aZZRZfW[a’*d’a(l— E)+28(& o )] (60)  the extended lineat model and the low-energy constants in
the yPT Lagrangian.

Inserting these into Eq56) we find Note added in proofAfter this paper was accepted it was
. brought to our attention that a paper by Carter, Ellis, and
Lyn=(9a—1)R(Ny,ys™N)-9"§, (61) Rudaz[24] covers some of the same ground.
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APPENDIX A: DASHEN'S RELATION vV v (#9222 M (F)o
AT THE ONE-LOOP LEVEL
€1 €3 —
Here we follow Sec. V of Ref[4] and show that at the =~ T282~ F<¢¢I>O' (AB)

one-nucleon-loop level we can derive E84). (Analogous

calculations at the one-meson-loop self-consistent approXiyhere we used the GT relatiofA2b). Equation (A6) is
mation level can be performed along the lines of R2E].)  equivalent to Eq(34) to leading order inySB parameters.
The Hartreg- RPA approximation can be defined by three Thys we have demonstrated the necessity of a self-consistent

Schwinger-Dyson integral equation§) the zero-body or  gap equation for the validity of Dashen’s formula whe8B
vacuum equation(ii) the one-body or the fermion mass gap js determined by Eq(3).

equation, and(iii) the two-body or one-meson Bethe-

Salpeter equation, shown in Figgah 5(b), and %c) of Ref. APPENDIX B: SKETCH OF A DERIVATION

[4], respectively. The Bethe-Salpeter equation for hhs OF &; AND &5
pseudoscalar scattering amplitudes is separable and has as an o ) ) _ )
exact solution in Hartree RPA the following expression: We shall use the bosonization technique in a simple chiral
quark (NJL) model to show that, is related toe; at the
1 quark level. This is just a sketch meant to illustrate an ap-
D (k) (Al)  proach to the more challenging case of nucleons.

T k2_~ (RPA) 1
k*=2777(k) The NJL model Lagrangian density is

where3 (RPA(K) is a sum of a single one-nucleon-loop po- Lag=dli6— 01y + GL ()2 + (B yer)?].  (B1)

larization diagram plus one “tree” diagram. The Schwinger-

Dyson equations now read €f ) [4] The substitution
3 H 4 _ m
1 v [ dp 4M —goo=G(¢), (B2a)
V:—P+)\0?+E90Nf WETMZ, _
0 0 0 (A2a) —gom=G(¢iys1h), (B2Db)
_ _ for one of the two quark bilinears leads to tlisemi-
M=Mo+gov=23+goVv, (A2b) bosonized linear o model interaction Lagrangian
(RPA) (1) — 2 2 217 (RPA) _ _
277 (k)_282 M0+)\OV +gOH7T (k)v (AZC) L‘,int:—golﬁ[o--‘,-pysﬂ-. T]lﬂ (83)

where Eq.(A2b) is the same as Eq6a). The pion polariza-  The chiral symmetry breaking current quark mass term is
tion functionTIF*)(k) can be written as B - %
d4p 1 ﬁXSB:_molﬁlﬁ:_83lﬂ¢:m060':810'. (B4)
HSTRPA)(k):4ifo ——— ———>—2iNk?I (k) o _ _

(2m)" p°=M Note that Eq.(B2a) implies (using the linea® model rela-
tions)

1
_ - Y k2 k —
M Pdo= 2INkI (k) (A3) ~9o(0)0=C(¢h)o=~of = —m. (BS)

where we introduced the logarithmically divergent integral This in turn leads to

d4p 1 G0 mo 2
= (277_)4 [pZ_Mz][(p+k)2_M2] . (A4) 81_836__E<l7[,d/>0_m17f’771 (BG)

1(K)

In order to prove the Dashen relati¢84) we rewrite Eq. where the last step follows from the GMOR relation, which

(A2a) using Eg.(A3) as follows can be explicitly demonstrated in the NJL model at the quark
level.

o 2 &1 Go,— Chiral symmetry breaking coefficients have been calcu-

Mot AoV v 7<'/“7”>0' (AS) lated at the mesonic level in a more sophisticated chiral

guark (“global color”) model in Ref[15]. The challenge is
When we compare this equation with the tree approximatiorio extend this analysis to the nucleon case. This can presum-
results, Eq.(6c), we see that the last term above is beyondably be done by solving the three-quark Faddeev-Bethe-
the tree-level. Insert this into EqA2c) to find to lowest Salpeter equation, see RdR3], and calculates; at the
order ing; (ask—0): nucleon level.
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