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Phase-equivalent energy-dependent potentials
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Supersymmetric transformations, i.e., factorizations of the radial Schro¨dinger equation, are generalized to
potentials with a linear dependence on energy. These transformations are equivalent to generalized Darboux
transformations and do not affect the energy dependence of the potential. A pair of transformations allows the
removal of a bound state without modification of the phase shift. The method is applied to the removal of the
forbidden bound states of a deep energy-dependenta116O potential generating a phase-equivalent shallow
potential with anr 22 repulsive core at the origin and the same energy dependence as the initial potential.

PACS number~s!: 24.10.Ht, 03.65.Nk, 25.70.Bc
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I. INTRODUCTION

Local central potentials provide a simple description
the interaction between two particles and of their collisio
@1#. This description can also be applied to compos
particle systems, e.g., in nuclear physics. The correspon
interactions are complex and depend on energy and on
gular momentum@2–4# thus taking into account approx
mately the characteristic features of the many-body syst
Specifically, the energy and angular-momentum dep
dences of these so-called optical potentials reflect the re
tion of the microscopic many-body Hamiltonian to a on
body operator and are inherent features of this simplifi
model. Because of its simplicity the optical model has b
come an important tool in nuclear physics and there has b
considerable effort for its determination.

The extraction of optical potentials from elastic scatter
cross sections suffers from ambiguities. The problem is tw
fold. First, thephase problemwhich denotes the fact that th
scattering cross section does not contain information on
phase of the scattering amplitude necessary for a unique
termination of the potential@5#. Second, even if the phase o
the scattering amplitude is known there is still freedom in
discrete spectrum, in particular in the number of bou
states. This phenomenon is known as thediscrete ambiguity
@6# which is characterized by a set of~almost! phase-
equivalentpotentials sustaining different numbers of bou
states.

Microscopic and semimicroscopic calculations
nucleus-nucleus interactions@7# suggest deep potentials
@8,9#, which is confirmed by the evaluation of simple de
phenomenological potentials, e.g., for thea1a @10#, 16O
116O @11#, anda1nucleus@12# systems. An important pre
diction of the microscopic theory is the number of bou
states sustained by these potentials. Among these bo
states the lowest ones correspond to relative motions w
are suppressed in the microscopic model because of anti
metrization. They are called Pauli forbidden states@13# and
do not correspond to physical bound states of the ma
particle system. These forbidden bound states have no in
ence on the on-shell properties of the two-body interact
but may influence its off-shell properties. For instance,
0556-2813/2000/61~2!/024605~7!/$15.00 61 0246
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a1a bremsstrahlung cross sections are very sensitive to
presence of forbidden bound states in thea1a potential
used in the calculation@14#. Removing the forbidden state
from a deep potential thus allows interesting comparis
between off-shell properties of phase-equivalent potenti
In three- and many-body problems, these states have e
stronger effects: they lead to spurious bound states wh
make the interpretation of the many-body spectra diffic
@15#. Removing the forbidden bound states from the tw
body interactions before performing the many-body calcu
tions is thus very advantageous since it greatly simplifies
interpretation of the obtained spectra. For instance, this te
nique is applied in Ref.@16# in three-body calculations o
halo nuclei. Hence, although deep potentials are physic
well founded, it is useful to eliminate their bound states c
responding to Pauli forbidden states in different contexts

The formalism of supersymmetric quantum mechan
@17,18# provides an elegant algebraic technique for the elim
nation of bound states. This technique is equivalent to
factorization method@19# and to Darboux transformation
@20,21# of the Schro¨dinger equation. It was shown in Re
@22# that two successivesupersymmetric transformations a
low the elimination of the ground state of a given Ham
tonian without modifying its scattering behavior. Actuall
this phase-equivalent bound-state elimination is not limi
to the ground state@23#; moreover, additions and modifica
tions of bound states are also possible within the supers
metric formalism @24,25#. The application of the phase
equivalent bound-state removal to the forbidden states
deep potential leads to a shallow potential which has
same scattering properties but sustains only physical bo
states. The transformed potential exhibits anr 22 singularity
at the origin and is in generall dependent.

A few years ago, the supersymmetric formalism was o
available for real single-channel energy-independent po
tials. Since more complicated potentials are used very
quently, particularly in nuclear physics, we are trying to ge
eralize this formalism to wider categories of potentia
Indeed, generalizations to complex~optical! potentials
@26,27# and to coupled-channel systems@28# have been pre-
sented. As outlined above an important issue in nucl
physics is the removal of unphysical bound states of Ham
©2000 The American Physical Society05-1
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tonians with energy-dependent potentials. This problem
been considered first by Fiedeldeyet al. @29# who con-
structed via inverse scattering techniques for each pa
wave an energy-independent potential from the scatte
phase shifts generated by the original Hamiltonian; this p
vides a deep energy-independent potential for which
standard supersymmetric transformation for the eliminat
of forbidden states can be applied. The final shallow pot
tial is energy-independent but stronglyl dependent. An alter-
native procedure for the removal of bound states in syst
with energy-dependent potentials was given in Ref.@27#.
There one considers the energy-dependent potential
given energy as an energy-independent one and applie
standard procedure for the removal of bound states. T
procedure has the drawback that the bound-state remova
to be performed at each energy. The final shallow poten
depends on both the energy and the angular momentum

In this article we present a new algebraic method to p
form a phase-equivalent removal of bound states from a
tem with linearly energy-dependent potentials. Such lin
energy dependences are very frequent in nuclear phy
particularly for complex potentials, the imaginary part
which increases with energy to simulate the opening of n
channels. Unlike in preceding methods, we neither use in
sion techniques nor intermediate energy-independent po
tial: the method is as direct and as elegant as for the sim
case of energy-independent potentials. In particular, the fi
potential is expressed in closed analytical form directly fro
the initial potential and has the same energy depende
The method has been suggested by Refs.@30,31#, where Dar-
boux transformations for specific Sturm-Liouville equatio
are presented. Considering this problem in terms of the
malism of supersymmetric quantum mechanics allowed u
develop a direct method for the removal of bound states
the construction of phase-equivalent potentials.

In Sec. II, we generalize the supersymmetric formalism
the case of linearly energy-dependent potentials. In Sec.
we recall the principle of phase-equivalent bound-state
moval with a pair of supersymmetric transformations a
establish the corresponding formulas in the case of line
energy-dependent potentials. In Sec. IV, we apply this f
malism to the removal of forbidden bound states from
real part of the deepa116O potential of Ref.@32# for l 50
and compare the result with that obtained by transform
the potential at fixed energies. Our conclusions are prese
in Sec. V.

II. GENERALIZED SUPERSYMMETRIC FORMALISM

In Refs. @30,31# ~see also Refs.@33#!, Darboux transfor-
mations for a Sturm-Liouville equation were presente
These include also the case of the radial Schro¨dinger
equation

F2
d2

dr2
1V0~E,r !GC0~E,r !5EC0~E,r !, ~1!

with a linearly energy-dependent potential
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V0~E,r !5V0~0,r !1EVE~r !, ~2!

where E is the center-of-mass energy~we choose\52m
51, wherem is the reduced mass of the colliding particles!.

It has been known for a long time@20# that a Darboux
transformation can be formulated in terms of a supersymm
ric transformation, i.e., as a factorization of the Schro¨dinger
equation. Here, we generalize this result to radial Sch¨-
dinger equations with a linearly energy-dependent poten
@Eq. ~2!#. For this purpose, we introducet(r ) by

VE~r !512
1

t2~r !
. ~3!

It can be verified that all the formulas below are independ
of the sign oft(r ) and that its possible singularities do n
create any problem. Multiplying Eq.~1! on the left witht(r )
leads to

D̃0C̃0~E,r !5EC̃0~E,r !, ~4!

with

D̃05t~r !F2
d2

dr2
1V0~0,r !G t~r ! ~5!

and

C̃0~E,r !5
C0~E,r !

t~r !
. ~6!

It should be remarked that the modified wave functi
C̃0(E,r ) is well defined if we assumeVE(r ) to be bounded
in the whole domain (0<r ,`).

The new differential operatorD̃0 does not depend on en
ergy @compare with Eq.~1!#. It can be factorized in the form

D̃05A0
1A0

21E0 , ~7!

where E0 is called the factorization energy. The mutual
adjoint operatorsA0

1 andA0
2 are given by

A0
25F2

d

dr
1U0~r !G t~r ! ~8!

and

A0
15~A0

2!†5t~r !F d

dr
1U0~r !G , ~9!

where

U0~r !5S0~E0 ,r !21
d

dr
S0~E0 ,r ! ~10!

is the so-called superpotential. It can be verified that Eq.~7!
is satisfied when the functionS0(E0 ,r ) is a solution of the
Schrödinger equation~1! at energyE0, i.e., when it satisfies
5-2
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PHASE-EQUIVALENT ENERGY-DEPENDENT POTENTIALS PHYSICAL REVIEW C61 024605
F2
d2

dr2
1V0~E0 ,r !GS0~E0 ,r !5E0S0~E0 ,r !, ~11!

where the potential is calculated at the factorization ene
The solutionS0(E0 ,r ) is called the factorization solution.

Applying operatorA0
2 to Eq. ~4! leads to a new equatio

D̃1C̃1~E,r ![@A0
2A0

11E0#C̃1~E,r !5EC̃1~E,r !,
~12!

with

C̃1~E,r !5A0
2C̃0~E,r !. ~13!

Dividing this equation on the left byt(r ) and introducing
C1(E,r )5t(r )C̃1(E,r ) in analogy with Eq.~6! leads to

F2
d2

dr2
1V1~E,r !GC1~E,r !5EC1~E,r !, ~14!

with a new potentialV1(E,r ). This potential has the sam
energy dependence asV0(E,r ), i.e.,

V1~E,r !5V1~0,r !1EVE~r !, ~15!

but has a new energy-independent part given by

V1~0,r !5V0~0,r !2
2

t~r !

d

dr F t~r !
d

dr
ln

S0~E0 ,r !

At~r !
G .

~16!

This expression is equivalent to the results obtained in R
@30,31#, but here it has been established via the technique
supersymmetric quantum mechanics. Fort(r )51 @or more
generallyt(r )5const] Eq.~16! reduces to the relationship o
the supersymmetric partnersV0 andV1 in the case of energy
independent potentials@18#. It should be emphasized tha
there arise no difficulties with singularities oft(r ) as one
might suppose from the compact form of Eq.~16!. However,
the superpotentialU0(r ) and the transformed potentia
V1(0,r ) will exhibit singularities forr .0 if the factorization
energyE0 is greater than the energy of the ground state
Eq. ~12!, i.e., if the operatorA0

1A0
2 is not positive semidefi-

nite @see Eq.~7!#. Similarly to Ref.@23# this defect vanishes
if iterations for the construction of phase-equivalent pot
tials are performed with the same factorization energy.

The supersymmetric transformation thus allows the c
struction of a new potentialV1 from an initial potentialV0.
The subscripts refer to the number of transformations.
cording to Eq.~13!, the solutions of the new equation a
related to those of the initial equation by

C1~E,r !5t~r !F2
d

dr
1U0~r !GC0~E,r ! ~17!

52t~r !S0~E0 ,r !21W@S0~E0 ,r !,C0~E,r !#,
~18!

where
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W@S0~E0 ,r !,C0~E,r !#5S0~E0 ,r !S d

dr
C0~E,r ! D

2S d

dr
S0~E0 ,r ! DC0~E,r !

~19!

is the Wronskian ofS0(E0 ,r ) andC0(E,r ) which satisfies

d

dr
W@S0~E0 ,r !,C0~E,r !#5

E02E

t2~r !
S0~E0 ,r !C0~E,r !.

~20!

Because of Eq.~20! the Wronskian can be expressed via
integral. Specifically, forE5E0 the Wronskian is constan
and the solutionC1(E0 ,r ) of Eq. ~12! simplifies to

C1~E0 ,r !5t~r !S0~E0 ,r !21 ~21!

up to a multiplicative constant. The most general solution
Eq. ~12! at E5E0 can be cast into the form

C1~E0 ,r !5t~r !S0~E0 ,r !21FB1E
r 0

r

S0~E0 ,u!2
du

t2~u!
CG ,

~22!

whereB, C, andr 0 are arbitrary constants. This can be ve
fied by substituting this expression into Eq.~14!.

III. PHASE-EQUIVALENT BOUND-STATE REMOVAL

Depending on the behavior of the chosen factorizat
solutionS0(E0 ,r ) at the boundaries (r 50 andr→`) @18#,
supersymmetric transformations may modify the discr
spectrum of the Hamiltonian. This result remains valid f
the generalized transformations presented above@34#. If the
factorization energyE0 is chosen as the ground-state ener
of the initial Hamiltonian withV0 and if the factorization
solution S0(E0 ,r ) is chosen to be the ground-state wa
function, the transformed Hamiltonian with potentialV1 has
the same discrete spectrum as the original one except fo
ground state atE0 which is removed.

From Eq. ~17! it is seen that forEÞE0 , C1(E,r ) and
C0(E,r ) have the same characteristic behavior at the bou
aries. For instance, ifC0(E,r ) is a bound-state wave func
tion vanishing at the origin and at infinity, so isC1(E,r ). If
C0(E,r ) is a scattering wave function vanishing at the orig
and oscillating at infinity, so isC1(E,r ). The relationship
between the phase shifts~or additional phase shifts in th
presence of a Coulomb interaction! of these scattering wave
functions can be extracted from Eq.~17! and is given by

d1~E!5d0~E!6arctan~AuE/E0u!. ~23!

The plus sign is associated with a factorization solution
verging at infinity, while the minus sign results for factoriz
tion solutions vanishing at infinity. Hence, the modificatio
of the phase shift only depends on the factorization ene
and the asymptotic behavior of the factorization soluti
5-3
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J.-M. SPARENBERG, D. BAYE, AND H. LEEB PHYSICAL REVIEW C61 024605
@35#. Equation~23! shows thatV1 is not phase equivalent t
V0 but that the iteration of two successive transformation
the same factorization energy and with factorization so
tions behaving differently at infinity leads to a potentialV2
exactly phase equivalent toV0 @22,24#.

Here, we focus on the removal of a bound state wh
maintaining the phase equivalence. Therefore, in the
step we chooseS0(E0 ,r ) to be the wave function of the
ground state. Then the potentialV1 does not sustain a boun
state atE0. According to Eq.~22! the function

S1~E0 ,r !5t~r !S0~E0 ,r !21E
0

r

S0~E0 ,u!2
du

t2~u!
~24!

is a specific solution of the Hamiltonian withV1 (B50, C
51, andr 050). This solution vanishes at the origin as c
be seen by a series expansion. Furthermore, the integr
Eq. ~24! is bounded becauseS0(E0 ,r ) is normalizable and
VE(r ) is assumed to be bounded; henceS1(E0 ,r ) diverges
at infinity. The existence of such a solution implies thatV1
does not sustain a bound state atE0; if it had such a bound
state, a vanishing solution at the origin would also vanish
infinity.

If we perform a second supersymmetric transformation
the factorization energyE0 usingS1(E0 ,r ) as the factoriza-
tion solution we obtain by iteration of Eq.~16! the potential

V2~0,r !5V0~0,r !22A12VE~r !
d

dr

3H 1

A12VE~r !

d

dr
lnE

0

r

S0~E0 ,u!2

3@12VE~u!#duJ , ~25!

where Eq.~3! has been used. According to the discussion
the sign in Eq.~23!, this potential is exactly phase equivale
to V0. We must now prove that the Hamiltonian withV2 has
no bound state atE0. According to Eq.~21! the function
t(r )S1(E0 ,r )21 is a solution of this Hamiltonian atE0.
Since this solution vanishes at infinity but is singular at
origin, there can be no bound state atE0; if there were such
a bound state, the solution vanishing at infinity would a
vanish at the origin.

In analogy to supersymmetric transformations of ener
independent potentials the phase-equivalent potentialV2
must exhibit a singularity at the origin. Using a series exp
sion of Eq.~25! yields the behavior

V2~r ! ;
r→0

~n012!~n013!

r 2
, ~26!

where we have assumed that the original potential behave

V0~r ! ;
r→0

n0~n011!

r 2
. ~27!
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Hence, the construction of a phase-equivalent poten
which does not sustain the ground state leads to an incr
of 2 of the singularity parametern.

The solutions ofV2 bounded at infinity are related t
those ofV0 by

C2~E,r !5C0~E,r !1S0~E0 ,r !

3

E
r

`

C0~E,u!S0~E0 ,u!@12VE~u!#du

E
0

r

S0~E0 ,u!2@12VE~u!#du

,

~28!

as obtained by using the integral form of Eq.~18! for the first
transformation and Eq.~17! for the second transformation
This equation shows that the solutionsC0(E,r ) and
C2(E,r ) have the same asymptotic behavior; when th
solutions are scattering states, this confirms the ph
equivalence ofV0 andV2.

IV. APPLICATION TO a116O POTENTIALS

In Ref. @32#, ana116O optical potential is reported which
fits the elastic scattering data over a large energy ran
namely, 32 MeV,Ea,146 MeV, whereEa is the energy
of the a particle in the laboratory frame. This energy is r
lated to the c.m. energyE by

Ea5
5

4
E. ~29!

This potential is deep and angular-momentum independ
Its number of forbidden bound states for a given angu
momentuml is given by

n5
Nc2 l

2
, ~30!

as recommended by microscopic models@9#. In this equa-
tion, Nc is a critical number which can be estimated in t
shell-model frame, for instance. For thea116O system, one
hasNc58 for even partial waves andNc59 for odd partial
waves@9,32#. This potential has two energy-dependent p
rameters: the radius of the imaginary part, which has
smooth but nonlinear energy dependence, and the dept
the real part, which has a linear behavior.

Since the method presented above can only deal with
ear energy dependences, and to avoid the problem of ca
lating normalizable solutions of complex energy-depend
potentials~which occur at complex energies, see Ref.@27#!,
we restrict ourselves to the real part of the potential. Mo
over, since we just want to study the principle of the meth
we only treat thel 50 partial wave for which the number o
forbidden bound states is the highest. The same met
could be applied to other partial waves and the final poten
would bel dependent. The initial potential we start with is
5-4
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V0~E,r !5238
11~3.62520.0105Ea!exp@2~r /4.5!2#

$11exp@~r 24.3!/1.2#%2

1VC~r !, ~31!

where energies are expressed in MeV, distances in fm,
VC(r ) is the Coulomb potential of a uniformly charge
sphere of radius 1.33161/3. This potential atEa50 and 150
MeV is drawn with dashed lines in Fig. 1, where it can
seen that the energy dependence is not negligible.

We have determined the bound states of this ene
dependent potential. In Fig. 2 the bound-state energiesE( i )

are displayed as a function of theEa value for which the
potential is calculated. It can be seen that the numbe
bound states varies withEa . A ‘‘true’’ bound state occurs
when a bound-state energy equals the energy at which
potential is calculated, i.e., whenE( i )(Ea)5 4

5 Ea . If the
variation of E( i ) with respect toEa were too strong, this
equality could be impossible to satisfy and the poten
would not have any bound state.

In the present case, the energy-dependent potential
five bound states; their energies are given in the first colu
of Table I. As explained above, the four lowest bound sta
are forbidden states. The fifth one is physical and roug
describes the20Ne ground state, the experimental energy
which is 24.73 MeV.1 The four Pauli forbidden states ca
be removed by applying Eq.~25! to each bound state succe
sively, which provides potentialsV2 , V4 , V6, andV8. The
potentialV8(E,r ) is represented by full lines in Fig. 1 fo
Ea50 and 150 MeV. One verifies that the initial and fin
potentials have the same energy dependence. Moreove
transformed potential exhibits a repulsive core at the ori
with

1In Ref. @32#, it is shown that the experimental rotational bands
20Ne are qualitatively well reproduced with the potential given
Eq. ~31! calculated atEa532.2 MeV. In Ref.@36#, potentials are
constructed which provide a more precise reproduction of the20Ne
spectrum and of thea116O low-energy scattering data.

FIG. 1. Real partV0 of the deepa116O potential of Ref.@32#,
for l 50 atEa50 and 150 MeV@Eq. ~31!, dashed lines#; and phase-
equivalent supersymmetric partnerV8 obtained by removal of the
four forbidden states with Eq.~25!, at the same energies~full lines!.
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V8~0,r ! ;
r→0

16317

r 2
~32!

according to the iteration of Eq.~26!.
A more complicated way of transforming an energ

dependent potential is to calculate it at each concerned
ergyE and to remove its bound states as if it were an ener
independent potential, i.e., with@22#

V2~E,r !5V0~E,r !22
d2

dr2
lnE

0

r

S0~E0 ,u!2du. ~33!

Let us notice that this formula has the same structure as
~25! but with VE(r )[0. The factorization solutionS0(E0 ,r )
has here a different meaning: it is now a bound-state w
function of thefixed-energypotential

F2
d2

dr2
1V0~E,r !GS0~E0 ,r !5E0S0~E0 ,r ! ~34!

@compare with Eq.~11!#. This procedure has the advanta
that it is valid for any energy dependence of the poten
~not only linear ones!. But it has the big disadvantage th
the calculation has to be performed at each energy, whe
in the method presented in this article the potential has to

f

TABLE I. Bound-state energies of the energy-dependenta
116O potential and of the fixed-energy potential atEa50 and 150
MeV.

E( i )(Ea5
5
4 E( i )) E( i )(Ea50) E( i )(Ea5150 MeV)

~MeV! ~MeV! ~MeV!

213.63 211.32
244.48 233.66 28.61
287.94 260.88 227.44

2144.81 291.64 250.25
2217.66 2125.37 275.92

FIG. 2. Bound-state energiesE( i ) ( i 51,2, . . . ) ~full lines! and
center-of-mass energy~dashed line! as a function of the energyEa

at which the energy-dependenta116O potential of Ref.@32# is
calculated. Intersections are ‘‘true’’ bound states of the ener
dependent potential.
5-5
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calculated only once provided the bound-state energies o
energy-dependent potential have been found.

Let us now compare the results of both methods. For
purpose, we apply the fixed-energy method to the 0 and
MeV a116O potentials. The bound-state energies of th
fixed-energy potentials are given in the second and third
umns of Table I and in Fig. 2. The number of forbidd
states is taken as four, as for the energy-dependent pote
The energy-independent transformed potentials are draw
Fig. 3 as dashed lines and the shallow potentials of Fig. 1
represented as full lines for comparison. AtEa50, both po-
tentials are very close to one another, whereas atEa5150
MeV the difference is important. The energy dependence
the potential is stronger with the second method.

V. CONCLUSION

Supersymmetric transformations have been generalize
potentials with a linear dependence on energy. They h
been shown to be equivalent to the generalized Darb
transformations@30,31# for such potentials. The extended s
persymmetric transformations of the present paper offer
elegant way to remove a bound state from a Hamilton
with a linearly energy-dependent potential provided the w
function of this bound state has been calculated. A sec

FIG. 3. Supersymmetric partner of the energy-dependent po
tial, calculated atEa50 and 150 MeV~full lines, see Fig. 1!; su-
persymmetric partners of theEa50 and 150 MeV fixed-energy
potentials~dashed lines!.
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supersymmetric transformation is then needed to recover
phase shifts of the initial potential. The potential resulti
from the pair of transformations is thus phase equivalen
the initial one but has one bound state less. Compact for
las have been established for the new potential and for
solutions, as in the energy-independent case. The metho
not equivalent to the removal of a bound state from the
tential considered at fixed energy:~i! it is more elegant since
the calculation has to be performed only once,~ii ! the poten-
tials obtained by both methods are different.

As a nuclear-physics example, we have removed the
bidden bound states from the real part of a deepa116O
potential forl 50. The obtained potential has anr 22 repul-
sive core at the origin and the same energy dependenc
the initial potential. This energy dependence is weaker t
the one obtained when removing the bound states from
potential considered at different fixed energies. The off-sh
properties of the obtained phase-equivalent deep and sha
potentials might be compared in calculations of thea116O
bremsstrahlung, for instance.

The example presented here mainly aims at testing
principle of our method: more natural applications wou
concern complex potentials as a whole~not only their real
part!, for which linear energy dependences of the imagin
part are very common. Applications to complex potenti
raise, however, a technical problem: their normalizable so
tions occur at complex energies and are more complicate
calculate. This problem has been solved~see Ref.@27#, and
references therein! in the case of fixed-energy potentials b
has not been addressed yet in the energy-dependent case
iterative bound-state-calculation method used in the pre
article should be generalized to complex-energy norma
able solutions; the supersymmetric formalism presen
above could then be directly used in the frequently enco
tered case of optical potentials with a linearly depend
imaginary part.
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