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Supersymmetric transformations, i.e., factorizations of the radial 8itger equation, are generalized to
potentials with a linear dependence on energy. These transformations are equivalent to generalized Darboux
transformations and do not affect the energy dependence of the potential. A pair of transformations allows the
removal of a bound state without modification of the phase shift. The method is applied to the removal of the
forbidden bound states of a deep energy-dependent’O potential generating a phase-equivalent shallow
potential with anr 2 repulsive core at the origin and the same energy dependence as the initial potential.

PACS numbeps): 24.10.Ht, 03.65.Nk, 25.70.Bc

[. INTRODUCTION a+ a bremsstrahlung cross sections are very sensitive to the
presence of forbidden bound states in e « potential
Local central potentials provide a simple description ofused in the calculatiohl4]. Removing the forbidden states
the interaction between two particles and of their collisionsfrom a deep potential thus allows interesting comparisons
[1]. This description can also be applied to composite-between off-shell properties of phase-equivalent potentials.
particle systems, e.g., in nuclear physics. The correspondinig three- and many-body problems, these states have even
interactions are complex and depend on energy and on astronger effects: they lead to spurious bound states which
gular momentum(2—4] thus taking into account approxi- make the interpretation of the many-body spectra difficult
mately the characteristic features of the many-body systenj15]. Removing the forbidden bound states from the two-
Specifically, the energy and angular-momentum depenbody interactions before performing the many-body calcula-
dences of these so-called optical potentials reflect the redutions is thus very advantageous since it greatly simplifies the
tion of the microscopic many-body Hamiltonian to a one-interpretation of the obtained spectra. For instance, this tech-
body operator and are inherent features of this simplifiechique is applied in Ref[16] in three-body calculations of
model. Because of its simplicity the optical model has be-halo nuclei. Hence, although deep potentials are physically
come an important tool in nuclear physics and there has beemell founded, it is useful to eliminate their bound states cor-
considerable effort for its determination. responding to Pauli forbidden states in different contexts.
The extraction of optical potentials from elastic scattering The formalism of supersymmetric quantum mechanics
cross sections suffers from ambiguities. The problem is twof17,18 provides an elegant algebraic technique for the elimi-
fold. First, thephase problemvhich denotes the fact that the nation of bound states. This technique is equivalent to the
scattering cross section does not contain information on théactorization method19] and to Darboux transformations
phase of the scattering amplitude necessary for a unique dg20,21] of the Schrdinger equation. It was shown in Ref.
termination of the potentidb]. Second, even if the phase of [22] thattwo successiveupersymmetric transformations al-
the scattering amplitude is known there is still freedom in thdow the elimination of the ground state of a given Hamil-
discrete spectrum, in particular in the number of boundonian without modifying its scattering behavior. Actually,
states. This phenomenon is known as discrete ambiguity this phase-equivalent bound-state elimination is not limited
[6] which is characterized by a set dhlmos) phase- to the ground statg23]; moreover, additions and modifica-
equivalentpotentials sustaining different numbers of boundtions of bound states are also possible within the supersym-
states. metric formalism[24,25. The application of the phase-
Microscopic and semimicroscopic calculations of equivalent bound-state removal to the forbidden states of a
nucleus-nucleus interactionf7] suggestdeep potentials deep potential leads to a shallow potential which has the
[8,9], which is confirmed by the evaluation of simple deepsame scattering properties but sustains only physical bound
phenomenological potentials, e.g., for the- o [10], O  states. The transformed potential exhibitsrar singularity
+160 [11], anda+ nucleug[12] systems. An important pre- at the origin and is in gener&ldependent.
diction of the microscopic theory is the number of bound A few years ago, the supersymmetric formalism was only
states sustained by these potentials. Among these bourmvailable for real single-channel energy-independent poten-
states the lowest ones correspond to relative motions whictials. Since more complicated potentials are used very fre-
are suppressed in the microscopic model because of antisyrguently, particularly in nuclear physics, we are trying to gen-
metrization. They are called Pauli forbidden stdte3] and  eralize this formalism to wider categories of potentials.
do not correspond to physical bound states of the manyindeed, generalizations to completoptica) potentials
particle system. These forbidden bound states have no infl§i26,27 and to coupled-channel systefi&8] have been pre-
ence on the on-shell properties of the two-body interactiorsented. As outlined above an important issue in nuclear
but may influence its off-shell properties. For instance, thephysics is the removal of unphysical bound states of Hamil-
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tonians with energy-dependent potentials. This problem has Vo(E,r)=Vo(0,r)+EVE(r), (2
been considered first by Fiedeldest al. [29] who con-

structed via inverse scattering techniques for each partiabhere E is the center-of-mass enerdgwe choosefi=2u
wave an energy-independent potential from the scattering- 1, whereu is the reduced mass of the colliding partigles
phase shifts generated by the original Hamiltonian; this pro- It has been known for a long tim20] that a Darboux
vides a deep energy-independent potential for which theéransformation can be formulated in terms of a supersymmet-
standard supersymmetric transformation for the eliminationic transformation, i.e., as a factorization of the Sclinger

of forbidden states can be applied. The final shallow potenequation. Here, we generalize this result to radial Schro
tial is energy-independent but stronglgependent. An alter- dinger equations with a linearly energy-dependent potential
native procedure for the removal of bound states in systemEq. (2)]. For this purpose, we introdudér) by

with energy-dependent potentials was given in Ref].

There one considers the energy-dependent potential at a 1

given energy as an energy-independent one and applies the VE(N)=1———. ©)
standard procedure for the removal of bound states. This ()

procedure has the drawback that the bound-state removal hﬁ
to be performed at each energy. The final shallow potentiag)
depend_s on .bOth the energy and the angu!ar momentum. .o ate any problem. Multiplying Eq1) on the left witht(r)

In this article we present a new algebraic method to PeTaads to
form a phase-equivalent removal of bound states from a sys-

Lenrgrwnh linearly energy-dependent poteptlals. Such Ilne_ar Bo¥o(E.r)=E¥(E.r), (4)
gy dependences are very frequent in nuclear physics,

particularly for complex potentials, the imaginary part of ;i

which increases with energy to simulate the opening of new

channels. Unlike in preceding methods, we neither use inver- N d2

sion techniques nor intermediate energy-independent poten- Dozt(r){ - —2+V0(0,r)

tial: the method is as direct and as elegant as for the simple dr

case of energy-independent potentials. In particular, the final

potential is expressed in closed analytical form directly fromand

the initial potential and has the same energy dependence. Wo(E.r)

The method has been suggested by H&,31], where Dar- To(E,r)= o=’

boux transformations for specific Sturm-Liouville equations t(r)

are presented. Considering this problem in terms of the for- . .

malism of supersymmetric quantum mechanics allowed us t§f Should be remarked that the modified wave function

develop a direct method for the removal of bound states an®¥ o(E.,r) is well defined if we assum¥g(r) to be bounded

the construction of phase-equivalent potentials. in the whole domain (&r<<).

In Sec. Il, we generalize the supersymmetric formalism to  The new differential operatdd, does not depend on en-
the case of linearly energy-dependent potentials. In Sec. lllergy[compare with Eq(1)]. It can be factorized in the form
we recall the principle of phase-equivalent bound-state re-
moval with a pair of supersymmetric transformations and 50: Aj A, +Eo, 7
establish the corresponding formulas in the case of linearly
energy-dependent potentials. In Sec. IV, we apply this forwhere E, is called the factorization energy. The mutually
malism to the removal of forbidden bound states from theadjoint operator®\, andA, are given by
real part of the deepr+ %0 potential of Ref[32] for |=0

%an be verified that all the formulas below are independent
f the sign oft(r) and that its possible singularities do not

t(r) ©)

(6)

and compare the result with that obtained by transforming N d
the potential at fixed energies. Our conclusions are presented Ao =| — gy T Yol t(r) ®
in Sec. V.
and
Il. GENERALIZED SUPERSYMMETRIC FORMALISM d
t_ Ayt
In Refs.[30,31] (see also Refd.33]), Darboux transfor- Ao =(Ag) =1(r) JJFUO”)} ©)
mations for a Sturm-Liouville equation were presented.
These include also the case of the radial Sdmger where
equation
d
Uo(r)=20(E0,r)_1mEO(EO,r) (10

\Po(E,r):E\Po(E,r), (1)

d2
|: ) + Vo( E,r)
dr is the so-called superpotential. It can be verified that(Zy.
is satisfied when the functioBy(Eg,r) is a solution of the

with a linearly energy-dependent potential Schralinger equation{1) at energyE, i.e., when it satisfies
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d? d
_P+VO(EO'r) 30(Ep,r)=Ep2o(Eq,r), (11 W[Eo(Eo,r),‘I’o(E,r)]zzo(anr)(a‘l’o(E-r))
r
where the potential is calculated at the factorization energy. — (iio(Eo,r))‘Po(E,r)
The solutionXo(Ey,r) is called the factorization solution. dr
Applying operatorA, to Eq.(4) leads to a new equation (19)
D, W,(E,r)=[AyAs +Eo]¥(E,r)=E¥,(E,r), is the Wronskian oBo(Eq,r) and¥(E,r) which satisfies
(12
: d Eo—
with —WIZo(Eq.1), Wo(E,r)]=———20(Eo.1) Wo(E,r).
dr t (r)
Ty (E;r)=Ag To(E,1). (13 20

- . . . . Because of Eq(20) the Wronskian can be expressed via an
Dividing this e~quat|on .on the left b_Y(r) and introducing integral. Specifically, folE=E, the Wronskian is constant
Wa(E,r)=t(r)¥,(E,r) in analogy with Eq/(6) leads to and the solution?;(E,,r) of Eq. (12) simplifies to

2 B _
_%+V1<E.r> VEN=EVy(Er), (19 Wa(Bo.n) =t Zo(Eo.r) ™ @y
r

up to a multiplicative constant. The most general solution of

with a new potentiaV,(E,r). This potential has the same EQ- (12 atE=E, can be cast into the form

energy dependence &g(E,r), i.e., g
u

t?(u)

C
(22)

V1(E,r)=V,(05)+EVg(r), 15  Vi(Eor)=t(NZo(Eq,r)

B+fr20(Eo,u)2
fo

but has a new energy-independent part given by
whereB, C, andrg are arbitrary constants. This can be veri-

V(0r) = V(O ) — 2.d t(r)ilnEO(EO'r) _ fied by substituting this expression into EG4).
t(r) dr dr Jt(n)

(16) Ill. PHASE-EQUIVALENT BOUND-STATE REMOVAL

This expression is equivalent to the results obtained in Refs. Depending on the behavior of the chosen factorization
[30,31], but here it has been established via the techniques afolution,(Ey,r) at the boundariesr&0 andr — ) [18],
supersymmetric quantum mechanics. Egr)=1 [or more  supersymmetric transformations may modify the discrete
generallyt(r) = const] Eq.(16) reduces to the relationship of spectrum of the Hamiltonian. This result remains valid for
the supersymmetric partnevg andV, in the case of energy- the generalized transformations presented alygé¢ If the
independent potentialgl8]. It should be emphasized that factorization energ¥, is chosen as the ground-state energy
there arise no difficulties with singularities ofr) as one of the initial Hamiltonian withV, and if the factorization
might suppose from the compact form of Efj6). However, ~ solution 24(E,,r) is chosen to be the ground-state wave
the superpotentialUy(r) and the transformed potential function, the transformed Hamiltonian with potential has
V,(0,r) will exhibit singularities forr >0 if the factorization the same discrete spectrum as the original one except for the
energyE, is greater than the energy of the ground state ofground state aE, which is removed.
Eq.(12), i.e., if the operatoA; A, is not positive semidefi- From Eq.(17) it is seen that folE#E,, V4(E,r) and
nite [see Eq(7)]. Similarly to Ref.[23] this defect vanishes Wo(E,r) have the same characteristic behavior at the bound-
if iterations for the construction of phase-equivalent potenaries. For instance, Wy(E,r) is a bound-state wave func-
tials are performed with the same factorization energy.  tion vanishing at the origin and at infinity, so,(E,r). If

The supersymmetric transformation thus allows the con¥o(E,r) is a scattering wave function vanishing at the origin
struction of a new potentia¥, from an initial potentiaV,. ~ and oscillating at infinity, so isl';(E,r). The relationship
The subscripts refer to the number of transformations. Acbetween the phase shiftsr additional phase shifts in the
cording to Eq.(13), the solutions of the new equation are presence of a Coulomb interactjoof these scattering wave

related to those of the initial equation by functions can be extracted from E@.7) and is given by
d 61(E)=69(E) = arctari V|E/Eg|). 23
W(E,r)=t(r) _m“'uo(r)}‘l’o(E,r) (17 H(E)7 00(E) = arctanVIE/Ed) 29
The plus sign is associated with a factorization solution di-
= —t(r)So(Eq,) " W[ o(Eo,), Wo(E,N)] verging at infinity, while the minus sign results for factoriza-
(18  fion solutions vanishing at infinity. Hence, the modification
of the phase shift only depends on the factorization energy
where and the asymptotic behavior of the factorization solution
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[35]. Equation(23) shows that/, is not phase equivalent to Hence, the construction of a phase-equivalent potential
V, but that the iteration of two successive transformations awhich does not sustain the ground state leads to an increase
the same factorization energy and with factorization solu-of 2 of the singularity parameter.
tions behaving differently at infinity leads to a potentigl The solutions ofV, bounded at infinity are related to
exactly phase equivalent ¥, [22,24]. those ofV, by
Here, we focus on the removal of a bound state while
maintaining the phase equivalence. Therefore, in the first W, (E,r)=¥y(E,r)+y(Eq,r)
step we choos& y(Eg,r) to be the wave function of the .
ground state. Ther_l the potentl] does not sustain a bound f W o(E,U)So(Eq,U)[1— Ve(u)]du
state atEy. According to Eq.(22) the function o
r
du | s oEow1-vewau
— (24 0
te(u)

r
E1(Eoyl'):t(r)zo(Eo:")ﬂJ'OEo(Eo'U)Z
(28)
is a specific solution of the Hamiltonian wi, (B=0, C i i i i
=1, andr,=0). This solution vanishes at the origin as can@S OPtained by using the integral form of E#8) for the first
be seen by a series expansion. Furthermore, the integral fpnsformation and Eq17) for the second transformation.
Eq. (24) is bounded because,(E,,r) is normalizable and |NiS_equation shows that the solutior(E,r) and
Ve(r) is assumed to be bounded; herBg(E, r) diverges \Ifz(E_,r) have the same asymptotic behaw.or; when these
at infinity. The existence of such a solution implies that solu_t|ons are scattering states, this confirms the phase
does not sustain a bound stateEt if it had such a bound equivalence ok, andVs.
state, a vanishing solution at the origin would also vanish at
infinity. IV. APPLICATION TO a+ %0 POTENTIALS
If we perform a second supersymmetric transformation at 16 _ i .
the factorization energi, usingS.,(Eq.r) as the factoriza- In Ref.[32], ana+ "0 optical potential is reported which

tion solution we obtain by iteration of EL6) the potential 11t the elastic scattering data over a large energy range,
namely, 32 MeV<E_, <146 MeV, whereE,, is the energy

of the « particle in the laboratory frame. This energy is re-

d
V,(0r)=Vo(0,r)—2y1—Vg(r) lated to the c.m. energl by

dr

E,=—E. (29)

X ;imjrz (Eg,u)?
JI=Ve(ry dr Jo 70

This potential is deep and angular-momentum independent.
X[1—=Vg(u)]duy, (25 Its number of forbidden bound states for a given angular
momentuml is given by

where Eq.(3) has been used. According to the discussion of
the sign in Eq(23), this potential is exactly phase equivalent
to Vy. We must now prove that the Hamiltonian wkhy has 2
no bound state aE,. According to Eq.(21) the function
t(r)21(Eq,r) ! is a solution of this Hamiltonian akE,. as recommended by microscopic modgds. In this equa-
Since this solution vanishes at infinity but is singular at thetion, N, is a critical number which can be estimated in the
origin, there can be no bound statefay if there were such shell-model frame, for instance. For ther *°0 system, one
a bound state, the solution vanishing at infinity would alsohasN,=8 for even partial waves and,=9 for odd partial
vanish at the origin. waves([9,32]. This potential has two energy-dependent pa-
In analogy to supersymmetric transformations of energyfameters: the radius of the imaginary part, which has a
independent potentials the phase-equivalent poteitial smooth but nonlinear energy dependence, and the depth of
must exhibit a singularity at the origin. Using a series expanthe real part, which has a linear behavior.

; (30

sion of Eq.(25) yields the behavior Since the method presented above can only deal with lin-

ear energy dependences, and to avoid the problem of calcu-

(vo+2)(vp+3) lating normalizable solutions of complex energy-dependent
VZ(r)r:or—z' (26) potentials(which occur at complex energies, see Réf)),

we restrict ourselves to the real part of the potential. More-
where we have assumed that the original potential behaves Quer, since we just want tp study the prlnplple of the method,
we only treat thd =0 partial wave for which the number of
forbidden bound states is the highest. The same method
Vo( 'V0+ 1) . . . .
—_ (27 could be applied to other partial waves and the final potential
2 would bel dependent. The initial potential we start with is

Vo(r) ~
r—0 r
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300 -200 100 0 100 200
Eo (MeV)

FIG. 1. Real parV, of the deepa+ %0 potential of Ref[32], FIG. 2. Bound-state energifﬁ(‘) (i=12,...)(ull lines) and
for =0 atE,=0 and 150 MeV[Eq. (31), dashed linels and phase- center-of-mass energglashed “néﬁs a function of the energs,
equivalent supersymmetric partnég obtained by removal of the at which the energy-dependentr O potential of Ref.[32] is

four forbidden states with E@25), at the same energi¢full lines). calculated. Intersgctlons are "true” bound states of the energy-
dependent potential.

1+(3.625-0.010E ) exf — (r/4.5)?]
{1+exd (r—4.3/1.2]}? Vs(O,F)r:O .
+Ve(r), (31

16X 17

Vo(E,r)=—38

(32

according to the iteration of E{26).

where energies are expressed in MeV, distances in fm, anéi A more complicated way of transforming an energy-
V¢(r) is the Coulomb potential of a uniformly charged ependent potential is to calculate it at ga_lch concerned en-
sphere of radius 1:816"%. This potential aE,=0 and 150 _ergyE and to remove its boun_d states as if it were an energy-
MeV is drawn with dashed lines in Fig. 1, where it can belndependent potential, i.e., wifl22]
seen that the energy dependence is not negligible.

We have determined the bound states of this energy-
dependent potential. In Fig. 2 the bound-state energiés
are displayed as a function of the, value for which the

potential is calculated. It can be seen that the number ofet us notice that this formula has the same structure as Eq.
bound states varies with, . A “true” bound state occurs (25) put with Vg(r)=0. The factorization solutioB o(Eq,r)
when a bound-state energy equals the energy at which thgas here a different meaning: it is now a bound-state wave
potential is calculated, i.e., wheB")(E,)=5E,. If the  function of thefixed-energypotential

variation of E®) with respect toE, were too strong, this

equality could be impossible to satisfy and the potential d2
would not have any bound state. {— — +Vo(E,r)
In the present case, the energy-dependent potential has dr
five bound states; their energies are given in the first column _ )
of Table I. As explained above, the four lowest bound state$compare with Eq(11)]. This procedure has the advantage
are forbidden states. The fifth one is physical and roughlyhat it is valid for any energy dependence of the potential
describes théNe ground state, the experimental energy of(not only linear oneps But it has the big disadvantage that
which is —4.73 MeV! The four Pauli forbidden states can the calculation has to be performed at each energy, whereas
be removed by applying E425) to each bound state succes- in the method presented in this article the potential has to be
sively, which provides potential®¥,, V,, Vg, andVg. The _
potential Vg(E,r) is represented by full lines in Fig. 1 for ~ TABLE |. Bound-state energies of the energy-dependent
E,=0 and 150 MeV. One verifies that the initial and final O Potential and of the fixed-energy potentiakai=0 and 150
potentials have the same energy dependence. Moreover, V-
transformed potential exhibits a repulsive core at the origin

a2 (r
VZ(E,r)=vO(E,r)—2—|nf S o(Eg,u)2du. (33
drz Jo

20(Eg.,r)=Eo2o(Eo.,r) (34

with EO(E,=3EM)  EO(E,=0)  EO(E,=150 MeV)
(MeV) (MeV) (MeV)
—13.63 -11.32
YIn Ref.[32], it is shown that the experimental rotational bands of —44.48 —33.66 —8.61
2Ne are qualitatively well reproduced with the potential given in —87.94 —60.88 —27.44
Eq. (31) calculated aE ,=32.2 MeV. In Ref.[36], potentials are —144.81 —91.64 -50.25
constructed which provide a more precise reproduction ofthe —217.66 —125.37 —75.92

spectrum and of the:+ %0 low-energy scattering data.
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supersymmetric transformation is then needed to recover the
phase shifts of the initial potential. The potential resulting
from the pair of transformations is thus phase equivalent to
the initial one but has one bound state less. Compact formu-
las have been established for the new potential and for its
solutions, as in the energy-independent case. The method is
not equivalent to the removal of a bound state from the po-
tential considered at fixed energdy} it is more elegant since

the calculation has to be performed only on@g,the poten-

tials obtained by both methods are different.

As a nuclear-physics example, we have removed the for-
bidden bound states from the real part of a deep'®O
potential forl =0. The obtained potential has an? repul-

. sive core at the origin and the same energy dependence as
~ FIG. 3. Supersymmetric partner of the energy-dependent poteyq njtial potential. This energy dependence is weaker than
tial, calculated a&,=0 and 150 MeV(full lines, see Fig. I su- o gne obtained when removing the bound states from the
persymmetric partners of the,=0 and 150 MeV fixed-energy qiantial considered at different fixed energies. The off-shell
potentials(dashed lines properties of the obtained phase-equivalent deep and shallow
otentials might be compared in calculations of the %0
remsstrahlung, for instance.

The example presented here mainly aims at testing the
rinciple of our method: more natural applications would
%oncern complex potentials as a whaiet only their real
. X . . . ard), for which linear energy dependences of the imaginary
fixed-energy potentials are given in the second and third COIbart are very common. Applications to complex potentials

umns of Table | and in Fig. 2. The number of forblddenrzr\ise, however, a technical problem: their normalizable solu-

states Is takt_en as four, as for the energy-dependent potentighyns occur at complex energies and are more complicated to
The energy-independent transformed potentials are drawn i

. ) . X Salculate. This problem has been solsge Ref[27], and
Fig. 3 as dashed Ilne_:s and the shall(_)w potentials of Fig. 1 Alfeferences therejrin the case of fixed-energy potentials but
represented as full lines for comparison.Bt=0, both po-

. has not been addressed yet in the energy-dependent case. The
tentials are very close to one another, whereal at 150 gerative bound-state-calculation method used in the present

et d.|ffe.rence IS important. The energy dependence o rticle should be generalized to complex-energy normaliz-
the potential is stronger with the second method. able solutions; the supersymmetric formalism presented
above could then be directly used in the frequently encoun-

V. CONCLUSION tered case of optical potentials with a linearly dependent

Supersymmetric transformations have been generalized {graginary part.
potentials with a linear dependence on energy. They have
been shown to be equivalent to the generalized Darboux
transformation$30,31] for such potentials. The extended su-  J.-M.S. thanks the National Fund for Scientific Research,
persymmetric transformations of the present paper offer aBelgium. This text presents research results of the Belgian
elegant way to remove a bound state from a Hamiltoniarprogram on interuniversity attraction poles initiated by the
with a linearly energy-dependent potential provided the waveBelgian-state Federal Services for Scientific, Technical and
function of this bound state has been calculated. A seconQultural Affairs.

calculated only once provided the bound-state energies of t
energy-dependent potential have been found.

Let us now compare the results of both methods. For thi
purpose, we apply the fixed-energy method to the 0 and 1SB
MeV a+1%0 potentials. The bound-state energies of thes
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