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In three-body models of halo nuclei such®se, Pauli blocking is needed to remove components of the halo
wave function that would disappear under full antisymmetrization. We compare a full projection-operator
method with two others presently used for the purpose. A range of differences is found, small for bound states
and resonances but larger for nonresonant continuum states. We indicate discriminating characteristics sensi-
tive to the off-shell behavior.

PACS numbgs): 21.60.Gx, 21.10.Pc, 21.456v, 25.60.Gc

. INTRODUCTION the three-bodya+n+n continuum below the3H+3H
threshold at about 13 MeV. The unusually large electromag-
Recent progress in the theory of halo nuclei has led tgetic dissociatiofEMD) cross section fot'Li and ®He pro-
more accurate models of the ground statéflde and of its jectiles, as well as for other neutron dripline nudlgs—35,
breakup continuum states. Our previous investigationd of has revealed an enhanced dipole breakup strength for these
=6 nuclei[1-10 and *'Li [11,12, and also those of other halo nuclei. While for *'Li an £1 response(“strength”)
authorg 13—2€ using a variety of methods, have shown thatfunction has been reconstructed from exclusive experiments
numerous characteristics of tlikscrete states of the halo [36,37), such information has only very recently been ob-
nuclei can be accounted for by using three-body dynamicsained[38] for ®He. Angular distributions and angular cor-
with “fundamental” pairwise interaction potentials supple- relations are now being measuf&9,38, supplementing the
mented by weak three-body potentials. previous measurements of momentum distributions from
The three-nucleon problem has been studied for its sensfragmentation[40—44 and the limited data from charge-
tivity to the off-shell behavior of its interactions. In more exchange reactions witfLi to the ®He continuun45-47.
complicated systems, the best known stable nuclefiis With increased accuracy of calculations and of experi-
with neutron- and proton-rich neighbofsle and®Be, all of  ments involving®He, it has become necessary to reexamine
which have a dominantt+N+N structure. The previous how theA=6 system has been projected onto a three-body
attempts to compare local and nonlocal Pauli treatments imodel space. Of special interest here is the question of Pauli
the integral equation methd@7], or with a combination of blocking, arising because the neutron-core interactions have
coordinate-space Faddeev equations and hyperharmonideeply bound eigenstates which must be regarded as already
methods[1,3,28, came to the conclusion that for a wide occupied by core nucleons, and blocked to the halo neutrons.
class of electromagnetic and geometrical observables for Pauli blocking is needed to remove components of the
both bound and quasibound states, various Pauli treatmeniiglo wave function that would disappear under full antisym-
give very similar results. We will examine below whether metrization. We compare a full projection-operator method
scattering observables are more sensitive indicators of thwith others recently proposed: either using repulsive poten-
differences between the alternative Pauli methods. tials in those neutron-core partial waves with bound states or
The developments of dynamic approaches to the threéby removing the lowest-energy eigensurface in a hyper-
body continuum theorj,14,17,24,29-3Ilmake it now pos- spherical adiabatic approximation. These alternatives give
sible to investigate also the unbound states of these nucl@auli effects which are local in some coordinate, but their
that are populated in breakup reactions. The previoushaccuracy needs to be checked not only for bound states
known spectrum ofHe contained only the 0 bound state [21,26 but also for resonant and nonresonant scattering.
and the well-known 2 (E*=1.8 MeV) three-body reso- Particular theoretical attention has been focused on the
nanceg 32], but our recent mode[d.0,9] predict new states in mechanism for the large EMD cross section, namely, the
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electric dipole excitation to the continuum. There has been aquivalent Hamiltonian, is to use the double supersymmetric
search for a low-lying “soft dipole resonance([48— transform[57-62. Both approaches give the same on-shell
50,41,51,52,6,38 and references thergjnwhere the two behavior, but are different off shell, which can be critical in

halo nucleons are envisaged to oscillate with respect to thihe three-body situation. We will see below examples of
core, which carries the charge. TB¢£1) strength function  such differences.

to dipole states irfHe will turn out to be particularly sensi-

tive to the Pauli treatment, since the negative parity of the A. Three-body hyperspherical basis

dipole states means that they probe sheave channels of

n-a relative motion: exactly those channels where there are Civen particle position®,; andR; for the neutrons and
occupied bound states. R; for the core, the standaf@] translationally invariant nor-

We will examine the bound and continuum states in thegMalized sets of Jacobi coordinatesindy are defined using
method of hyperspherical harmoni@idH) expansions. This theé mass ratiogj=m;/m (for m a unit nucleon magsas
allows the long-range behavior of the three-body wave funcfollows:
tions to be explicitly calculated, and hence avoids the theo-
retical shortcomings in analyses within the random phase
approximation(RPA) (mean field method, which treat the

x= (A1) Y 1= (A1) ™R, —Ry),

— 1/2,
three-body continuunimost relevant for these Borromean Y=(A@23) " Ta2)s
systemsin a rather appro_mmate way, or else in _the frame of — (A(12)3)1/2[ Rs— (AjR;+ AR /(A +A)], (1)
two-body (cluste) dynamics. The complgx rotation method
has been applied to the three-body Sdclimger equation R= (AR, +A,R,+ AgR3)/A.

[17], or to the three-body resonating group metHBEM)

[14], but enables one only to calculate the parameters 0I£|ereA andA are the appropriate reduced masses. We
three-body resonant states—their widths, positions, and par- 12 (12)3 . ~ ~ '

tial content. No theoretical papg¢except for[24]) has pre-  YS€ 2hyp§3rls/£)her|cal coordinatgs a, X, andy, where p
dicted a low-lying T resonance irfHe, so it may well be =(x"+y7)™ is the hyperradius and=arctanily) is the

that the dipole continuum is nonresonant, but still enhancegyperangle_. L . o
for dynamical reasons. More experimental information is The choice OTX andy simplifies the antisymmetrization of
needed to clarify this question the wave function between the two neutrons: when con-

The structure of this paper is as follows. In Sec. Il we Structing the channels in this basis, the antisymmetrization
summarize the theoretical framework necessary to treat th%aln b? included tl’y |mplosm{j x+S+T=odd, Whirelx IS
ground state and continuum structure of halo nuclei withn€ relative orblta_angu ar momentum between the two neu-
three-body dynamical models. Section Il B discusses the diffons, andSandT=1 are the total spin and isospin of the

ferent methods proposed for treating Pauli blocking, and ifO-neutron subsystem. , ,
Sec. Ill we present the physical inputs for and results of We seek our bound-state and continuum wave functions

three-body calculations fofHe, using the various Pauli in the form of an expansion using hyperspherical harmonic

treatments. Pauli effects in the+n+n continuum are dis- Pasis functions:

cussed in Sec. 1V, and conclusions are given in Sec. V. Ll |
Yo 28) =LV Qs) © Xslou 2

Il. THEORY with

Cluster models of light nuclei allow us to approximate the . L . .
many-nucleon problem by a few-body one, and for the treat- Yt Q)= (@)Y ()@Y (V) ]im - )
ment of the latter problem a number of methods have been
developed. Fadde€e63,18 and Schrdinger few-body for-  The quantum numbe is called the hypermomentum. These
mulations have been successfully solved with the help o]')):(x'LyM(QS) are called “hyperspherical harmonics.” Here the
momentum spacgl8], variational[19,15, and hyperspheri- 'y "4 4 and ¢, variables are denoted collectively by
cal harmonic[3_] procedu.res. .Faddeev equations have alsrn& the no%atior[~ . ,y] indicates tensor coupling, ant is a
been solved with the adiabatic hyperspheri@s] method.  gpin function. Other quantum numbers are the Jacobi orbital
For potentials with strongly repulsive cores, an approach,omentd, andl,, and the total orbital momentutmand its
such as the correlated hyperspherical method] 5,55 projectionM. The hyperangular part of the Hilepending

would become appropriate. _ on a) has the following explicit form:
In the RGM [14,16,22,2% and the generator-coordinate

method (GCM) [20] the composite structure of clusters M — Ny i Iyt 2]+ 172
manifests itself through non-local exchange integral kernels. Y>(@)=Ng>(sine)x(cose) yP(Kflx*yly)/Z (cos 2),
The orthogonality condition moddE6], derived from the 4
RGM, reduces the complicated Hill-Wheeler equation to a _ _ o _
Schradinger one with a physically transparent projecting outwhereP# are Jacobi polynomials ad¥ is a normaliza-
of Pauli-blocked states from the spectrum of the binarytion factor(see, e.g.[3]).

Hamiltonian. An alternative method, generating a spectrally We look for three-body wave functions of the form
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T s Ls L In_general, antisymmetrization of 'ghe full-body wave
Viu(Xy)=p 2” Xk, (P)Y 5 sm(28) Xrmy function leads to exchange terms which are nonlocal in the
KLSkdy 5) cluster-cluster relative coordinates, and these nonlocalities
lead tol dependence of the local phase-equivalent potentials
with hyperradial wave functiongi?, (p) that satisfy either [63,64. We can therefore use different potential strengths in
bound-state xy different partial waves. This, in any case, is often necessary
as our local potentials are fitted to the experimental phase

xk,(0)=0, X ,(p—)~exp —kp) (6) shifts for binary scattering and to any bound states or reso-

nances in that two-body channel.
(wherey={l,,l,,L,S}, L=K+3/2, andk = J2m[E|/#?) or Even when the two-body bound and scattering states are
scattering reproduced, the three-body situation requires the Pauli prin-

ciple to be considered again. This is because the interactions
- + . . . .
XKy (Kp)~Hy 3(Kp) Sy i1y = Sy Hi 43l kp)  typically have negative energy eigenstates which must be
(7)  taken as already “occupied” in one of the composite bodies.
Two-body scattering states are automatically orthogonal to
éhese, if a fixed Hamiltonian is used, but in the three-body
sase of a core and two neutrons, the additionmainteraction
could scatter one of the neutrons into one of the core occu-
é)ied states.
The three-body case therefore requires some treatment of
antisymmetrization, at the very least a Pauli blocking con-

boundary conditions according to the three-body endtgy
These particularly simple boundary conditions are satisfie
for Borromean systems, as no two-body bound states exi
asymptotically.

In this basis, the partial-wave coupling interactions are th
matrix elements

Vi k() = (Y i (Q5)[Vio+ Vgt Vog straint to forbiq the valence neutrons entering the occupie_d
core states. Different approximations to the complete anti-
+Vi12d Yy (Qs)), (8)  symmetric approach have therefore been suggested to con-
. , . N ) struct treatable interactions for use in three-body models.
yvherevij 1S the interaction between quleand], andVias PP: When the effective intercluster interactions are suffi-
is a possible three-body force to be discussed later. ciently deep to produce bound binary states which would be

In the case of short-range pairwise particle interactiongjiminated by full antisymmetrization, these occupied states
the three-body mean field behaves at laygevalues as  ghoyld be projected out as Pauli forbidden. We should solve
Viiykry (p—©)~p~" with n=3 (n=I,+1;+3). This  the Schidinger equation for the three-body wave functions
power law decrease, obtained for finite-range pairwise potenyithin the allowed(subspace, not merely project out forbid-
tials Vi; , reflects the possibility of two particles interacting gen states after finding a solution. The projection can be

when far away from the third particle. done by the pseudopotential metHd®,65,6§ or directly by
With local potentials, the wave functioﬂ]M would be a  means of projection operatof§7—69.
solution to the Schidinger three-body equation PS: By using a supersymmetric transfofav—59,61,62

of the n-core potential. For a potential having a forbidden
state, we can obtain a spectrally equivalent potential without

After projecting onto the hyperangular parts of the waveth's state but with a characteristic © repulsive singularity at

) . S the origin.
function we would obtain a set of coupled equations: PC: Since phase shifts for most of the cluster scattering

(T+Via+ Vgt Vogt Vipa— E)W ], =0. 9

w2 &2 o(c+1) are defjned ina fin.ite energy range, itis possible to introduce
( —5—|—————|—E|xx,(p) an auxiliary repulsive interactiofa soft “Pauli core”) in the
2m| dp? p? same partial components of effective intercluster interactions
where forbidden states are expected, and fit these interactions
+ 2 Viryrky(P) Xkry(p)=0. (100  to the experimental phase sh_ifts. _ _
K'y' PA: For large hyperradiusp, the coupling matrix

: . _ V. ky(p) has a set of negative-energy eigenvalues which
As it stands, however, this coupled equation set does not take'e The ‘states to be blocked. These can be projected out, for
any account of Pauli blocking. eachp separately, as in Reff21,24], and a revised coupling

matrix Vi ,(p) constructed.
Ignoring the Pauli principle completely is obviously in-
In the present approach, we wish to start with the standardorrect for ground states, but may be considered in scattering
kinds of local potential®/;; which have proved successful in problems, so some results from this assumption will be pre-
many branches of nuclear physics, and seek to use them asnted below for resonancése will refer to this method as
“fundamental interactions” with minimum modification “NO PP").
within three-body models. We have still, however, to con- The PP and PA methods construct projection operdors
sider the effects of antisymmetrization, the existence of “for-(local in p in the PA casgto remove unwanted eigensolu-
bidden states” in the cluster-cluster motion, and the possitions. Their effect may be generically formulated as finding
bility of | dependence of the interactions. the eigenenergies and eigenvectors, of a matrixA in an

B. Pauli blocking
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allowed subspace Re0. This is accomplished, given the 1. R-matrix method
matrix A, by solving To avoid numerical instabilities with large sets, we use an
(1—P)A(1—P)c.+EoPc.=ec, (11) expansion on Sturmian or Sturmian-like radial basis func-
e e .

tions. For bound-state wave functions, it is convenient to use
Sturmian states, which are eigenstates at a fixed energy for
0\farying multiples of some diagonal potential. This has been

geveloped for bound states in deformed nuf¥i,72, and

we have also found the method to be useful for hyperradial

Here,E, is a large positive energyt 000 MeV) to which the
forbidden eigenstates are moved, to avoid contamination
the halo states of interest near the breakup threshold. All th

solutions of Eq.(ll).W|th e# Eo satisfyPc.=0. -I.n th? PA bound state$73]. For scattering states, however, the Stur-
method, the couplings themselves are modified My)  mian states are not suitable as they have few oscillations at

=[1=P(p)IV(p)[1—P(p)]1+EoP(p). o large distances up te,,. We therefore follow standard
All these methods of including antisymmetrization effectsp_matrix methods. and use a basis set of “energy eigen-
essentially coincide on the two-body energy shell and asgisies” of the diaéonal terms of EqL0):

ymptotically at large hyperradius in the three-body situation.
A peculiarity of three-body dynamics, however, is its sensi-

tivity to off-shell behavior of pair interactions, enabling us in _ ﬁ_z d_2 L(L+1) ny (p)—ag|f9.(p)=0
principle to discriminate between the different classes of in- 2m| g2 2 Ky.Ky(P)™ %q | TKyLP
teractions. The results for methods PP and PC have already (12)
been compared for bound states®f [18] and ®He[3], and

the results of PP and PS have been comparedHier, “'Li,  for eigenenergiesy,, with the basis functions all having

and “Be [62]._They were found to be almost coin_ciding f(_)r fixed logarithmic derivativegg=d In fﬂy(p)/dp at p,,. The
many_propernes of _the gr_ound state. Later we will examingonstancy of the logarithmic derivative® means thatfor
the differences which arise for resonant and nonresonargaChKy channel separatelyhefﬁyform an orthogonal ba-

continuum states. Thus the three-body continuum gives USis set over the intervaD p,.], andover this rangethey can

what may be unique possibility to investigate the consey . ormalized to unity. Then, as many 1 Q of the
guences of these differences in approach. ' ’ o

orthonormalfﬂy per Ky channel can be used as desired for
_ _ accuracy. FoB<0 the basis states with low,<0 will be
C. Solution of the coupled HH equations similar to the Sturmian states with low potential multipliers,

We have in the PC and PS cases to solve the sé& of and hence suitable for bound state expansions. Higher
coupled equationgEq. (10)], while in the PP method there >0 basis states will oscillate out g, and can be used in
will be orthogonality conditions(u,|#)=0, with u, the  expansions of continuum states.
wave functions of occupied states in the binary subsystems. The wave functions of the coupled problé®) can now
The PA method solves Eq10) with modified local cou- be solved completely over the interior rari@p,], by using

plings V. For Borromean systems, the hyperradial wavethe orthonormal basis set of theg, (p)} with coefficients to
functions ¢, (p) for bound states have, for uncharged par_be determined. The coefficients are found in two stages: first
ticles, the standard boundary conditions of decaying expoby finding all the eigensolutiongf ,(p) of Eq. (10) using
nentially at large distances, while the continuum wave functhe above orthonormal basis, and then expanding the scatter-
tions become a linear combination of Hankel functions. Théng wave functions in terms of thesg ,(p).

scattering boundary conditions describe the in- and outgoing The first stage, the diagonalization of interior Satinger
three-body spherical waves, so t@ty’Kom is theSmatrix  equation(10) yields P=QN eigenenergieg, with corre-

for the 3—3 scattering for an incoming wave in channel SPonding multichannel eigenstates

Koy We only deal with Borromeakor democratit types

of three-body problems, where there are no two-body bound Q

states in the asymptotic regions. bk, (p)= 21 cRIfR,(p). (13
To solve the coupled equatiofi§q. (10)], we previously =

[1,3,4.9 integratedN linearly independent solutions from Eigenstates here witk,<0 are close to the bound states,

=0 to p=py, for some radiu beyond which the cou- . ; . . .
p=Pm Pm DY while solutions withe,>0 contribute to the scattering solu-

plings Vg, ,(p) are assumed to be negligible. A linear ; .
combination of these solutions was then found, in order tdioNS- Certain of the,>0 solutions may correspond to low-

satisfy the appropriate boundary conditions. This wa ying resonances if those are present, but the majority of the

straightforward for limited numbers of channel (p to 10 Positive eigenenergies have no simple physical interpreta-

. . : p .
or 12), but for larger sets the solutions become linearly deion- Thesei,(p) form of course another orthonormal ba

pendent. This is because the large range of centrifugal barrfiS In the interior region. , o _

ers £(£+1)/p? means that some channels are, for a large FOF Scattering states at arbitrary enefgyvith incoming
period, being integrated in their classically forbidden do-Waves in channeKqyo, the coupled solutions are then ex-
main, and(as discussed ifi70]) the linear independence of Panded in terms of the multichannel eigenstates as
the exponentially decreasing solutions is lost. This method¥ky:kgy, = ZpAkyy,Pky - If We define anR matrix at energy
moreover, does not easily enable the PP Pauli method.  E by
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d
wa:KOyO(p) = K’Ey’ RKy:K"y’(E) % wK’y’:KOyO(p)

_Blv[/K’y’:KO'yO(p) (14)

in the limit of p— p,,, from above, then thR matrix R can be

calculated directly from the eigenstates by standard methods

[74]:

I N (I L O )
2m = e,—E '

Rk k74 (E) (15

The R matrix calculated by Eq(15) is only exact when the
sum overp extends to all energies,. To improve the accu-
racy of calculations with finit€) andP, the Buttle correction

PHYSICAL REVIEW (61 024318

xi=(Ai) iz, yi=(Auay) Y sy

for i=1,2 and cyclici, j, k. The two-body forbidden states
are of the formu,(x;), and the subspace of functiots, in
which the Schrdinger equation is solved, is obtained from
the total space by imposing the orthogonality conditions

j dx; Up(X)* ¥ =0. (20
The integration in Eq(20) proceeds at fixeg; . It is conve-
nient to replace the conditior(®0) by the set of equivalent
three-body orthogonality conditiongUy,|¥)=0 where
Umn(Xi Y1) = Un(X)Sa(Yi), ands,(y) is a complete set of
spline functions as used [i67] and[9].

Thus the three-body Pauli-forbidden states are just the
linear combinations

[75] is added to the diagonal terms of this expression. Using

Eq. (14), the scatterinds matrix is given in terms oR by

S=[H"=R(H""=BH") ] H —R(H'~—BH7)]
(16)

and the expansion coefficients for the wave functions are

1
2m ep—E

> PRiy(pm)

P =
AKo“Yo ~
Ky

X{ 81y kgyol H e (Kpm) = BH 1/ (kpp)]
=S¢y kvl H e (kpm) = BH 1, (kp) 1}

7

For short-range potentials, we can chopggoutside the
range of the couplings, and the Hankel functidi$ are
diagonal matrices. The calculations in RE®] made this

approximation. Since, however, we know that the couplings
of Eq. (8) have long-range 3 behavior, this necessitates a

Zi mEn chnUbn (21)
and the projection operator is
P=; U (U, (22)

whereU, are orthonormalized basis states spanning the sub-
space(21). The subspacé?l) consists of states symmetric
and antisymmetric with respect to neutron permutations.
Only the latter states are of interest for us, and the operator
(22) is taken in the subspace of such states.

In the framework of thé&r-matrix method of the preceding
section the operatof22) is obtained as follows. The wave
function U ,,,(x,y) (for total spin stateJM)) is expanded in
the hyperspherical basfg (p) as

umn<x.y>=gqw%nKyf&y@)YLi{SM(Qs), 23

proper treatment of couplings in the asymptotic region. We

therefore use the Light-Walker methods[@6] to propagate
the R matrix from p,,, out to some larger radius, where
Gailitis expansiong77] converge. This effectively includes
all couplings out to infinitep, and avoids the effects of arti-
ficial poles[78].

The coeﬁicientscﬁ‘*y and energie®, in Eq. (13) satisfy
matrix equations

q’ pq’ _
aqCRy+ ; / (FIViykr | TR ek =epckd
q'K'y
(18)
for each eigenstatp, which are of the matrix form

Ac=ec. (19

2. Projection operators

The projection operato® of the PP method can be con-
structed as follows. In addition to the 9d) of Jacobi coor-
dinates we shall use the two other scaled sets

wherey={l,,l,,L,S} as before. The orthogonality require-
ment of(um(x)lz/;Ky:Km}:O is now satisfied by requiring
that each interior multichannel eigenstatbas no forbidden

component:

q;y Wik, CRE=0 (24
for each forbidden staten, each spline functiom. In matrix

form, this is(w,,/c)=0 for each eigenstate We therefore
construct a projection operator

P:% |van><\7vmn|1 (25

where the se{w,,, is an orthonormalized basis set con-
structed by the Gramm-Schmidt process from {hg, .}

We now diagonalize in thallowed subspacef Pc=0,
and ensure this byeplacing matrix equationg(19) by an
equation of the forn(11). In this way, both the bound state

024318-5



I. J. THOMPSONeEet al. PHYSICAL REVIEW C61 024318

and continuum wave functions can be made orthogonal to 0.5 T T T -
the required set of occupied core states.

D. Dipole response distribution

The electromagnetic dipole operator for transitions to the
continuum is

- 3
Tin=2 eZrYin(f)=\z,2 eDm, (20

wherer;=R;—R is the distance of particlefrom the center
of mass of the whole nucleus, abg=Z;r;. For the present
halo nuclei, the only charged particle is the care 8), with
rs=vA/(AAz)y, and the reduced transition probability is

dB(£1;0{— 17 (E))/dE

Hyperradius p (fm)

:J |<1_(E)I|Tfm||09+s>|2dpf S(E¢—E), (27 FIG. 1. TheK=0 andK=2 hypersphericalL =S=I,=1,=0
' components of the wave functions Bifle in different Pauli treat-
with a non-energy-weighted sum rule limit of ments, with potentials adjusted for the same ground state energy.
3 weighted sum-rule limits will give a primitive indication of
f dE dB(£1;0,—17 (E))/d E=Ee2z§<ogsjr§|ogs>. the mean excitation energy of the dipole response.

(28
Ill. CALCULATIONS FOR  °He

The energy-weighted sum S .
A. Pairwise interactions

f dE(E-Ey¢)dB(E1;05s—17(E))/dE  (29) For thenn interaction we use a “realistic” potential: the
' - Gogny—Pires—de Tourrei{GPT) potential [82]. This in-
cludesl-s as well as tensor components, and has a soft re-
pulsive core. For the neutron-corer) interaction, we use a
central Woods-SaxofWS) of range 2.0 fm and a spin-orbit
s;= > (E,—Eg4)|(¥|D|0)|?=1/20|[D,[H,D]]|0), WS-derivative form, to fit the experimental scattering phase
v (30) shifts[83] satisfactorily. This WS potential has already been
used in the coordinate-space Faddeev calculdt@f} for

which, inserting the kinetic energy fét and eliminating the  °Li, and is
c.m. motion, is approximately

uses a closure integral of the form

—43.0
51=3Z§h2(A1+A2)/(2mAAg). (31 V”‘”(r):1+exp[(r—Ran)/a]

40.0

s d
dr 1+exd (r — Rey)/as,]

Thus we get -
s

MeV, (33

J'dE(E—Eg_s)dB(Sl;Ogsal‘(E))/dE
where R,,=2.0 fm, Rs,=1.5 fm, a=0.7 fm, and a,,
5 oo =0.35 fm, although this particular choice is perhaps a little
:iAlJ“AZ he’Zy (32) too attractive ford waves. We therefore used the value
47 AA;  2m —21.5 MeV for thed-wave central part and zero for partial

waves| = 3.
From the non-energy-weighted rule, we see that the inte- oy this choice ofv,,,, the present calculations take the

grated dipole response depends on the core mean lsqu_Jare Fuli exclusion principle into account by the three different
dius within the halo, so models with large halesg., in"Li  methods, as classified above.

from s-intruder state$80,81]) should have enhanced dipole  pp- Orthogonalizing the three-body wave functions

breakup. The ratio of the energy-weighted to the non-energyound and scatteringo the occupied § two-body state
found as the deeply bound eigenstale<—9.8 MeV) of
the aboveV,,, potential.

Yn [79] a slightly different expression is givenAz/A times PS: Supersymmetric transformation of the attractive
ours—in accordance with an incomplete elimination of the c.m.swave V,, potential gives a purely repulsive partn@ee,
motion. e.g., Fig. 1 in[62]). This partner shows the sansavave
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TABLE |. Calculated ground state fdiHe using the various Pauli treatments with,,.=20. For each
method, a three-body potential of the strengthshown was needed to reproduce the experimental separation
energy of 0.97 MeVR,, is the matter radius ofHe, using ana matter radius taken as 1.47 fm. The
EWSR(1") and NEWSR(T) values are from Eqg32) and(28), respectively, an@&(1") is the sum-rule
estimate of the I excitation centroid relative to the breakup threshold.

Pauli Vs, Egs. (p?)12 Rm EWSR(1) NEWSR(1") E(1)
method MeV MeV fm fm MeVe? fm? e? fm? MeV
PP 0.0 -0.13 6.02 2.73 4.95 1.810 2.60

1.6 —0.98 5.34 2.49 4.95 1.364 2.65
PC 0.0 Unbound

2.4 —-0.98 5,51 2.55 4.95 1.494 2.33
PS 0.0 Unbound

2.3 -0.97 5.50 2.55 4.95 1.494 2.33
PA 0.0 Unbound

1.9 —0.98 5.39 2.51 4.95 1.350 2.69

phase shift, and has a “Pauli core” which excludes from theuse repulsives-wave potentials, PC and PS, need 2.4 and 2.3
an potential the @ state occupied by the-core neutrons.  MeV, respectively, whereas the PA method requires 1.9
PC: The repulsive potential may be approximdiédby a  MeV for the binary interactions selected above. These four
Gaussian potential of sizéb=2.3 fm and V,,(1=0) interactions gave the weights shown in Table Il for the par-
=+50 MeV, as this also reproduces the experimenigl tial components of the wave function in the ground state of
phase shift$83]. He. In Fig. 1 we see th&=0 andK =2 components of the
PA. Diagonalize the coupling potentidlx., «,(p) at  hyperspherical wave functions &He in the different Pauli
each hyperradiup, and remove the subset of eigensolutionstreatments, with potentials adjusted for the same ground-
corresponding to eigenvalues Wfwhich are still negative state energy. The dominaKkt=2 wave functions are indis-
for largep. There is such one eigensolution when calculatingtinguishable, whereas thé =0 components differ in their
the 0" ground state, and the two lowest solutions for 1 nodal behavior at short distances. That from the PP method
three-body states, because thg,,foccupied state can only has a node, in order to have zero overlap with the nodeless
couple withs,, to form 0", but with bothp,,, andpg, to  occupied @, state. The PC and PS wave functions are
form 1™ states. nodeless, and pushed out by the repulsive cores. The PA
method gives & =0 component with a node, but differs
from all the others at short distances. The physical signifi-
_ ) _ cance of the PA approximation for small hyperradii is not at
The three-body method with any of these interactions sufy)| transparent.
fers from the common problem of underbindif&]. The PP With local Pauli approximation§”C and P§ the eigen-
result is the most bound, but still gives a binding energy ofstates obtained are less bound by around 0.5 MeV. This
~0.15 MeV instead of 0.97 MeV(see Table )l This un-  means that we have to increase the three-body potentials up
derbinding is most likely caused by the influence of otheraimost 1 MeV, to again fit the observed separation energy.
closed channels, most important of whicltist [16,22,23.  \ve see that once this is done, somewhat similar characteris-
This could be corrected by rescaling the radius or depth Ofics for 6He ground state once more emefgee alsd62]).
the n-core potential$3], but here we use an effective three- \ye argue that since the wave is anyhow small in the
body potential, giving the same kind of correction as in theground-state(g.s) wave function, it does not appear to mat-

three-nucleon system. We shall add to the three-body hypeger precisely which method is used to suppress the occupied
radial interactions an attractive scalar diagonal three-bodyiate.

B. Ground state

potentialV,3 of radiusps, whereps is chosen as if9] to be There is a known 2 resonance irfHe at+1.8 MeV, so
5 fm: we separately tun¥; for continuum states, to fit this reso-
[ — 3
(K'Y IVid p)[Ky)= = Sk 8y, V3 I[1+ (p p3)°]. TABLE II. Calculated partial-wave percentages for tfhe

ground state using different Pauli methods.

We calculate withK ,,,,= 20 for the maximum hyperhar- 2 2 2 1 3
monic K used in Eq(10), and tune the strengt; in order Method Su2 Parz P12 S P1
to reproduce the experimental three-body separation energpp 7.7% 85.4% 5.6% 85.3% 11.5%
The results for°He are shown in Table I. We find that with pc 9.1% 84.7% 4.9% 84.1% 12.3%
the PP projection method, a three-body potential of strengtips 9.5% 84.3% 4.9% 84.2% 12.1%
V3~1.6 MeV needs to be included in order to obtain thepa 5.8% 87.4% 5.6% 84.8% 12.0%

correct binding energy. The Pauli treatment methods which
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nance position. We find that the value\6f needed here has - - . 400
to be decreased from that to fit thé @round state, and we %o r a
use this reduced value for all>0 continuum calculations.
For K .= 20, we only need 0.90 MeV for the2resonance
in the PP method, so we use this value for thes?ate in the
PP and PA methods. We ne&3=0.85 MeV for the PC
method, and we use this for the PC and PS methods in th(® g |-
2* channel. L. - . ;f
We have to be careful when introducing a three-body
force, however, since it is known that off-shell behavior and 45 ; TR VEETIEY L T e s
three-body forces are tightly connected, one being transform Continuum energy (MeV) Continuum energy (MeV)
able into the othef84]. Unless we have a very good physical
reason for adjusting its strengtbuch as to fit a resonance __FIG. 2. Eigenphases and interior norms for the @is. of °Be:
position), unnecessary variations of a three-body potentiaPP for Pauli projection, NO PP for no Pauli treatment, PC for re-
will mask the variations of off-shell behavior that we are PUlSive swave potentials, and PA for adiabatic projectiofsee
trying to probe here. Therefore, for the ichannels where €X0- These calculations use ofq= 10.
there are no defining resonances, we k&gp-0.85 MeV
for all the Pauli models. This enables thé phase shifts to tion of the wave function. In this last case we have one
directly portray the way in which three-body scattering de-additional very deep 0 three-body bound state below all
pends on the off-shell features of the two-body subsystemshreakup thresholds, which overlaps almost completely with
With the above adjustments to fit the known g.s. and resothe two-body occupied states. This deep state should be for-
nance positions, or lack of adjustments, it will be interestingbidden in the three-body problem as it would have close to
to compare calculations with deep and repulsweave an zero norm were a full antisymmetrization operation per-
interactions, examining in particular the sensitivity of suchformed.
characteristics as electromagnefit responses and corre-  After adjusting the three-body interactions to put the reso-
sponding nuclear responses to the method of exclusion dfance positions for thé8Be(0*) ground state close to each
forbidden states. Some difference should be expected singgher, we can see that these methods give approximately the
the internal form of theswave functions will be different in same shape for the eigenphases dominant in the dynamics of
the two cases: having, for example, different numbers off =1 states inA=6 nuclei, so the observable widths are
nodes in the interior, as further discussed below. The threesimilar. The interior norms are, however, different. Physi-
body results should probe the off-shell properties of thecally, projecting out compact forbidden states in the binary
a-nucleon andhn interactions, even in the sparse environ-subsystems from the three-body Hamiltonian should reduce
ment of a nuclear halo. the three-body wave function in the interior region. This is
clearly seen from Fig. ®). Simulating the Pauli principle
with a repulsive phase-equivalent potential suppresses the
wave function in comparison with the PP case. Since the

Three-body continuum states are a new test bench for théave functions of the’Li ground state are normalized to
methods mentioned above. The most sensitive indicators atity; and in both methods the geometrical characteristics of
the eigenphases for asymptotic or external properties, whiciie °Li g.s. are very clos¢3], one could hope that the dif-
result from the diagonalization of th® matrix for the true ~ ference of the wave functions could be detected in the mag-
3=3 resonant scattering arfdue to differences in internal Nitude of the charge exchange reactftiri( p,n)°Be.
structures the integrated interior norms of the scattering [N Fig. 3 the eigenphases and interior norms for khe
wave functions which show themselves in different reac-
tions. . . . . 2000

180 [ Eigenphases : Interior norms |

Interior norm to 10 fm

45t

(degrees)

— PP

100

IV. PAULI EFFECTS IN THE CONTINUUM

A. Resonances . hsoo | to 10 fm. N

The experimentally well-established three-body reso-
nances are the2state in®He and the 0 “ground” state in
®Be, the isospin-multiplet partner of théHe ground state.
Previous calculation$l] with a PC type interaction gave et
reasonable results for the positions and widths of these
states. In Fig. 2 eigenphases and interior norms®Re are — . . . 0 .
shown with Coulomb potentials screened at 20 fm and with 06 07 08 09 10 11 06 07 08 09 10 11
four variants of the Pauli principle treatment: the PC, PA, Continuum Eneray (MeV) Continuum Eneray (Mel)

PP, and NO PP Pauli treatments. This last calculation uses FIG. 3. Eigenphases and interior norms for ke 2 channel of
the deeps-wave a-nucleon potential of Eq:33), without any  the 2, excited state ofHe. The eigenphases correspond to eigen-
consideration of forbidden states, and this gives an overvectors of theS matrix which are superpositions of all partial
bound eigenstate but with approximately the same composivaves.

1000
90 k

d (degrees)

]500 |
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I I I I I —I PP: projeétion opera;ors
04 F (a) — - - PA: adiabatic projection e
105 o XX K e X ] e x* X PS: supersymmetric transform
P - g 0.3 }( X_ PC: Gaussian repulsive core
90 | “
@z o X 5% s 3
. K
3 75| —_ 0.2 Xox,
g w
KA ~—
£ 60 m
S . .
o —— PP: projection operators
8 45t —-— PA: adiabatic projection
o x PS: supersymmetric transform >
30 f — —— PC: Gaussian repulsive core =
£
15 £, “o
/
o U . . . . -
0 1 2 3 4 5 1
Continuum energy (MeV)
FIG. 4. Diagonal phase shifts for thé=L=1, S=1,=0, I, 0 1 2 3 4 5

=1 channel in the 1 continuum, for different Pauli treatments PP, Continuum energy (MeV)

PA, PS, and PC. All curves are froi,,=20 calculations with

fixed three-body potentiali;=0.85 MeV for the continuum. FIG. 5. DipoledB(£1)/dE distributions to the I continuum,

for different Pauli treatments PP, PA, PS, and PC wth,= 20.
Curves(a) use g.s. wave functions from the respective methods
=2 channel of the 2 state in®He are shown for the PC and (with different three-body forceswhereas curve) all use the PP

PP cases, and no differences in the resonant phase and norfins Wave function.

are seen. This is expected from angular momentum consid-

erations: the predominant interaction pswave in thean  dB(E1)/dE strength[Fig. 5@)]. The increase of 46% in the

subsystems, so a'2state will not feel theswave peculiarity. dB(E1)/dE peak is much larger than the 9% increase to be
Summarizing the results for three-body resonances, wéxpected from the change in the non-energy-weighted sum-

can assert that the states with lowest alloWedhlues are the rule limit shown in Table I, so only part of this increase

most sensitive to the off-shell differences of different effec-arises from the changes in the ground-state properties. This

tive interactions, such as derived from different treatments ofs clearly shown in Fig. &), where we artificially use the PP
the Pauli principle. In, for example, th8Be 0" state, two J.S. wave function as the constant initial state for transitions

different treatments of the-wave an interaction give the to the continuum in the other Pauli methods. There is evident

same on-shell behavior, but give different interior norms ofan increases of 27% in tr#B(£1)/dE peak of the PS and

the three-body wave function. This is not the case, howevef?C methods compared to those of the PP and PA methods.
for the first 2t state in®He. Because the 1 continuum states are composed primary

from p3,,® Sy two-neutron configurations, their wave func-

tions in thes;,, channel of neutron-core motion is strongly

, , dependent on the manner of blocking to the bound state in
We can also compare the dipole response functions fof,a¢ channel. The large difference between dig{£1)/dE

the different Pauli prinpiple tregtments. A Istate will con- predictions of Figs. &) and §b) means that experiments

sist mostly ofsy,p3;, mixing, while the 0 ground state has  might be able to distinguish the PP Pauli principle treatment

mainly a p3, combination. Thep waves are similar in all  from the other two(PS and P The ground states of

cases, but thes waves are diffel’en(in the PP case, the =6 nuc|ei’ being dependent 0n|y on the “|arge” Compo_

wave should have a node, but not in the PC and PS kasegents of the wave function in channels without forbidden

Thus both theoretical and eXpeI‘imen'[aJ studies should Sh%*ateS, are not Strong|y dependent on the treatment of Pauli

some light on the question of the best treatment of the Paulyjocking.

principle in three-body systems. _ ThedB(£1)/dE distributions for®He have recently been
Lookmg at F_|g. 4 we see that the PC and PS phase Sh'ftébtained[38] at GSI by studies of breakup diHe on a

are practically identical, as well as the PP and PA phasegeayy target. Although the uncertainty limits on the extracted

.(W'th the three—body potentlal§ |dent|(;al in all casebhis dB(£1)/dE are quite largéFig. 4 in[38]), the experimental

implies that changing the precise details of the repuld®@  ,ympers are distinctly nearer a prediction using the Pauli

or P9 Pauli core does not affect the wave function at Iargeprojection method9], as this is noticeably less than that

distances, and Fig. (8 shows that the corresponding using repulsives-wave potential§24].

dB(£1)/dE distributions are the same. These two Pauli-core

B. Nonresonant continuum

methods, however, give results which are significantly dif- V. CONCLUSIONS
ferent from the projection methods PP and PA, as the latter '
methods give, over most of the low-energy ranigssposi- We have performed a thorough investigation of the influ-

tive phase shifts (Fig. 4 and correspondingly less ence of the Pauli principle treatments on the three-body so-
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lutions, and studied the consequences of different treatmentils. There are still uncertainties in the exact choicenof
having the same two-body on-shell behavior. Summarizingt @ potentials, but it does appear that the Pauli projection
the results, we can assert that for three-body resonances, theethods givedB(£1)/dE distributions which are nearer to
states with lowest totaK momenta(the lowest configura- experiment than those using lockbependent potentials.
tions in the shell-model languapgare most sensitive to off- The differences are expected to be larger in halo nuclei such
shell behavior of different effective interactions. As an ex-as !Li and “Be where thesswave channel plays a signifi-
ample, the®Be 0" resonant state, where tlswave a-n cant role even in the ground stdi&0,12.
interaction was defined in two ways giving the same on-shell
behavior, was found to have a dlffe_rence in the_ interior ACKNOWLEDGMENTS
norms of the three-body wave functions. This difference
should influence the predicted cross sections in the charge- B.V.D. thanks the University of Bergen for support for
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