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In three-body models of halo nuclei such as6He, Pauli blocking is needed to remove components of the halo
wave function that would disappear under full antisymmetrization. We compare a full projection-operator
method with two others presently used for the purpose. A range of differences is found, small for bound states
and resonances but larger for nonresonant continuum states. We indicate discriminating characteristics sensi-
tive to the off-shell behavior.

PACS number~s!: 21.60.Gx, 21.10.Pc, 21.45.1v, 25.60.Gc
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I. INTRODUCTION

Recent progress in the theory of halo nuclei has led
more accurate models of the ground state of6He and of its
breakup continuum states. Our previous investigations oA
56 nuclei @1–10# and 11Li @11,12#, and also those of othe
authors@13–26# using a variety of methods, have shown th
numerous characteristics of thediscretestates of the halo
nuclei can be accounted for by using three-body dynam
with ‘‘fundamental’’ pairwise interaction potentials suppl
mented by weak three-body potentials.

The three-nucleon problem has been studied for its se
tivity to the off-shell behavior of its interactions. In mor
complicated systems, the best known stable nucleus is6Li,
with neutron- and proton-rich neighbors6He and6Be, all of
which have a dominanta1N1N structure. The previous
attempts to compare local and nonlocal Pauli treatment
the integral equation method@27#, or with a combination of
coordinate-space Faddeev equations and hyperharmo
methods@1,3,28#, came to the conclusion that for a wid
class of electromagnetic and geometrical observables
both bound and quasibound states, various Pauli treatm
give very similar results. We will examine below wheth
scattering observables are more sensitive indicators of
differences between the alternative Pauli methods.

The developments of dynamic approaches to the th
body continuum theory@1,14,17,24,29–31# make it now pos-
sible to investigate also the unbound states of these nu
that are populated in breakup reactions. The previou
known spectrum of6He contained only the 01 bound state
and the well-known 21 (E* 51.8 MeV) three-body reso
nance@32#, but our recent models@10,9# predict new states in
0556-2813/2000/61~2!/024318~11!/$15.00 61 0243
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the three-bodya1n1n continuum below the 3H13H
threshold at about 13 MeV. The unusually large electrom
netic dissociation~EMD! cross section for11Li and 6He pro-
jectiles, as well as for other neutron dripline nuclei@33–35#,
has revealed an enhanced dipole breakup strength for t
halo nuclei. While for 11Li an E1 response~‘‘strength’’!
function has been reconstructed from exclusive experime
@36,37#, such information has only very recently been o
tained@38# for 6He. Angular distributions and angular co
relations are now being measured@39,38#, supplementing the
previous measurements of momentum distributions fr
fragmentation@40–44# and the limited data from charge
exchange reactions with6Li to the 6He continuum@45–47#.

With increased accuracy of calculations and of expe
ments involving6He, it has become necessary to reexam
how theA56 system has been projected onto a three-b
model space. Of special interest here is the question of P
blocking, arising because the neutron-core interactions h
deeply bound eigenstates which must be regarded as alr
occupied by core nucleons, and blocked to the halo neutr

Pauli blocking is needed to remove components of
halo wave function that would disappear under full antisy
metrization. We compare a full projection-operator meth
with others recently proposed: either using repulsive pot
tials in those neutron-core partial waves with bound state
by removing the lowest-energy eigensurface in a hyp
spherical adiabatic approximation. These alternatives g
Pauli effects which are local in some coordinate, but th
accuracy needs to be checked not only for bound st
@21,26# but also for resonant and nonresonant scattering.

Particular theoretical attention has been focused on
mechanism for the large EMD cross section, namely,
©2000 The American Physical Society18-1
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electric dipole excitation to the continuum. There has bee
search for a low-lying ‘‘soft dipole resonance’’~@48–
50,41,51,52,6,38#, and references therein!, where the two
halo nucleons are envisaged to oscillate with respect to
core, which carries the charge. TheB(E1) strength function
to dipole states in6He will turn out to be particularly sensi
tive to the Pauli treatment, since the negative parity of
dipole states means that they probe thes-wave channels of
n-a relative motion: exactly those channels where there
occupied bound states.

We will examine the bound and continuum states in
method of hyperspherical harmonics~HH! expansions. This
allows the long-range behavior of the three-body wave fu
tions to be explicitly calculated, and hence avoids the th
retical shortcomings in analyses within the random ph
approximation~RPA! ~mean field! method, which treat the
three-body continuum~most relevant for these Borromea
systems! in a rather approximate way, or else in the frame
two-body ~cluster! dynamics. The complex rotation metho
has been applied to the three-body Schro¨dinger equation
@17#, or to the three-body resonating group method~RGM!
@14#, but enables one only to calculate the parameters
three-body resonant states—their widths, positions, and
tial content. No theoretical paper~except for@24#! has pre-
dicted a low-lying 12 resonance in6He, so it may well be
that the dipole continuum is nonresonant, but still enhan
for dynamical reasons. More experimental information
needed to clarify this question.

The structure of this paper is as follows. In Sec. II w
summarize the theoretical framework necessary to treat
ground state and continuum structure of halo nuclei w
three-body dynamical models. Section II B discusses the
ferent methods proposed for treating Pauli blocking, and
Sec. III we present the physical inputs for and results
three-body calculations for6He, using the various Pau
treatments. Pauli effects in thea1n1n continuum are dis-
cussed in Sec. IV, and conclusions are given in Sec. V.

II. THEORY

Cluster models of light nuclei allow us to approximate t
many-nucleon problem by a few-body one, and for the tre
ment of the latter problem a number of methods have b
developed. Faddeev@53,18# and Schro¨dinger few-body for-
mulations have been successfully solved with the help
momentum space@18#, variational@19,15#, and hyperspheri-
cal harmonic@3# procedures. Faddeev equations have a
been solved with the adiabatic hyperspherical@28# method.
For potentials with strongly repulsive cores, an approa
such as the correlated hyperspherical method of@54,55#
would become appropriate.

In the RGM @14,16,22,25# and the generator-coordina
method ~GCM! @20# the composite structure of cluste
manifests itself through non-local exchange integral kern
The orthogonality condition model@56#, derived from the
RGM, reduces the complicated Hill-Wheeler equation to
Schrödinger one with a physically transparent projecting o
of Pauli-blocked states from the spectrum of the bin
Hamiltonian. An alternative method, generating a spectr
02431
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equivalent Hamiltonian, is to use the double supersymme
transform@57–62#. Both approaches give the same on-sh
behavior, but are different off shell, which can be critical
the three-body situation. We will see below examples
such differences.

A. Three-body hyperspherical basis

Given particle positionsR1 and R2 for the neutrons and
R3 for the core, the standard@9# translationally invariant nor-
malized sets of Jacobi coordinatesx andy are defined using
the mass ratiosAi5mi /m ~for m a unit nucleon mass!, as
follows:

x5~A12!
1/2r125~A12!

1/2~R22R1!,

y5~A(12)3!
1/2r (12)3

5~A(12)3!
1/2@R32~A1R11A2R2!/~A11A2!#, ~1!

R5~A1R11A2R21A3R3!/A.

HereA12 andA(12)3 are the appropriate reduced masses.
use hyperspherical coordinatesr, a, x̂, and ŷ, where r
5(x21y2)1/2 is the hyperradius anda5arctan(x/y) is the
hyperangle.

The choice ofx andy simplifies the antisymmetrization o
the wave function between the two neutrons: when c
structing the channels in this basis, the antisymmetriza
can be included by imposing$ l x1S1T5odd%, where l x is
the relative orbital angular momentum between the two n
trons, andS and T51 are the total spin and isospin of th
two-neutron subsystem.

We seek our bound-state and continuum wave functi
in the form of an expansion using hyperspherical harmo
basis functions:

YJKLSM
l xl y ~V5!5@YKLM

l xl y ~V5! ^ XS#JM , ~2!

with

Y KLM
l xl y ~V5!5c K

l x l y~a!@Yl x
~ x̂! ^ Yl y

~ ŷ!#LM . ~3!

The quantum numberK is called the hypermomentum. Thes
Y KLM

l xl y (V5) are called ‘‘hyperspherical harmonics.’’ Here th
a,ux ,fx ,uy , and fy variables are denoted collectively b
V5, the notation@•••# indicates tensor coupling, andXS is a
spin function. Other quantum numbers are the Jacobi orb
momental x andl y , and the total orbital momentumL and its
projectionM. The hyperangular part of the HH~depending
on a) has the following explicit form:

cK
l xl y~a!5NK

l xl y~sina! l x~cosa! l yP(K2 l x2 l y)/2
l x11/2,l y11/2

~cos 2a!,

~4!

wherePn
a,b are Jacobi polynomials andNK

l xl y is a normaliza-
tion factor ~see, e.g.,@3#!.

We look for three-body wave functions of the form
8-2
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CJM
T ~x,y!5r25/2 (

KLSlxl y
xKl xl y

LS ~r!YJKLSM
l xl y ~V5!XTMT

,

~5!

with hyperradial wave functionsxKl xl y
LS (r) that satisfy either

bound-state

xKg~0!50, xKg~r→`!;exp~2kr! ~6!

~whereg5$ l x ,l y ,L,S%, L5K13/2, andk5A2muEu/\2) or
scattering

xKg,K8g8~kr!;HK13/2
2 ~kr!dKg,K8g82SKg,K8g8HK13/2

1 ~kr!
~7!

boundary conditions according to the three-body energyE.
These particularly simple boundary conditions are satis
for Borromean systems, as no two-body bound states e
asymptotically.

In this basis, the partial-wave coupling interactions are
matrix elements

VK8g8,Kg~r!5^YKg~V5!uV121V131V23

1V123uYK8g8~V5!&, ~8!

whereVi j is the interaction between bodiesi and j, andV123
is a possible three-body force to be discussed later.

In the case of short-range pairwise particle interactio
the three-body mean field behaves at larger values as
VKg,K8g8(r→`);r2n with n>3 (n> l x1 l x813). This
power law decrease, obtained for finite-range pairwise po
tials Vi j , reflects the possibility of two particles interactin
when far away from the third particle.

With local potentials, the wave functionCJM
T would be a

solution to the Schro¨dinger three-body equation

~T1V121V131V231V1232E!CJM
T 50. ~9!

After projecting onto the hyperangular parts of the wa
function we would obtain a set of coupled equations:

S 2
\2

2mF d2

dr2
2

L~L11!

r2 G2ED xKg~r!

1 (
K8g8

VK8g8,Kg~r! xK8g8~r!50. ~10!

As it stands, however, this coupled equation set does not
any account of Pauli blocking.

B. Pauli blocking

In the present approach, we wish to start with the stand
kinds of local potentialsVi j which have proved successful i
many branches of nuclear physics, and seek to use the
‘‘fundamental interactions’’ with minimum modification
within three-body models. We have still, however, to co
sider the effects of antisymmetrization, the existence of ‘‘f
bidden states’’ in the cluster-cluster motion, and the po
bility of l dependence of the interactions.
02431
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In general, antisymmetrization of the fullA-body wave
function leads to exchange terms which are nonlocal in
cluster-cluster relative coordinates, and these nonlocal
lead tol dependence of the local phase-equivalent potent
@63,64#. We can therefore use different potential strengths
different partial waves. This, in any case, is often necess
as our local potentials are fitted to the experimental ph
shifts for binary scattering and to any bound states or re
nances in that two-body channel.

Even when the two-body bound and scattering states
reproduced, the three-body situation requires the Pauli p
ciple to be considered again. This is because the interact
typically have negative energy eigenstates which must
taken as already ‘‘occupied’’ in one of the composite bodi
Two-body scattering states are automatically orthogona
these, if a fixed Hamiltonian is used, but in the three-bo
case of a core and two neutrons, the additionalnn interaction
could scatter one of the neutrons into one of the core oc
pied states.

The three-body case therefore requires some treatme
antisymmetrization, at the very least a Pauli blocking co
straint to forbid the valence neutrons entering the occup
core states. Different approximations to the complete a
symmetric approach have therefore been suggested to
struct treatable interactions for use in three-body models

PP: When the effective intercluster interactions are su
ciently deep to produce bound binary states which would
eliminated by full antisymmetrization, these occupied sta
should be projected out as Pauli forbidden. We should so
the Schro¨dinger equation for the three-body wave functio
within the allowed~sub!space, not merely project out forbid
den states after finding a solution. The projection can
done by the pseudopotential method@19,65,66# or directly by
means of projection operators@67–69#.

PS: By using a supersymmetric transform@57–59,61,62#
of the n-core potential. For a potential having a forbidde
state, we can obtain a spectrally equivalent potential with
this state but with a characteristicr 22 repulsive singularity at
the origin.

PC: Since phase shifts for most of the cluster scatter
are defined in a finite energy range, it is possible to introd
an auxiliary repulsive interaction~a soft ‘‘Pauli core’’! in the
same partial components of effective intercluster interacti
where forbidden states are expected, and fit these interac
to the experimental phase shifts.

PA: For large hyperradiusr, the coupling matrix
VK8g8,Kg(r) has a set of negative-energy eigenvalues wh
are the states to be blocked. These can be projected ou
eachr separately, as in Refs.@21,24#, and a revised coupling
matrix V̂K8g8,Kg(r) constructed.

Ignoring the Pauli principle completely is obviously in
correct for ground states, but may be considered in scatte
problems, so some results from this assumption will be p
sented below for resonances~we will refer to this method as
‘‘NO PP’’ !.

The PP and PA methods construct projection operatorP
~local in r in the PA case! to remove unwanted eigensolu
tions. Their effect may be generically formulated as findi
the eigenenergiese and eigenvectorsce of a matrixA in an
8-3
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I. J. THOMPSONet al. PHYSICAL REVIEW C 61 024318
allowed subspace Pce50. This is accomplished, given th
matrix A, by solving

~12P!A~12P!ce1E0Pce5ece . ~11!

Here,E0 is a large positive energy~1000 MeV! to which the
forbidden eigenstates are moved, to avoid contaminatio
the halo states of interest near the breakup threshold. All
solutions of Eq.~11! with eÞE0 satisfy Pce50. In the PA
method, the couplings themselves are modified byV̂(r)
5@12P(r)#V(r)@12P(r)#1E0P(r).

All these methods of including antisymmetrization effec
essentially coincide on the two-body energy shell and
ymptotically at large hyperradius in the three-body situati
A peculiarity of three-body dynamics, however, is its sen
tivity to off-shell behavior of pair interactions, enabling us
principle to discriminate between the different classes of
teractions. The results for methods PP and PC have alre
been compared for bound states of6Li @18# and 6He @3#, and
the results of PP and PS have been compared for6He, 11Li,
and 14Be @62#. They were found to be almost coinciding fo
many properties of the ground state. Later we will exam
the differences which arise for resonant and nonreson
continuum states. Thus the three-body continuum gives
what may be unique possibility to investigate the con
quences of these differences in approach.

C. Solution of the coupled HH equations

We have in the PC and PS cases to solve the set oN
coupled equations@Eq. ~10!#, while in the PP method ther
will be orthogonality conditionŝ unuc&50, with un the
wave functions of occupied states in the binary subsyste
The PA method solves Eq.~10! with modified local cou-
plings V̂. For Borromean systems, the hyperradial wa
functionscKg(r) for bound states have, for uncharged p
ticles, the standard boundary conditions of decaying ex
nentially at large distances, while the continuum wave fu
tions become a linear combination of Hankel functions. T
scattering boundary conditions describe the in- and outgo
three-body spherical waves, so thatSKg,K0g0

is theS matrix

for the 3→3 scattering for an incoming wave in chann
K0g0. We only deal with Borromean~or democratic! types
of three-body problems, where there are no two-body bo
states in the asymptotic regions.

To solve the coupled equations@Eq. ~10!#, we previously
@1,3,4,6# integratedN linearly independent solutions fromr
50 to r5rm , for some radiusrm beyond which the cou-
plings VK8g8,Kg(r) are assumed to be negligible. A line
combination of these solutions was then found, in order
satisfy the appropriate boundary conditions. This w
straightforward for limited numbers of channels (N up to 10
or 12!, but for larger sets the solutions become linearly d
pendent. This is because the large range of centrifugal b
ers L(L11)/r2 means that some channels are, for a la
period, being integrated in their classically forbidden d
main, and~as discussed in@70#! the linear independence o
the exponentially decreasing solutions is lost. This meth
moreover, does not easily enable the PP Pauli method.
02431
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1. R-matrix method

To avoid numerical instabilities with large sets, we use
expansion on Sturmian or Sturmian-like radial basis fu
tions. For bound-state wave functions, it is convenient to
Sturmian states, which are eigenstates at a fixed energy
varying multiples of some diagonal potential. This has be
developed for bound states in deformed nuclei@71,72#, and
we have also found the method to be useful for hyperra
bound states@73#. For scattering states, however, the Stu
mian states are not suitable as they have few oscillation
large distances up torm . We therefore follow standard
R-matrix methods, and use a basis set of ‘‘energy eig
states’’ of the diagonal terms of Eqs.~10!:

S 2
\2

2mF d2

dr2
1

L~L11!

r2 G1VKg,Kg~r!2aqD f Kg
q ~r!50

~12!

for eigenenergiesaq , with the basis functions all having
fixed logarithmic derivativesb5d ln fKg

q (r)/dr at rm . The
constancy of the logarithmic derivativesb means that~for
eachKg channel separately! the f Kg

q form an orthogonal ba-
sis set over the interval@0,rm#, andover this rangethey can
be normalized to unity. Then, as manyq51, . . . ,Q of the
orthonormalf Kg

q per Kg channel can be used as desired
accuracy. Forb,0 the basis states with lowaq,0 will be
similar to the Sturmian states with low potential multiplier
and hence suitable for bound state expansions. Higheraq
.0 basis states will oscillate out torm , and can be used in
expansions of continuum states.

The wave functions of the coupled problem~10! can now
be solved completely over the interior range@0,rm#, by using
the orthonormal basis set of the$ f Kg

q (r)% with coefficients to
be determined. The coefficients are found in two stages:
by finding all the eigensolutionsfKg

p (r) of Eq. ~10! using
the above orthonormal basis, and then expanding the sca
ing wave functions in terms of thesefKg

p (r).
The first stage, the diagonalization of interior Schro¨dinger

equation~10! yields P5QN eigenenergiesep with corre-
sponding multichannel eigenstates

fKg
p ~r!5 (

q51

Q

cKg
pq f Kg

q ~r!. ~13!

Eigenstates here withep,0 are close to the bound state
while solutions withep.0 contribute to the scattering solu
tions. Certain of theep.0 solutions may correspond to low
lying resonances if those are present, but the majority of
positive eigenenergies have no simple physical interpr
tion. ThesefKg

p (r) form of course another orthonormal ba
sis in the interior region.

For scattering states at arbitrary energyE with incoming
waves in channelK0g0, the coupled solutions are then e
panded in terms of the multichannel eigenstates
cKg:K0g0

5(pAK0g0

p fKg
p . If we define anR matrix at energy

E by
8-4
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cKg:K0g0
~r!5 (

K8g8
RKg:K8g8~E!F d

dr
cK8g8:K0g0

~r!

2bcK8g8:K0g0
~r!G ~14!

in the limit of r→rm from above, then theR matrix R can be
calculated directly from the eigenstates by standard meth
@74#:

RKg:K8g8~E!5
\2

2m (
p51

P fKg
p ~rm!fK8g8

p
~rm!

ep2E
. ~15!

The R matrix calculated by Eq.~15! is only exact when the
sum overp extends to all energiesep . To improve the accu-
racy of calculations with finiteQ andP, the Buttle correction
@75# is added to the diagonal terms of this expression. Us
Eq. ~14!, the scatteringS matrix is given in terms ofR by

S5@H12R~H812bH1!#21@H22R~H822bH2!#
~16!

and the expansion coefficients for the wave functions are

AK0g0

p 52
\2

2m

1

ep2E (
K8g8

fK8g8
p

~rm!

3$dK8g8,K0g0
@H8

L82~krm!2bHL8
2

~krm!#

2SK8g8,K0g0
@H8

L81~krm!2bHL8
1

~krm!#%.

~17!

For short-range potentials, we can chooserm outside the
range of the couplings, and the Hankel functionsH6 are
diagonal matrices. The calculations in Ref.@9# made this
approximation. Since, however, we know that the couplin
of Eq. ~8! have long-ranger23 behavior, this necessitates
proper treatment of couplings in the asymptotic region. W
therefore use the Light-Walker methods of@76# to propagate
the R matrix from rm out to some larger radiusra where
Gailitis expansions@77# converge. This effectively include
all couplings out to infiniter, and avoids the effects of arti
ficial poles@78#.

The coefficientscKg
pq and energiesep in Eq. ~13! satisfy

matrix equations

aqcKg
pq 1 (

q8K8g8
^ f Kg

q uVKg,K8g8u f K8g8
q8 &cK8g8

pq8 5epcKg
pq

~18!

for each eigenstatep, which are of the matrix form

Ac5ec. ~19!

2. Projection operators

The projection operatorsP of the PP method can be con
structed as follows. In addition to the set~1! of Jacobi coor-
dinates we shall use the two other scaled sets
02431
ds

g

s

e

xi5~Ai3!1/2r i3 , yi5~A( i3) j !
1/2r ( i3) j ,

for i 51,2 and cyclici, j, k. The two-body forbidden state
are of the formum(xi), and the subspace of functionsC, in
which the Schro¨dinger equation is solved, is obtained fro
the total space by imposing the orthogonality conditions

E dxi um~xi !* C50. ~20!

The integration in Eq.~20! proceeds at fixedyi . It is conve-
nient to replace the conditions~20! by the set of equivalen
three-body orthogonality conditionŝUmn

i uC&50 where
Umn

i (xi ,yi)5um(xi)sn(yi), and sn(y) is a complete set of
spline functions as used in@67# and @9#.

Thus the three-body Pauli-forbidden states are just
linear combinations

(
i

(
m,n

cmn
i Umn

i ~21!

and the projection operator is

P5(
l

uŪl&^Ūlu, ~22!

whereŪl are orthonormalized basis states spanning the s
space~21!. The subspace~21! consists of states symmetri
and antisymmetric with respect to neutron permutatio
Only the latter states are of interest for us, and the oper
~22! is taken in the subspace of such states.

In the framework of theR-matrix method of the preceding
section the operator~22! is obtained as follows. The wav
functionUmn(x,y) ~for total spin stateuJM&) is expanded in
the hyperspherical basisf Kg

q (r) as

Umn~x,y!5(
Kgq

wmnKg
q f Kg

q ~r!YJKLSM
l xl y ~V5!, ~23!

whereg5$ l x ,l y ,L,S% as before. The orthogonality require
ment of ^um(x)ucKg:K0g0

&50 is now satisfied by requiring
that each interior multichannel eigenstatep has no forbidden
component:

(
qKg

wmnKg
q cKg

pq 50 ~24!

for each forbidden statem, each spline functionn. In matrix
form, this is^wmnuc&50 for each eigenstatep. We therefore
construct a projection operator

P5(
mn

uw̃mn&^w̃mnu, ~25!

where the set$w̃mn% is an orthonormalized basis set co
structed by the Gramm-Schmidt process from the$wmn%.

We now diagonalize in theallowed subspaceof Pc50,
and ensure this byreplacing matrix equations~19! by an
equation of the form~11!. In this way, both the bound stat
8-5



l

th

s

t
re

le
rg

f

re-

t
se

en

tle
e
l

e
nt

ns

ive
.m

gy.

I. J. THOMPSONet al. PHYSICAL REVIEW C 61 024318
and continuum wave functions can be made orthogona
the required set of occupied core states.

D. Dipole response distribution

The electromagnetic dipole operator for transitions to
continuum is

T1m
E 5(

i
eZir iY1m~ r̂ i !5A 3

4p(
i

eDim , ~26!

wherer i5Ri2R is the distance of particlei from the center
of mass of the whole nucleus, andDi5Zir i . For the present
halo nuclei, the only charged particle is the core (i 53), with
r35AA12/(AA3)y, and the reduced transition probability i

dB„E1;0g.s.
1 →12~E!…/dE

5E u^12~E!uuT1m
E uu0g.s.

1 &u2dr f d~Ef2E!, ~27!

with a non-energy-weighted sum rule limit of

E dE dB„E1;0g.s.
1 →12~E!…/dE5

3

4p
e2Z3

2^0g.s.
1 ur 3

2u0g.s.
1 &.

~28!

The energy-weighted sum

E dE~E2Eg.s.!dB„E1;0g.s.
1 →12~E!…/dE ~29!

uses a closure integral of the form

s15(
n

~En2Eg.s.!u^nuDu0&u251/2̂ 0u@D,@H,D##u0&,

~30!

which, inserting the kinetic energy forH and eliminating the
c.m. motion, is approximately

s153Z3
2\2~A11A2!/~2mAA3!. ~31!

Thus we get1

E dE~E2Eg.s.!dB„E1;0g.s.
1 →12~E!…/dE

5
9

4p

A11A2

AA3

\2e2Z3
2

2m
. ~32!

From the non-energy-weighted rule, we see that the in
grated dipole response depends on the core mean squa
dius within the halo, so models with large halos~e.g., in 11Li
from s-intruder states@80,81#! should have enhanced dipo
breakup. The ratio of the energy-weighted to the non-ene

1In @79# a slightly different expression is given—A3 /A times
ours—in accordance with an incomplete elimination of the c
motion.
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weighted sum-rule limits will give a primitive indication o
the mean excitation energy of the dipole response.

III. CALCULATIONS FOR 6He

A. Pairwise interactions

For thenn interaction we use a ‘‘realistic’’ potential: the
Gogny–Pires–de Tourreil~GPT! potential @82#. This in-
cludesl•s as well as tensor components, and has a soft
pulsive core. For the neutron-core (an) interaction, we use a
central Woods-Saxon~WS! of range 2.0 fm and a spin-orbi
WS-derivative form, to fit the experimental scattering pha
shifts @83# satisfactorily. This WS potential has already be
used in the coordinate-space Faddeev calculation@67# for
6Li, and is

Van~r !5
243.0

11exp@~r 2Ran!/a#

1
l•s

r

d

dr

40.0

11exp@~r 2Rso!/aso#
MeV, ~33!

where Ran52.0 fm, Rso51.5 fm, a50.7 fm, and aso
50.35 fm, although this particular choice is perhaps a lit
too attractive ford waves. We therefore used the valu
221.5 MeV for thed-wave central part and zero for partia
wavesl>3.

For this choice ofVna , the present calculations take th
Pauli exclusion principle into account by the three differe
methods, as classified above.

PP: Orthogonalizing the three-body wave functio
~bound and scattering! to the occupied 0s two-body state
found as the deeply bound eigenstate (E529.8 MeV) of
the aboveVna potential.

PS: Supersymmetric transformation of the attract
s-wave Vna potential gives a purely repulsive partner~see,
e.g., Fig. 1 in@62#!. This partner shows the sames-wave
.

FIG. 1. TheK50 and K52 hypersphericalL5S5 l x5 l y50
components of the wave functions of6He in different Pauli treat-
ments, with potentials adjusted for the same ground state ener
8-6
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TABLE I. Calculated ground state for6He using the various Pauli treatments withKmax520. For each
method, a three-body potential of the strengthV3 shown was needed to reproduce the experimental separ
energy of 0.97 MeV.Rm is the matter radius of6He, using ana matter radius taken as 1.47 fm. Th

EWSR(12) and NEWSR(12) values are from Eqs.~32! and ~28!, respectively, andẼ(12) is the sum-rule
estimate of the 12 excitation centroid relative to the breakup threshold.

Pauli V3 Eg.s. ^r2&1/2 Rm EWSR(12) NEWSR(12) Ẽ(12)
method MeV MeV fm fm MeVe2 fm2 e2 fm2 MeV

PP 0.0 20.13 6.02 2.73 4.95 1.810 2.60
1.6 20.98 5.34 2.49 4.95 1.364 2.65

PC 0.0 Unbound
2.4 20.98 5.51 2.55 4.95 1.494 2.33

PS 0.0 Unbound
2.3 20.97 5.50 2.55 4.95 1.494 2.33

PA 0.0 Unbound
1.9 20.98 5.39 2.51 4.95 1.350 2.69
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phase shift, and has a ‘‘Pauli core’’ which excludes from t
an potential the 0s state occupied by thea-core neutrons.

PC: The repulsive potential may be approximated@4# by a
Gaussian potential of sizeb52.3 fm and Vna( l 50)
5150 MeV, as this also reproduces the experimentals1/2
phase shifts@83#.

PA: Diagonalize the coupling potentialVK8g8,Kg(r) at
each hyperradiusr, and remove the subset of eigensolutio
corresponding to eigenvalues ofV which are still negative
for larger. There is such one eigensolution when calculat
the 01 ground state, and the two lowest solutions for 12

three-body states, because the 0s1/2 occupied state can onl
couple withs1/2 to form 01, but with bothp1/2 and p3/2 to
form 12 states.

B. Ground state

The three-body method with any of these interactions s
fers from the common problem of underbinding@3#. The PP
result is the most bound, but still gives a binding energy
;0.15 MeV instead of 0.97 MeV~see Table I!. This un-
derbinding is most likely caused by the influence of oth
closed channels, most important of which ist1t @16,22,25#.
This could be corrected by rescaling the radius or depth
the n-core potentials@3#, but here we use an effective thre
body potential, giving the same kind of correction as in t
three-nucleon system. We shall add to the three-body hy
radial interactions an attractive scalar diagonal three-b
potentialV123 of radiusr3, wherer3 is chosen as in@9# to be
5 fm:

^K8g8uV123~r!uKg&52dK8Kdg8gV3 /@11~r/r3!3#.
~34!

We calculate withKmax520 for the maximum hyperhar
monic K used in Eq.~10!, and tune the strengthV3 in order
to reproduce the experimental three-body separation ene
The results for6He are shown in Table I. We find that wit
the PP projection method, a three-body potential of stren
V3;1.6 MeV needs to be included in order to obtain t
correct binding energy. The Pauli treatment methods wh
02431
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use repulsives-wave potentials, PC and PS, need 2.4 and
MeV, respectively, whereas the PA method requires
MeV for the binary interactions selected above. These f
interactions gave the weights shown in Table II for the p
tial components of the wave function in the ground state
6He. In Fig. 1 we see theK50 andK52 components of the
hyperspherical wave functions of6He in the different Pauli
treatments, with potentials adjusted for the same grou
state energy. The dominantK52 wave functions are indis
tinguishable, whereas theK50 components differ in their
nodal behavior at short distances. That from the PP met
has a node, in order to have zero overlap with the node
occupied 0s1/2 state. The PC and PS wave functions a
nodeless, and pushed out by the repulsive cores. The
method gives aK50 component with a node, but differ
from all the others at short distances. The physical sign
cance of the PA approximation for small hyperradii is not
all transparent.

With local Pauli approximations~PC and PS!, the eigen-
states obtained are less bound by around 0.5 MeV. T
means that we have to increase the three-body potential
almost 1 MeV, to again fit the observed separation ene
We see that once this is done, somewhat similar charact
tics for 6He ground state once more emerge~see also@62#!.
We argue that since thes wave is anyhow small in the
ground-state~g.s.! wave function, it does not appear to ma
ter precisely which method is used to suppress the occu
state.

There is a known 21 resonance in6He at11.8 MeV, so
we separately tuneV3 for continuum states, to fit this reso

TABLE II. Calculated partial-wave percentages for the6He
ground state using different Pauli methods.

Method s1/2
2 p3/2

2 p1/2
2 1S0

3P1

PP 7.7% 85.4% 5.6% 85.3% 11.5%
PC 9.1% 84.7% 4.9% 84.1% 12.3%
PS 9.5% 84.3% 4.9% 84.2% 12.1%
PA 5.8% 87.4% 5.6% 84.8% 12.0%
8-7
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nance position. We find that the value ofV3 needed here ha
to be decreased from that to fit the 01 ground state, and we
use this reduced value for allJ.0 continuum calculations
For Kmax520, we only need 0.90 MeV for the 21 resonance
in the PP method, so we use this value for the 21 state in the
PP and PA methods. We needV350.85 MeV for the PC
method, and we use this for the PC and PS methods in
21 channel.

We have to be careful when introducing a three-bo
force, however, since it is known that off-shell behavior a
three-body forces are tightly connected, one being transfo
able into the other@84#. Unless we have a very good physic
reason for adjusting its strength~such as to fit a resonanc
position!, unnecessary variations of a three-body poten
will mask the variations of off-shell behavior that we a
trying to probe here. Therefore, for the 12 channels where
there are no defining resonances, we keepV350.85 MeV
for all the Pauli models. This enables the 12 phase shifts to
directly portray the way in which three-body scattering d
pends on the off-shell features of the two-body subsyste

With the above adjustments to fit the known g.s. and re
nance positions, or lack of adjustments, it will be interest
to compare calculations with deep and repulsives-wavean
interactions, examining in particular the sensitivity of su
characteristics as electromagneticE1 responses and corre
sponding nuclear responses to the method of exclusio
forbidden states. Some difference should be expected s
the internal form of thes-wave functions will be different in
the two cases: having, for example, different numbers
nodes in the interior, as further discussed below. The th
body results should probe the off-shell properties of
a-nucleon andnn interactions, even in the sparse enviro
ment of a nuclear halo.

IV. PAULI EFFECTS IN THE CONTINUUM

Three-body continuum states are a new test bench for
methods mentioned above. The most sensitive indicators
the eigenphases for asymptotic or external properties, w
result from the diagonalization of theS matrix for the true
3⇒3 resonant scattering and~due to differences in interna
structures! the integrated interior norms of the scatteri
wave functions which show themselves in different re
tions.

A. Resonances

The experimentally well-established three-body re
nances are the 21 state in6He and the 01 ‘‘ground’’ state in
6Be, the isospin-multiplet partner of the6He ground state.
Previous calculations@1# with a PC type interaction gav
reasonable results for the positions and widths of th
states. In Fig. 2 eigenphases and interior norms for6Be are
shown with Coulomb potentials screened at 20 fm and w
four variants of the Pauli principle treatment: the PC, P
PP, and NO PP Pauli treatments. This last calculation u
the deeps-wavea-nucleon potential of Eq.~33!, without any
consideration of forbidden states, and this gives an ov
bound eigenstate but with approximately the same comp
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tion of the wave function. In this last case we have o
additional very deep 01 three-body bound state below a
breakup thresholds, which overlaps almost completely w
the two-body occupied states. This deep state should be
bidden in the three-body problem as it would have close
zero norm were a full antisymmetrization operation p
formed.

After adjusting the three-body interactions to put the re
nance positions for the6Be(01) ground state close to eac
other, we can see that these methods give approximately
same shape for the eigenphases dominant in the dynami
T51 states inA56 nuclei, so the observable widths a
similar. The interior norms are, however, different. Phy
cally, projecting out compact forbidden states in the bina
subsystems from the three-body Hamiltonian should red
the three-body wave function in the interior region. This
clearly seen from Fig. 2~b!. Simulating the Pauli principle
with a repulsive phase-equivalent potential suppresses
wave function in comparison with the PP case. Since
wave functions of the6Li ground state are normalized t
unity, and in both methods the geometrical characteristic
the 6Li g.s. are very close@3#, one could hope that the dif
ference of the wave functions could be detected in the m
nitude of the charge exchange reaction6Li( p,n)6Be.

In Fig. 3 the eigenphases and interior norms for theK

FIG. 2. Eigenphases and interior norms for the 01 g.s. of 6Be:
PP for Pauli projection, NO PP for no Pauli treatment, PC for
pulsive s-wave potentials, and PA for adiabatic projections~see
text!. These calculations use onlyKmax510.

FIG. 3. Eigenphases and interior norms for theK52 channel of
the 21

1 excited state of6He. The eigenphases correspond to eige
vectors of theS matrix which are superpositions of all partia
waves.
8-8
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52 channel of the 21
1 state in6He are shown for the PC an

PP cases, and no differences in the resonant phase and n
are seen. This is expected from angular momentum con
erations: the predominant interaction isp wave in thean
subsystems, so a 21 state will not feel thes-wave peculiarity.

Summarizing the results for three-body resonances,
can assert that the states with lowest allowedK values are the
most sensitive to the off-shell differences of different effe
tive interactions, such as derived from different treatment
the Pauli principle. In, for example, the6Be 01 state, two
different treatments of thes-wave an interaction give the
same on-shell behavior, but give different interior norms
the three-body wave function. This is not the case, howe
for the first 21 state in 6He.

B. Nonresonant continuum

We can also compare the dipole response functions
the different Pauli principle treatments. A 12 state will con-
sist mostly ofs1/2p3/2 mixing, while the 01 ground state has
mainly a p3/2

2 combination. Thep waves are similar in all
cases, but thes waves are different~in the PP case, thes
wave should have a node, but not in the PC and PS ca!.
Thus both theoretical and experimental studies should s
some light on the question of the best treatment of the P
principle in three-body systems.

Looking at Fig. 4 we see that the PC and PS phase s
are practically identical, as well as the PP and PA pha
~with the three-body potentials identical in all cases!. This
implies that changing the precise details of the repulsive~PC
or PS! Pauli core does not affect the wave function at lar
distances, and Fig. 5~a! shows that the correspondin
dB(E1)/dE distributions are the same. These two Pauli-c
methods, however, give results which are significantly d
ferent from the projection methods PP and PA, as the la
methods give, over most of the low-energy range,lessposi-
tive phase shifts ~Fig. 4! and correspondingly les

FIG. 4. Diagonal phase shifts for theK5L51, S5 l x50, l y

51 channel in the 12 continuum, for different Pauli treatments P
PA, PS, and PC. All curves are fromKmax520 calculations with
fixed three-body potentialsV350.85 MeV for the continuum.
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dB(E1)/dE strength@Fig. 5~a!#. The increase of 46% in the
dB(E1)/dE peak is much larger than the 9% increase to
expected from the change in the non-energy-weighted s
rule limit shown in Table I, so only part of this increas
arises from the changes in the ground-state properties.
is clearly shown in Fig. 5~b!, where we artificially use the PP
g.s. wave function as the constant initial state for transitio
to the continuum in the other Pauli methods. There is evid
an increases of 27% in thedB(E1)/dE peak of the PS and
PC methods compared to those of the PP and PA metho

Because the 12 continuum states are composed prima
from p3/2^ s1/2 two-neutron configurations, their wave func
tions in thes1/2 channel of neutron-core motion is strong
dependent on the manner of blocking to the bound stat
that channel. The large difference between thedB(E1)/dE
predictions of Figs. 5~a! and 5~b! means that experiment
might be able to distinguish the PP Pauli principle treatm
from the other two~PS and PC!. The ground states ofA
56 nuclei, being dependent only on the ‘‘large’’ comp
nents of the wave function in channels without forbidd
states, are not strongly dependent on the treatment of P
blocking.

ThedB(E1)/dE distributions for6He have recently been
obtained@38# at GSI by studies of breakup of6He on a
heavy target. Although the uncertainty limits on the extrac
dB(E1)/dE are quite large~Fig. 4 in @38#!, the experimental
numbers are distinctly nearer a prediction using the P
projection method@9#, as this is noticeably less than th
using repulsives-wave potentials@24#.

V. CONCLUSIONS

We have performed a thorough investigation of the infl
ence of the Pauli principle treatments on the three-body

FIG. 5. DipoledB(E1)/dE distributions to the 12 continuum,
for different Pauli treatments PP, PA, PS, and PC withKmax520.
Curves ~a! use g.s. wave functions from the respective metho
~with different three-body forces!, whereas curves~b! all use the PP
g.s. wave function.
8-9
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lutions, and studied the consequences of different treatm
having the same two-body on-shell behavior. Summariz
the results, we can assert that for three-body resonances
states with lowest totalK momenta~the lowest configura-
tions in the shell-model language! are most sensitive to off
shell behavior of different effective interactions. As an e
ample, the6Be 01 resonant state, where thes-wave a-n
interaction was defined in two ways giving the same on-s
behavior, was found to have a difference in the inter
norms of the three-body wave functions. This differen
should influence the predicted cross sections in the cha
exchange reaction (6Li, 6Be).

The dipole response to the continuum is more sensitiv
the Pauli blocking treatment, since it is sensitive to the
havior in thes-wave channel ofn-a relative motion. Here,
keeping constant three-body potentials, we still see a la
difference between the Pauli projection methods and
other more approximate approaches that use repulsive po
d
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tials. There are still uncertainties in the exact choice on
1a potentials, but it does appear that the Pauli project
methods givedB(E1)/dE distributions which are nearer t
experiment than those using locall-dependent potentials
The differences are expected to be larger in halo nuclei s
as 11Li and 14Be where thes-wave channel plays a signifi
cant role even in the ground state@80,12#.
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