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Random-phase approximation approach to rotational symmetry restoration
in a three-level Lipkin model
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We study an extended Lipkin-Meshkov-Glick model that permits a transition to a deformed phase with a
broken continuous symmetry. Unlike simpler models, one sees a persistent zero-frequency Goldstone mode
past the transition point into the deformed phase. We found that the RPA formula for the correlation energy
provides a useful correction to the Hartree-Fock energy when the number of partiaésfiesN>3, and
becomes accurate for large We conclude that the RPA correlation energy formula offers a promising way to
improve the Hartree-Fock energy in a systematic theory of nuclear binding energies.

PACS numbd(s): 21.60.Jz, 21.10.Dr

I. INTRODUCTION which mimic quadrupole motions in nuclei. In such a way,
the correlation associated with rotational motion is easily
Hartree-Fock (HF) theory is the fundamental starting studied.
point to understand the ground state properties of many- The paper is organized as follows. In Sec. II, we first
fermion systems. Its main assumption is that a particle indeshow that the RPA formula is exact for a simple model with
pendently moves in a mean field generated by other sum@ two-body interaction, Eq2) below. We then introduce the
rounding particles. In nuclear physics, with the adjustment ofhree-level Lipkin model in Sec. Ill and solve it in the HF as
a few parameters of an effective interaction, the HF theorywell as in the RPA. We compare the RPA correlation energy
has described reasonably well the global properties of nuclewith the exact solution of the model and show that the RPA
throughout the periodic tablgl]. However, correlation ef- formula works well even in the vicinity of the critical point
fects which go beyond HF are also significant. They appeaof the phase transition. A summary of the paper is given in
most dramatically when the HF ground state violates a symSec. 1V, together with further discussions on the RPA for-
metry of the Hamiltonian such as rotational invariance ormula.
number conservation. A global theory of nuclear binding
must surely take these correlation into account, if it is to
achieve an accuracy at the 1 MeV level. A recipe is often
used which is based on the projection after variation method Before we study the correlation in the three-level Lipkin
[2]. model, we would like to demonstrate that the RPA correla-
In this paper, we argue that the RPA correlation formulation formula works well, using an analytically solvable
can provide a better method in correcting the broken symmodel. Consider a two fermion system bound in a harmonic
metry in the HF theory. In the RPA, a restoration of the potential coupled by a linear interaction
symmetry breaking appears as a zero energy solution of the
RPA equations. The correlation energy associated with the

Il. RPA CORRELATION FORMULA

2 2
several symmetries can be calculated using the RPA formula |, _ _ h® 9 2,,2
=H,+V= ———+= £l — )
[2,3] H=Ho+V i;,z 2m i 2 MwgX? | — CX1X,
) 2
Ecorrzi(z hwi_Tr(A)>: (1)
: This model was first introduced in Rdi8] to discuss the

o - effects of the RPA correlation on the ground state density. A
wherew; is the (positive frequency of the RPA phonon for similar model has been considered in H&f in connection

theith mode andh is the A matrix in the RPA equations. Our with the paired Wigner crystal. Using the transformation

aim in this paper is to construct a simple Hamiltonian model™ - L
to study the effects of correlations on the ground state energy (x1+X;)/\2 and n=(x,=X,)/\2, the Hamiltonian can
e written in the form

and to show that the RPA formula is adequate in principle.
To this end, we employ a three-level versiph-7] of the

Lipkin-Meshkov-Glick (LMG) model. The model describes B2 921 , C B2 52
N identical fermions in three single-particle levels, each of H=— om 222 + —m( wy— —> = 5= D)
C . . mgg2 2 m 2m 4y
which is N-fold degenerate. Exact solutions can be obtained
by explicitly diagonalizing the model Hamiltonian. The RPA 1 C
correlation energy was discussed by Betoal.[7], but their + >m wa+ = 7%, 3)

parameters did not leave a continuous symmetry to be bro-
ken, as is the case for the transition between spherical and
deformed nuclei. In this paper, we shall use parameterfom which we obtain the exact ground state energy
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1 C C __
Eexactzzﬁwo( \/1— —+ \/1+ —2) ) Eem= <'V'F

The limit where the coupling consta@ is equal tomwS
corresponds to a translationally invariant Hamiltonian with
an interaction%mwg(xl—xz)z, giving

1 (py+py)?

2 2m

1
MF> =~ Zhoy. (11

The total Eye+E.,=3%wp/4 is not exact, although it is
close to Eq.5). This study clearly shows that the RPA for-
mula provides a much better method to calculate correlation
energies.

Eexac= w0/ 2. (5

Let us now solve the problem in the mean field approxi- IIl. THREE-LEVEL LIPKIN MODEL
mation and then consider the RPA correlation energy. If the \ye how consider RPA correlations in a three-level Lipkin
'f(?r?iglr:r}%)cggsz;amniiljusarr?rilt'e?ggig?]n _rr?]%a':%'eg:]hﬁ; dan:'g'm”_model. Labeling the levels 0, 1, and 2, we choose the Hamil-
: tonian to be invariant under transformations between 1 and

tonianH, then has already been decoupled and we |mmed|2 The Hamiltonian we consider can be expressed

ately obtain
EMF:hwo/2+ﬁw0/2:ﬁwo. (6) vV
H=e(Ny+N,) — = (K Ky + KoK+ KIKT+KIKD),
We define the RPA excitation operator as €Nty = 5 (KiKa KoK KKy KK
(12
Q=2 (Xal-Ya), (7)
i=1,2
where
wherea' anda are the creation and the annihilation opera-
tors of the unperturbative phonon, respectively. The RPA N
equation then reads ﬁfE CZiCai, @=012, (13
=1
hiwg —Caj 0  —Caf\ [X, X,
—Ca% hwg —Cag 0 X5 X5
0  Ca —twy Ca || Y] v, :
@ ~hoo Lag 1 1 Ke=2 Chicoi, a=12. (14)
Caj 0 Cai —hwg/ \ Y2 Y2 1
()
g being the amplitude of the zero point motion defined as A. Exact solutions

\/h/2mwo. The solutions of this equation are found to be Since the Hamiltonian given by EQ]_Z) Coup|es Symmet-
ric states with respect to interchange of particles only with

N C C other symmetric states, a suitable basis for the exact diago-
ho==23hog\[1+ Mw? hwo\[ 1~ me?| )  nalization of the Hamiltoniam is given by[5]

. N—n;—ny)!
We thus obtain gy = A 00y, 15)
N!n;!In,!
1 C C
Ecorrzzﬁwo 1__2+ 1+ 2 —fwg, “
Mwg Mwg This is a simultaneous eigenstate of the number operators

(10 andn, with the eigenvalue ofi; andn,, respectively. The

which is precisely the needed correction to get the groun@ffeCt of theK operators on the states is given by relations

state energy, Eq4), starting from the mean field energy, Eq. SUch as
(6). It reproduces EqJ5) in the translationally invariant case.

It is interesting to compare the RPA approach with other
ways of dealing with correlation energies associated with Kilning)=V(N=n;—ny)(ng+1)[ni+1,n,).  (16)
broken symmetries. In the case of center-of-mass motion, a
recipe is often to subtract the expectation value of the center
of mass operator from the mean field energy. With ourThe matrix elements off can easily be calculated and are
Hamiltonian, this prescription gives given by
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\%
(niny[HINiNo) = €(N1+12) 8nr 0 Sy i, — 5(\/(n1+ 1)(ng+2)(N=n3—nz)(N=ny;—ny—1)

2

X 5ni,nl+25né,n2+ \/nl(nl_ 1)(N— ng—np+ 1)(N_ ni—np+ 2) 5ni,nl—25né,n2

+(ng+1)(np+2)(N—ny — N2)(N=n1—=n2=1) 8y 1 6n) nyi2

+yNa(n;— 1) (N—ny—np+1)(N—ny—n,+ 2) 607 ny Oy n,-2)- 17

The dimension of the matrix to be diagonalized s ( 0 (x<1)
+1)(N+2)/2. Further reduction can be achieved by consid-
ering that the Hamiltonian conserves the parity of each level

[6].

EHF: (22)

Ne
T(z_X_]-/X) (x>1).

B. Hartree-Fock approximation C. Random-phase approximation

Let us now solve the problem in the Hartree-Fock ap- We next solve the problem in the RPA in order to evalu-
proximation. We consider a transformation of basis definedite the correlation energy associated with the rotational mo-
by operatorsa,,; , with ay; representing the occupied orbital. tion. We define the RPA excitation operator as
The HF state has the form

| Q=XK1 +XoK,— Y1K] - YoK], (23
|H':>:H1 agi) (18)  where
-
N
and the transformation of basis is such as to minimize the K.=> alag, a=12. (24)
expectation of the Hamiltonian. Let us write the transforma- i=1
tion as
The RPA equation is obtained fromHF|[8Q,[H,Q"]
aj; cosa  cosBsina  singsina) [ ¢ —wQT|HF) =0 for 5Q=K;,K,,KI, andK}. The result is
al. | =| —sina cosBcosa singcose || cl |. the well-known RPA matrix equation
a} 0 —sing cosp ch A B\[X| [X
(19 -A -B/ly] “lv/) @9
Using these relations, it is straightforward to evaluate tthh A andB %9 : :
t b
energy surfac(a, 8)— (HF|H|HF) as ereA andB are matrices given by
. . 3
E(a,B)=Nesi a—VN(N—1)sir? e cos a. (20) A11=e€COS 20+ 5 ex Sir? 2a, (26)
Note that the potential surfad®(«,B) is independent of
B and thus totally flat in the3 direction for the rotationally A12=A2=0, (27)
invariant Hamiltonian. For simplicity, we particularly choose
B=0 in constructing the HF single particle operators, Eg. Agy= e(1— sirPa) + EE i 2a 28)
(19). The HF Hamiltonian thus spontaneously breaks the ro- 22 2 X ’
tational symmetry, and the Goldstone mode will appear at _
zero excitation energy to restore the symmetry breaking, as B11=—ex(cos'a+ sin' a), (29
we will show in the next subsection.
The optimum choice ofr is obtained by minimizing the B12=B21=0, (30
potential surfacé=(«,B). It is convenient to express the so-
lution in terms of the dimensionless parameter B2;=—ex coSar. 3D
= - ecauseA and B are separately diagonal, the matrix
x=V(N-1)/e. 21y B eA and B ly di I, the RPA i

can be easily diagonalized. The RPA frequencies are found
For y<1, the minimum appears at=0 (spherical phage to be
At y=1, the system undergoes a phase transition and, for

x>1, the potential surface displays two symmetrical minima ®7=(A1+B1) (A~ By, (32)
at cos 2r=1/y (deformed phageThe ground state energy in 5
the HF approximation is thus given by w5= (At Boo) (Azo—Boo). (33

024307-3



K. HAGINO AND G. F. BERTSCH PHYSICAL REVIEW 51 024307

2.5

20

05

0.0

FIG. 3. The ground state energy as a functioNdbr y=5.0.

FIG. 1. RPA frequencies for collective vibrations as a function . o R
The meaning of each line is the same as in Fig. 2.

of x=V(N—1)/e. The number of particl®&\ is chosen to be 20.

Substituting the self-consistent value farobtained in the is set to be 20. The solid line is the exact solution obtained

previous subsection, we obtain by numerically diagonalizing the Hamiltonian. The dashed
line is the ground state energy in the Hartree-Fock approxi-
E(1+x)(1-x) (x<1) mation given by Eq(22). It considerably deviates from the
2_ (34) . . .
©17) 92w+ 1) (v—1 -1 exact solution through the entire range ypfshown in the
e(x+1(x—1) (x>1), : : .
figure. The dot-dashed line takes into account the RPA cor-
, 1+ (1—x) (x<1) relatlo_n energy in addlthn to the HF energy. The improve-
w5= (35 ment is apparent and significant. It is remarkable that the
0 (x>1). RPA formula works well even in the vicinity of the critical

(point of the phase transitiog=1.

In the sphe_rlcal _phase, the RPA frequencies for the tw It is expected that the RPA should be accurate for a large
modes are identical. In the deformed phase, on the other : -~ : i
umber of particles, and= 20 seems to fulfil that condition.

hand, the frequency for the second mode becomes zero. (p ; L o

. ) .~ " We also would like to apply the approximation to nuclei with
this case, the first mode corresponds to the beta vibration, f | | = h
while the second mode corresponds to the rotational motiof st a ew vaience nucieons. Figure 3 compares the exact
nergy with the HFH RPA as a function ofN, for y=5.0.

perpendicular to the symmetry axis. Figure 1 shows the RP he RPA correction may be considered useful if it is within

frequencies as a function gffor N=20. One can clearly see a factor of 2 of the exact. We see from the figure that this is

the (_jlscontlnmty at the critical poing=1. . satisfied folN=4. ForN=2, the exact correlation energy is
Figure 2 compares the ground state energy as a function

. : several times RPA, and such near-magic nuclei would re-
of x obtained by several methods. The number of partitle quire a more elaborate way.

0

IV. SUMMARY AND DISCUSSIONS

st We discussed the role played by the RPA correlation in
the ground state energy. To this end, we used simple Hamil-
tonian models, like a bilinear interaction between two fermi-

10t ons as well as a three-level Lipkin model. The former is for

the correlation associated with the center of mass motion,
while the latter for the rotational motion. We showed that the
ground state energy is well described in the mean field
theory once the ground state correlations are taken into ac-
count in the RPA. We also showed that the RPA formula
_20 . ‘ . . works well for a wide region of an order parameter, includ-
0.0 10 20 30 4.0 5.0 ing in the vicinity of the critical point of the phase transition.
Evidently, the RPA formula provides a powerful method to
FIG. 2. Comparison of the ground state energy obtained by sevcalculate energies for long range correlations, which are not
eral methods. The solid line is the exact numerical solution. Théncluded in the HF approximation.
ground state energy in the Hartree-Fock approximation is denoted Up to now, microscopic theory based on the mean field
by the dashed line, while the dot-dashed line takes into account théeory has not been as successful as other approaches in
RPA correlation energy in addition to that. making a global fit to nuclear binding energies. The most
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accurate theory of nuclear binding systemafit§] starts treating correlation energies systematically by the RPA.
from the liquid drop model, and treats shell effects perturba\Work towards this direction is now in progregkl].

tively. It fits the binding energies with an rms deviation of

0.67 MeV, a factor of 3 better than the Gogny or the pub- AU LS SIS

lished Skyrme functional. We believe that there are good G.F.B. acknowledges support from the U.S. Department
prospects to develop a better microscopic global theorypf Energy under Grant No. DE-FG-06ER46561.

[1] J.W. Negele, Rev. Mod. Phy54, 913(1982. A 37, 3499(1988.

[2] P. Ring and P. SchuckThe Nuclear Many Body Problem [7] L. Brito, C. Providencia, J. da Providencia, S.S. Avancini, F.F.
(Springer-Verlag, New York, 1980 de Souza Cruz, D.P. Menezes, and M.M. Watanabe Moraes,

[3] D.J. Rowe, Phys. ReW.75 1283(1968. Phys. Rev. A52, 92 (1995.

[4] S.Y. Li, A. Klein, and R.M. Dreizler, J. Math. Phy41, 975 [8] H. Esbensen and G.F. Bertsch, Phys. Re28C355 (1983.
(1970. [9] M. Taut, A. Ernst, and H. Eschrig, J. Phys3&, 2689(1998.

[5] G. Holozwarth and T. Yukawa, Nucl. Phy&219, 125(1974). [10] P. Mdler et al, At. Data Nucl. Data Table§9, 185 (1995.
[6] D.C. Meredith, S.E. Koonin, and M.R. Zirnbauer, Phys. Rev.[11] G.F. Bertsch, K. Hagino, and P.-G. Reinhdthpublishegl

024307-5



