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Random-phase approximation approach to rotational symmetry restoration
in a three-level Lipkin model
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Institute for Nuclear Theory, Department of Physics, University of Washington, Seattle, Washington 98195

~Received 13 September 1999; published 14 January 2000!

We study an extended Lipkin-Meshkov-Glick model that permits a transition to a deformed phase with a
broken continuous symmetry. Unlike simpler models, one sees a persistent zero-frequency Goldstone mode
past the transition point into the deformed phase. We found that the RPA formula for the correlation energy
provides a useful correction to the Hartree-Fock energy when the number of particleN satisfiesN.3, and
becomes accurate for largeN. We conclude that the RPA correlation energy formula offers a promising way to
improve the Hartree-Fock energy in a systematic theory of nuclear binding energies.

PACS number~s!: 21.60.Jz, 21.10.Dr
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I. INTRODUCTION

Hartree-Fock ~HF! theory is the fundamental startin
point to understand the ground state properties of ma
fermion systems. Its main assumption is that a particle in
pendently moves in a mean field generated by other
rounding particles. In nuclear physics, with the adjustmen
a few parameters of an effective interaction, the HF the
has described reasonably well the global properties of nu
throughout the periodic table@1#. However, correlation ef-
fects which go beyond HF are also significant. They app
most dramatically when the HF ground state violates a s
metry of the Hamiltonian such as rotational invariance
number conservation. A global theory of nuclear bindi
must surely take these correlation into account, if it is
achieve an accuracy at the 1 MeV level. A recipe is of
used which is based on the projection after variation met
@2#.

In this paper, we argue that the RPA correlation form
can provide a better method in correcting the broken sy
metry in the HF theory. In the RPA, a restoration of t
symmetry breaking appears as a zero energy solution o
RPA equations. The correlation energy associated with
several symmetries can be calculated using the RPA form
@2,3#

Ecorr5
1

2 S (
i

\v i2Tr~A! D , ~1!

wherev i is the ~positive! frequency of the RPA phonon fo
the i th mode andA is theA matrix in the RPA equations. Ou
aim in this paper is to construct a simple Hamiltonian mo
to study the effects of correlations on the ground state ene
and to show that the RPA formula is adequate in princip
To this end, we employ a three-level version@4–7# of the
Lipkin-Meshkov-Glick ~LMG! model. The model describe
N identical fermions in three single-particle levels, each
which is N-fold degenerate. Exact solutions can be obtain
by explicitly diagonalizing the model Hamiltonian. The RP
correlation energy was discussed by Britoet al. @7#, but their
parameters did not leave a continuous symmetry to be
ken, as is the case for the transition between spherical
deformed nuclei. In this paper, we shall use parame
0556-2813/2000/61~2!/024307~5!/$15.00 61 0243
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which mimic quadrupole motions in nuclei. In such a wa
the correlation associated with rotational motion is eas
studied.

The paper is organized as follows. In Sec. II, we fi
show that the RPA formula is exact for a simple model w
a two-body interaction, Eq.~2! below. We then introduce the
three-level Lipkin model in Sec. III and solve it in the HF a
well as in the RPA. We compare the RPA correlation ene
with the exact solution of the model and show that the R
formula works well even in the vicinity of the critical poin
of the phase transition. A summary of the paper is given
Sec. IV, together with further discussions on the RPA f
mula.

II. RPA CORRELATION FORMULA

Before we study the correlation in the three-level Lipk
model, we would like to demonstrate that the RPA corre
tion formula works well, using an analytically solvab
model. Consider a two fermion system bound in a harmo
potential coupled by a linear interaction

H5H01V5 (
i 51,2

S 2
\2

2m

]2

]xi
2

1
1

2
mv0

2xi
2D 2Cx1x2 .

~2!

This model was first introduced in Ref.@8# to discuss the
effects of the RPA correlation on the ground state density
similar model has been considered in Ref.@9# in connection
with the paired Wigner crystal. Using the transformationj
5(x11x2)/A2 and h5(x12x2)/A2, the Hamiltonian can
be written in the form

H52
\2

2m

]2

]j2
1

1

2
mS v0

22
C

mD j22
\2

2m

]2

]h2

1
1

2
mS v0

21
C

mDh2, ~3!

from which we obtain the exact ground state energy
©2000 The American Physical Society07-1
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Eexact5
1

2
\v0SA12

C

mv0
2
1A11

C

mv0
2D . ~4!

The limit where the coupling constantC is equal tomv0
2

corresponds to a translationally invariant Hamiltonian w
an interaction1

2 mv0
2(x12x2)2, giving

Eexact5\v0 /A2. ~5!

Let us now solve the problem in the mean field appro
mation and then consider the RPA correlation energy. If
coupling constantC is small, one can regardV in the Hamil-
tonian ~2! as a residual interaction. The mean field Ham
tonianH0 then has already been decoupled and we imm
ately obtain

EMF5\v0/21\v0/25\v0 . ~6!

We define the RPA excitation operator as

Q†5 (
i 51,2

~Xiai
†2Yiai !, ~7!

wherea† anda are the creation and the annihilation ope
tors of the unperturbative phonon, respectively. The R
equation then reads

S \v0 2Ca0
2 0 2Ca0

2

2Ca0
2 \v0 2Ca0

2 0

0 Ca0
2 2\v0 Ca0

2

Ca0
2 0 Ca0

2 2\v0

D S X1

X2

Y1

Y2

D 5\vS X1

X2

Y1

Y2

D ,

~8!

a0 being the amplitude of the zero point motion defined
A\/2mv0. The solutions of this equation are found to be

\v56H \v0A11
C

mv0
2
, \v0A12

C

mv0
2J . ~9!

We thus obtain

Ecorr5
1

2
\v0SA12

C

mv0
2
1A11

C

mv0
2D 2\v0 ,

~10!

which is precisely the needed correction to get the gro
state energy, Eq.~4!, starting from the mean field energy, E
~6!. It reproduces Eq.~5! in the translationally invariant case

It is interesting to compare the RPA approach with oth
ways of dealing with correlation energies associated w
broken symmetries. In the case of center-of-mass motio
recipe is often to subtract the expectation value of the ce
of mass operator from the mean field energy. With o
Hamiltonian, this prescription gives
02430
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Ec.m.52 K MFU 1

2

~p11p2!2

2m UMFL 52
1

4
\v0 . ~11!

The total EMF1Ec.m.53\v0 /4 is not exact, although it is
close to Eq.~5!. This study clearly shows that the RPA fo
mula provides a much better method to calculate correla
energies.

III. THREE-LEVEL LIPKIN MODEL

We now consider RPA correlations in a three-level Lipk
model. Labeling the levels 0, 1, and 2, we choose the Ham
tonian to be invariant under transformations between 1
2. The Hamiltonian we consider can be expressed

H5e~ n̂11n̂2!2
V

2
~K1K11K2K21K1

†K1
†1K2

†K2
†!,

~12!

where

n̂a5(
i 51

N

ca i
† ca i , a50,1,2, ~13!

Ka5(
i 51

N

ca i
† c0i , a51,2. ~14!

A. Exact solutions

Since the Hamiltonian given by Eq.~12! couples symmet-
ric states with respect to interchange of particles only w
other symmetric states, a suitable basis for the exact dia
nalization of the HamiltonianH is given by@5#

un1n2&5A~N2n12n2!!

N!n1!n2!
~K1!n1~K2!n2u00&. ~15!

This is a simultaneous eigenstate of the number operatorn̂1

and n̂2 with the eigenvalue ofn1 and n2, respectively. The
effect of theK operators on the states is given by relatio
such as

K1un1n2&5A~N2n12n2!~n111!un111,n2&. ~16!

The matrix elements ofH can easily be calculated and a
given by
7-2
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^n18n28uHun1n2&5e~n11n2!dn
18 ,n1

dn
28 ,n2

2
V

2
~A~n111!~n112!~N2n12n2!~N2n12n221!

3dn
18 ,n112dn

28 ,n2
1An1~n121!~N2n12n211!~N2n12n212!dn

18 ,n122dn
28 ,n2

1A~n211!~n212!~N2n12n2!~N2n12n221!dn
18 ,n1

dn
28 ,n212

1An2~n221!~N2n12n211!~N2n12n212!dn
18 ,n1

dn
28 ,n222!. ~17!
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The dimension of the matrix to be diagonalized is (N
11)(N12)/2. Further reduction can be achieved by cons
ering that the Hamiltonian conserves the parity of each le
@6#.

B. Hartree-Fock approximation

Let us now solve the problem in the Hartree-Fock a
proximation. We consider a transformation of basis defin
by operatorsaa i , with a0i representing the occupied orbita
The HF state has the form

uHF&5)
i 51

N

a0i
† u& ~18!

and the transformation of basis is such as to minimize
expectation of the Hamiltonian. Let us write the transform
tion as

S a0i
†

a1i
†

a2i
†
D 5S cosa cosb sina sinb sina

2 sina cosb cosa sinb cosa

0 2 sinb cosb
D S c0i

†

c1i
†

c2i
†
D .

~19!

Using these relations, it is straightforward to evaluate
energy surfaceE(a,b)5^HFuHuHF& as

E~a,b!5Ne sin2 a2VN~N21!sin2 a cos2 a. ~20!

Note that the potential surfaceE(a,b) is independent of
b and thus totally flat in theb direction for the rotationally
invariant Hamiltonian. For simplicity, we particularly choos
b50 in constructing the HF single particle operators, E
~19!. The HF Hamiltonian thus spontaneously breaks the
tational symmetry, and the Goldstone mode will appea
zero excitation energy to restore the symmetry breaking
we will show in the next subsection.

The optimum choice ofa is obtained by minimizing the
potential surfaceE(a,b). It is convenient to express the so
lution in terms of the dimensionless parameter

x[V~N21!/e. ~21!

For x,1, the minimum appears ata50 ~spherical phase!.
At x51, the system undergoes a phase transition and,
x.1, the potential surface displays two symmetrical minim
at cos 2a51/x ~deformed phase!. The ground state energy i
the HF approximation is thus given by
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EHF5H 0 ~x,1!

Ne

4
~22x21/x! ~x.1!.

~22!

C. Random-phase approximation

We next solve the problem in the RPA in order to eva
ate the correlation energy associated with the rotational
tion. We define the RPA excitation operator as

Q†5X1K̃11X2K̃22Y1K̃1
†2Y2K̃2

† , ~23!

where

K̃a5(
i 51

N

aa i
† a0i , a51,2. ~24!

The RPA equation is obtained from̂HFu@dQ,@H,Q†#

2vQ†#uHF&50 for dQ5K̃1 ,K̃2 ,K̃1
† , andK̃2

† . The result is
the well-known RPA matrix equation

S A B

2A 2BD S X

YD 5vS X

YD , ~25!

whereA andB are 232 matrices given by

A115e cos 2a1
3

2
ex sin2 2a, ~26!

A125A2150, ~27!

A225e~12 sin2a!1
1

2
ex sin2 2a, ~28!

B1152ex~cos4a1 sin4 a!, ~29!

B125B2150, ~30!

B2252ex cos2a. ~31!

BecauseA and B are separately diagonal, the RPA matr
can be easily diagonalized. The RPA frequencies are fo
to be

v1
25~A111B11!~A112B11!, ~32!

v2
25~A221B22!~A222B22!. ~33!
7-3
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Substituting the self-consistent value fora obtained in the
previous subsection, we obtain

v1
25H e2~11x!~12x! ~x,1!

2e2~x11!~x21! ~x.1!,
~34!

v2
25H e2~11x!~12x! ~x,1!

0 ~x.1!.
~35!

In the spherical phase, the RPA frequencies for the
modes are identical. In the deformed phase, on the o
hand, the frequency for the second mode becomes zer
this case, the first mode corresponds to the beta vibra
while the second mode corresponds to the rotational mo
perpendicular to the symmetry axis. Figure 1 shows the R
frequencies as a function ofx for N520. One can clearly se
the discontinuity at the critical pointx51.

Figure 2 compares the ground state energy as a func
of x obtained by several methods. The number of particlN

FIG. 1. RPA frequencies for collective vibrations as a functi
of x[V(N21)/e. The number of particleN is chosen to be 20.

FIG. 2. Comparison of the ground state energy obtained by
eral methods. The solid line is the exact numerical solution. T
ground state energy in the Hartree-Fock approximation is den
by the dashed line, while the dot-dashed line takes into accoun
RPA correlation energy in addition to that.
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is set to be 20. The solid line is the exact solution obtain
by numerically diagonalizing the Hamiltonian. The dash
line is the ground state energy in the Hartree-Fock appro
mation given by Eq.~22!. It considerably deviates from th
exact solution through the entire range ofx shown in the
figure. The dot-dashed line takes into account the RPA c
relation energy in addition to the HF energy. The improv
ment is apparent and significant. It is remarkable that
RPA formula works well even in the vicinity of the critica
point of the phase transitionx51.

It is expected that the RPA should be accurate for a la
number of particles, andN520 seems to fulfil that condition
We also would like to apply the approximation to nuclei wi
just a few valence nucleons. Figure 3 compares the e
energy with the HF1 RPA as a function ofN, for x55.0.
The RPA correction may be considered useful if it is with
a factor of 2 of the exact. We see from the figure that this
satisfied forN>4. ForN52, the exact correlation energy i
several times RPA, and such near-magic nuclei would
quire a more elaborate way.

IV. SUMMARY AND DISCUSSIONS

We discussed the role played by the RPA correlation
the ground state energy. To this end, we used simple Ha
tonian models, like a bilinear interaction between two ferm
ons as well as a three-level Lipkin model. The former is
the correlation associated with the center of mass mot
while the latter for the rotational motion. We showed that t
ground state energy is well described in the mean fi
theory once the ground state correlations are taken into
count in the RPA. We also showed that the RPA formu
works well for a wide region of an order parameter, inclu
ing in the vicinity of the critical point of the phase transitio
Evidently, the RPA formula provides a powerful method
calculate energies for long range correlations, which are
included in the HF approximation.

Up to now, microscopic theory based on the mean fi
theory has not been as successful as other approach
making a global fit to nuclear binding energies. The m

v-
e
ed
he

FIG. 3. The ground state energy as a function ofN for x55.0.
The meaning of each line is the same as in Fig. 2.
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accurate theory of nuclear binding systematics@10# starts
from the liquid drop model, and treats shell effects pertur
tively. It fits the binding energies with an rms deviation
0.67 MeV, a factor of 3 better than the Gogny or the pu
lished Skyrme functional. We believe that there are go
prospects to develop a better microscopic global theo
v

02430
-

-
d
y,

treating correlation energies systematically by the RP
Work towards this direction is now in progress@11#.
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