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F spin as a partial symmetry
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We use the empirical evidence thaspin multiplets exist in nuclei for only selected states as an indication
that F spin can be regarded as a partial symmetry. We show that there is a class Bfscatar IBM-2
Hamiltonians with partiaF-spin symmetry, which reproduce the known systematics of collective bands in
nuclei. These Hamiltonians predict that the scissors states haverggimid and formF-spin multiplets, which
is supported by the existing data.

PACS numbgs): 21.60.Fw, 21.10.Re, 21.60.Ev, 27.7@

The interacting boson moddlBM-2) [1-3] describes tation of the IBM-2, which necessitates different effective
collective low-lying states in even-even nuclei in terms ofinteractions between like and unlike nucleons. Furthermore,
monople §,) and quadrupoled,) proton (=) and neu- if F spin was a symmetry of the Hamiltonian, thalh states
tron (p=v) bosons. A microscopic, shell-model-based inter-would have good= spin and would be arranged Frspin
pretation of the mode[2,3] suggests that the number of multipl_ets. Experimentally this is not the case. As noted in an
bosons of each typeN,) is fixed and is taken as the sum of analy5|s[5,§] of rare earth nucl§|, th-e ground bands are in
valence proton and neutron particle and hole pairs countefi-SPin multiplets, whereas the vibrationglbands and some
from the nearest closed shell. The proton-neutron degrees df Pands do not form goo&-spin multiplets. The empirical
freedom are naturally reflected in the IBM-2 via an (8U situation in the deformed Dy-Os region is portrayed in Table

. . - ~ | and Fig. 1. From Table | it is seen that, f6r>13/2, the
_of t ' ’
F-spin algebrd2] with generators, =ss,+d;-d,, F- energies of th&.=2"* members of they bands vary fast in

=$'E+T)T, 'EOZ(N%T— N’F’)IZ' The basicF-spin doublets are  the multiplet and not always monotonically. The variation in
(sz.s,), and @,.d,,), with F-spin projection +1/2  the energies of th@ bands is large and irregular. Thus both
(—1/2) for proton(neutron bosons. In a given nucleus, with microscopic and empirical arguments rule Guspin invari-
fixed N, N, , all states have the same valueR§=(N,  ance of the HamiltonianF spin can at best be an approxi-
—N,)/2, while the allowed values of thE-spin quantum mate quantum number which is good only for a selected set
numberF range from|Fo| to Fr,=(N,+N,)/2=N/2 in unit  of states while other states are mixed. We are thus con-
steps.F-spin characterizes the-v symmetry properties of o
IBM-2 states. States with maxim& spin, F=F,,, are TABLE I. Energies(in MeV) of 2* levels of the groundd), y
fully symmetric and correspond to the IBM-1 states withand 8 bands inF-spin multiplets. The mass numbers e 132
only one type of bosongl]. There are several arguments, +4F.
e.g., the empirical success of IBM-1, the identification of A e s . AL P
F-spin multiplets4—7] (series of nuclei with constaftand F  Energy "Dy Er 77%Yb Hf W Os
varying Fy with near]y consta}nt excitation engrg)iesand 6 E(2]) 014 013 012 0.12 0.12 0.14
weakness oM 1 transitions, which lead to the belief that low E(2) 089 085 0.86 0.88 0.86
lying collective states have predominantfy="F .. [8]. E25) o ' ' ' '
. . - » (25) 083 1.01 1.07 1.06 0.74
States withF <F ., corresponding to “mixed-symmetry s
. . . ; 3/2 E(2,) 0.10 0.10 0.10 0.10 0.11 0.13
states, most notably, the orbital magnetic dipole scissors £ 29_1 095 090 093 0.96
mode[9], have by now been established experimentally as a (21) 1'09 1'17 1'14 0‘99
general phenomena in deformed even-even niit@i E( lj) : : : :
Various procedures have been proposed to estimate the  E(2g) 0.09 0.09  0.09 0.10 0.11 0.13

F-spin purity of low-lying state$8]. These involve exploit- E(2,) 097 086 098 1.08 0.87
ing the data oM 1 transitiongwhich should vanish between E(2g) 135 131 123 095 0.83
pure F=F,., state$, extracting the difference in proton- 152 E(24) 008 008 008 009 011
neutron deformations from pion charge exchaffyq, using E(2;) 089 079 115 1.23 111

ratios of y and ground band magnetic momefitg] and the E(2;) 145 153 114 090 1.08
experimental factors of 2 stateg13], and considering the 8 E(2,) 007 008 008  0.09

excitation energy of mixed symmetry states. In the majority E(2$) 0.76 0.82 147 1.34

of analyses the~-spin admixtures in low-lying states are E(2}) 1.28 1.12 1.23

found to be of a few percent(10%), typically 2-4 %48]. ~ 17/2 E(2;) 0.08 0.08 0.08

In spite of its appeal, howeveF, spin cannot be an exact E(2;) 086 093 163

symmetry of the Hamiltonian. The assumptionFe$pin sca- E(z;;) 121 096 156

lar Hamiltonians is at variance with the microscopic interpre
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FIG. 1. Experimental levels of the groundand 8 bands in arF-spin multipletF=6 of rare earth nuclei. Levels shown are upLto
= 8;’ for the ground band, = 2;,3;“ for the y band(diamonds connected by dashed linasdL = 0;; ,2;; for the 8 band(squares connected
by dotted lineg

fronted with a situation of having “special states” endowed Hamiltonian which has the above equilibrium condensate as
with a good symmetry which does not arise from invariancean eigenstate is therefore guaranteed to have a ground band
of the Hamiltonian. These are precisely the characteristics ofvith goodF-spin symmetry. Such explicit construction of an
a “partial symmetry” for which a nonscalar Hamiltonian IBM-2 Hamiltonian with partialF-spin symmetry was pre-
produces a subset of specialt times solvablestates with  sented in Ref[11] for the most likely situation, namely,
good symmetry. Such a symmetry notifi¥] was recently aligned axially symmetrioprolate deformed shapesg,
applied to nucle[15], to moleculeq16], and to the study of = g,y,=Q=0). In this case, the equilibrium deformed in-
mixed systems with coexisting regularity and chd@3]. trinsic state for the ground band with=F ., has the form
Previously determinefiL1] nonF-scalar Hamiltonians were

shown to have solvable ground bands with g&osbin. It is |c;K=0)=|N,,N,)=(N_,IN,! )*1/2(bZ’W)Nw(bIYV)NV|o>,

the purpose of this paper to analyze in detail these Hamilto-

nians and to show that thgw partigtspin symme'try repro- bI,p=(1+,82)‘1’2(s;+ﬁd;’0), 1)
duces the known systematics of ground and excited bands. In

particular, we find=-spin multiplets in only selected bands, whereK denotes the angular momentum projection on the

ang opserve bcon;mpndc?llect|\(/je S|g|n§1tures tfr?r the groun ymmetry axis. The relevant IBM-2 Hamiltonian with partial
and Scissors bands in delformed nuciel, €.g., the gaisEin F-spin symmetry can be transcribed in the form
purity and equal moments of inertia. We further test a pre-

diction for the existence of-spin multiplets of scissors

states. H=> > AYRI R+ > BOW W,
The ground band in the IBM-2 is represented by an in- i L=02 L=123

trinsic state which is a product of a proton condensate and a

rotated neutron condensate with. andN,, bosons, respec-

tively [18]. It depends on the quadrupole deformations N ) o

B,.7,.(p=m,v) of the proton-neutron equilibrium shapes where H.c. means H(Termltlan conjugate and the _dot w_nphes a

and on the relative orientation anglesbetween them. For Scalar product. Thé&®j, (L=0,2) are boson pairs WT'th

,>0, the intrinsic state is deformed and members of the=1 and €o=1,0—-1)[i==(7v),v], and W((L

rotational ground-state band are obtained from it by projec=1,2,3) areF-spin scalar £=0) boson pairs defined as

tion. It has been shown in Refll] that the intrinsic state

+CPIR{_,) > W,+H.cl], 2

will have a well definedr spin, F=F ,,,, when the proton-  R!o=d’.d!—g%s!)?,  R[., ,=2(d}-d}-p%s!s]),
neutron shapes are aligned and with equal deformations. The

conditions B,=8,,Y-=7,,Q0=0) are weaker than the R = V2Bstdt+\7(did") @),

conditions forF-spin invariance, which makes it possible for . re rr

a non¥-scalar IBM-2 Hamiltonian to have an equilibrium t _ bt tat t 1 (2)

intrinsic state with puré spin. Since the angular momentum Rim) 2= B(Syd, +8,d7)+ V14(d7d)) @, ©)
projection operator is aR-spin scalar, the projected states of

good L will also have goodF =F, . A nonF-spin scalar Wi =(dld)® (L=1,39, Wj=sld]-sld]
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with p=m,v and ﬁi,L,,u:(_l)'uRi,L,—,u,! WL,[L: TABLE II. The ratio R=ZB(M1)T/(CF'FO)2 for members of
(—1)*W,__,. The pair operators satisfyR; #|C> F-spin multiplets. Her&B(M 1)1 denotes summehlll 1 strength to
=W, ,|c)=0 and consequently, the condensate is a zerd® Scissors mode an@e g = (F,Fo;1,0F ~1F). Data taken
energy eigenstate oH for any choice of parameters from Refs.[21,22.

Ai(L) BL.c@, and any any N,,N,. When

AR B ABB@—(C@)2=0, the above Hamiltonian is “uceus F  Fo ZBMU)T[4i] (Cer)® R

positive-definite and hende) is its exact ground state with 14&g 4 1 0.78(0.07) 5/12  1.87(0.17
F=Fmax. H, however, is arF-spin scalar only wherA() 1435, 2 0.43(0.12 13 1.29(0.36
=A=AL) (| =0,2) andC(®=0. We thus have a non- ®Nd 92 1/2  1.610.09 419 3.62(0.20
F-spin scalar Hamiltonian with a solvabl&degenerate 50sm 3/2 0.92(0.06 2/5 2.30(0.15
ground band with-=F ... The degeneracy can be lifted by 15sm 1172 172 2.180.12 5/11  4.80(0.26
adding to the Hamiltonian R-spin scalar SO(3) rotation  154Gq 3/2 2.60(0.50 14/33  6.13(1.18
terms which produck (L + 1) type splitting but do not affect 160gg 7 0 2.97(0.12 7/15  6.36(0.26)
the wave functions. States in other bands can be mixed witheéopy 1 2.42(0.18 16/35  5.29(0.39
respect td=-spin, hence th&-spin symmetry of H is partial. o2y 1512 1/2 2.490.13 7/15  5.34(0.29
H trivially commutes withF, but not with F. . However, 66 —1/2 2.67(0.19 7/15  5.72(0.41)
[H,F.]|c)=0 does hold and therefotd will yield F-spin  '*Dy 8 0 3.18(0.19 8/17  6.76(0.32
multiplets for members of ground bands. On the other hand**%r -1 3.30(0.12 63/136  7.12(0.26
states in other bands can hawespin admixtures and are not "vb -2 1.94(0.222 15/34  4.40(0.50
compelled to formF-spin multiplets. These features which 1%r 17/2 —3/2  2.63(0.16 70/153  5.75(0.35H
arise from the partiaF-spin symmetry of the Hamiltonian 174yp —-5/2  2.70(0.3) 66/153  6.26(0.72

are in line with the empirical situation as discussed above
and as depicted in Table | and Fig. 1. It should be noted that! € low value ofSB(M1){ for **vb has been attributed to ex-
the partial F-spin symmetry ofH holds for any choice of Perimental deficienciefl0].

parameters in Eq.2). In particular, one can incorporate re-

alistic shell-model based constraints, by choosing g ~ =L,+L,), the resulting Hamiltonian will have a subset of
(p=m,v) terms (representing seniority-changing interac- Solvable states which form theK=0 ground band I
tions between like nucleopsto be small. For the special =0,2,4...) with F=F.,,, and theK=1 scissors band
choiceAi(2)=C(2)=0 andBM=B®), H of Eq. (2) becomes (L=1,2,3...) with F=Fox—1. The resulting spectrum is
SQ(5) scalar which commutes, therefore, with the(SJro-

jection operator and hence produdespin multiplets with Eg(L)=AL(L+1), (F=Fmna,
good S@5) symmetry. Such multiplets were reported in the
Yb-Os region ofy-soft nuclei[7]. Es{L)=BN+AL(L+1), (F=Fpa—1), (6)

The same conditionsd,= 3,y,={=0) which resulted ) o
in F=F,. for the condensate of Eq1), ensure also=  Where the Majorana coefficie® may depend on the boson

=F a1 for the intrinsic state representing the scissorg'umbers and deformatidi8,19,24. It follows that for such

band Hamiltonians, with partiaF-spin symmetry, both the ground
and scissors band have goBdspin and have the same mo-
|sc;K=1)=F;JN7— 1N,—1), ment of inertia. The latter derived property is in agreement
with the conclusions of a recent comprehensive analysis of
Fl :bl wdi,l_d; 1bl ) (4) the scissors mode in heavy even-even nufldl], which

concluded that, within the experimental precisions
. . . no N .
HereFlc is aF =0 deformed boson pair whose action on the( 10%), the moment of inertia of the scissors mode are the

condensate withN—2) bosons produces the scissors mode>aMe as that of the_gro_und baf_‘d- Itis the parﬁeﬁtpm
excitation. Furthermore, the scissors intrinsic stdeis an symmetry of the Hamiltoniacb) which is responsible for the

exact eigenstate of the following Hamiltonian, obtained from©CMMOnN S|g.natu.res O,f coIIect|V|ty_|n these WYO pand;s.
Eq. (2) for the special choiceC®?=0 and BM=B®) The Ham|lt9n|anH of Eq. (52 is not F-spin mvgrlf’;\nt,
—2B@=2B however[H’,F]|c;K=0)=[H',F]|sc;K=1)=0. This im-
plies that members of both the ground and scissors bands are
_ ~ expected to fornf-spin multiplets. For ground bands such
H'=2 AVR R (+BM,,. (5)  structures have been empirically establishéd7]. The pre-
boL=02 diction for F-spin multiplets of scissors states requires fur-
. . . ther elaboration. Although the mean energy of the scissors
The last term in !Eq(S) is the Ma19 rana oApeAratcﬁll], re[a;ed mode is at about 3 MeY20], the observed fragmentation of
to the total F-spin operator byM,=[N(N+2)/4—F],  the M1 strength among several* 1states prohibits, unlike
with eigenvaluesk(N—k+1) for states withF=Fna—k.  ground bands, the use of nearly constant excitation energies
The HamiltoniarH" is nonF-scalar but is rotational invari- - as a criteria to identifyF-spin multiplets of scissors states.
ant. If we add to it an S@) rotation termH’+\L? (L Instead, a more sensitive test of this suggestion comes from
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the summed ground to sciss®@$M 1) strength. The IBM-2 symmetricey or antisymmetricy bands are obtained by
M1 operator [,—L,) is an F-spin vector F=1,F,=0).  F-spin coupling thec=1 pairRiT’Z’M:2 to the F=F 1)
Its matrix element between the ground state= Og ,(F condensatéN,.—1,N,—1) with (N—2) bosons to form a
=F max.Fo)] and scissors statfl = 1;0,(|:’: F-1Fp)] is N-boson intrinsic state with =F 5, or F=F 1. Since,
proportional to arF-spin Clebsch Gordan coefficie@ ¢, in this case, the commutatpil’,F] vanishes when it acts on
=(F,Fo;1,0F—1F,) times a reduced matrix element. It the solvable intrinsic states, the projected states are ensured
follows that the ratidB(M 1?0§—>1;9/(CF,F0)2 does not de- to have good- spin and formF-spin multiplets. At the same
pend onF, and should be a constant in a givErspin mul- time, since th(_a Hami!tonian is nétspin scalar, thes_ bands
tiplet. In Table Il we listall F-spin partners for which the C€an haveF-spin admixtures and need not forffaspin mul-
summedB(M 1) strength to the scissors mode has been mediPIets. o _ ,
sured to dat¢21,27. It is seen that within the experimental N Summary, we have examined in detail [BM-2 Hamilto-
errors, the above ratio is fairly constant. The most noticeabl@1ans with partiaF-spin symmetry. The latter are nbtspin
discrepancy for72Yb (F=8), arises from its measured low scala}rs, yet have a subse.t of solvable eigenstates with good
value of summed(M1) strength. The latter should be re- F-SPin sSymmetry. In particular, the corresponding ground
garded as a lower limit due to experimental deficiencie@nds formF-spin multiplets with F=F g, but excited
(large background and strong fragmentafiaf]). These ob- bands can bg mlxec_i, which is in line with the empm_cally
servations strengthen the contention of higtspin purity ~ ©OPservedF-spin multiplets[4-7]. A class of IBM-2 Hamil-
and formation ofF-spin multiplets of scissors states. tonians with partiaF-spin symmetry predict the occurrence
As noted in[5,6] and shown in Table | and Fig. 1, for pf F-spin multiplets of scissors states, Wllth a moment Qf
nuclei with F=6, 6.5, also members of the bands display inertia equal to that of the ground band. Th|s_ predlct|on is in
constant excitation energies and seem to form gBepin agreement with recent analyses of the emp!rlcal systemz;tlcs
multiplets. This empirical observation has a natural explana®f €xcitation energy an¥1 strength of the scissors mode in
tion within the family of Hamiltonians with partiaF-spin ~ €ven-even nuclefil9,2q. All the above findings illuminate
symmetry. For the choicg= \/5 and A@ =A@ =A@ in the p_otentlal useful role d¥-spin (and o_the} part_lal symme-
Eq. (5), H' will have bothF-spin and Sl(lTB) parﬁcial sy%me— tries in nuclear spectroscopy and motivate their further study.

tries. In such circumstances, the grourkl=(0), scissors We acknowledge helpful discussions with N. Pietralla on
(K=1), symmetricy (K=2), and antisymmetrig- (K the empirical data and thank the Institute for Nuclear Theory
=2) bands are solvable and have good(®Uand F-spin  at the University of Washington for its hospitality. This work
symmetries: [(A,x),F]1=[(2N,0),Fads [(2N—2,1)F was supported in part by the Israel Science Foundation, the
=Fmax—1l, [(2N—=4,2)F=F..), and [(2N—4,2)F Zevi Hermann Schapira research fund, and by the U.S. De-
=Fna—1], respectively. The intrinsic states for the partment of Energy under Contract No. W-7405-ENG-36.
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