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Microscopic description of a-like resonances
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A description ofa-like resonances is given in terms of single-particle states including narrow Gamow
resonances in continuum. The equations of motion are derived within the multistep shell-model approach; the
lowest collective two-particle eigenmodes are used as building blocks for the four-particle states. A good
agreement with the low-lying states in212Po is obtained. A new technique to estimate thea-particle formation
amplitude for any multipolarity is proposed. The spectroscopic factor of thea-decay between ground states is
reproduced, but the total width is by two orders of magnitude less than the experimental total width, due to the
absence of the background components. Thea-like structure of the lowest states in212Po is analyzed and
strong high-lying resonances are predicted. The derived equivalent local potential for thea-particle scattering
has a molecular shape.

PACS number~s!: 21.60.Cs, 21.60.Gx, 23.60.1e
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I. INTRODUCTION

Although the first paper in theoretical nuclear physics w
devoted to thea-decay and provided a nice explanation
terms of the Coulomb-barrier penetration of a preform
a-particle@1#, the microscopic description of the cluster fo
mation on the nuclear surface is still an open problem. T
usual shell-model configuration space used in the estima
of the a-cluster probability is not able to reproduce the a
solute value of the half-life for the transition between t
ground states@2#. This deficiency is connected with th
asymptotic exponential decrease of the bound single par
~sp! wave functions@3#. An answer to the problem would b
the inclusion of the sp narrow resonances lying in continu
@4–6#, the so-called Gamow states. In spite of the fact t
the true asymptotic behavior of the wave functions
achieved, the value of the half-life is still not reproduce
The inclusion of the background contribution becomes
portant because an important part of the alpha-clustering
cess proceeds through such states.

The problem of considering the continuum part of t
spectrum in microscopic calculations is rather involved,
very important especially for drip-line nuclei@7#. To estimate
the decay width these states can be taken into account e
tively by including ana-cluster component@8# or by consid-
ering a sp basis with a larger harmonic oscillator~ho! param-
eter for states in continuum@9#. The idea to replace the
integration over the real spectrum in continuum by
Gamow resonances plus an integration along a contour in
complex plane including these resonances was considere
Berggren in Ref.@10#. The calculation is very much simpli
fied if one considers that in some physical processes only
narrow resonances are relevant and the integration, gi
the background, can be neglected@11,12#. This was shown to
be an adequate approach for instance in giant resona
@13# and in the nucleon decay processes@14#.

But narrow sp Gamow resonances can become a us
tool in analyzing the high-lyinga-like four-particle states
0556-2813/2000/61~2!/024304~12!/$15.00 61 0243
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which were observed long time ago as resonances in
a-particle anomalous large angle scattering~ALAS! and
connected with the so called ‘‘quasimolecular states.’’ Su
states were mainly observed and analyzed in thea scattering
on light nuclei like 16O @15#, 40Ca @16#, or 28Si @17#, but it is
also interesting to look for such states in heavy nuclei s
as 208Pb @18#.

The aim of our paper is to put in evidence that such re
nances can be indeed built on top of Gamow sp resona
and they have a similar structure with the low-lying alph
decaying states. As an example we chose the nucleus212Po
which exhibits a nicea-like structure on top of the double
magic nucleus208Pb. The article is organized as follows: i
Sec. II we shortly describe the multistep shell-model form
ism which is a very appropriate approach for such a struc
and the calculation of the formation amplitude of th
a-clusters. Here we propose a simple and efficient met
for the analytical estimation of the overlap integrals in t
case of Gamow resonances. In Sec. III we analyze the
merical results concerning both low-lying and high-lyin
parts of the spectrum and derive an equivalent local poten
describing thea-particle motion. The conclusions are draw
in the last section.

II. THEORETICAL BACKGROUND

The analysis of the low-lying spectrum of212Po was per-
formed in Ref.@19#, where the four-particle equations of mo
tion were written in terms of the two-particle eigenstate
This procedure is related to the so-called multistep sh
model ~MSM! procedure@20#. It was used in describing the
212Po nucleus@21,22# in connection with the microscopic
description of the alpha decay between the ground st
~g.s.!. In the following we will first shortly describe this pro
cedure in order to introduce the essential notations and
compute the formation amplitude of thea cluster for any
multipolarity.
©2000 The American Physical Society04-1
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A. Two-particle TDA

In order to build a four-particle state let us first introdu
the correlated two-particle state of a multipolaritya2

ut1t2 ;a2a2&5Pa2

† ~t1t2 ;a2!u0&, ~2.1!

where t is the isospin index defining proton-proton (pp),
neutron-neutron (nn) and proton-neutron (pn) states in
210Po, 210Pb and210Bi nuclei, respectively. The two-particl
creation operator for correlated pairs defines thea2th eigen-
state of the Tamm-Dankoff approach~TDA!, which has ac-
tually a two-particle shell model ansatz

Pa2

† ~t1t2 ;a2!5(
i j

Xt1t2
~ i j ;a2a2!Ca2

† ~t1t2 ; i j !.

~2.2!

Here the summation is taken over all the indices, deno
spherical shell model quantum numbers,i j if t1Þt2 and
over i< j if t15t2. The normalized pair operators are d
fined as

Ca2

† ~t1t2 ; i j !5
1

D i j
@ct1i

† ct2 j
† #a2

, D i j [A11dt1t2
d i j ,

~2.3!

where the bracket denotes the angular-momentum coup
These operators, as well as the correlated ones defined b
~2.2!, satisfy the boson commutation rules from which o
gets the TDA orthonormality relations for the amplitudes

The Hamiltonian for a spherical nucleus is written as
superposition of different multipoles in the particle-partic
coupling scheme:

H5(
t j

et jNt j

1
1

2 (
a2

(
t1t2

(
i 1 j 1

(
i 2 j 2

^t1t2 ; i 1 j 1 ;a2uVut1t2 ; i 2 j 2 ;a2&

3Ca2

† ~t1t2 ; i 1 j 1!Ca2
~t1t2 ; i 2 j 2!. ~2.4!

The equation of motion

@H,Pa2

† ~t1t2 ;a2!#5Ea2
~t1t2 ;a2!Pa2

† ~t1t2 ;a2!

~2.5!

leads to the two-particle TDA system of equations

1

2 (
kl

^t1t2 ; i j ;a2uVut1t2 ;kl;a2&Xt1t2
~kl;a2a2!

5@Ea2
~t1t2 ;a2!2et1i2et2 j #Xt1t2

~ i j ;a2a2!,

~2.6!

whereet i is the sp energy of thei th spherical level.
02430
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B. Four-particle TDA

The correlated four-particle eigenstatea4 of multipolarity
a4 is defined as follows:

ua4a4&5Pa4

† ~a4!u0&, ~2.7!

where the four-particle~quartet! creation operator has two
main components:

Pa4

† ~a4![(
2

X~ppa2a2 ;nnb2b2 ;a4a4!

3@Pa2

† ~pp;a2!Pb2

† ~nn;b2!#a4

1(
2

X~pna2a2 ;pnb2b2 ;a4a4!

3@Pa2

† ~pn;a2!Pb2

† ~pn;b2!#a4
. ~2.8!

For a core stateu0&5u208Pb& these two terms correspond t
the couplings (210Pô 210Pb)a4a4

and (210Bi ^
210Bi) a4a4

, re-
spectively.

By using the short-hand notationsa2[(t1t2a2a2) and
a4[(a4a4) the above relation can be written as follows:

Pa4

† 5(
2

X~a2b2!@Pa2

† Pb2

† #a4
. ~2.9!

Using the TDA equation of motion for the four-particle sy
tem

@H,Pa4

† #5Ea4
Pa4

† ~2.10!

and the analogous two-particle equation~2.5! one obtains, by
using the symmetrized double commutator, the followi
system of equations:

(
28

H~a2b2 ;a28b28!X~a28b28!

5Ea4(
28

I ~a2b2 ;a28b28!X~a28b28!, ~2.11!

where the metric matrix is defined by the following overla
integral:

I ~a2b2 ;a28b28![^0uPa4
~a2b2!Pa4

† ~a28b28!u0&,
~2.12!

and the Hamiltonian matrix is proportional to the metric m
trix

H~a2b2 ;a28b28![
1

2
^0u@Pa4

~a2b2!,H,Pa4

† ~a28b28!#u0&

5
1

2
~Ea2

1Eb2
1Ea

28
1Eb

28
!I ~a2b2 ;a28b28!.

~2.13!
4-2
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The MSM system of equations~2.11! is formally different
from Ref.@20# which uses a non-symmetric Hamiltonian m
trix, but it can be shown that they are equivalent. The me
matrix elements are computed using the standard ang
momentum recoupling procedure and the final result is gi
in Appendix A. In such a way the interaction is involve
only in the first two-particle step. In the second four-partic
step only the two-particle energies enter the equation of
tion. The system of equations~2.11! can be solved using a
an orthonormal basis the eigenstates of the metric matrix
described in Appendix B.

C. a-particle formation amplitude

Let us consider thea-decay process

B→A1a. ~2.14!

The amplitude of this process, called thea-particle forma-
tion amplitude, is given as an overlap integral over the int
nal coordinates of the daughter nucleus and the emitted c
ter

^AuB&[E djadjAca* ~ja!cA* ~jA!cB~jB!. ~2.15!

The modulus squared of this overlap bears the meanin
a-cluster probability inside the mother wave function. W
will use it to analyze thea-like structure of all eigenstates i
212Po.

The a-particle internal wave function is a product of th
ho and singlet-spin wave functions@23#

ca~ja![f00
(la)

~rWp!f00
(la)

~rWn!f00
(la)

~rWa!x00
(p)~12!x00

(n)~34!,
~2.16!

wherela'0.5 fm22 is the a-particle ho parameter. Thes
wave functions are written in terms of the relative and cen
of mass~c.m.! Moshinsky coordinates

S rWp

RW p
D 5

rW17rW2

A2
, S rWn

RW n
D 5

rW37rW4

A2
, S rWa

RW a
D 5

RW p7RW n

A2
.

~2.17!

The volume elements are connected by

drW1drW2drW3drW458drWpdrWndrWadRW a[djWadRW a . ~2.18!

The mother wave function, according to the MSM proc
dure, is a product between the four-particle and the daug
wave functions, i.e.,

cB~jB![ca4a4
~1234!cA~jA!. ~2.19!

The overlap integral~2.15! then becomes

^AuB&5E djaca* ~ja!ca4a4
~1234!5Fa4a4

~Ra!Ya4
~R̂a!.

~2.20!
02430
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The integration is performed over the relative coordina
and the result is a function of thea-particle c.m. coordinate
RW a . The angular momentuml 5a4 for transitions of spheri-
cal nuclei is given by the difference between the final a
initial spins of the mother and daughter states.

In order to estimate the decay width~proportional to the
inverse of the half-life! the function defined by Eq.~2.20! is
used as an initial condition to solve a system of differen
equations describing the motion of thea particle in the po-
tential of the daughter nucleus. In the case of spherical nu
the result is straightforward@23#. The a-decay width to a
final state with angular momentuml is given by

G l5\vF Ra

Gl~Ra!G
2

@Fl~Ra!#2[PlFl , ~2.21!

wherev is the c.m. velocity of the emitteda particle and
Gl(Ra) is the irregular Coulomb wave function on som
point beyond the nuclear surface. This quantity is a prod
of two functions strongly depending on the radiusRa but
should be practically a constant in a region around the g
metrical touching point between thea particle and the
daughter nucleus. This is a very important test of the pro
dure which will be analyzed in the next section.

The four-particle creation operator in Eq.~2.9! is a super-
position of thepp2nn or pn2pn quartets. The configura
tion counterpart of the pair-creation operators entering th
quartets has the following form:

~ct1i
† ct2 j

† !a2
→A$cgt1i

(l i )~j1!cgt2 j

(l j )~j2!%a2

[
1

A2
$@cgt1i

~j1!cgt2 j
~j2!#a2

2@cgt1i
~j2!cgt2 j

~j1!#a2
%. ~2.22!

To estimate the overlap integral~2.20!, when the above men
tioned radial sp wave functions are given as numerical so
tions of the Schro¨dinger equation, is a difficult task, due t
change from absolute to the c.m. and relative coordinates
Ref. @24# one introduces a method to estimate such an in
gral for the monopole (l 50) case and in Ref.@25# this tech-
nique is used to estimate the formation amplitude for thea
decay of 212Po.

The main difficulty consists in the nonseparability b
tween the radial and angular coordinates in the new syst
It is therefore necessary to perform an angular integra
before integrating over the radial coordinates. There is
case in which this operation can be done analytically, nam
the spherical ho basis, by using Talmi-Moshinsky recoupl
coefficients. As we shall show in the next section it is po
sible to have a very good representation of the sp wave fu
tions cgt j

(j) in terms of the ho basis, even for the real pa
of the narrow Gamow resonances

cgt j
~j![(

n
cn~gt j !wnl jm

(l) ~j!, gt j[~etl j !, ~2.23!

where the following standard definitions were use
4-3
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wnl jm
(l) ~j![@fnl

(l)~rW !x1/2~s!# jm ,
~2.24!

fnlm
(l) ~rW ![R nl

(l)~r !Ylm~ r̂ !.

Hereet is the sp eigenvalue in the Woods-Saxon~WS! mean
field for the t5p,n particle, cn(gt j ) the expansion coeffi-
cients in the spherical ho basis andl is the ho parameter
This parameter together with the expansion coefficient
determined by a fitting procedure of the sp state. We w
consider together with the discrete negative-energy sp
trum the narrow Gamow resonances with Re(E).0,
02430
is
ll
c-

uIm(E)u,1 MeV.
Let us first consider in the structure of the quartet opera

~2.8! the pp2nn component. The pairpp building block is
given by the product of the sp wave functions entering the
basis. By changing thej 2 j to the L2S coupling scheme
only the singlet component gives contribution in the over
with the a-particle wave function. Then the configuratio
part can be be written in the relative1c.m. system using the
Talmi-Moshinsky transformation. Finally, the overlap of th
pp part of the TDA wave function with the two-proton pa
of thea-particle wave function~2.16! is given by the follow-
ing expansion in terms of the ho wave functions:
nts,

ho

by
nt
E djp@f00
(la)

~rWp!x00
(p)~12!#* (

1<2

1

D12
Xpp~gp1gp2 ;a2a2!A$cgp1

(l) ~j1!cgp2

(l) ~j2!%a2
5(

Np

Gp~Np ;a2a2!FNpa2

(l) ~RW p!,

~2.25!

where we have introduced thepp G coefficients as

Gp~Np ;a2a2![(
12

Bp~n1l 1 j 1n2l 2 j 2 ;a2a2!K ~ l 1l 2!a2S 1

2

1

2D0;a2US l 1

1

2D j 1S l 2

1

2D j 2 ;a2L
3(

np

^np0Npa2 ;a2un1l 1n2l 2 ;a2&Inp0
(lla) . ~2.26!

Here the first angular brackets denote the recouplingj j 2LS while the second ones denote the Talmi-Moshinsky coefficie
and

Bp~n1l 1 j 1n2l 2 j 2 ;a2a2![A2 (
ep1<ep2

1

D12
Xpp~gp1gp2 ;a2a2!cn1

~gp1!cn2
~gp2!. ~2.27!

The overlap integral between the spherical ho radial functions is defined as

I n0
(lla)

[^R n0
(l)uR 00

(la)
&. ~2.28!

One also obtains similarnn andpn expansions.
By performing the transformation of thepp2nn product to the relative1c.m. coordinates of thea-particle, one finally

obtains the overlap integral, defining thepp2nn part of the formation amplitude. It is written as a superposition of the
functions in the c.m. coordinate of thea cluster

^AuB&[Fa4a4
~Ra!Ya4

~R̂a!5(
Na

Wpn~Na ;a4a4!FNaa4

(l) ~RW a!, ~2.29!

where

Wpn~Na ;a4a4![8 (
NpNn

(
a2a2b2b2

Gp~Np ;a2a2!Gn~Nn ;b2b2!

3X~ppa2a2 ;nnb2b2 ;a4a4!(
na

^na0Naa4 ;a4uNpa2Nnb2 ;a4&Ina0
(lla) . ~2.30!

The second part of the overlap integral is given by thepn2pn four-particle component. It is computed in a similar way,
replacing the four-particle amplitude andG coefficients with the correspondingpn terms. To do this one uses the equivale
pn representation of thea-particle wave function~2.16!, by exchanging the ‘‘2’’ and ‘‘3’’ coordinates:
4-4
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MICROSCOPIC DESCRIPTION OFa-LIKE RESONANCES PHYSICAL REVIEW C61 024304
ca~ja![f00
(la)

~rW12!f00
(la)

~rW34!f00
(la)

~rW12234!

3x00
(p)~12!x00

(n)~34!

5f00
(la)

~rW13!f00
(la)

~rW24!f00
(la)

~rW13224!

3x00
(pn)~13!x00

(pn)~24!. ~2.31!

III. NUMERICAL APPLICATION

A. Single-particle basis

The sp spectrum is provided by the numerical integrat
of the radial Schro¨dinger equation. We used as a mean fie
the Woods-Saxon~WS! potential with the so called universa
parametrization@26#. The bound states and resonances
continuum were computed using the code ‘‘Gamow’’@27# in
a revised version. The results for208Pb are given in Tables
I~a! and I~b! for protons and neutrons, respectively. Here
states are labeled by the indexk. The angular momentuml
and total spinj are also given. Concerning the resonances

TABLE I. Single-particle energies used in the two-particle ba
~in MeV! for protons~a! and neutrons~b!.

~a!

k l 2 j Re(ek) Im(ek)

1 5 9 23.571 0.000
2 3 7 23.333 0.000
3 6 13 21.605 0.000
4 1 3 20.485 0.000
5 3 5 20.306 0.000
6 1 1 0.696 0.000
7 4 9 4.264 0.000
8 6 11 5.689 0.000
9 7 15 6.240 0.000

10 2 5 6.954 20.003
11 0 1 8.017 20.047
12 4 7 8.316 20.001
13 2 3 8.717 20.036
14 5 11 11.633 20.027

~b!

k l 2 j Re(ek) Im(ek)

1 4 9 23.690 0.000
2 6 11 22.538 0.000
3 2 5 21.876 0.000
4 7 15 21.601 0.000
5 0 1 21.283 0.000
6 2 3 20.614 0.000
7 4 7 20.546 0.000
8 3 7 2.199 20.998
9 5 11 2.472 20.038

10 8 17 5.348 20.002
11 5 9 5.594 20.808
12 7 13 5.701 20.013
13 9 19 12.368 20.108
02430
n
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continuum only those states having energies with Re(ek)
,12.5 MeV anduIm(ek)u,1 MeV were selected. One ca
see that there are more narrow proton resonances due t
Coulomb barrier. The calculated values are rather close
those obtained in Ref.@12# were a different parametrizatio
of the WS potential was used. In principle, the continuu
part of the spectrum, which we have neglected, contains
background given by the integration on a contour around
included resonances.

In order to perform the overlap integral~2.15! it is neces-
sary to expand the sp wave functions in terms of the sph
cal ho basis as in Eq.~2.23!. The expansion coefficients ar
found by a standard fitting procedure for a given ho para
eterl. Let us define the parameterf as the coefficient mul-
tiplying the standard ho parameter

l5 f l0 , l05
MNv

\
. ~3.1!

In Fig. 1 we plot, as a function off, the errors in replacing
the numerical solution of the radial Schro¨dinger equation by
an expansion in terms of the ho basis. This error is defi
by the following relation:

s[F E
Rmin

RmaxURe@ck~R!#2 (
n50

nmax

cknR nl
(l)~R!U2

R2dRG1/2

.

~3.2!

We have chosen some high-spin proton states as typica
amples: a bound state labeled byk53 in Table I~a! ~solid
line! and two Gamow resonances withk59 ~dashed line!
and k514 ~dot-dashed line!. In Eq. ~3.2! the limits of inte-
gration areRmin50 fm, Rmax515 fm. The maximal value of
the radial quantum number is taken asnmax59 for which
saturation is always obtained. One can observe that fo
rather large interval of the coefficientf the approximation is
very good, even for the real part of the Gamow wave fun

s

FIG. 1. The errors defined by Eq.~3.2! versus the parameterf
defined by Eq.~3.1!.
4-5
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TABLE II. Experimental and theoretical excitation energies in210Po ~a!, 210Pb ~b!, and 210Bi ~c!. All experimentally known states are
taken below 2.5 MeV for210Po, below 2.0 MeV for210Pb, and below 1.0 MeV for210Bi. Also the experimental and theoretical BE(2;Ji

→Jf) values are given in Weisskopf units in panel~d!. The bare proton charge (e(p)51.0e) and the effective neutron chargeeeff
(n)51.1e were

used in the calculation. The experimental data were taken from@31,32#.

~a! ~c!

Ja2

p Eexpt @MeV# Etheor @MeV# Ja2

p Eexpt @MeV# Etheor @MeV#

01
1 0.000 0.000 11

2 0.000 0.000
21

1 1.181 1.280 01
2 0.047 0.338

41
1 1.427 1.447 91

2 0.271 0.262
61

1 1.473 1.483 21
2 0.320 0.338

81
1 1.557 1.493 31

2 0.348 0.235
82

1 2.188 1.618 71
2 0.433 0.284

22
1 2.290 1.650 51

2 0.439 0.274
62

1 2.326 1.669 41
2 0.502 0.338

42
1 2.383 1.675 61

2 0.550 0.338
31

2 2.387 (12
2) 0.563 0.310

11
1 2.394 1.746 81

2 0.583 0.338
51

1 2.403 1.746 101
2 0.670 1.431

31
1 2.414 1.746 82

2 0.916 0.416
71

1 2.438 1.746 (22
2) 0.972 0.422

~b! ~d!

Ja2

p Eexpt @MeV# Etheor @MeV# Ji Jf Expt.(210Pb) Theor.(210Pb) Expt.(210Po) Theor.(210Po)

01
1 0.000 0.000 2 0 1.4~4! 1.38 0.56~12! 0.62

21
1 0.800 0.903 4 2 4.8~9! 2.23 4.53~15! 1.23

41
1 1.098 1.027 6 4 2.1~8! 1.64 3.00~12! 1.17

61
1 1.196 1.076 8 6 0.7~3! 0.65 1.10~5! 0.48

81
1 1.279 1.103

(101
1) 1.799 2.101

31
2 1.870

(82
1) 2.003 2.191

(42
1) 2.038 2.223
s

r
p

h
o

at
d
si

m
-
to
hr

e
va

ur-
not

l

m-
est

pa-

e
pec-

ut-
f it
tion ~the imaginary part is negligible for narrow resonance!.
The minimum ofs is reached aroundf 51 for all considered
states in Tables I~a! and I~b! and we have chosen in ou
calculations this value, corresponding to the standard ho
rameter. We have checked the expansion~2.23! by the direct
diagonalization of the WS mean field in the ho basis. T
coefficients of the bound states are very close to those
tained by the above fitting procedure. Concerning the st
with positive energy the narrow resonances are embedde
the quasicontinuum background. They can be selected u
a standard phase-shift analysis.

B. Two-particle states

The two-particle states were treated by using Eq.~2.6!
with the two-body interaction matrix elements obtained fro
the surface delta force@28# with one adjustable strength
scaling parameter for each of the neutron-neutron, pro
proton, and proton-neutron interaction channels. These t
parameters were adjusted in the nuclei210Pb, 210Po, and
210Bi, respectively, to yield reasonable values for the en
gies of the lowest states in these nuclei. In addition, the
02430
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ues of the radial single-particle functions on the nuclear s
face were evaluated for the surface delta force and
approximated by one single constant as discussed in@28#.

In Tables II~a!–II~c! we list the available experimenta
data for the nuclei210Po, 210Pb, and 210Bi, respectively.
Also the corresponding calculated values are given for co
parison. One notices that for all of these nuclei the low
states of a given multipolaritya2

p5Jp are very well repro-
duced by the surface delta interaction~for all the multipoles
we have used the one and the same interaction-strength
rameter mentioned above!. For 210Po and 210Bi the second
calculated state of a given multipole falls well below th
experimental second state producing a too compressed s
trum around 1.5 MeV in210Po and around 0.5 MeV in210Bi.
In 210Pb and210Po the first 32 state is very collective@can be
seen from the reduced octupole transition strengthB~E3!
which exceeds 20 Weisskopf units for both nuclei# and most
likely of the three-particle–one-hole character which is o
side our configuration space. This is why no counterpart o
is given on the theoretical side in Tables II~a! and II~b!. From
Table II~d! one can see that the knownB~E2! values of210Pb
4-6
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MICROSCOPIC DESCRIPTION OFa-LIKE RESONANCES PHYSICAL REVIEW C61 024304
and 210Po are reasonably well reproduced by the theory
the bare value of the proton charge (e(p)51.0e) and the
effective neutron chargeeeff

(n)51.1e.

C. a-like states

First of all, in order to have confidence in the descripti
of the high-lying four-particle resonances, the known lo
lying states in212Po should be reproduced. They were co
puted in Refs.@19# using a method similar to the MSM ap
proach and in Ref.@29# within the shell model approach. I
the latter paper a very good agreement was obtained for
first 01,21,41,61,81 states. As mentioned earlier, our initi
MSM basis in nonorthogonal and overcomplete, and a n
orthogonal basis obtained using the eigenstates of the m
matrix ~B5! should be used. The states having small me
eigenvalues are spurious and should be excluded. This is
to the fact thatpn2pn four-particle basis can be express
in terms of thepp2nn basis if all the two-particle eigen
states are used. In our calculation we used only the low
two-particle pp,nn,pn eigenstates for multipoles up toa4
5J59 and only some components become spurious.
result of calculation is given in Table III where in the seco
column are given the experimental energies and in the n
three columns the computed eigenvalues by solving
~2.11!. They correspond to different minimal accepted eige
valuesDmin of the metric matrix, written in parantheses. O
can observe that the energies in the third and fourth colum
corresponding toDmin50.05 andDmin50.2, respectivelly,
are practically identical and they reproduce the experime
data within 400 keV. The values of the last column, cor
sponding toDmin50.5, are worse and therefore we fixed t
minimal threshold of the metric matrix eigenvalues atDmin
50.2. One can see that, in spite of the fact that only
lowest two-particle states were included in calculation,
ageement with the experimental low-lying part of the sp
trum is quite satisfactory, somewhere between Ref.@19# and
Ref. @29#.

It is now important to analyze the structure of these fo
particle states in tems of the two-particle states, contain
Gamow sp resonances. In Table IV~second column! is given
the structure of the four-particle states in terms of the m

TABLE III. Low-lying excitation energies in212Po~in MeV! for
different thresholds of the metric matrix eigenvalues~in parenthe-
ses!. The experimental data are taken from@31#.

Ja4

p Eexpt E(0.05) E(0.2) E(0.5)

01
1 0.000 0.000 0.000 0.000

21
1 0.727 0.949 0.952 0.952

41
1 1.132 1.087 1.090 1.081

61
1 1.355 1.081 1.144 1.135

81
1 1.476 1.131 1.174 1.166

22
1 1.513 1.203 1.203 2.398

11
1 1.621 1.907 1.909 1.901

23
1 1.679 1.783 1.995 2.423

02
1 1.801 2.080 2.091 2.081

24
1 1.806 2.248 2.253 2.607
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important two-particle pairs. One can see that the first
low-lying states have practically one major component. T
four-particle amplitudeX, computed according to Eq.~B8!,
is given in the third column and it is larger than unity, due
the nonorthogonality of the basis. It is important to stress
fact that the lowest monopole two-particle compone
01

1(pp) and 01
1(nn), entering in the four-particle wave

function, are the only ones having in their structure Gam
resonances in continuum. This can be seen in Tables V~a!
and VI~a! where we give the structure of these states in ter
of the sp states labeled in Tables I~a! and I~b! for protons and
neutrons, respectively. The other low-lying states in Ta
III, which are not given in Table IV, have no such states
their structure. It is important to mention that the g.s. stru
ture of 212Po is practically of the form g.s.(210Po)
^ gs(210Pb) in agreement with the supposed ansatz of R
@21,22#.

This microscopic structure of the four-particle states
strongly connected with the formation amplitude~2.29! com-
puted as the overlap integral between these states and
a-particle wave function. It is a function of the distance b
tween the daughter and the c.m. of the emitted cluster.
most impotanta decay of212Po is the transition from the g.s
01

1 . In Fig. 2 we plot the formation ampitude for this tran
sition versus the mentioned distance. One can observe
this function is peaked on the nuclear surfaceR051.2A1/3

57.2 fm. It is of interest to see which would be the equiv
lent local potential if one considers thea-particle formation
amplitude as a wave function satisfying the Schro¨dinger
equation

2
\2

2Ma
¹2Fl~R!1Vl~R!Fl~R!5EaFl~R!, ~3.3!

where we have denoted thea-particle c.m. radius byR
[Ra /2, the angular momentum bya45 l and dropped the
eigenvalue index.

By taking into account the expansion~2.29! one obtains
for the unknown potential the relation

TABLE IV. Quartet structure of the low-lyinga-like states in
terms of the two-particle pairs~the second column!. The amplitude
is given in the third column. Given are also the spectroscopic f
tors of thepp2nn ~the fourth column! andpn2pn ~the fifth col-
umn! four-particle terms in the quartet operator defined by E
~2.9!. In the sixth and seventh columns are given the hindra
factors of theJa4

p states defined by Eq.~3.6!.

Ja4

p J(pp),J(nn) X S1 S2 HF1 HF2

01
1 01

1(pp),01
1(nn) 1.084 1.19~22! 8.49~27! 1.00 1.00

21
1 01

1(pp),21
1(nn) 1.091 1.38~23! 5.16~28! 0.12 0.06

41
1 01

1(pp),41
1(nn) 1.092 7.49~24! 1.39~29! 0.07 0.00

61
1 01

1(pp),61
1(nn) 1.092 4.44~24! 1.02~28! 0.04 0.01

81
1 01

1(pp),81
1(nn) 1.092 3.33~24! 5.36~29! 0.02 0.00

22
1 21

1(pp),01
1(nn) 1.092 1.54~23! 6.44~28! 0.04 0.73
4-7
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TABLE V. The structure of the two-particle states 0a2

1 (pp) in 210Po containing proton single-particl
Gamow resonances. The amplitude is given in the second column. In the third and fourth columns ar
the involved single-particle states labeled according to the first column of Table I~a!.

~a! ~b! ~c!
01

1(pp)E528.651 MeV 04
1(pp)E521.547 MeV 06

1(pp)E51.219 MeV
No. X k1(p) k2(p) X k1(p) k2(p) X k1(p) k2(p)

1 0.460 1 1 20.111 2 2 0.111 4 4
2 0.771 2 2 0.379 3 3 0.132 5 5
3 20.313 3 3 0.769 4 4 20.977 6 6
4 0.156 4 4 0.475 5 5
5 0.149 5 5 0.106 6 6
6 20.124 7 7
7 0.115 9 9

~d! ~e!
07

1(pp)E56.598 MeV 08
1(pp)E510.617 MeV

No. X k1(p) k2(p) X k1(p) k2(p)

1 0.135 3 3 0.443 7 7
2 20.123 4 4 20.647 8 8
3 20.129 5 5 0.563 9 9
4 20.125 6 6 20.182 10 10
5 20.859 7 7 20.130 12 12
6 20.185 8 8
7 0.320 9 9
8 20.146 10 10
9 20.139 12 12
2.
lent
re-
uce

ce
s

Th
rth
t

Vl~R!5Ea1\v
4l

laFl~R! (
Na

Wpn~Na ; l1!

3F2lR222Na2 l 2
3

2GR Na l
(4l)~R!. ~3.4!

TABLE VI. The structure of the two-particle states 0a2

1 (nn) in
210Pb containing neutron single-particle Gamow resonances.
amplitude is given in the second column. In the third and fou
columns are given the single-particle states labeled according to
first column of Table I~b!.

~a! ~b!

01
1(nn)E528.510 MeV 06

1(nn)E521.424 MeV

No. X k1(n) k2(n) X k1(n) k2(n)

1 20.896 1 1 20.137 3 3
2 20.305 2 2 0.926 6 6
3 20.240 3 3 0.321 7 7
4 0.106 4 4
5 20.110 10 10

~c! ~d!

07
1(nn)E521.115 MeV 08

1(nn)54.398 MeV
No. X k1(n) k2(n) X k1(n) k2(n)

1 20.335 6 6 21.000 8 8
2 0.941 7 7
02430
In Fig. 3 we depict this equivalent potential forl 50 ~solid
curve! corresponding to the formation amplitude in Fig.
One clearly sees the molecular shape of this local equiva
potential. This kind of local potential was used in some p
vious works as a phenomenological interaction to reprod

FIG. 2. Thea-particle formation amplitude given by Eq.~2.29!
for the ground-state-to-ground-state transition versus the distanR
of the center of mass of thea particle from the daughter nucleu
208Pb.
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quasimolecular resonances in thea-particle scattering data
@17#. By a dashed line we indicate the pure Coulomb pot
tial between the daughter anda-particle. After the geometri-
cal touching radiusRc[1.2(AA

1/31Aa
1/3)59 fm the equiva-

lent potential bears a close resemblance to the Coulo
interaction. The Coulomb barrier at this point is around
MeV. The solid horizontal line denotes the energy of t
emitteda-particle Ea58.95 MeV, which actually is the gs
energy of the212Po nucleus with respect to208Pb. All the
excitation energies in Table III are given relative to this e
ergy.

The following integral of the formation probability de
fines the so called spectroscopic factor~SF!:

Sila 4
[E

0

`

uFi la 4
~R!u2R2dR, ~3.5!

where i 51 corresponds to thepp2nn component andi
52 to the pn2pn component in the four-particle wav
function ~2.8!. In the fourth and fifth columns of Table IV
are given the spectroscopic factors for thepp2nn and pn
2pn four-particle components of the wave function. O
can observe, first of all, that the total g.s. to g.s. SF has
right order of magnitude@30# and is practically given by the
pp2nn component which is much larger that thepn2pn
one. This means that thepn overlap is much smaller in com
parison with thepp and nn overlaps because proton an
neutron shells above208Pb are different. The other state
have smaller SF. In the sixth and seventh columns there
given the so called hindrance factors HFi defined as a mean
value on the interval@8,10# fm of the ratio

FIG. 3. The local equivalent potential computed using Eq.~3.4!
corresponding to thea-particle wave function in Fig. 2. By a
dashed line it is plotted thea-daughter Coulomb potential. Hori
zontal solid line shows the energy of the emitteda particle.
02430
-

b
5

-

e

re

HFi la 4
[UFi la 4

~R!

Fi01~R!
U2

. ~3.6!

The states given in Table IV have HF1.0.01. The other
states in Table III, not given in Table IV, have much smal
HF and have no sp Gamow resonances in their struct
Therefore, there is a straightforward connection between
sp Gamow states and the magnitude of thea-particle overlap
integral.

In spite of the strong decrease of the formation amplitu
in the region of the geometrical touching radiusRc the decay
width, as can be seen from Fig. 4~solid line!, is practically
constant, proving the validity of our calculation. This is th
reason why we used the interval@8,10# fm to estimate the
HF. According to Eq.~2.21! the decay width is a product o
two terms which have an opposite behavior: the format
probability F0 ~dashed line in Fig. 4! is decreasing and the
penetrabilityP0 ~dot-dashed line in Fig. 4! is increasing. It is
important to observe from the same figure that the de
width is underestimated by two orders of magnitude. T
means that the inclusion of narrow Gamow resonances is
enough in order to reproduce the absolute value of the de
width. The role of the ‘‘background,’’ given by the integra
tion in the complex plane on a countour including the co
sidered resonances, is also very important because the
mation probability of ana cluster on the nucler surface i
proportional to the density of the sp components in the c
tinuum.

But, as it was pointed out, the narrow sp Gamow re
nances play an important role in some low-lying states h
ing a strong overlap with thea-particle wave function and
which are calleda-like states. They should also play an im
portant role in some high-lying states seen as resonance
the scattering ofa particles on the daughter nucleus, esp
cially above the Coulomb barrier. The states above the b

FIG. 4. The quantities log(G th /Gexp) ~solid line!, log(F0)
~dashed line!, and log(P0 /Gexp) ~dot-dashed line! as functions of
the distanceR of the center of mass of thea particle from the
daughter nucleus208Pb. F0 andP0 are defined by Eq.~2.21!.
4-9
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rier have energies larger than 16(52529) MeV. In Tables
V and VI we list the structure of the two-particle states e
tering the four-particle eigenstates and containing sp Gam
states for protons and neutrons, respectively. The excita
energies are relative to the gs energy in212Po. One can see
that all of them have a monopole character.

In Table VII are given the monopolea-like four-particle
states having HF1.1 ~last column!. To obtain such high
lying states we performed a diagonalization using a m
larger basis by considering the two-particle states with en
gies less than 20 MeV andJ50, . . . ,4. Inspite of the very
large amount of eigenstates only very few have large ov
laps with thea-particle wave function, i.e., large values
HF1 and spectroscopic factors. All these states contain
least one of the states of Tables V or VI, containing Gam
resonances in their structure, as can be seen from the
column of Table VII. The high-lyinga-like quadrupole
states are given in Table VIII. As in the previous case th
states have two-particle monopole components carry
Gamow resonances and only two of them are above the C
lomb barrier.

IV. CONCLUSIONS

In this article we have performed an analysis of thea-like
structure for low-lying and high-lying states in212Po. We
have chosen this nucleus as a very good example of a
proton–two-neutron structure. The single-particle states w
found as eigenstates in the Woods-Saxon mean field with
universal parametrization. Together with the particle bou
states the narrow Gamow resonances in continuum were
sidered. We have used a modified~symmetric! version of the

TABLE VII. High-lying monopole (0a4

1 ) states with a large hin-
drance factor for thepp2nn channel (HF1, last column!. The
eigenvalue number is given in the first and energy in the sec
column. Their structure in terms of the two-particle proton states
Table V and neutron states of Table VI is given in the third colum
In the fourth column there is given the spectroscopic factor of
pp2nn quartet operator~2.9!.

a4 E @MeV# J(pp),J(nn) X S1 HF1

141 6.332 04
1(pp),01

1(nn) 20.667 1.34~203! 14.33
03

1(pp),02
1(nn) 0.242

01
1(pp),06

1(nn) 0.614
316 12.181 01

1(pp),08
1(nn) 1.063 1.34~203! 14.33

02
1(pp),08

1(nn) 20.366
356 14.494 07

1(pp),01
1(nn) 1.036 2.66~203! 1.48

383 16.541 03
1(pp),08

1(nn) 21.030 1.43~204! 2.93
02

1(pp),08
1(nn) 20.136

438 19.338 04
1(pp),08

1(nn) 1.002 6.88~204! 7.89
458 20.396 07

1(pp),05
1(nn) 20.987 6.44~204! 1.70

472 21.662 07
1(pp),06

1(nn) 1.001 1.02~203! 1.09
475 21.979 07

1(pp),07
1(nn) 1.002 2.84~204! 1.28

476 22.100 06
1(pp),08

1(nn) 1.000 2.05~204! 2.70
507 27.486 07

1(pp),08
1(nn) 1.001 7.09~204! 21.98

510 31.499 08
1(pp),08

1(nn) 1.000 8.97~205! 4.28
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multistep shell model which describes, in the first step, tw
particlepp, nn andpn states in210Po, Pb, Bi nuclei, respec
tively. As a residual two-body potential we have used t
surface delta interaction. It is very satisfactory that the lo
lying states in212Po can be reproduced using only the lowe
two-particle eigenstates of these three nuclei as build
blocks. In order to account for the Pauli principle, the spu
ous components with small eigenvalues of the metric ma
were excluded.

We also propose an efficient technique to estimate
a-particle formation amplitude by expanding the bound
well as the Gamow resonant states in terms of the ho b
with a standard ho parameter. By using this technique
have analyzed thea-cluster content of the wave function fo
all four-particle eigenstates. We found that the first low
states have ana-particle formation amplitude comparab
with that of the ground state and called thema-like states.
We also have found some high-lying monopole and quad
pole eigenstates strongly overlapping with thea-cluster
wave function. All of them have in their structure monopo
two-particle states ofpp or nn type, with important Gamow
resonance components. The states above the Coulomb
rier should be observed as resonances in thea-particle scat-
tering on 208Pb. Moreover, the equivalent local potentia
derived by evaluating thea-particle formation amplitude for
the transition between the ground states and interpreting
a wave function satisfying the Schro¨dinger equation, has a
‘‘pocket’’ molecular shape. Similar potentials were used
calculations reproducing such resonances in the elastic s
tering ofa-particles. Most of such resonances were obser
in light nuclei around Ca and therefore our future purpose
to extend the multistep shell-model calculation into this
gion.

It turned out that the spectroscopic factor of thepp2nn
component is much larger than that of thepn2pn compo-
nent owing to the difference in the proton and neutr
single-particle structures. In addition, thepp2nn compo-
nent has the right order of magnitude. The absolute valu
the ground-state-to-ground-state decay width is undere
mated by two orders of magnitude, but this can be und
stood by noticing that the backgrond part of the continu
single-particle spectrum was completely omitted. This do
not affect the relative hindrance factors and the shape of
equivalent locala-cluster–daughter potential. The inclusio
of the background components into the computation will
presented in a forthcoming paper.

d
f
.
e

TABLE VIII. The same as in Table VII, but for the quadrupo
(2a4

1 ) states.

a4 E @MeV# J(pp),J(nn) X S1 HF1

171 4.334 211
1 (pp),08

1(nn) 1.033 0.54~204! 1.48
211

1 (pp),219
1 (nn) 20.114

409 11.034 07
1(pp),219

1 (nn) 1.009 0.18~203! 5.08
432 12.020 216

1 (pp),08
1(nn) 0.812 0.18~203! 5.08

216
1 (pp),219

1 (nn) 0.589
485 18.087 011

1 (pp),219
1 (nn) 1.000 0.35~203! 13.32

487 18.585 011
1 (pp),221

1 (nn) 1.000 0.20~203! 1.28
4-10
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APPENDIX A: FOUR-PARTICLE METRIC MATRIX

The metric matrix is given by the following relations:

^0u„Pb2
~nn;b2!Pa2

~pp;a2!…a4
„Pa

28
†

~pp;a28!Pb
28

†
~nn;b28!…a4

u0&5da2a
28
db2b

28
da2a

28
db2b

28
, ~A1!

^0u„Pb2
~np;b2!Pa2

~np;a2!…a4
„Pa

28
†

~pn;a28!Pb
28

†
~pn;b28!…a4

u0&5da2a
28
db2b

28
da2a

28
db2b

28
1da2b

28
db2a

28
da2b

28
db2a

28
~2 !a21b22a4

2(
i jkl

@A~ i jkl ;a2a2b2b2a28a28b28b28!

1A~ i jkl ;a2a2b2b2b28b28a28a28!~2 !a281b282a4#, ~A2!

^0u„Pb2
~nn;b2!Pa2

~pp;a2!…a4
„Pa

28
†

~pn;a28!Pb
28

†
~pn;b28!…a4

u0&52(
i jkl

B~ i jkl ;a2a2b2b2a28a28b28b28!, ~A3!

where

A~ i jkl ;a2a2b2b2a28a28b28b28![â2b̂2â28b̂28F i j a2

l k b2

a28 b28 a4

G ~2 !k1 l 2b21k1 j 2b28Xpn* ~ i j ;a2a2!Xpn* ~kl;b2b2!

3Xpn~ i l ;a28a28!Xpn~k j ;b28b28!, ~A4!

B~ i jkl ;a2a2b2b2a28a28b28b28![â2b̂2â28b̂28F i j a2

k l b2

a28 b28 a4

G X̄pp* ~ i j ;a2a2!D i j X̄nn* ~kl;b2b2!DklXpn~ ik;a28a28!Xpn~ j l ;b28b28!,

~A5!

with the following notation:

X̄tt~ i j ;a2a2![S Xtt~ i j ;a2a2!, i< j

~2 ! i 1 j 111a2 Xtt~ j i ;a2a2!, i . j D . ~A6!
tian

x-
APPENDIX B: DIAGONALIZATION PROCEDURE
IN THE NONORTHONORMAL BASIS

Let us introduce the following short-hand notations:

~a2a2b2b2![ i , ~a28a28b28b28![k, ~a4a4![n.
~B1!

The expansion of the four-particle stateun& in terms of the
nonorthonormal system of statesuk&, given by Eq. ~2.9!,
with the above notation has the following form:

un&5(
k

uk&Xkn , ~B2!
and one can write the system of equations~2.11! as

(
k

^ i uHuk&Xkn5En(
k

^ i uk&Xkn . ~B3!

It can be solved by using the eigenstates of the Hermi
metric matrix^ i uk&:

(
k

^ i uk&Yk j5D jYi j , (
k

Yik
† Yk j5d i j . ~B4!

Using the following orthonormal system of functions by e
cluding spurious eigenmodes withDi'0,
4-11
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u i )5(
k

uk&
Yki

ADi

, ~B5!

one obtains a standard diagonalization problem

(
j

~ i uHu j !Zjn5EnZin ~B6!

for the Hermitian matrix
n,

T

, C

.

tt

02430
~ i uHu j ![(
kl

Yik
†

ADi

^kuHu l &
Yl j

AD j

. ~B7!

The expansion coefficients of the initial nonorthonormal b
sis Xkn are given by

Xkn5(
i

Yki

1

ADi

Zin . ~B8!
J.

l.

. C

er,

un.

ys.

d
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