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A description of a-like resonances is given in terms of single-particle states including narrow Gamow
resonances in continuum. The equations of motion are derived within the multistep shell-model approach; the
lowest collective two-particle eigenmodes are used as building blocks for the four-particle states. A good
agreement with the low-lying states #4?Po is obtained. A new technique to estimate dhparticle formation
amplitude for any multipolarity is proposed. The spectroscopic factor ofrtdecay between ground states is
reproduced, but the total width is by two orders of magnitude less than the experimental total width, due to the
absence of the background components. &hike structure of the lowest states #1%Po is analyzed and
strong high-lying resonances are predicted. The derived equivalent local potential toiptiréicle scattering
has a molecular shape.

PACS numbd(s): 21.60.Cs, 21.60.Gx, 23.66e

[. INTRODUCTION which were observed long time ago as resonances in the
a-particle anomalous large angle scatterit®AS) and
Although the first paper in theoretical nuclear physics wasonnected with the so called “quasimolecular states.” Such
devoted to thex-decay and provided a nice explanation in states were mainly observed and analyzed indttseattering
terms of the Coulomb-barrier penetration of a preformedon light nuclei like *°0 [15], 4%Ca[16], or 28Si[17], but it is
a-particle[1], the microscopic description of the cluster for- also interesting to look for such states in heavy nuclei such
mation on the nuclear surface is still an open problem. Thes 2%%pp[18].
usual shell-model configuration space used in the estimation The aim of our paper is to put in evidence that such reso-
of the a-cluster probability is not able to reproduce the ab-nances can be indeed built on top of Gamow sp resonances
solute value of the half-life for the transition between theand they have a similar structure with the low-lying alpha-
ground stateq2]. This deficiency is connected with the decaying states. As an example we chose the nudEe®
asymptotic exponential decrease of the bound single particighich exhibits a nicex-like structure on top of the double-
(sp wave functiond 3]. An answer to the problem would be magic nucleus’®®Pb. The article is organized as follows: in
the inclusion of the sp narrow resonances lying in continuumsec. |1 we shortly describe the multistep shell-model formal-
[4-6], the so-called Gamow states. In spite of the fact thaism which is a very appropriate approach for such a structure
the true asymptotic behavior of the wave functions isand the calculation of the formation amplitude of the
achieved, the value of the half-life is still not reproduced. y-clusters. Here we propose a simple and efficient method
The inclusion of the background contribution becomes im+or the analytical estimation of the overlap integrals in the
portant because an important part of the alpha-clustering prezase of Gamow resonances. In Sec. Ill we analyze the nu-
cess proceeds through such states. merical results concerning both low-lying and high-lying
The problem of considering the continuum part of theparts of the spectrum and derive an equivalent local potential

spectrum in microscopic calculations is rather involved, butgescribing thex-particle motion. The conclusions are drawn
very important especially for drip-line nuclef]. To estimate i the last section.

the decay width these states can be taken into account effec-

tively by including ana-cluster componer{i8] or by consid-

ering a sp basis _W|th a I_arger harmonlc_: oscillaton) param- Il. THEORETICAL BACKGROUND

eter for states in continuurf9]. The idea to replace the

integration over the real spectrum in continuum by sp The analysis of the low-lying spectrum é¥Po was per-

Gamow resonances plus an integration along a contour in thfiermed in Ref[19], where the four-particle equations of mo-

complex plane including these resonances was considered lign were written in terms of the two-particle eigenstates.

Berggren in Ref[10]. The calculation is very much simpli- This procedure is related to the so-called multistep shell-

fied if one considers that in some physical processes only theodel (MSM) procedurd20]. It was used in describing the

narrow resonances are relevant and the integration, giving'®Po nucleus[21,22 in connection with the microscopic

the background, can be neglecfdd,12. This was shown to description of the alpha decay between the ground states

be an adequate approach for instance in giant resonancéss). In the following we will first shortly describe this pro-

[13] and in the nucleon decay proces§&4). cedure in order to introduce the essential notations and to
But narrow sp Gamow resonances can become a usefgbmpute the formation amplitude of the cluster for any

tool in analyzing the high-lyingz-like four-particle states multipolarity.
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A. Two-particle TDA B. Four-particle TDA
In order to build a four-particle state let us first introduce  The correlated four-particle eigenstatg of multipolarity
the correlated two-particle state of a multipolarity a, is defined as follows:
|7'17'2iazaz>:P22(7'172§az)|0>, 2.9 |a4a4>=PL4(a4)|O), (2.7

where 7 is the isospin index defining proton-protop), ~ Where the four-particléquarte} creation operator has two
neutron-neutron r{n) and proton-neutron pn) states in Main components:

2190, 21%Pp and?'%Bi nuclei, respectively. The two-particle

creation operator for correlated pairs defmesqgm eigen- pLA(aA)EE X(ppasay;nnByby: asay)

state of the Tamm-Dankoff approa¢hDA), which has ac- 2

tually a two-particle shell model ansatz
Y P X[P! (pp:a2)Pj (nN;by)],,

t . _ e T
Paz(Tsz,az)—iEJ Xrn(1150285)Cy, (T17251]). +; X(pnaya,;pnBaby; asa,)
(2.2
- - , X[Pl (pmay)Ph (pniby)l,, (2.8
Here the summation is taken over all the indices, denoting

spherical shell model quantum numberg,if 7,# 7, and  For a core stat¢0)=|?*%h) these two terms correspond to

overi<j if 7,=,. The normalized pair operators are de-the couplings $:Po22'Pb), , and @Bi®2'%Bi),, ,
fined as e 4%’

spectively.
1 By using the short-hand notations,=(7,7,a5a,) and
ct (1y75:i])= A_[C*;li 12j]a2 A= 1+ 571725”, a,=(a,4a,) the above relation can be written as follows:

2.
23 Pl,= 3 X(B[PLPL., 2.9
where the bracket denotes the angular-momentum coupling.

These operators, as well as the correlated ones defined by Egsing the TDA equation of motion for the four-particle sys-
(2.2), satisfy the boson commutation rules from which onetem

gets the TDA orthonormality relations for the amplitudes.

The Hamiltonian for a spherical nucleus is written as a [H,P! J= Ea'4 ! (2.10
superposition of different multipoles in the particle-particle N
coupling scheme: and the analogous two-particle equati@rb) one obtains, by
using the symmetrized double commutator, the following
H_E system of equations:
2 H(azBy;a38)X(a38)
) 2 > Z 2 T H P R 2 U PP HPYPHE %Y 2!
ay m17p I1]1 T2l
X C(11721211)Cay(Ti72 2] 2)- (2.4 B2 NaaBziadBy)X(asy), (21D
The equation of motion where the metric matrix is defined by the following overlap
integral:
[HP T’T,a)]E(TT,a)P (TT,a) , ;o
s P o | (a2 @5B5) =(0IP,, (@2B2) P (a55)]0),
' (2.12
leads to the two-particle TDA system of equations and the Hamiltonian matrix is proportional to the metric ma-
1 trix
7 2 (il aalVInmikliag) X, (Kl azaz) 1
H(azB2;a585) E§<O|[P (@2B) H,P] (@23)] )]|0)
:[Eaz( TlTZ;aZ)_ e-1'1i - Erzj]XTlrz(ij ;a2a2)1
1
(26) E(E +EBZ+E‘V£+ Eﬁé)l(azﬁz,aéﬁé)
wheree; is the sp energy of thigh spherical level. (2.13
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The MSM system of equation@.11) is formally different  The integration is performed over the relative coordinates
from Ref.[20] which uses a non-symmetric Hamiltonian ma- and the result is a function of the-particle c.m. coordinate
trix, but it can be shown that they are equivalent. The metriqR . The angular momentuin= a, for transitions of spheri-
matrix elements are computed using the standard angulagg| nuclei is given by the difference between the final and
momentum recoupling procedure and the final result is givefnitial spins of the mother and daughter states.
in Appendix A. In such a way the interaction is involved  |n order to estimate the decay widtproportional to the
only in the first two-particle step. In the second four-particlejnverse of the half-life the function defined by Eq2.20) is
step only the two-particle energies enter the equation of Mogsed as an initial condition to solve a system of differential
tion. The system of equationt@.11) can be solved using as equations describing the motion of taeparticle in the po-
an orthonormal basis the eigenstates of the metric matrix, gntial of the daughter nucleus. In the case of spherical nuclei
described in Appendix B. the result is straightforwarfi23]. The a-decay width to a
final state with angular momentuhis given by

C. a-particle formation amplitude )
[F(R)I’=PF, (2.21

a

Let us consider ther-decay process I''=hav
yp “MGeRY

+ a. . . . . .
B=Ata (2.14 wherev is the c.m. velocity of the emitted particle and

The amplitude of this process, called theparticle forma-  C1(Ra) is the irregular Coulomb wave function on some
tion amplitude, is given as an overlap integral over the interPOiNt beyond the nuclear surface. This quantity is a product

nal coordinates of the daughter nucleus and the emitted clu® o functions strongly depending on the radigg but
ter should be practically a constant in a region around the geo-

metrical touching point between the particle and the
daughter nucleus. This is a very important test of the proce-
<A|B>Ef A€, dEAy (E) UA(EA) Yp(éR).  (2.19  dure which will be analyzed in the next section.
The four-particle creation operator in EQ.9) is a super-

The modulus squared of this overlap bears the meaning djosition of thepp—nn or pn—pn quartets. The configura-
a-cluster probability inside the mother wave function. We tion counterpart of the pair-creation operators entering these
will use it to analyze thee-like structure of all eigenstates in duartets has the following form:
212po, t ot AL ()
The a-particle internal wave function is a product of the (CryiCry)a, ™ {¢7rli(§1) ¢7721(§2)}“2
ho and singlet-spin wave functiof23]

1
Val €)= B0 () D67 (1) ™ (Fo) X68 (1265 (39), =5l (&, (@],
(2.16
_[l//'yfli(§2) w'ysz(gl)]az}' (2.22

wherex ,~0.5 fm 2 is the a-particle ho parameter. These
wave functions are written in terms of the relative and centeiTo estimate the overlap integr@.20, when the above men-

of mass(c.m) Moshinsky coordinates tioned radial sp wave functions are given as numerical solu-
tions of the Schrdinger equation, is a difficult task, due to
( Fw) ri5r, ( FV) F3¥ry ( Fa) R,*R, change from absolute to the c.m. and relative coordinates. In
L = , .| = , . | = . Ref. [24] one introduces a method to estimate such an inte-
Rr V2 R, V2 R, V2 gral for the monopolel=0) case and in Ref25] this tech-

(2.17  nique is used to estimate the formation amplitude fordhe
decay of?*%Po.
The main difficulty consists in the nonseparability be-
N e . S tween the radial and angular coordinates in the new system.
drydradradr,=8dr.dr,dr,dR,=d¢,dR,. (2.18 |t is therefore necessary to perform an angular integration
) ) before integrating over the radial coordinates. There is one
The mother wave function, according to the MSM proce-case in which this operation can be done analytically, namely

The volume elements are connected by

wave functions, i.e., coefficients. As we shall show in the next section it is pos-
B sible to have a very good representation of the sp wave func-
Ye(ép)= ‘/’a4a4(12349 Ya(én)- (2.19 tions wyﬂ_(g) in terms of the ho basis, even for the real part

. of the narrow Gamow resonances
The overlap integral2.15 then becomes

R . Uy (D=2 ca(vy)efiin(d),  vy=(el]), (223
(AlB)= f A€t (Ea) Yaga,(1234=F, 0, (R)Y 4 (Ro). "

(2.20 where the following standard definitions were used:
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oY) ) s)1 [Im(E)|<1 MeV.
ehiin( ) =L (D x2S . Let us first consider in the structure of the quartet operator

) (2 — o (V) (2.24 (2.8) the pp—nn component. The paipp building block is
Prim(N) =R ni (N)Yim(F). given by the product of the sp wave functions entering the ho
, , , basis. By changing th¢—j to the L—S coupling scheme
Heree. is the sp eigenvalue in the Woods-SaxWiS) mean oy the singlet component gives contribution in the overlap
field for the 7=, particle, c,(y,) the expansion coeffi- yith the a-particle wave function. Then the configuration
cients in the spherical ho basis aidis the ho parameter. part can be be written in the relative.m. system using the
This parameter together with the expansion coefficients iTaimi-Moshinsky transformation. Finally, the overlap of the
determined by a fitting procedure of the sp state. We willpp part of the TDA wave function with the two-proton part
consider together with the discrete negative-energy spe®f the a-particle wave functiori2.16) is given by the follow-
trum the narrow Gamow resonances with RE£O, ing expansion in terms of the ho wave functions:

f A [ boe? (T xoo><12>]*2 X Yo Vozi 028 AUE) (€00 (D) a,= & GalNi a2 )R,

1=2

(2.29
where we have introduced thegp G coefficients as
) . 11 1)\ 1)
G (N5 ap8)=> B (Nylj1nalajo;azr)( (1) as| 5 5 |0say|| 115 il 125 i2; @
12 22 2 2
X; <n,TON,T012;a2|n1|1n2|2;a2>1'§]);)6“). (22@

Here the first angular brackets denote the recouglirgL S while the second ones denote the Talmi-Moshinsky coefficients,
and

. . 1
B (Nil1jinoloioianan) =12 2 A_lzxm(%rl’}’wziazaz)cnl(’)’wl)cnz(?’wz)- (2.27)

€r1S €42
The overlap integral between the spherical ho radial functions is defined as
IO =(RWIR G, (2.29

One also obtains similarn and pn expansions.

By performing the transformation of thep—nn product to the relativé c.m. coordinates of the-particle, one finally
obtains the overlap integral, defining th@—nn part of the formation amplitude. It is written as a superposition of the ho
functions in the c.m. coordinate of the cluster

(AIB)=F,0,(Ra) Yo, E W, (Ng i @ag) DY, (Ro), (229

@48y

where

WWV(Na;a4a4)ES 2 2 Gw(Nw;aZaZ)Gv(Nv;EZbZ)

NN, azarBob,

XX(PPazaziNnBabs; asds) 2 (NaONgas; aa|NyaoN, Boian) Ty (2.30

The second part of the overlap integral is given by pime- pn four-particle component. It is computed in a similar way, by
replacing the four-particle amplitude acoefficients with the correspondingn terms. To do this one uses the equivalent
pn representation of the-particle wave function2.16), by exchanging the “2” and “3” coordinates:
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TABLE I. Single-particle energies used in the two-particle basis 05 T T T T T

(in MeV) for protons(a) and neutrongb).

(@

k | 2j Re(ey) Im( &)
1 5 9 -3.571 0.000
2 3 7 -3.333 0.000
3 6 13 ~1.605 0.000
4 1 3 —0.485 0.000
5 3 5 ~0.306 0.000
6 1 1 0.696 0.000
7 4 9 4.264 0.000
8 6 11 5.689 0.000
9 7 15 6.240 0.000
10 2 5 6.954 —0.003
11 0 1 8.017 —0.047
12 4 7 8.316 —0.001
13 2 3 8.717 ~0.036
14 5 11 11.633 ~0.027
(b)
k | 2j Re(ey) Im(e)
1 4 9 ~3.690 0.000
2 6 11 —2.538 0.000
3 2 5 ~1.876 0.000
4 7 15 ~1.601 0.000
5 0 1 ~1.283 0.000
6 2 3 ~0.614 0.000
7 4 7 —0.546 0.000
8 3 7 2.199 —0.998
9 5 11 2.472 —0.038
10 8 17 5.348 —0.002
11 5 9 5.594 —0.808
12 7 13 5.701 ~0.013
13 9 19 12.368 ~0.108

Yl £)= N (F10) B (M3 B (15 29)

X x58(12) x4 (34)

Ny, = Ny, > Ny,
= ¢éo“)( rs) ¢§,o“)( I 24) d’éoa)( l13-24)

X x50 (13) x5 (24).

I1l. NUMERICAL APPLICATION

A. Single-particle basis

(2.31)

PHYSICAL REVIEW (51 024304

FIG. 1. The errofor defined by Eq(3.2) versus the parametér
defined by Eq(3.1).

continuum only those states having energies with eRe(
<12.5 MeV and|Im(€)|<1 MeV were selected. One can
see that there are more narrow proton resonances due to the
Coulomb barrier. The calculated values are rather close to
those obtained in Refl12] were a different parametrization

of the WS potential was used. In principle, the continuum
part of the spectrum, which we have neglected, contains the
background given by the integration on a contour around the
included resonances.

In order to perform the overlap integrd.15 it is neces-
sary to expand the sp wave functions in terms of the spheri-
cal ho basis as in Eq2.23. The expansion coefficients are
found by a standard fitting procedure for a given ho param-
eter\. Let us define the parameteas the coefficient mul-
tiplying the standard ho parameter

_MN(D

)\zf)\o, )\0— A (31)

In Fig. 1 we plot, as a function df the erroro in replacing

the numerical solution of the radial Schiinger equation by

an expansion in terms of the ho basis. This error is defined
by the following relation:

{ ijax
Rmin

2 1/2
R2dR

nmax

Ref ¢ R)]—go cknR P (R)

q
Il

(3.2

The sp spectrum is provided by the numerical integrationNVe have chosen some high-spin proton states as typical ex-
of the radial Schidinger equation. We used as a mean fieldamples: a bound state labeled ky:3 in Table (a) (solid
the Woods-SaxofWS) potential with the so called universal line) and two Gamow resonances wik=9 (dashed ling
parametrization 26]. The bound states and resonances inandk= 14 (dot-dashed ling In Eq. (3.2) the limits of inte-
continuum were computed using the code “Gamop27] in
a revised version. The results fé?%Pb are given in Tables the radial quantum number is taken @g.,=9 for which
I(a) and Kb) for protons and neutrons, respectively. Here thesaturation is always obtained. One can observe that for a

states are labeled by the indkxThe angular momenturh

gration areR,j,=0 fm, Ry,,,= 15 fm. The maximal value of

rather large interval of the coefficiehthe approximation is

and total spirj are also given. Concerning the resonances irvery good, even for the real part of the Gamow wave func-
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TABLE Il. Experimental and theoretical excitation energies’tPo (a), 21%b (b), and 2%Bi (c). All experimentally known states are
taken below 2.5 MeV forP'%o, below 2.0 MeV for?'%b, and below 1.0 MeV fof*®Bi. Also the experimental and theoretical BE(;
—J;) values are given in Weisskopf units in pate)l. The bare proton charge® = 1.0e) and the effective neutron chargg,): 1.1e were
used in the calculation. The experimental data were taken [&in82.

@ (©

‘];TZ Eexpt [MeV] Etheor [MeV] J;Tz Eexpt [MeV] Etheor [MeV]

0y 0.000 0.000 17 0.000 0.000

27 1.181 1.280 0; 0.047 0.338

ar 1.427 1.447 9, 0.271 0.262

6, 1.473 1.483 2] 0.320 0.338

8/ 1.557 1.493 37 0.348 0.235

85 2.188 1.618 7] 0.433 0.284

25 2.290 1.650 5] 0.439 0.274

6, 2.326 1.669 47 0.502 0.338

4, 2.383 1.675 6, 0.550 0.338

3, 2.387 (13) 0.563 0.310

1y 2.394 1.746 8, 0.583 0.338

5/ 2.403 1.746 10, 0.670 1.431

3/ 2.414 1.746 8, 0.916 0.416

77 2.438 1.746 (23) 0.972 0.422

(b) (d)

3, Eexpt[MeV] Etheor [MeV] J; J Expt.(*%Pb) Theor.t*%Pb) Expt.€*%Po) Theor.t*%o)
0; 0.000 0.000 2 0 1) 1.38 0.5612) 0.62
27 0.800 0.903 4 2 4(®) 2.23 4.5315) 1.23
ar 1.098 1.027 6 4 2(8B) 1.64 3.0012) 1.17
6, 1.196 1.076 8 6 0(3) 0.65 1.105) 0.48
8/ 1.279 1.103
(10)) 1.799 2.101
37 1.870
(85) 2.003 2.191
(43) 2.038 2.223

tion (the imaginary part is negligible for narrow resonances ues of the radial single-particle functions on the nuclear sur-
The minimum ofo is reached arounti=1 for all considered face were evaluated for the surface delta force and not
states in Tables(®) and Ib) and we have chosen in our approximated by one single constant as discussé¢adh
calculations this value, corresponding to the standard ho pa- In Tables I(a)—Il(c) we list the available experimental
rameter. We have checked the expansb@3 by the direct  data for the nuclei?'®o, 2'%b, and ?'°Bi, respectively.
diagonalization of the WS mean field in the ho basis. Thea|so the corresponding calculated values are given for com-
coefficients of the bound states are very close to those Obyarison. One notices that for all of these nuclei the lowest
tajned bylthe above fitting procedure. Concerning the state§ates of a given multipolaritwZ=J" are very well repro-

with positive energy the narrow resonances are embeddeq Hliced by the surface delta interacti@ar all the multipoles

the quasicontinuum background. They can be selected using," - =" .<ad the one and the same interaction-strength pa-

a standard phase-shift analysis. rameter mentioned aboneFor 21%Po and?'9Bi the second
calculated state of a given multipole falls well below the
experimental second state producing a too compressed spec-
The two-particle states were treated by using E§6)  trum around 1.5 MeV irf'%o and around 0.5 MeV iAl%Bi.
with the two-body interaction matrix elements obtained fromin ?'%b and?'%Po the first 3  state is very collectivfcan be
the surface delta forcg28] with one adjustable strength- seen from the reduced octupole transition strerigti3)
scaling parameter for each of the neutron-neutron, protonwhich exceeds 20 Weisskopf units for both nupksid most
proton, and proton-neutron interaction channels. These thrdiely of the three-particle—one-hole character which is out-
parameters were adjusted in the nuck®Pb, ?'%o, and side our configuration space. This is why no counterpart of it
2198j, respectively, to yield reasonable values for the eneris given on the theoretical side in Table&jland Ii(b). From
gies of the lowest states in these nuclei. In addition, the valTable 1i(d) one can see that the knov@tE2) values of?!%Pb

B. Two-particle states
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TABLE IlI. Low-lying excitation energies irf*?Po(in MeV) for TABLE IV. Quartet structure of the low-lyingy-like states in
different thresholds of the metric matrix eigenvalias parenthe- terms of the two-particle pairghe second columnThe amplitude
ses. The experimental data are taken fro&i]. is given in the third column. Given are also the spectroscopic fac-

tors of thepp—nn (the fourth columip and pn—pn (the fifth col-

J;’4 Eexpt E(0.05) E(0.2) E(0.5) umn) four-particle terms in the quartet operator defined by Eq.

n (2.9. In the sixth and seventh columns are given the hindrance

0; 0.000 0.000 0.000 0.000 factors of thel; states defined by E@3.6).

27 0.727 0.949 0.952 0.952 4

4y 1.132 1.087 1.090 1.081 J7 J(pp),J(nn) X S, S, HF, HF,

67 1.355 1.081 1.144 1.135 j R n

8; 1.476 1.131 1.174 1.166 01+ Oi(pp),oi(nn) 1.084 1.19-2) 8.49-7) 1.00 1.00

2% 1513 1.203 1.203 2398 21+ 01+(pp),21+(nn) 1.091 1.38-3) 5.16-8) 0.12 0.06

17 1.621 1.907 1.909 1.901 41+ 01+(pp),41+(nn) 1.092 7.49-4) 1.39-9 0.07 0.00

2% 1679 1783 1.995 2423 61+ 01+(pp),61+(nn) 1.092 4.44-4) 1.02-8) 0.04 0.01

0; 1.801 2080 2091 2081 81+ 01+(pp),81+(nn) 1.092 3.38-4) 5.3—9 0.02 0.00

2 1.806 2248 2 253 2 607 25 27(pp).0;(nn) 1.092 1.54-3) 6.44-8) 0.04 0.73

and *'%o are reasonably well reprodlfced by the theory fofimportant two-particle pairs. One can see that the first six
the bare value of the proton charge({=1.0e) and the low-lying states have practically one major component. The

effective neutron chargely = 1.1e. four-particle amplitudeX, computed according to E¢BS),
. is given in the third column and it is larger than unity, due to
C. a-like states the nonorthogonality of the basis. It is important to stress the

First of all, in order to have confidence in the descriptionfact that the lowest monopole two-particle components
of the high-lying four-particle resonances, the known low-0; (pp) and O (nn), entering in the four-particle wave
lying states in*'%Po should be reproduced. They were com-function, are the only ones having in their structure Gamow
puted in Refs[19] using a method similar to the MSM ap- resonances in continuum. This can be seen in Tablas V
proach and in Refl29] within the shell model approach. In and VI(a) where we give the structure of these states in terms
the latter paper a very good agreement was obtained for thef the sp states labeled in Tabléa)land (b) for protons and
first 07,27,47,6",8" states. As mentioned earlier, our initial neutrons, respectively. The other low-lying states in Table
MSM basis in nonorthogonal and overcomplete, and a newl|, which are not given in Table IV, have no such states in
orthogonal basis obtained using the eigenstates of the metrigeir structure. It is important to mention that the g.s. struc-
matrix (B5) should be used. The states having small metriqre of 21%Pg is practically of the form g.£¥%Po)
eigenvalues are spurious and should be excluded. This is dL@gS(zmpb) in agreement with the supposed ansatz of Refs.
to the fact thatpn— pn four-particle basis can be expressedml,za.
in terms of thepp—nn basis if all the two-particle eigen-
states are used. In our calculation we used only the lowe
two-particle pp,nn,pn eigenstates for multipoles up i,

This microscopic structure of the four-particle states is
%ttrongly connected with the formation amplitu@?29 com-

) uted as the overlap integral between these states and the
=J=9 and only some components become spurious. ThB P 9

A . : a-particle wave function. It is a function of the distance be-
result of calculation is given in Table Il where in the second .
)a/veen the daughter and the c.m. of the emitted cluster. The

. 21 - .
three columns the computed eigenvalues by solving E _+ost impotantr decay of?*?Po is the transition from the g.s.

(2.11). They correspond to different minimal accepted eigenV1 - In Fig. 2 we plot the formation ampitude for this tran-

valuesD,, of the metric matrix, written in parantheses. One Sition versus the mentioned distance. One can observe that

can observe that the energies in the third and fourth columnghis function is peaked on the nuclear surfag=1.2A"

corresponding tdD ,;,;=0.05 andD,;,=0.2, respectivelly, =7.2fm. Itis of interest to see which would be the equiva-

are practically identical and they reproduce the experimentdent local potential if one considers theparticle formation

data within 400 keV. The values of the last column, corre-amplitude as a wave function satisfying the Sclinger

sponding toD ,j;=0.5, are worse and therefore we fixed the equation

minimal threshold of the metric matrix eigenvaluesDat;, 2

=0.2. One can see that, in spite of the fact that only the _

lowest two-particle states were included in calculation, the 2M,,

ageement with the experimental low-lying part of the spec-

trum is quite satisfactory, somewhere between REJ] and

Ref.[29]. where we have denoted the-particle c.m. radius byR
It is now important to analyze the structure of these four-=R,/2, the angular momentum ky,=1 and dropped the

particle states in tems of the two-particle states, containingigenvalue index.

Gamow sp resonances. In Table (8&cond columhis given By taking into account the expansid@.29 one obtains

the structure of the four-particle states in terms of the mostor the unknown potential the relation

VAR +VI(R AR =E.F(R), (3.3
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TABLE VI. The structure of the two-particle stategzon n) in
21%p containing neutron single-particle Gamow resonances. The
amplitude is given in the second column. In the third and fourth
columns are given the single-particle states labeled according to the

PHYSICAL REVIEW 1 024304

TABLE V. The structure of the two-particle stategz(.pp) in 2%0 containing proton single-particle

Gamow resonances. The amplitude is given in the second column. In the third and fourth columns are given
the involved single-particle states labeled according to the first column of Ti@le |

@

07 (pp)E=—8.651 MeV

(©
¢ (pp)E=1.219 MeV

(b)
O (pp)E=—1.547 MeV

No. X ki(p)  ka(p) X ki(p) ka(p) X ki(p)  ka(p)
1 0.460 1 1 -0.111 2 2 0.111 4 4
2 0.771 2 2 0.379 3 3 0.132 5 5
3 —0.313 3 3 0.769 4 4 —-0.977 6 6
4 0.156 4 4 0.475 5 5
5 0.149 5 5 0.106 6 6
6 —0.124 7 7
7 0.115 9 9

(d) (e
07 (pp)E=6.598 MeV G (pp)E=10.617 MeV

No. X ki(p)  ka(p) X ki(P) ka(p)
1 0.135 3 3 0.443 7 7
2 —-0.123 4 4 —0.647 8 8
3 —0.129 5 5 0.563 9 9
4 —0.125 6 6 —0.182 10 10
5 —0.859 7 7 —0.130 12 12
6 —0.185 8 8

7 0.320 9 9

8 —0.146 10 10

9 —0.139 12 12

AN In Fig. 3 we depict this equivalent potential for0 (solid
V|(R)=Ea+ﬁwm %‘4 W;,(Ng;l1) curve corresponding to the formation amplitude in Fig. 2.

3
X[ 2\R?—2N,,— | — > R(@)(R).

first column of Table (b).

One clearly sees the molecular shape of this local equivalent
potential. This kind of local potential was used in some pre-

(84 vious works as a phenomenological interaction to reproduce

0,020

0,015

(@

(b)

0, (nN)E=—8.510 MeV Q (nn)E=—1.424 MeV 0,010
No. X ki(n) ky(n) X ky(n) ko () LS
0,005
1 —-0.896 1 1 —0.137 3 3
2 -0.305 2 2 0.926 6 6
4 0.106 4 4
5 -0.110 10 10
-0,005
© (d °
07 (nnN)E=—-1.115 MeV Qf (nn)=4.398 MeV R (fm)
No- X a(n) _ ka(n) X ka(n) ke(M) FIG. 2. Thea-particle formation amplitude given by E.29
1 —-0.335 6 6 —1.000 8 8 for the ground-state-to-ground-state transition versus the disRnce
2 0.941 7 7 %a,t;,h; center of mass of the particle from the daughter nucleus
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FIG. 3. The local equivalent potential computed using B3 FIG. 4. The quantities l0d{/Tey) (solid line), log(Fo)

corresponding to they-particle wave function in Fig. 2. By a (dashed ling and logP,/Te,) (dot-dashed lingas functions of
dashed line it is plotted the-daughter Coulomb potential. Hori- the distanceR of the center of mass of tha particle from the

zontal solid line shows the energy of the emitiegarticle. daughter nucleug®®b. F, and P, are defined by Eq2.21).
guasimolecular resonances in theparticle scattering data -/q:ila4(R) 2
[17]. By a dashed line we indicate the pure Coulomb poten- HFia, = Foa®| (3.6

tial between the daughter amdparticle. After the geometri-

cal touching radiuR,=1.2(AY*+AY% =9 fm the equiva- The states given in Table IV have KF0.01. The other
lent potential bears a close resemblance to the Coulomgtates in Table Ill, not given in Table IV, have much smaller
interaction. The Coulomb barrier at this point is around 25HF and have no sp Gamow resonances in their structure.
MeV. The solid horizontal line denotes the energy of theTherefore, there is a straightforward connection between the
emitted a-particle E,=8.95 MeV, which actually is the gs SP Gamow states and the magnitude ofdhparticle overlap

energy of the?!%Po nucleus with respect #%Pb. All the  integral. _ _
excitation energies in Table IIl are given relative to this en-, " SPite of the strong decrease of the formation amplitude
ergy. in the region of the geometrical touching radRsthe decay

The following integral of the formation probability de- \(I:vcgcrj]tshta ‘2? E?QV%Z stﬁgnv;rlci)(?ity'::)?‘.(ci?r“galllgjiétli?) r?r?rcr::gai!ythe
fines the so called spectroscopic fadt6p): reason why we used the intervid,10] fm to estimate the
HF. According to Eq(2.21) the decay width is a product of
. two terms which have an opposite behavior: the formation

Sia Ef | Fia (R)|?R%dR, (3.5  Probability Fy (dashed line in Fig. Bis decreasing and the
* Jo 4 penetrabilityP, (dot-dashed line in Fig.)4s increasing. It is
important to observe from the same figure that the decay
width is underestimated by two orders of magnitude. This
wherei=1 corresponds to th@p—nn component and means that the inclusion of narrow Gamow resonances is not
=2 to the pn—pn component in the four-particle wave enough in order to reproduce the absolute value of the decay
function (2.8). In the fourth and fifth columns of Table IV width. The role of the “background,” given by the integra-
are given the Spectroscopic factors for mp_nn and pn tlon in the CompIeX p!ane on a CO.UntOUr inClUding the con-
—pn four-particle components of the wave function. OneSidered resonances, is also very important because the for-
can observe, first of all, that the total g.s. to g.s. SF has thE1ation probability of anx cluster on the nucler surface is
right order of magnitud€30] and is practically given by the proportlonal to the density of the sp components in the con-
pp—nn component which is much larger that the—pn tinuum. . .
one. This means that thgn overlap is much smaller in com- But, as it was pointed out, Fhe narrow sp.Gamow reso-
parison with thepp and nn overlaps because proton and nances play an important role in some low-lying states hav-

0 . ing a strong overlap with the:-particle wave function and
neutron shells abové®Pb are different. The other states which are callech-like states. They should also play an im-

rr‘)aortant role in some high-lying states seen as resonances in
the scattering ofx particles on the daughter nucleus, espe-
cially above the Coulomb barrier. The states above the bar-

given the so called hindrance factors ;Hiefined as a mean
value on the intervd]l8,10] fm of the ratio
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TABLE VII. High-lying monopole (@4) states with a large hin- TABLE VIIl. The same as in Table VII, but for the quadrupole
drance factor for thepp—nn channel HFy, last columj. The  (2a,) states.
eigenvalue number is given in the first and energy in the second
column. Their structure in terms of the two-particle proton states of &, E[MeV]  J(pp),J(nn) X S HF;
Table V and neutron states of Table VI is given in the third column. N N
In the fourth column there is given the spectroscopic factor of the171 4.334 Zil(pp),oi(nn) 1.033 0.54-04) 148
211(pp),2o(nn) —0.114

—nn quartet operatof2.9).

— p 409 11.034 0;(pp).2gnn)  1.009 0.18-03) 5.08
a, E[MeV] J(pp),Jd(nn) X S HF, 432  12.020 21+5(pp),0§(nn) 0812 018-03 5.08
: ; 2;4pPP).2g(Nn)  0.589
141  6.332 oi(pp),oi(nn) ~0.667 1.34-03 1433  ,oc 14057 P o0 03609 1332
o hm o 0614 487 18585 05,(pp).2n(nn)  1.000 0.20-03) 1.28
0;(pp).0g(nn)  0.614

316 12.181 0;(pp),0g(nn)  1.063 1.34-03 14.33 _ _ _ _ _
0/ (pp),0; (nn) —0.366 multistep shell model which describes, in the first step, two-

356 14.494 0! (pp).0; (nn) 1.036 2.66-03 1.48 particlepp, nn andpn states in?1%Po, Pb, Bi nuclei, respec-
383 16541 0 (pp)0;(nn) —1.030 143-04 2.93 tively. As a re_35|dual _two-quy potentl_al we have used the
3 ¢ surface delta interaction. It is very satisfactory that the low-
02 (PP).0g (Nn)  —0.136 lying states in?1%Po can be reproduced using only the lowest
438 19.338 Oi(pp)'oi(”“) 1.0026.86-04) 789 o5 narticle eigenstates of these three nuclei as building
458 20.396 0/ (pp),0s(nn) —0.987 6.44-04 170  pcks, |n order to account for the Pauli principle, the spuri-
472 21.662 0;(pp)Og(nn)  1.001 1.02-03) 1.09  gyus components with small eigenvalues of the metric matrix
475 21979 05(pp),0j(nn)  1.002 2.84-04 128  \ere excluded.
476 22.100 0g(pp),0g(nn)  1.000 2.05-04) 2.70 We also propose an efficient technique to estimate the
507 27.486 0;(pp).Og(nn)  1.001 7.09-04) 21.98  q-particle formation amplitude by expanding the bound as
510 31.499 0g(pp),0s(nn) 1.000 8.97-05 4.28  well as the Gamow resonant states in terms of the ho basis
with a standard ho parameter. By using this technique we
have analyzed the-cluster content of the wave function for
rier have energies larger than ¥25—9) MeV. In Tables all four-particle eigenstates. We found that the first lowest
V and VI we list the structure of the two-particle states en-states have am-particle formation amplitude comparable
tering the four-particle eigenstates and containing sp Gamowvith that of the ground state and called thervike states.
states for protons and neutrons, respectively. The excitatiowe also have found some high-lying monopole and quadru-
energies are relative to the gs energy*##Po. One can see pole eigenstates strongly overlapping with thecluster
that all of them have a monopole character. wave function. All of them have in their structure monopole
In Table VII are given the monopole-like four-particle  two-particle states o p or nn type, with important Gamow
states having HFE>1 (last column. To obtain such high resonance components. The states above the Coulomb bar-
lying states we performed a diagonalization using a muchrier should be observed as resonances inathmarticle scat-
larger basis by considering the two-particle states with enertering on 2°%Pb. Moreover, the equivalent local potential,
gies less than 20 MeV and=0, . .. ,4. Inspite of the very derived by evaluating the-particle formation amplitude for
large amount of eigenstates only very few have large overthe transition between the ground states and interpreting it as
laps with thea-particle wave function, i.e., large values of a wave function satisfying the Schiinger equation, has a
HF; and spectroscopic factors. All these states contain dtpocket” molecular shape. Similar potentials were used in
least one of the states of Tables V or VI, containing Gamowcalculations reproducing such resonances in the elastic scat-
resonances in their structure, as can be seen from the thitdring of a-particles. Most of such resonances were observed
column of Table VII. The high-lyinga-like quadrupole in light nuclei around Ca and therefore our future purpose is
states are given in Table VIII. As in the previous case theséo extend the multistep shell-model calculation into this re-
states have two-particle monopole components carryingion.
Gamow resonances and only two of them are above the Cou- It turned out that the spectroscopic factor of fhe—nn
lomb barrier. component is much larger than that of thea—pn compo-
nent owing to the difference in the proton and neutron
IV. CONCLUSIONS single-particle_structures. In addition, th|p—nn compo-
nent has the right order of magnitude. The absolute value of
In this article we have performed an analysis of théke  the ground-state-to-ground-state decay width is underesti-
structure for low-lying and high-lying states ift%o. We  mated by two orders of magnitude, but this can be under-
have chosen this nucleus as a very good example of a twatood by noticing that the backgrond part of the continuum
proton—two-neutron structure. The single-particle states wersingle-particle spectrum was completely omitted. This does
found as eigenstates in the Woods-Saxon mean field with theot affect the relative hindrance factors and the shape of the
universal parametrization. Together with the particle boundequivalent localky-cluster—daughter potential. The inclusion
states the narrow Gamow resonances in continuum were coof the background components into the computation will be
sidered. We have used a modifisymmetrig version of the  presented in a forthcoming paper.
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APPENDIX A: FOUR-PARTICLE METRIC MATRIX

The metric matrix is given by the following relations:
T ’ T TRk
(Ol(P g, (NN;2) P, (PP;2))a (P o (PP 2)P 5/ (NN3D3)),0 | 0) = 801 O,y B0 O oy (A1)
. . t canpt R @ -a
(O1(Pg,(NPib2) P, (NP;82)) e, (P (P8P 5 (P1D2)),|0) = Sy 81 Bagay Gy + Oury O, Oy yag(—) 2Paas

- % [A(ijKI; apa,8,b,a5a585b3)

+ A K ; @8 B,0,85b5apal)(—) @2 P~ ], (A2)
(0[(Pg,(nn;by) Py ( pp;az))%(PZé(pn;aé)P};é( pn;b3)),,[0)=— .,% B(ijkl; aza,8,0,05a;8505), (A3)
where
i J a2
Akl apa,B500a85 8505 = aoByayBy| | K Ba | (—)<HI =B kHi=Box* (i arpan) X5 (KI; Boby)
aé ,3é ay
X Xpn(il; agaz) Xpn(Kj; Bab3), (A4)
[ j an
B(ijKI; aza,8,b,a5a5B85b) = ayBrasBy| K 1 B2 | X5 (i an85) Ay XE(KI; Babo) Ay Xpn(ik; arjag) Xpn(jl; B3b3),
aé 3& ay
(A5)

with the following notation:

XTT(ij ;a2a2)1 ISJ

X (ij:a,a,)= . . L A6
Aa2BZ] (gt X (jiiazag), 1] "o
I
APPENDIX B: DIAGONALIZATION PROCEDURE and one can write the system of equati(bﬁg_l) as
IN THE NONORTHONORMAL BASIS
Let us introduce the following short-hand notations: . .
’ S (GiHIX=En ()X (B3)

(az,B8502)=i, (aza;B5b3)=Kk, (a@sas)=n.
(B1) It can be solved by using the eigenstates of the Hermitian
metric matrix(i|k):
The expansion of the four-particle stdt® in terms of the
nonorthonormal system of staték), given by Eq.(2.9),

i — Ty —
with the above notation has the following form: Ek: (i |k>Yki_ DjYij, Ek: YikYkj=ij - (B4)
_ sing the following orthonormal system of functions by ex-
|n>—2 k)X (B2) Using the following orth | sy f functi by
K kn cluding spurious eigenmodes wilhy~0,
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=2 |k>r (B5) (i[H])=2 F“"H'”F (BY)
one obtains a standard diagonalization problem The expansion coefficients of the initial nonorthonormal ba-
sis Xy, are given by
> (i[H[})Zjn=EnzZin (B6)
: =Dy Z (B8)
kn™ & ki~ —%in
for the Hermitian matrix I \/EI
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