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Systematic study on He isotopes with the antisymmetrized molecular dynamics
plus generator coordinate method
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We study the structure of He isotopes systematically using a model in which the frameworks of the anti-
symmetrized molecular dynamics~AMD ! and the generator coordinate method~GCM! are combined. The
present AMD1GCM can reproduce basic features of the isotopes, for example halo structures in6He and
tendency of the binding energies of the isotopes within relatively small number of basis functions. In7He, the
importance of two configurations,6He-n and (4He-n) – 2n, is shown for the ground state. In8He, the calcu-
lated rms radius is smaller than the experimental one.

PACS number~s!: 21.10.Dr, 21.60.Gx
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I. INTRODUCTION

Recently, the development of experiments using unsta
nuclear beams have enabled us to reveal a lot of exotic p
erties of neutron-rich nuclei close to the neutron dripline@1#.
One such property is a so-called neutron halo structure c
sisting of a cloud of weakly bound valence neutrons arou
a core nucleus@2#. The wave function of a valence neutro
with an extremely small binding energy has large spa
distribution and a long tail. For He isotopes,6He with a large
root mean square~rms! radius@2# has been studied as a typ
cal example of halo nuclei@3#. Such anomalous behaviors o
weakly interacting valence neutrons around a core is
served not only in6He but also in other He isotopes. Ther
fore, now it is significant to study systematically the beha
ior of valence neutrons around a4He core in the isotopes
For example, recently, the excited states of7He (Ex52.9
60.3 MeV @4#, Ex53.260.2 MeV @5#! are observed at very
low energy region. The observed excited state has been
lyzed to have a complicated4He1n1n1n four-body struc-
ture @4#. Furthermore, also in8He, a large rms radius is
observed@2#, and it is also considered to have a similar ha
~skin! structure.

In order to study structures of light neutron-rich nuc
beyond the three-body, several valuable approaches
been proposed up to now@6–15#. For example, the stochast
variational method~SVM! developed by Vargaet al. @15# is
one of the excellent methods to solve accurately few-b
systems beyond three-body. However, when we include c
excitation or extend to heavier systems, these few-body
proaches make the computing time increase drastically. T
may restrict the systematic study of light neutron-rich nuc
On the other hand, the structure version of the antisym
trized molecular dynamics~AMD ! has been powerfully ap
plied for systematic studies of neutron-rich nuclei@16#. How-
ever, since the wave function is essentially described b
single Slater determinant, this restriction makes it difficult
describe a halo structure as discussed in Ref.@16#. The at-
tempt to superpose the Slater determinants has been
formed, however, this has not satisfactorily worked to e
plain a large rms radius of11Be which is also a candidate fo
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the halo nucleus. To improve this, recently a new method
combine the frameworks of the AMD and the Hartree-Fo
method has been proposed@17#.

In this paper, we propose a method which can desc
the characteristic structure of valence neutrons including
halo ~skin! structure quantitatively, which will be used for
systematic analysis of light neutron-rich nuclei. As a fi
step, we study He isotopes. We superpose the AMD w
functions based on the generator coordinate method~GCM!.
Since each AMD wave function~GCM basis function! is
obtained through a variational process, the calculated en
converges rapidly even within small number of basis fun
tions. Here, we superpose the AMD wave functions w
different values of the rms radius, and the halo structure
He isotopes is reproduced.

In Sec. II, we briefly explain our model~AMD1GCM! by
which we can quantitatively and systematically study ma
body cluster systems. In Sec. III, the binding mechanism
He isotopes is discussed by applying the present meth
Summary and conclusions are given in Sec. IV.

II. 4He1VALENCE-NEUTRONS MODEL

To describe the structures of He isotopes systematica
we introduce a4He1valence-neutrons model in which th
frameworks of the antisymmetrized molecular dynamics a
the generator coordinate method~GCM! are combined. Total

wave function (uCMK
J6

&) is described as superposition ofJp

projected AMD wave functions (uFMK
J6

(Zn(b);b)&) based on
the GCM as follows:

uCMK
J6

~Z!&5(
b

cbuFMK
J6

~Zb;b!&. ~1!

Hereb represents numbers of the AMD basis functions, a
the coefficientscb are determined by diagonalizing th
Hamiltonian matrix. The parameter (Z5Z1 , . . . , ZA) for
©1999 The American Physical Society03-1
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nucleons represents the centers of the Gaussian wave p
ets. Here, the parity and the angular momentum are proje
to good quantum numbers,

uF6~Z!&5 P̂MK
J P̂6uF~Z!&, ~2!

P̂65
1

2
~16 P̂(r )!, ~3!

P̂MK
J 5E dad~cosb!dgDMK

J* ~abg!exp~2 ia Ĵz!

3exp~2 ib Ĵy!exp~2 ig Ĵz!R~abg!. ~4!

Each AMD wave function in Eq.~2! for the A-nucleon sys-
tem has the following form:

uF~Z1Z2 , . . . ,ZA!&5A@f1f2•••fA#, ~5!

f i5c ix i , ~6!

wheref i is the i th single particle wave function constructe
from the spatial partc i and the spin-isospin partx i . The
spatial part is expressed by a Gaussian wave packet in c
dinate representation,

c i~r!5S 2n

p D 3/4

expF2nS r2
Zi

An
D 2

1
1

2
Zi

2G , ~7!

} expF2n~r2Ri !
21

i

\
Ki•rG , ~8!

where complex parametersZi5AnRi1( i /2\An) Ki repre-
sent centers of the Gaussian wave packets andn is the width
parameter. In the present analysis, we assume a presen
an a cluster (Z15Z25Z35Z45Za) @18#, then the model
space becomes4He1valence neutrons:

uF~Za ,Z5 , . . . ,ZA!&5A@fa~1234!f5•••fA#. ~9!

In this framework, the AMD wave functions with differ
ent intrinsic configurations are superposed based on
GCM. This is performed by constraining the AMD wav
functions to have a fixed expectation value of some phys
quantity, and by changing this constrained value, a lot of
GCM basis functions are generated. We constrain the
radius of the total system. The diagonal elements of
Hamiltonian matrix become a function of parameterZ,

E~Z,Z* ![
^F6~Z!uĤuF6~Z!&

^F6~Z!uF6~Z!&
. ~10!

We optimize these parameters,Z before the angular momen
tum projection by using the frictional cooling method in th
AMD,

dZi

dt
52

]E

]Zi*
,

dZi*

dt
52

]E

]Zi
. ~11!
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As shown in Ref.@16#, by solving this cooling equation, th
expectation value of the Hamiltonian~E! decreases as deve
opment of imaginary timet, since thet derivative ofE is
always negative,

dE

dt
5(

i 55

A
]E

]Zi

dZi

dt
1(

i 55

A
]E

]Zi*

dZi*

dt
, ~12!

522(
i 55

A
dZi

dt

dZi*

dt
,0. ~13!

During this optimization of parameters, parity of the sy
tem is projected to a good quantum number. We can c
strain the value of an rms radius during the cooling proc
by introducing a Lagrange multiplier in Eq.~12!,

dZi

dt
52

]E

]Zi*
1h

]O

]Zi*
,

dZi*

dt
52

]E

]Zi
1h

]O

]Zi
, ~14!

whereO is the expectation value of an rms radius. Here,
multiplier h is determined by the condition that thet deriva-
tive of O is zero,

]O

]t
5(

i 55

A
]O

]Zi

]Zi

]t
1c.c.

5(
i 55

A
]O

]Zi
H 2

]E

]Zi*
1h

]O

]Zi*
J 1c.c.50. ~15!

Therefore, theh value is determined from this equation

h5

(
i 55

A

~]O/]Zi !~]E/]Zi* !1c.c.

(
i 55

A

~]O/]Zi !~]O/]Zi* !1c.c.

. ~16!

The Hamiltonian operatorĤ has the following form:

Ĥ5(
i 51

A

t̂ i2T̂c.m.1(
i . j

A

v̂ i j , ~17!

where a two-body interactionv̂ i j includes the central part
the spin-orbit part and the Coulomb part. For the central p
we use a Volkov-type effectiveN2N potential@19# as

V~r !5~W2M PsPt!@V1 exp~2r 2/c1
2!1V2 exp~2r 2/c2

2!#,
~18!

where,W512M . For the spin-orbit term, we introduce th
G3RS potential@20# as

Vls5V0$e
2d1r 2

2e2d2r 2
%P~3O!LW •SW , ~19!

whered155.0 fm22, d252.778 fm22, P(3O) is a projec-
tion operator onto a triplet odd state,LW is a relative angular
momentum, andSW is a spin (SW 11SW 2). The potential strength
V0 will be given in Table I.
3-2
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III. RESULTS AND DISCUSSION

First, we study structures of He isotopes within a mo
space of a single Slater determinant in order to see validit
applying the AMD wave functions. For Li and Be isotope
the applicability of the AMD has been already shown
En’yo, Horiuchi, and Ono. Basic properties of nuclei ha
been reproduced except for anomalous behaviors of si
particle orbits such as a halo structure for example in11Li
and 11Be @16#. We compare four sets of the parameters
the Volkov potential as listed in Table I: En’yo 1 used in t
original AMD in Ref. @16#, and Okabe 1 used for an analys
on 9Be in Ref.@21#. We introduce new parameters En’yo
and Okabe 2 whose Majorana exchange parameters ar
termined to reproduce the four neutron binding energy
8He ~B.E.53.11 MeV @22#!.

In Fig. 1~a!, we show the binding energies of He isotop
calculated within the bound state approximation. Both res
with parameters En’yo 1 and Okabe 1 have shortcoming
comparison with experimental binding energies, by seve
MeV. That means a single Slater determinant may not
enough to describe valence neutron’s motion around
core. Furthermore, it is impossible to find parameters wh
reproduce the binding energies systematically within a sin
Slater determinant. For example, in Fig. 1~a!, using param-
eters En’yo 2 and Okabe 2 whose Majorana exchange

TABLE I. The parameters for effective nucleon-nucleon int
actions.

V1 ~MeV! V2 ~MeV! c1 ~fm! c2 ~fm! M V0 ~MeV!

En’yo 1 283.34 144.86 1.60 0.82 0.56 900
Okabe 1 260.65 61.14 1.80 1.01 0.60 2000
En’yo 2 283.34 144.86 1.60 0.82 0.55 900
Okabe 2 260.65 61.14 1.80 1.01 0.56 2000

FIG. 1. ~a! The binding energies of He isotopes with AMD an
~b! the root mean square radii of He isotope with AMD.
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rameters are modified to reproduce the four-neutron bind
energy of8He, we cannot reproduce the binding energies
5He, 6He, and7He.

In Fig. 1~b!, we show rms radii of the He isotopes. A
calculated radii are smaller than observed ones. To desc
the loosely bound or unbound nature of valence neutr
around 4He core, we should superpose Slater determina
In Ref. @16#, En’yo, Horiuchi, and Ono superposed a fe
Slater determinants for11Be, but that only has slightly in-
creased the value of the rms radius. To reproduce the exp
mental large value of the rms radius, a much larger num
of the basis functions is required, but that increases calc
tion time drastically. Therefore, the problem is how
choose effective basis functions. In this work, we superp
the AMD wave functions chosen through a simple var
tional procedure which will be explained below. We prepa
the AMD wave functions corresponding to the energy mi
mal state under the constraint of the values of the rms rad
And we superpose all these functions generated by chan
the constrained values of the rms radius~GCM!. Here, the
coefficients for the superposition are determined by dia
nalizing the Hamiltonian matrix. This is an idea to descri
the nuclear structure such as a halo within rather small n
ber of basis functions.

Next, we investigate the validity of this procedure in6He.
The AMD wave functions are used as basis functions of
GCM. The interaction used is Volkov No. 2 with a Majoran
exchange parameterM50.58. Figure 2~a! shows large en-
ergy gain of6He due to the superposition of the AMD wav
functions as GCM basis functions, and the energy rapi
converges. The horizontal axis shows the number of b
functions which are superposed. Here, 1 on the horizo
axis corresponds to one basis function, which is calcula
without the constraint of the value of an rms radius. And
on the horizontal axis shows the superposition of this ba
function and one whose rms radius (Rrms) is constrained to
2.15 fm. In the same way, 3 corresponds to the superpos
of these basis functions and a new one withRrms52.20 fm,
and so on up toRrms52.60 fm with step by 0.05 fm. Since
the calculated energy shows rapid convergence, the fra
work we have introduced works well.

In Fig. 2~b!, the energy of each basis function is show
The horizontal axis represents the constrained value of
rms radius. The AMD wave function whose rms radius
constrained to 2.30 fm~this is close to the experimenta
value! gives the lowest energy after the angular moment
projection to 01. This 01 energy~225.7 MeV! is lower than
one obtained without the constraint~224.7 MeV! by about 1
MeV. This shows that the approximation of the projecti
after variation in the simple AMD is much overcome b
applying the constraint to the rms radius. When we perfo
the GCM calculation, the energy of the ground state becom
lower by 3 MeV. This is due to the reduction of the kinet
energy, and the valence neutrons have very spread sp
distribution.

Furthermore, in Fig. 2~c!, we show the convergence of a
rms radius to a large value when AMD wave functions a
superposed as GCM basis functions. The value of the h
zontal axis is the same as in Fig. 2~a!. As seen in Fig. 2~c!,
the rms radius also converges near the experimental v
3-3
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when the binding energy reproduces the experimental va
Therefore, now we get the wave function which reprodu
the binding energy and the rms radius simultaneously wit
rather small number of the basis functions. Here, it should
mentioned that the properties of spatially extended vale
neutrons around4He core is essentially described, even if t
present wave function is not an exact one because of
limited model space. However, it is difficult to compare t
present result with the full space calculations, since
model space is truncated to only the set of optimal ba
functions under the constraint of the rms radius. In fa
when we use the same Minnesota potential employed in
calculation by Cso´tó @8#, we need the exchange parame
u51.1 to have the observed binding energy of6He (u pa-
rameter in Ref.@8# is u50.98), then more attractive centr
potential is required to have the same binding energy.

As far as the so-called underbinding problem in6He is
concerned, in Ref.@8#, the breaking of thea cluster has been

FIG. 2. ~a! The convergence of energy for6He. The horizontal
axis shows the number of basis functions superposed.~b! The 01

energy of each basis function. The horizontal axis is rms radiu
each basis function.~c! The convergence of root mean square rad
for 6He. The horizontal axis is the same as~a!.
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shown to be significant in the case of6He (t1t clusteriza-
tion!. Using the present framework, such effects of co
cluster breaking can easily be taken into account without
mathematical and computational difficulties. We ha
checked for6He that thea cluster breaking contributes t
the increase of the binding energy by a few hundred ke
This energy gain is almost the same as the more accu
value obtained in Ref.@8#. Although this energy gain from
the core-cluster-breaking effect in6He is ;300 keV, it
might be more critical for Li isotopes~e.g., a-t clustering
effect!, and this is our future problem.

Finally, we apply the present approach for He isotop
and discuss the binding mechanism. In Fig. 3~a!, we show
the binding energies of He isotopes. The interaction use
the same as that in Fig. 2. The systematic of the calcula
binding energies shows good agreement with the experim
tal data except for7He. This insufficiency of7He is easily
understood as follows. Since the ground state of7He is a
resonance state above the6He-n threshold, the relative mo
tion between6He and a valence neutron is mainly describ
by the present model. Then, the tail of one valence neutro
solved within a bound state approximation~the maximum
constrained value ofRrms52.6 fm!. On the other hand, the
binding energy of7He from the4He1n1n1n threshold is
very small~B.E.50.54 MeV @22#!, and the4He-2n motion
in 6He core is also important. This (4He-n)22n configura-
tion corresponds to a local energy minimum in the ene
surface of 7He, which is very near to the ground energ
minimum (dE5;0.05 MeV!. Therefore, in Fig. 3~b!, for
7He, we calculate the binding energy including both co
figurations~the maximum value ofRrms52.6 fm.!. Now the
calculated binding energy of He isotopes reproduce the
dency of the experimental values. Here, similar modificat
of wave functions to include a local minimal configuration
done also for8He, though it does not make a drastic chan

of
s

FIG. 3. ~a! Binding energies of He isotopes with AMD1GCM
~not including local energy minimum!. ~b! Binding energies of He
isotopes with AMD1GCM ~including local energy minimum!.
3-4
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different from the case of7He. For 5He and6He, we cannot
find any local energy minimum. Although the calculated rm
radius of 6He (E521.02 MeV andRrms52.32 fm! is close
to the experimental values (E520.98 MeV @22# and Rrms
52.33 fm @23#, 2.48 fm @2#!, that of 8He (E523.31 MeV
andRrms52.31 fm! is smaller than the experimental value b
;0.2 fm (E523.11 MeV @22# and Rrms52.49 fm @23#!.
That is consistent with the accurate calculation by Vargaet
al. @15# (E523.32 MeV andRrms52.32 fm!, where inter-
action used is also modified from the original Minneso
potential to reproduce the experimental binding energy
6He.

For 5He and 7He, there exist problems to treat the u
bound states. However, we checked the stability of the
ergy and the rms radius within the bound state approxim
tion. Furthermore, since the ground state of7He is bound
from the 4He1n1n1n threshold although it is unboun
from the 6He1n threshold, the bound state approximation
expected to work for the two neutron decay mode and
three neutron decay modes. As far as the6He1n decay
mode is concerned, since the ground state energy of7He is
below the centrifugal barrier of thep wave by about 1 MeV,
the bound state approximation is expected to be valid.

IV. SUMMARY AND CONCLUSIONS

In summary, we have introduced a model for systema
analyses on light neutron-rich nuclei. As a first step, str
tures of He isotopes have been analyzed. In this model,
framework of the AMD is extended to describe the prop
ties of weakly bound valence neutrons such as a halo st
ture. The AMD wave functions whose expectation values
n

ve

K
to

.

.

y

-

.
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the rms radius are constrained during the cooling process
prepared, and these energy minimal states with different c
straint values are superposed based on the GCM. Becau
this superposition, the large rms radius of6He is reproduced.
Although the present model is rather simple, in which;10
Slater determinants are superposed, the experimental
dency of the binding energies of He isotopes is reprodu
except for 7He. This insufficency of7He comes from the
rack of basis functions which is intuitively understood
follows. According to the present procedure,6He-n relative
motion is mainly solved. However, since the binding of7He
is very weak from the4He1n1n1n threshold~0.54 MeV
@22#!, it is also important to describe two valence neutron
~di-neutron! motion against the core, which corresponds to
local minimum in the energy surface. Therefore, when
combine basis functions for both configurations~one neutron
tail and two neutron tail!, this underbinding problem is over
come. For 8He, we obtain a smaller rms radius than t
experimental ones. Since the present model can describe
sic features of He isotopes systematically, as a future pr
lem, we will apply the method for systematic analyses on
and Be isotopes. The extension of the framework might
necessary to describe two center systems, for exam
7Li( a1t) and 8Be(a1a) because one center core pictu
is not valid so much as the case of He-isotopes.
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